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I. Introduction

What do we mean, and what should we .mean , by the standard basic

assumptions of continuous-time finance models? I am referring to the

following assumptions:

1. Continuous time — Time is indexed by the real line (or some

subinterval thereof) , any investor can trade at any point or points in

time, and markets clear at all times.

2. Unrestricted borrowing at the market rate of interest — There is no

limit on the amount that an investor can borrow, and the rate does not

increase with amount borrowed.

3. Stochastic processes for stock prices that have ex ante uncertainty over

every subinterval of time, no matter how small.

^. All investors are price-takers — Each acts as if his actions have no

effect on prices.

I had thought it was quite clear what those assumptions meant, but

taken literally they imply a contradiction: Kreps [1979] has pointed out

that arbitrage profits can be made by a 'bet-doubling' strategy using one

stock and the riskless asset. Markets cannot clear when there is an

arbitrage opportunity, so the standard assumptions above contradict each

other — they are not "internally consistent". This is a very serious

matter, since contradictory assunptions tend to produce contradictory

implications, which can not possibly describe an actual economy; internal



consistency is imper.jtive. Formal algebraic statement of assumptions and

theorems can not only lessen the ambiguities of statement in English, but

may also help in th< difficult search for proofs of internal consistency.

Such an approach is not taken in this paper; rather, I pursue the less

ambitious goal of amending the assumptions to eliminate the arbitrage from

doubling strategies.

The develof/iient of continuous-time techniques in finance has led to

many elegant and enlightening results that could not be derived in discrete

time; these include Merton [1971] and Black and Scholes [1973]. One might

wonder if the claim that the basic assumptions are contradictory implies

that the results of these models are not valid. I believe the results are

valid; this paper amends the assumptions so as to preserve the results that

seem reasonable while eliminating those that do not. In particular, the

Black-Scholes (B-S) model for pricing options is shown to hold under the new

assumptions.

There are several possible approaches to rectifying the doubling

problem. While imposing either credit limits or discrete trading vjould

prohibit Kreps' arbitrage strategy, I argue that these are unrealistic and

would not in general preserve the classical results as desired. Instead, I

replace the assunption of unlimited riskless borrowing by an institutional

structure in which all loans have a limited liability feature: no-one can

be required to repay more than his total assets. In this setting the Kreps

doubling strategy can no longer produce arbitrage profits, but the B-S

option pricing formula still holds. An alternative solution to the doubling

problem lies in defining a continuous-time economy as the limit of a

sequence of discrete-time economies, as the trading interval approaches



zero. Merton [1975] argues that the only valid continuous-time results are

those that hold in the limit of discrete time. The doubling strategy fails

this test, while th<- B-S formula is shown to hold in the limit. Finally,

the most sensible solution may be to combine this limiting definition with

the limited-liabili';y loan assumption.

Section II reviews the Black-Scholes economy and two derivations of

the B-S formula. Section III outlines the Kreps doubling strategy. Section

IV proves the B-S formula in a world of limited-liability demand loans, and

shows the flaw of doubling in such a-world. The feasibility of doubling

using non-demand (limited-liability) loans is analyzed and rejected in

section V. In section VI, I look at the continuous-time limit of

discrete-time economies with no limit on liability; a proof of the B-S

formula in such a world is presented, and doubling is shown not to "work".

Section VII shows that the B-S formula also holds in the limit of

discrete-time economies with limited-liability loans. Section VII gives a

summary and conclusions.

II. the Black-Scholes Economy

This section is a brief review, with slight changes, of the main

arguments in Black and Scholes [19731 and Merton [1977]. I will work with

the simplest economy possible for the purposes of this paper, so as to

highlight the aspects of special interest; no doubt the results can be

generalized to more complex economies.



Let us assune:

1. Capital markets operate (and clear) continuously.

2. Capital markets are perfect —

(a) all investors are price-takers;

(b) there are no taxes or transaction costs;

(c) there are no restrictions on borrowing or selling short;

(d) there are no indivisibilities.

3. Investors prefer more to less.

4. There is a riskless asset v;ith a continuous yield r that is constant

through time.

5. There is a stock paying no dividends, whose price S follows the

geometric Brownian motion process

dS/S = ;jdt + <?dZ

where t is time, Z is a standard Wiener process, and p and <S are known and

constant through time.

6. There is a European call option on the stock, with exercise price E,

maturity date T, and market price C.

Black and Scholes state that "under those assumptions, the value of

the option will depend only on the price of the stock and time and on

variables that are taken to be known constants." (p. 641) They did not

have a proof for this assertion, although their derivation of the B-S

formula depended on its being true. Therefore, I shall also discuss a proof

of the B-S result that does not start by assuning that there is some

twice-differentiable function F such that C( t) = F(S(t) ,t) for all t.

To return to the well-known B-S derivation, an instantaneously

riskless hedge is formed by buying one call and selling Fj shares of stock.



Using stochastic calculus, the rate of change in the hedge's value (in

dollars per unit time) is found to be

icr'F^S^ . F,

with probability one — no uncertainty. This mu.<:-t equal the riskless return

on investment, (F - Fj S)r , giving the partial differential equation:

rF^S - rF + {o-^F^^S^ + F^ = .

Solving this subject to the boundary conditions

F(S,t) = max[0,S-E]

and F(0,t) = ,

and a boundedness condition F/S ^ 1 as S-> oo,

gives the B-S call option valuation formula:

F(S,t) = SN(d,) - Eexp{-r(T-t)}N(d^)

where N(d) is the cumulative normal distribution function,

d, = log(S/E) + (r-t-^cr')(T-t) . and

crJr-t

dj = d, - cT/T-t' .

For future reference, let us denote this particular solution for F (i.e.

the B-S formula) by G(S,t) .

Merton [1977] shows that if C ever differs from G(S,t) then there will

be an arbitrage opportunity. This provides a proof of the formula without

assuming that the only relevant variables are S and t. If C(0) > G(S(0),0),

the arbitrage is achieved as follows: An investor could sell one call,

pocket the difference C(0) - G(S(0),0), and invest G(S(0),0) in such a way

as to return max[0,S-E] at maturity T with certainty, thus paying off the

call. He invests G(S(0),0) by continuously borrowing enough extra money to

hold G^(S(t),t) shares of stock. It can be shoivn that this strategy ensures

that his portfolio is always worth G(S,t) , even as S and t change through



time. In particular, at maturity it will be worth G(S,T) = rnax[0,S-E],

which must equal the call's market value at maturity, C(T), no matter how

wildly it may have been priced in the meantime. So he will be able to pay

off the call that he sold at t = 0.

The Black-Scholes option pricing methodology has proven remarkably

fruitful in modern finance theory. Its applications have included the

valuation of all types of corporate liabilities, the management of natural

resources, measurement of market timing skills, and even the analysis of

such staggeringly complex contracts as bank line commitments. With these

extensive structures resting on the Black-Scholes foundation, clearly some

careful attention to its cornerstone assumptions is not unwarranted.

III. Trouble in Paradise: the Problem of Doubling Strategies

The strong assumptions of the original Black-Scholes economy sheltered

the analysis from many possible real-world confusions: unknovm variance

rates, nonexistent variance rates, junp processes, stochastic interest

rates, and so forth. Then, armed with an understanding of what it takes to

make the hedging argument work, subsequent research has tackled these more

general problems with much success. In this era of expanding frontiers I

was' surprised to learn that back in the pristine garden where it all began

there was still a snake in the grass: the bet-doubling strategy outlined by

Kreps [1979, pp. H0-^^'\ shows that the assunptions in section II, above, are

self-contradictory. He shows a way for any investor to make limitless

arbitrage profits, from which we must conclude that market-clearing is

impossible. Here is a version of his argument:



start at t = 0. An investor is going to mak3 $1 or more, with

probability one, by the ti.ne t = 1, with no investnent of his o\-m . To do

this, knowing y, (J, and r, he first calculates a probability q > arid a

rate of return x > r such that over any time inte.-val of length less than or

equal to 1/2, the stock will yield a (continuously compounded) rate of at

least X with probability at least q. (A proof that such q and x exist is

given in Appendix, There will be infinitely many possible choices.) He

then borrows and invests enough money in the stock that the chance of being

up a dollar or more at t = 1/2 is at least q. In that case, he puts his

profits into the riskless asset until t = 1. If he is not up a dollar or

more at t = 1/2, he borrows and buys enough stock so that by t = 3/4, with

probability q, he will cover any previous losses and still be up a dollar.

Again, if he wins he shifts to the riskless asset, while if he doesn't win

he raises the stakes enough to net $1 by t = 7/8 with probability q, and so

on. All he needs is to win once, so the chance of being up $1 by t =

1 - (1/2) is 1 - (l-q)** , and he is certain to be up $1 by t = 1.

When I first heard of this I thought it must involve cheating somehow,

but I can't see where it breaks any of the rules of the game. So I am

forced to conclude that, taken literally, the assumptions in section II are

not mutually consistent.

IV. One Solution: Limited Liability Demand Loans

How should we amend the B-S assumptions? Surely we do not want to

allow arbitrage profits to be achievable, by doubling or any other strategy.

What enables doubling to work in the B-S economy, and why would it not work



in practise? "Continuous time yields the necessar/ opportunities to bet;

unrestricted short sales yields the necessary resources to cover any

losses." [Kreps, p. i|l] In an earlier paper, Han ison and Kreps [19'/9]

eliminate the doubling problem by restricting traling to discrete time

points; but, as Kreps [1979, P- ^31 admits, "economic motivation for it is

lacking." Even if \-ie assume that no trading can occur at night when the

organized markets are closed, the continuous opportunity for trading from 10

a.m. to 4 p.m. is enough to permit arbitrage by doubling.

Think of a gambler playing a doubling strategy at roulette (betting $1

on red and doubling if he loses). Aside from discrete time, one problem he

will face is that the house will have a limit on the size of his bet. I

guess the parallel to this in capital markets might be that if a doubler

doubles too many times, his position would be so large that the

"price-taker" assumption would be questionable. This I will not pursue

here. But now suppose our gambler wants to finance his bets by borrowing.

In practise, prospective lenders will ask what the money is to be used for,

and will turn him down if he tells them. Doubling looks fine, even for

lenders, except for that one chance of a string of losses long enough that

the money to double again is not forthcoming.

This suggests another possible amendment: putting an upper limit on

borrowing. Doubling would no longer 'work', but choosing some level for the

credit limit would be somewhat arbitrary, and it may affect equilibrium

option prices. If the constraint is binding, investors may use options for

leverage. Finally, such a limit would not be realistic: we do not find

that investors can borrow at r up to a ceiling on borrowing, but rather that

the interest rate charged depends on the term of the loan, the investor's



wealth, and what he plans to do with the money. Although we often proceed

with unrealistic assumptions, I shall propose an alternative to the credit

limit tha'. is both more realistic and, I think, more appealing in its

analysis and results.

Append the following to the assumptions of section II:

7. Each economic agent's wealth is always nonnegative and finite, so that

no contract can require that an agent pay more than his total assets

under any possible circumstances.

8. All loans, short sales, and options are negotiated on a demand basis —
either party may terminate the contract at any time without penalty. In

the case of options (Anerican or European), this is meant to mean that

the option buyer can give the option back to the seller in return for a

sun equal to the market price of a similar option that has no default

risk (for example, a covered call would have no default risk).

You may well ask how a contradictory set of assumptions can be made

consistent by adding more assumptions. Well, I believe that //? in fact

replaces an implicit assumption that negative wealth was allowed. You may

also ask whether a riskless asset can exist in this limited-liability world

— .wouldn't every loan have a risk of default? If all else fails, the

riskless asset can be defined as a contract for future delivery of $B cash

that is secured by $B of cash sitting in a vault. '(A similarity to

government debt should be apparent.) But there are other sources of

riskless assets. Consider a demand loan owed by an investor with a

portfolio of stock and option positions, where the pxsrtfolio has a market
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value greater than the loan owed. Since stock prices (and therefore put and

call prices) have continuous sample paths with probability one, there is no

risk of default on the loan, because if the portfolio value drops close to

the amount owed, the loan can be called in. There is no chance of the value

instantaneously dropping below the amount owed before the loan can be

called; so the riskless rate will be charged. Also notice that no-one

would lend to an investor with zero wealth (unless he agreed to repay all

the proceeds of his investment) , because such a proposition would be

dominated by investing directly in v;hatever the borrov-/er was planning to

invest in.

I claim that in the world as here constructed, a doubling strategy

will not work but the B-S option formula will still hold. First I will

prove the Black-Scholes formula. In this amended economy, it will make a

greater difference to the force and form of the proof whether or not one

starts by assuning that the call price is a known function of only S and t.

Given this assumption, the original B-S proof carries over almost

unchanged. Unless the Black-Scholes partial differential equation holds,

any investor with positive wealth can make excess returns on the standard

hedge portfolio of stock, call option, and riskless asset. More

specifically, denoting the call price function by F(S,t) , if

rPjS - rP + iaVjjSV F^ = b > ,

then the investor can buy n calls, sell short nF^ shares of stock, put the

difference in the riskless asset, and make $nb per unit time (n can be

chosen as large as he likes) . This is in addition to any returns on his own

(unborrowed) wealth, which he needed as collateral in order to short-sell

with no default risk. In other words, this is an arbitrage opportunity.
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The opposite investmant strategy is followed if b<0. So the B-S p.d.e.

must hold. Clearly the boundary conditions are unchanged, so the B-S

formula is valid in this economy.

If we imagine that the call price might not be a function only of S

and t, the proof is more difficult. Denote the B-S formula by G(S(t) ,t)

,

the call price by C( t) , and an investor's (market-valued) wealth by W( t) .

Suppose C(0) < G(S(0),0), and VKO) > 0. The call is undervalued, so the

investor buys n calls, sells short nFj(S(0),0) shares of stock, and puts the

remainder (including W(0)) in the riskless asset. He adjusts his short

position continuously so that he is always short nF^(S(t),t) shares of

stock. As in Merton [1977], this is designed to ensure that the investor

can pay off the calls and still have money left over, but here there is a

hitch: If a call can be undervalued, what is to prevent its becoming even

more undervalued? This is not a problem for Merton, because his investor

can hold out until maturity, when he is sure he will be ahead. But in my

case, if W( t) ^ for some t before maturity, my investor will no longer be

able to borrow (or sell short or sell calls) , and thus could not maintain

his position to maturity — he would be out of the game.

This puts a limit on n, the size of the position that he may safely

take. I need to show that this limit is positive, i.e. that there is a

positive position that the investor could take and make excess profits for

certain.

Lemma: -E ^ G(S(t) ,t) - C(t) .^ E for all t until maturity.

Proof:
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(a) S(t)-E ^ C(t) 4 S(t) for all t. If C(t) broke the upper limit,

investors could sell the call, buy the stock, and put up the stock as

collateral, for the call, making arbitrage gains. If it broke the lower

limit, investors could sell the stock short, buy the call, and put up the

call and $E as collateral for the short sale. Perhaps a more convincing

argument for the lower limit goes as follov/s. Given our assunptions, there

is no benefit to having possession of a stock earlier rather than later, as

long as you are certain to get it (i.e. no dividends, among other things).

Under these conditions, an Anierican call is equal in value to a European

call. Thinking of C( t) as the price of an American call, if it breaks the

lower limit investors could make arbitrage gains by buying the call and

exercising it immediately.

(b) S(t)-E 4 G(S(t),t) ^ S(t) for all t. This is a well-known

property of the B-S formula.

(c) The lemma follows easily from (a) and (b). F and C are trapped in

an interval of length E, and so can be no more than E apart.

Theorem: If n < W(0)/{E-[G(S(0) ,0)-C(0)] } , then W( t) > for all t

until maturity.

Proof: The constraint on n implies that

< W(0) - En + n[G(S(0) ,0)-C(0)]

^ W(0) + n[G(3(0),0)-C(0)J - n[G(S( t) ,t)-C( t)

]

(by the Lemma)

< {W(0) + n[G(S(0),0)-C(0)]}e''*- n[G(S(t) ,t)-C( t) ]

= W(t)
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(For the last line of the proof, recall that the investor starts with W(0),

skims off G(S(0) ,0)-C(0) immediately for every call he buys, is long n calls

thenceforth, and ensures by continuous hedging that the remainder of his

portfolio, short in stock and long the riskless asset, always has value

-nG(S(t) ,t) .)

The proof is similar for the case of an overvalued call, in which the

limit on n would be W(0)/{E-[C(0)-G(S(0) ,0)] } .

Therefore any deviation from the B-S formula allows excess profits to

be made, and so the B-S formula must hold. Because of the limit on the size

of position an investor can take, I think the above is more in the spirit of

a dominance argunent than an arbitrage argument. If C(t) > G(S(t) ,t) then

all investors with positive wealth would be wanting to write the call; if

C(t) < G(S(t),t) they would all want to buy the call. So the call market

could only clear if C(t) = G(S(t) ,t) for all t.

There remains the question of whether the Kreps doubling strategy can

produce sure gains in a world of limited liability. Suppose a would-be

doubler starts with wealth W(0) > 0. He may borrow as much as he wants, but

if ever his net market position W( t) becomes the loan will be called, he

will not be able to borrow any more, and so he will have lost permanently.

The trouble is that no matter how small an amount he borrows at t = to

put in the stock until t = 1/2, there is a positive probability that the

stock will drop enough to make W( t) = for some t < 1/2. And even if that

disaster doesn't strike him, if he has to 'double' several times in a row

the stake will have risen so as to increase the risk of hitting zero wealth

before the next double. So arbitrage profits can not be made this way.
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But that does not prove that there is no way to make excess profits by

some other type of doubling strategy. The next section looks at some of

these .

V. Doubling With Non-Demand Loans

The doubler v.'ho is only allowed to borrow using demand loans may

complain that this is an unfair handicap — that the nature of his strategy

is such that if only he weren't interrupted when his wealth drops

temporarily below zero, he would in the end pay off all his debts with some

money left over. The introduction of such real-world contracts as term

loans and lines of credit may yet permit successful doubling. In this

section 1 outline an institutional structure with these features, but

conclude that doubling still fails. All effort is not wasted, though,

because the rules drawn up for this economy will be useful in sections VI

and VII.

Replace assunption 8 of section IV by the following:

8. All kinds of financial contracts are allov/ed, provided that

(•a) they satisfy the limited-liability assumption, #7;

(b) they specify how each borrower will invest his assets (loans plus own

wealth) until the contract expires, so as to avoid moral hazard

problems in pricing contracts; and



(c) all loans and lines of credit are of finite size.

The idea is that if there is a chance that the borrower (or

short-selxer or option writer) will not have enough wealth to make the

prescribed payment, it is understood at the outset that he will only pay as

much as he has; and the contract is priced with that in mind. Furthermore,

contracts may be written in wiiich the borrower pledges an amount less than

his total wealth. This institutional setting seems like one that could

evolve in a relatively unregulated marketplace. In fact, the limited

liability feature is explicit in many contracts that v/e observe (e.g.

borrowing through corporations) , and is implicit in all others because

bankruptcy is allowed and slavery is not. Default risk must be the major

reason for the difference in interest rates between margin loans and

consumer loans.

Notice that the proofs of the Black-Scholes fo-.nula given in section

IV apply here also, a fortiori. They required the existence of 'demand'

securities, not the nonexistence of nondemand securities.

Suppose a doubler financed his stock positions by term loans of

maturity equal to the planned holding period for the stock. That is, at

t = he borrows on a promise to repay at t = 1/2. If he is not up $1 at

t = 1/2, he borrows on a promise to pay at t = 3/4; and so on. This way he

can not be put out of the game by hitting zero wealth during a holding

period, but there is still a chance that at the end of any holding period he

will have to pay all his assets to his creditor. In such a case he will

have zero wealth, and be unable to recoup his losses since no-one would then

lend to him. Therefore riskless excess profits can not be made this way.
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Suppose instead he negotiates a single line of credit of $B for the

whole period from t = to t = 1 , paying a fee of $f up front, and paying

the riskless rate oi any amounts borro\/ed . He then arranges his 'doubling'

with the aim of making $1 plus $f plus any interest paid. Here the catch is

that he may suffer enough losses that the amount he needs to invest would

involve borrowing more than $B. After that he can not increase his stock

holdings for more 'doubles' , and so can not guarantee to be ahead by t = 1.

If a doubler could arrange an infinite line of credit, he could make

arbitrage profits v/ith Kreps' strategy while only borrowing finite amounts,

but he can set no sure upper limit in advance on his borrowing, and I have

eliminated infinite credit lines by assunption. It would be interesting to

analyze what happens in the limit as B approaches infinity.

VI. Limit of Discrete Time, No Limit on Liability

Quite a different approach to resolving the question of doubling is to

only allow as valid continuous-time economies those that have the property

of being the limit of a sequence of discrete-time economies, as the trading

interval h approaches zero. See Merton [1975] for a discussion along these

lines. This turns out to eliminate the benefits of doubling while

preserving the Black-Scholes result, thus identifying the doubling

phenomenon as a singularity of the continuous-time extreme. Here we are not

assuming that wealth is nonnegative. Although it is hard to imagine a

meaning for negative wealth, we go ahead and assune that investors have

derived utility of wealth functions defined on the entire real line.



We will set up a sequence of discrete- time economies with the aim of

finding the price of a European call in the continuous-time limit. Suppose

without loss of generality that we want to price it at t = and it matures

at t = T >0. Where n is drawn from the set {1,2,3,...}, define economy n by

the assumptions:

1. Capital markets operate (and clear) only at the dicrete time points t =

0,h,2h,3h,... where h = T/n.

2. Capital markets are perfect.

3. Investors prefer more to less, and are risk-averse, throughout the range

of their utility functions.

4. There is a riskless asset that yields $(l+rh) on an investment of $1 for

time interval h. •

5. There is a stock paying no dividends, whose stock price S follows a

stochastic process such that given S(t), the mean of S(t+h) is

S(t)[l+;jh], and the variance of S(t+h) is <T*[S(t)]*h.

6. There is a European call option on the stock, with exercise price E,

maturity date T, and market price C( t)

.

In addition, we make assumptions about how the sequence of economies

behaves for large n. These ensure that the limiting economy has the

properties we are interested in:
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CI. The parameters r, C , E, and T are the same in all economies.

C2. I mui.t nov^ refer the reader to Mertoh [forthcoming], which develops

some tools essential for the following analysis. My assumption 5 above

is sufficient to guarantee Merton's assumptions E.I, E.2, and E.3. In

addition, I assume E.4 which has little or no economic content but

makes the analysis easier, and E.5 which ensures that the stock price

will have continuous sanple paths in the limit as h —> 0, with

probability one

.

VJith these conditions on the stock price, in the continuous-time limit

it will follow the geometric Brownian motion process

dS/S = ^idt + OdZ .

I shall not attempt to derive a formula for the price of the call

option, C(0), in any of the discrete-time economies. Rather, I shall argue

that wiiatever this sequence of prices is, it must converge to the

Black-Scholes formula value, G(S(0),0), as n->^>0 and h -* 0. To do this, I

will not start by assuning that it converges to some function of S and t,

but 1 will assume that it converges.

To simplify notation, let

o(h) stand for any function with the property lim f(h)/h = 0;

S(k) = stock price at t = Wi , for k = 0,1,2,...,n;

C(k) = option price at t = kii

;

N(k) = Gj(3(k),k) = B-S hedge ratio at t = kh;

G(k) = G(S(k) ,k) = B-S formula call value at t = kh ; and

H(k) = value of hedge position at t = kh

.
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The following is based on proofs in Merton [1977] and [1978].

Suppose C(0) converges to a value greater than G(S(0),0). Then I

claim that in an economy with large enough n, arbitrage profits can be made

by the following strategy:

At t = sell one call for C(0), pocket the difference C(0) - G(0),

and invest G(0) in a levered stock portfolio composed of N(0) shares of

stock and riskless borrowing of $ [N (0)S(0)-G(0)] to make up the difference.

So the portfolio's initial value H(0) will equal the B-S formula call value

0(0), but will be less than the call's market price C(0).

The change in the hedge value by t = h will be

H(1) - H(0) = N(0)[S(1)-S(0)] - rh[N(0)S(0)-H(0)]

and the expected change (viewed from t=0) is

Eo{H(1)-H(0)} = N(0)iJh - rh[N(0)S(0)-H(0)] + o(h).

At each stage ( t = kh for k = 1 , 2, . . . ,n-1 ) , the hedge is revised so as

to hold N(k) shares of stock, financed by borrowing whenever necessary. The

expected change in the hedge value over the next time interval is

E^{H(k+1)-H(k)} = N(k);jh - rh[N(k)S(k)-H(k) ] + o(h).

Let D(t) = H(t) - G(t) , the difference between the hedge value and the

B-S formula option value. Then

E;,{D(k+1)-D(k)} = E^{H(k+l)-H(k)} - E^{G(k+l )-G(k) }

= N(k);jh - rh[N(k)S(k)-H(k)] - [G^ (k) u+G^(k)+^(T's\k)Gjs(k) ]h + o(h)

by Ito' s lemma.
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But N(k) ~ Gj(k), and G satisfies the Black-Scholes p.d.e

G^ + lcr^S^Gjj= r[G - GjS], so

E^{D(k+1 )-D( <)} = rh[H(k) - G(ki] + o(h)

rhD(k) + o(h)

Consider the difference D(t) for some date t between and T. How

D(t) = D(0) + ^[D(k+1 )-D(k)] plus an error of order h that arises if nt/T
k--o

is not an integer (so the error disappears as h —» 0) . Ar.d D(0) = by

construction. Merton [forthcoming, esp. pp. 20-26] shows that as h—»0 the

error in approximating the remaining series by the series ^Ef^{D(k+1 )-D(k) }

h--Q

approaches zero with probability one. So in the limit,

" ' '

^

" ' ' is,

(r--0

Xt/T /^t

D(t) = lim S~rhD(k) = /rD(s)dj

The solution to this integral equation is D(t) = D(0)exp[rt]. Since

D(0) = 0, this means that D(t) = for all t from to T, and the hedge

value H(t) will always equal the B-S formula call value G(t) . The clincher

is that at t = T when the investor has to make good on the call he sold, he

will have to pay max[0, S(T)-E] ; but the Black-Scholes formula has the

property G(T) = raax[ , S(T)-E] so H(T) = max[0 , S(T)-E] also — the hedge

portfolio will be just sufficient to pay off on the call at maturity. Thus

the profits that were pocketed at t = were 'free' — arbitrage.

By a similar argument, if the limit of C(0) as h -> is less than G(0)

then arbitrage is achieved by buying the call and shorting the hedge

porfolio. So it must be that the B-S formula gives the limit of the call's

market price, as the trading interval approaches zero.

As an example of why doubling fails in the limit of discrete time,
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imagine a cloubler betting red on a fair roulette wheel (probability of win =

.5), in a discrete-time world where negative wealth is allowed. He finances

all his bets with riskless borrowing. To'make each bet a fairly priced

security, let us say that its outcome is independent of everything else, the

riskless rate is zero, and bets pay off at 2 to 1 . He has n opportunities

to bet between t=0 and t= 1 , wants to be up $1 by t=1, and so he first bets

$1 and keeps doubling until he wins once. His net payoff as of t=1 will be

$1 with probability 1-(1/2)*^, or $(1-2*^) with probability (1/2)*".

Now the parallel to Kreps' doubling argument would be to next let n be

infinite, so that the payoff is $1 with probability 1 — the disastrous

string of losses gets swept under the rug of zero probability, and demand

for doubling is large. But in the sequence of discrete-time economies as n

increases, the demand for such a doubling strategy is identically zero (and

hence is zero in the limit) . This is because the doubling payoff only adds

noise to any portfolio's return, and so would not be undertaken by any

risk-averse investor [Rothschild and Stiglitz, 1970].

VII. Limit of Discrete Time, With Limit on Liability

Defining continuous time in terms of the limit of discrete time is

ver.y appealing in the way it seems to preserve results that make sense while

rejecting those that don't. At the same time, the other approach of

requiring wealth to be nonnegative is desirable because it is hard to

imagine a realistic meaning for negative wealth. This section combines both

methods in what may be the most reasonable way to resolve the questions

addressed here.
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To the six assu-nptions on economy n in section VI, append the

following

:

7. Each econoniic agent's wealth is always nonne[,ative and finite, so that

no contract can require that an agent pay more than his total assets

under any possible circunstances.

8. All kinds of financial contracts are allowed, provided that

(a) they specify how each borrower will invest his assets until the

contract expires;

(b) all loans and lines of credit are of finite size; and

(c) transactions occur only at the time points t = 0,h,2h,...

The cross-economy assumptions CI and C2 are also retained.

In this setting, a riskless asset is much harder to come by. In a

discrete time interval, any loan on a portfolio v;ith finite pledged wealth

and some stock-price risk will have a positive probability of default. Note

that in an option-stock hedge portfolio the stock-price risk cannot be

completely hedged away in discrete time. Furthermore, any short sale of

stock or writing of options will have default risk also. In all these

cases, the contracts will be priced to take account of the default risk.

Define the default premium to be the difference between the prices today of

a given promise to pay with and without the default risk. Tne price without

default risk can be imagined as the limit of the price as the pledged wealth

(collateral) approaches infinity or, better still, no-default securities can

be invented. The price for a short sale is not a problem — it should equal

the stock price if there is no default risk. A call writer can guarantee
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not to default by putting up the stock as collateral. And a loan can be

riskless if backed ty enough cash; although no private investor would want

to borrow on such t;rms, the governmen". might, so let us assume the

existence of riskless government debt.

The pursuit of a doubling strategy in this world v/ould suffer from all

the handicaps of sections V and VI above, so it will not generate arbitrage

profits here either. The remainder of this section is devoted to showing

that in spite of default problems in the discreta-time economies, the market

price of a call will approach the B-S formula value in the continuous-time

limit. My plan is to adapt the discrete portfolio adjustment argument of

section VI, and to show that in a time interval of length h, each default

probability is o(h) , each default premium must be o(h) , so that as h -»• the

cumulative effect of these probabilities and premia from t = to t = T

disappears. Just as in section IV, there will be a limit on the size of

position that an investor may take to make money on a mispriced call, but

since all investors would be wanting to transact on the call in the same

direction, dominance would prevent the market from clearing until the price

is right

.

Let us take some care in defining just what sort of contracts our

discrete-hedging investor is going to invest in. When he buys stock, calls,

or bonds, let him do so no a no-default-risk basis: by buying covered calls

or goverament debt (the stock is not a problem). When he sells short,

writes calls, or borrows, there will be no way to avoid some default risk on

his part, but let the risk be confined to one time unit per contract by

means of the following arrangement. Each of his liabilities is to be

resettled after each time unit h (in the style of futures contracts). There
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is nothing unusual in this for borrov/ing and short sales (borrowings of

stock) — these are to be repaid next period. But when I have him vn~ite an

option wit.h some distant maturity date T, I in fact will mean for him to

contract to pay, at time h from now, the market price that that option will

then command if it has no default risk from then on (e.g. the market price

of a covered call). This is the next best thing in discrete time to the

continuous-time demand-basis assunption //3 on page 9, section IV.

Define the notation f ( h) --v- h to mean that lim f(h)/h is a nonzero

real number .

Consider any portfolio of short and/or long positions in a stock,

options on that stock, and bonds, with positive pledged wealth (positive

market value), where all short positions are to be resettled each period.

In order for default to occur on any of the short positions, the stock price

must move by an amount -v h" in a time interval of length h. V/ith the

assumptions we have made on the stock price process, the probability of such

an outcome is o(h). [Merton, forthcoming, esp. pp. 12-13]

Now the default premium can be thought of as the market value of a

loan guarantee; the guarantor will only have to pay off with probability

o(h). Suppose the market value of such a liability were -v-h' or larger.

Then rolling over a sequence of such claims would give, as h —> 0, a summed

value ~h or greater for a payoff of probability zero — arbitrage. So the

default premium must be o(h).

The hedge strategy to be followed is the same as that in section VI,

except that there is a limit on the number of calls that can be bought or



sold, for the same reason as in section IV. Hare, the expected change in

the hedge value from time k to time k+1 , conditional on default not

occurring, is

Ek{H(k+1)-H(k)} = N(k)>Jh - rh[N(k)S'k)-H(k) ] +o(h)

as before, but here the o(h) term includes any default premium. With D(t)

defined as before, we again get

nt/r f
D(t) = lim rrhD(k) = / rD(s)di

conditional on there being no default between time and time t. But the

probability of such a default is bounded above by something of the form

^o(h), which approaches as h -> 0. So v/e have D(t) = D(0)exp[rt] with
Ir-o

probability one, the call px3sition can be closed at maturity using only the

proceeds from the hedge portfolio, and riskless gains are made. This

completes the dominance argument for the Black-Scholes formula in this

setting

.

VIII. Conclusions

The Kreps doubling strategy raised doubts about the internal

consistency of the standard assumptions in continuous-time finance models.

Two ways of resolving the doubling problem were presented: requiring wealth

to be always nonnegative, and defining a continuous- time economy as the

limit of a sequence of discrete-time economies, as the trading interval

approaches zero. These two methods were combined in the last section, to

form what seems to be a more reasonable model of the world. In all three

cases, the doubling strategy fails to produce arbitrage gains, while the

Black-Scholes option pricing argunent still obtains. It is hoped that the

amended assumptions (any of the three sets) will provide a general partition

of results that make sense from those that do not.
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Appendix

Theorem : Given the stock price process

dS/S = pdt + adZ

and the (constant) riskless rate of return r, there exist a probability

q > and a rate of return x > r such that over any time interval of length

T ^ 1/2, the stock will yield a rate of at least x vdth probability at least

q. (Ml rates of return are meant as continuously compounded.)

Proof : Let y denote the (random variable) rate of return on the stock in

time T. Then S(T) = S(0)exp[yT] , and y r llog S(T)/S(0) . For given S(0) ,

the lognormal distribution of S(T) implies that log S(T) is distributed

normally with mean = log S(0) + aT and variance = c'T, where a = p - o'V2 .

Therefore y is distributed normally with mean = a and variance = cVT,

Case 1 — a > r

Choose x = a and q = 1/2. Then clearly for any T (including T^ 1/2)

the probability that y ^ x is 1/2 C^q) , because x is the mean of y' s normal

distribution.

Case 2 — a ^ r

Choose X = r + 0.001 and q = Prob{y ^ x for T=1/2}. For T=1/2 the

condition on q holds by the definition of q. (Clearly q > 0.) For Sinaller

T, it is intuitively obvious that since

(a) the mean of y is unchanged,

(b) the variance of y is increased,

and (c) X is greater than the mean of y,
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it must be true that Pr{y :^ x} increases, and so is > q. Here is a formal

proof:

q = Pr{y( V2) ^ x}

= Pr{-;'y( ]/2)-a ':>y x - a }

;Note that both have the standard normal distribution.

= Pr{.-y( r)-a -,>^ x - a } for all T, including T<l/2.

< Pr{y(T)-a :^ x - a } for -any T < 1 /2 , since x-j5 > x^--a

= Pr{ y(T) >, x}

Notes;

1. To calculate the amount that our "bet-doubler" should borrow and invest

in the stock each time, let

n = the number of consecutive losses he has suffered so far,

W = his net winnings up to tliat time (may be negative), and

T = (1/2) * = the length of his next holding period.

To be up $1 with probability at least q at the end of the next holding

period, he borrows and invests $/ 1 - W

e - e ,

Then if y(T) > x, his net

position will be

W + / 1 - W Ke^^- e''^/> W + 1 _ w l/e''"- e^^

c^'^e'-'-j

1 .

2. A simpler bet-doubling strategy, which can be defined and analyzed

without reference to a specific stochastic process, is found by making use

of short sales. It almost works (but not quite) to sat q = 1/2, to sell

short a large enough amount whenever the median of the stock holding-period
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return is less than r, and to go long when the median exceeds r; but this

fails if tne median equals r. Instead, set q = 1 /U , go long when the upper

quartile exceeds r, and in the case when it does not exceed r go short an

amount calculated with reference to the lower quartile of the stock

holding-period return. This works unless both quartiles equal r, a

possibilicy which 1 think can be safely ignored.

3. Kreps' statement that "tnere is some positive probability q that over

any time interval the second security [stock] will strictly outperform the

first [riskless asset]" [1979, p. 40] is not quite accurate. If a < r then

for any q > there exists a time interval T large enough that the

probability of the stock beating the riskless asset is less than q. But

this is not a problem for his doubler, who can put an upper bound on the

lengths of his holding periods.



29

References

Black, F. , and H. Scholes [1973], "The Pricing of Options and Corporate

Liabilities", Journal of Political Economy , vol. 81, 637-659.

Harrison, J., and D. Kreps [1979]. "Martingales and Arbitrage in Multiperiod

Securities Markets", Journal of Economic Theory , vol. 20, no. 3,

pp. 381-408.

Kreps, D. [1979], "Three Essays on Capital Markets" (especially essay III,

"Continuous Time Models") , Institute for Mathematical Studies in the

Social Sciences (IMSSS), Technical Report No. 261, Stanford

University.

Merton, R. C. [1975], "Theory of Finance from the Perspective of Continuous

Time", Journal of Financial and Quantitative Analysis , vol. 10,

pp. 659-674.

Merton, R. C. [1977], "On the Pricing of Contingent Claims and the

Modigliani-Miller Tlieorem" , Journal of Financial Economics , vol. 5,

241-249.

Merton, R. C. [1978], Seminar notes for "On the Mathematics and Economic

Assumptions of Continuous-Time Models", unpublished manuscript.

Merton, R. C. [forthcoming], "On the Mathematics and Economic Assumptions of

Continuous-Time Models" , forthcoming in Financial Economics: Essays



30

in Honor of Paul Cootner , W. F. Sharpe (ed.).

Rothschild, M., and J. E. Stiglitz [1970], "Increasing Risk: I, A

Definition", journal of Economic Theory , vol. 2, pp. 225-2'43.









Date Due

'-fe ^I'd

SEP 4 '^

OCT 9 1986

SE 1 9 '89

MOV 1. J

Jul 2 4 1992

mi 3
'. ^i*c,

«)» ^8

3 2002

MR Z 3 2rJ:

Jiftf ^ '

Lib-26-67

ACME
B0.1K;]|Ni)iNG CO., INC.

DEC 8 1983

100 CAMBRIDGE STREET
CHAr?LE3T0VVN, MASS.



o^n-^o

3 TDflD DD M SEM 2EL

H028.M414 no.ll29- 80A
Barley, Stephe/Taking the burdens :

'''liiiii iliiiiiiiiifia
3 TOAD ODl TIE bMD

HD28.IVI414 no.l129- BOB
Roberts. Edwar/Critical functions :

73955B . . D»BKS QQ1J28 '^*'^'^^

3 TDflO DOl TTb ED3

HD28.M414 no.ll30- 80
Schmalensee, R/Economies of scale and

739574 .. ,
D»BK^

. , .
p()132648

ill

3 IQflO ODl TTb Ibl

HD28.M414 no.1130- 80A
Sterman, John /The effect of energy de
739855 D*BKS 00132625

3 TDflD QDl TT5 ?Eb

HD28.IVI414 no.ll31- 80
Latham, Mark. /Doubling strategies, li

739564 .P.»BKS. .. . 00153013

3 lOflD ODE E
liiiiii

bl bMT

HD28.IVI414 no.1l31- 80 1981
Latham, Mark. /Doubling strategies, li

743102 D»BKS 001526"

3 TOAD DDE E57 bl3

3 "^a&D DDM SEM EME
I

\ oi-'SO \'^^S\h

H028.IV1414 no 1132- 80
Keen, Peter G. /Building a decision sup
740317 DxBKS

. . .00136424

3 TDflD DDE DMl 7flS

HD28.IV1414 no.ll32- 80A
Wong, M Antho/An empirical study of f

739570. .D»BKS 00152666

3 TOfiD DDE E5? t.3T




