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Abstract

We consider a stock cutting problem for a paper plant that produces sheets of various

sizes for a finished goods inventory that services customer demand. The controller decides

when to shut down and restart the paper machine and how to cut completed paper rolls

into sheets of paper. The objective is to minimize long run expected average costs re-

lated to paper waste (from inefficient cutting), shutdowns, and backordering and holding

finished goods inventory. A two-step procedure (linear programming in the first step and

Brownian control in the second step) is developed that leads to an effective, but subopti-

mal. solution. The linear program greatly restricts the number of cutting configurations

that can be employed in the Brownian analysis, and hence the proposed policy is easy to

implement and the resulting production process is considerably simplified. In an illustra-

tive numerical example using representative data from an industrial facility, the proposed

policy outperforms several policies that use a larger ntunber of cutting configurations. Fi-

nally, we discuss some alternative production settings where this two-step procedure may

be applicable.
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We consider a problem that is commonly faced in a paper factory: how to cut com-

pleted rolls of paper into individual sheets for customers. This stock cutting problem is

traditionally modeled as an integer program: given a set of orders of various sizes, such

as 8.5" X 11", and an unlimited amount of paper on a roll of specified width, out the roll

into the individual orders so as to minimize the amount of paper waste. A huge literature

has emerged on various generalizations of this problem; readers are referred to the recent

special issue of European Journal of Operations Research (1990) and references therein.

Our formulation differs greatly from the existing literature and is dri\-en by the simple

fact that many paper factories cut rolls in anticipation of customer demand. The particular

paper plant that motivates this study guarantees same day delivery of orders, and because

sheet cutting is a time-consuming operation, completed paper rolls are immediately cut

into sheets of various sizes and placed in a finished goods inventory that services the actual

customer demand. This make-to-stock view of the problem leads to three complexities.

First, since demand is uncertain, the problem is more realistically formulated as a dynamic

and stochastic one, rather than as a static and deterministic mathematical program. Sec-

ond, the stock cutting decisions are intimately related to the amount of paper produced,

and consequently these two decisions need to be considered jointly. Finally, the problem

faced by this factory is multi-criteria in nature. In addition to wasted paper that cannot

be cut into sheets, there are several other costs, which are described below, that are of

significant concern.
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Since paper machines are extremely expensive, plant managers ideally like to keep

them rvmning continually. However, at tliis particular factory, plant capacity is slightly

higher than demand, and hence inventory would build up indefinitely if the machines were

never shut down. Since several hours are required to turn an activated machine off and at

least one working shift is needed to get an idle machine into working order, many pounds

of paper are wasted (although the paper is partially recycled) and significant labor costs

axe incurred during a shutdown.

Furthermore, as in many industries, prompt and reliable customer delivery is of utmost

concern. Managers at this facility believe that customers who do not receive same day

delivery often pursue future orders elsewhere. These large shutdown and backorder costs

have led this facility to carry millions of pounds of paper sheets in finished goods inventory.

Our goal in this study is to find a dynamic scheduling policy to minimize shutdown,

waste and inventory backorder and holding costs, where a scheduling policy simultaneously

decides when to turn the paper machine on and off and how to cut the completed paper

rolls.

The problem considered here, which is formulated in Section 1. is idealized in several

ways. Whereas most plants have many paper machines, we will consider only a single

paper machine. Also, a finished sheet of paper is characterized by its grade, color and size,

and changing grades on a paper machine can take about an hour and changing colors can

take several minutes. We will ignore these two set-ups and assume that the paper machine

under consideration produces only a single color of a single grade. However, in most paper

plants, a popular grade, or even color-grade combination, is often processed on a single

dedicated paper machine. Finally, shutdown times will not be explicitly modeled.

Rather than attempting to find an optimal solution to this very difficult problem.

we look instead for an effective solution that is relatively easy to implement. A two-step

procedure is taken: in the first step, which is carried out in Section 2. we find the a\-erage

activity rates to minimize the average paper waste subject to meeting average demand. In



this linear program, a different activity is defined for each possible cutting configuration

(that is, combination of sheets that simultaneously fit on the width of the paper roll), and

an activity rate is simply the fraction of time that the paper machine employs this activity.

In the second step, which is described in Section 3, these activity rates are taken as given,

and we consider the problem of finding the dynamic scheduling policy that minimizes the

long run expected average shutdown and inventory backorder and holding costs.

Under the heavy traffic conditions that the paper machine must be busy the great

majority of the time to satisfy customer demand and the shutdown cost is sufficiently

large relative to the inventory costs, the dynamic scheduling problem is approximated by

a dynamic control problem involving Brownian motion. The Brownian control problem is

equivalently reformulated in terms of workloads, and in the course of finding an optimal

solution to the workload formulation, we provide the first complete solution to an impulse

control problem addressed in Bather's (1966) classic paper. The workload formulation

solution is easily interpreted in terms of the original problem to propose an {s.S) shut-

down policy, where the paper machine is shutdown when the weighted inventoiy process,

which dynamically measures the amount of machine time invested in the current inven-

tory, reaches the value S, and the machine is restarted when the weighted inventory process

drops to the level s. The determination of the values of .s and S is reduced to the solution

of two equations that are expressed solely in terms of the original problem parameters.

Since a one-to-one correspondence does not exist between cutting configurations and

sheet sizes, interpreting the solution of the workload formulation to obtain a cutting policy

is not straightforward. Consequently, we propose a heuristic cutting poHcy in Section 4 that

incorporates two main concepts. First, we adapt Zipkin's (1990) myopic look ahead policy

from the setting of a multiclass make- to-stock queue to our more complicated setting. The

second idea is to find target inventory levels for each sheet size at the moment of shutdown

to minimize the inventory costs incurred during the shutdown period. The proposed policy

attempts to attain the target inventory levels when the machine is clo.se to shutting down
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(that is, when the weighted inventory process starts to approach S), and uses the myopic

poHcy otherwise.

The proposed poHcy is tested on a simulation model that uses representative data

from the facility that motivated this study. The machine makes three different sheet sizes,

and our proposed policy uses only three of the many possible cutting configurations. Our

simulation results show that the average cost imder the derived values of 6 and S are

very close to the corresponding cost under the best values of s and S, which were found

via a search procedure. Surprisingly, our proposed pohcy outperforms more complicated

heuristics that employ more than three cutting configurations in a seemingly intelligent

manner; details are given in Section 5.

The two-step procedure proposed here can be applied to a broad range of multi-

criteria scheduling problems in a make-to-stock setting. The approach is useful when a

large set of possible activities, or production processes, can be employed to produce a

set of products, where each activity generates a certain number of completed units of

each product, in either a deterministic (as in the stock-cutting case) or stochastic (for

example, when random yield is present) manner. Each different production process has an

associated variable cost; although in our setting this cost is associated with paper waste,

in many other settings the cost reflects the variable cost of employing the process. Average

production costs are minimized in the first step of the procedure and inventory backorder

and holding costs (and shutdown costs, if appropriate) are minimized in the second step.

In Section 6, we briefly describe some alternative settings (from the steel, semiconductor,

and blood separation industries) where our procedure may be applicable.

Although the number of potential activities, say J, will typically be much greater than

the number of different products, say A', no more than A' production processes have posi-

tive activity rates in the optimal LP solution in the first step of the procedure, and hence

no more than K production processes are considered in the second step of the procedure.

In fact, only the processes selected in the first step are required for system stability: for



rigorous stability proofs along this line for somewhat related problems, see Courcoubetis

et al. (1989) and Courcoubetis and Rothblum (1991). Therefore, the proposed solution

is very easy to implement and will lead to a production system that is relatively easy to

manage. Moreover, Johnson axid Kaplan (1987) and others have observed that significant

set-up costs are often incurred when an additional production process is employed. These

costs, which until recently have been largely ignored by the cost accounting community, in-

clude administrative, labor, purchasing and engineering costs. Although little or no cost is

incurred when using an additional activity in our stock cutting example, these set-up costs

will be incurred in all the examples sited in Section 6. Hence, the top level of our hierar-

chical approach, by greatly restricting the number of activities employed, aids in reducing

these often considerable costs and leads to a simpHBcation of the production process. Of

course, this restriction on the number of activities, or processes, that can be employed

may lead to a suboptimal solution to the original multi-criteria problem. However, in our

computational study in Section 5, we were unable to improve upon the proposed policy by

employing more than A' of the J activities.

1. Problem Formulation

Consider a paper machine that produces A' different types of sheets. Each type of

sheet will be referred to as a product and is characterized by the sheet dimensions, f/^i

and dfc2, where dki < dk2- We will call d^i the product width and rfjt2 the length. These

dimensions are measured in inches so that for standard writing paper, (f^j = 8.5 and

dk2 = 11. In keeping with industry conventions, we will measure the quantity of paper

in terms of pounds, not sheets. Let Dk(t) denote the cumulative number of pounds of

product k demanded up to time t. No specific distributional assumption is required: we

merely assume that Dk satisfies afunctional central limit theorem, where Xk and vl denote

the asymptotic demand rate and squared coefficient of variation (variance divided by the

square of the mean) of the demand process. For simplicity, we assume that the demand



for individual products is independent, although this assumption can be easily relaxed.

Let S{t) be the cumulative number of paper rolls produced if the paper machine

is continuously busy during the time interval [0,t]. We assume that S{i) is a renewal

process with asymptotic service rate fi and squared coefficient of variation v^ . The cutting

policy dictates the cutting configuration for each completed roll, and we define a different

activity for each possible cutting configuration. Since each product can have its width

dimension Jjti or its length dimension dk2 placed along the roll's width, activity j =

1, ..., J is characterized by "j.fci, the number of sheets of product k placed along its width

dimension, and nj t2, the number of sheets placed along its length. Let each paper roll

weigh p pounds and be w inches wide. Since each activity must fit on the roll, the waste

Wj associated with activity j must be nonnegative, where

K
Wj = w -'^(riju-idk] +nj_k2dk2)- (1)

k=\

Define the A' x J matrix F = [Fi^j] by

Fkj = (

•'• ^'

)p. (2)
w

so that Fkj is the number of pounds of product k on a roll cut according to activity j . A

paper roll cut according to activity j will often be referred to as a type j roll.

Recall that our scheduling policy dynamically decides whether the paper machine is

busy or idle and how to configure each completed roll, hi practice, the paper machine

is the bottleneck, and the rolls are typically cut directly after they are produced by the

paper machine. However, we find it convenient to assume that the production and cutting

of a roll are undertaken simultaneously. In particular, the scheduling policy is defined

by a J—dimensional vector of nondecreasing processes {Tj{t),t > 0}. where Tj(t) is the

cumulative amount of time that the paper machine allocates to type j rolls during [O.t].

Let Zkit) be the number of pounds of product k in finished goods inventory at time

t. where a negative quantity represents backordered demand; the vector Z = ( Z^ ) will be
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referred to as the inventory' process. If we assume that Z(0) = 0, then

J

Zk{t) = Y,^kjS{T,{t))-Dk{t) for ^• = 1,...,A' and / > 0. (3)

Also, let the cumulative idleness process I(t) be the cumulative amovtnt of time that the

paper machine is idle in [0, <], where

K
I{t)=t-Y^Tk{t) for/>0. (4)

Let J{t) denote the cumulative nvunber of times that the paper machine is shut down

during [0,^]; the cumulative shutdown process J can be recovered from the cumulative

idleness process I. For concreteness, we assume that shutdown costs are incurred when

the machine is turned off. As in Harrison (1988). a scheduling policy T must satisfy

T is continuous, nondecreasing and T(0) = 0. (5)

T is nonanticipating with respect to Z. (6)

/ and J are nondecreasing with 7(0) = J(0) = 0. (7)

where constraint (6) implies that the scheduler cannot observe future demands or ser^•ice

times.

Define the cost function c^ for k = 1.....A' by

, , / -bkx if X < 0, ,p,

[hi^x if J > 0,

where bk represents the backorder cost per pound per unit time for product k. and hk

is the inventory holding cost per pound per unit time for product k\ Let Cs denote the

shutdown cost and let C^ denote the cost per pound of wasted paper. Then the scheduling

problem is to find a policy T to

mm limsup-E[
/ y Ck{Zk[i))df + C^J(T) + ^^y irjS(Tj{T))]



subject to constraints (3)-(7).

2. The First Step: A Lineeir Program

The number of possible cutting configurations, J, can be huge, and the goal of the first

step of our procedure is to select a small subset of these configurations, or activities, that

will actually be employed in the Brownian analysis in the second step. These activities will

be selected by solving a linear program that has J decision variables and A' constraints.

Hence, at most K activities will be used in the Brownian analysis, which greatly simplifies

both the analysis and the resulting production process.

The decision variables of the linear program are the activity rates Xj. where Xj is the

fraction of total time (not just busy time) that the paper machine produces type j rolls.

Let

Rkj=fiF^.j. (10)

so that R^;j is the rate, in pounds per unit time, that product k is generated when type j

rolls are produced. The linear prograni finds the activitj' rates that minimize the average

paper waste subject to meeting average demand:

J

min y Wjx, (11)

subject to ^Rkj^j = >^k for k = l A', (12)

Xj > for J = 1,..., J. (13)

Hereafter, we assume that a unique nondegenerate solution pi. ...,pj exists, although

the subsequent analysis can be employed with any optimal, possibly nondegenerate. solu-

tion. Without loss of generality, assume that the original J activities are indexed so that

pj > for j — 1. .... A' and pj = for j = A' + 1, .... J. We also assume that X^,Lj Pj.

which we denote by the trafRc intensity p. is less than one. so that the paper machine is

able to meet average customer demand over the long run.
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3. The Second Step: A Brownian Analysis

In this section, we use the LP solution p\,-.-,pK to simpHfy the scheduHng problem

(3)-(9) in two ways: only these K activities can be employed and the waste cost, which

was minimized in the long run average sense in (11), will be ignored. Since the scheduling

policy proposed here will automatically enforce the LP solution, our procedure minimizes

the average waste cost. Hence, the remaining control problem is identical to (3)-(9) with

J = K and Cu, = 0. Following the procedure taken in Sections 3 through 5 of Harrison

(1988), we approximate the scheduling problem as a control problem for Brownian motion.

Many of the details of the formulation and analysis of the Brownian control problem will

be omitted since they are similar to those described in Wein (1992) and Ou and Wein

(1992).

3.1. The Limiting Control Problem. To obtain a limiting Brownian control

problem, we need to assume that the server is busy the great majority of the time and the

shutdown cost is sufficiently large relative to the inventory costs. We suspect that these

heavy traffic conditions typically hold in practice, since paper machines are very capital

intensive and shutdown costs are substantial. Formally, one defines a sequence of s}'stems

indexed by n where the traffic intensity p" and shutdown cost C" of the 77"^ system are

such that y^(l — p") and C" /n'^'^ converge to positive constants, while the inventory costs

remain unsealed. The original system under study is identified as a particular system in this

sequence. Since we will not be attempting to prove convergence of our optimal controlled

processes to limiting controlled diffusions, the limiting control problem will be informally

stated without introducing the substantial amount of additional notation that is required

to define a sequence of systems. Readers are referred to Krichagina et al. ( 1992a,b) for

a proof of convergence for Brownian control problems that approximate single prf)duct

examples.

Define o^. = pk/p to be the proportion of the paper machine's busy time that is

9



devoted to producing type k rolls. Although activities and products are now both indexed

by k = 1,...,A', no special relationship exists between activity k and product k. Define

the scaled centered allocation process Y by

and defined the scaled processes (the same symbols are used on both sides of these equations

to reduce the amount of notation required)

Zk{t) = ^^^ for fc = l,...,A'and t>0, (15)

/(/) = ^^ for t >0, and (16)
V"

J{t) = ^^ for ^>0. (17)

The Brownian approximation is obtained by letting the parameter ?7 —> oc. and we will

refer to the limiting scaled processes Z, / and J as the inventory, idleness, and shutdown

process, respectively. Let A' = (A'l, ..., A'jt) be a A'—dimensional Brownian motion process

with drift V^(l^j=i RkjCtj — ^i;)^k = 1 K and covariance matrix E. where

K K

^kj = ^kvlhj + ^i^^ Yl X^ Fji^km niin(p/. /9„,

)

(IS)

and / = {Ikj) is the A' x A' identity matrix.

The limiting control problem is to choose a A'— dimensional RCLL (right continuous

with left hmits) process V to

limsup ^E[f yck{Zkit))dt + CsJiT)] (19)
r_oc i Jo jfr;

K
bject to Zjt(/) = A';^-(/) - Y^ RkjYjit) for k = 1 A and t >0. (20)

mm
k=\

K
su' J

"..[',
".. V /

K
Iit) = J2^'k{t)iort>0, (21]

k=\

I and J are nondecreasing with 7(0) = J(0) = 0. and (22)

l'(0) = and Y is nonanticipating with respect to A. (23)
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3.2. The Workload Formulation. The next step is to reformulate (19)-(23)

in terms of workloads. Let R = (Rkj) denote the invertible A' x A' matrix obtained

by restricting attention in definition (10) to activities j — 1,...,A'. Let i?r^ denote the

elements of the matrix R~^ , and define the expected effective resource consumption rrif;

for product k by
K

mfc = ^i?-^ iovk = l,...,K. (24)

Define the one-dimensional Brownian motion B hy

K
B{i) = ^mkXk{t) for f > 0, (25)

k=l

SO that B has drift 6 = y/n{l — p) > and variance a^ = m'^m^ , or

A A A A' A'

(7^ = ^ Xk^iWk + //^'^ XI "'>} X! "^'^ X] X] FjiFkm min(p;. pm ). (26)

it= l 1-1 k=\ /=1 m= l

Since R is invertible, it follows from Proposition 1 of Wein (1992) that the workload

formulation of the limiting control problem (19)-(23) is to choose the A—dimensional

process Z and the one-dimensional process / to

mm limsupi^r/ y Ck{Zk{t))dt + C,J{T)\ (27)
T-oc 1 Jo j^i

subject to '^nnZk{i) = B{t)- I(i) {or t >0, (28)

I and J are nondecreasing with 7(0) = J(0) = 0. and (29)

Z and / are nonanticipating with respect to A'. (30)

The two problem formulations (19)-(23) and (27)-(30) are equivalent in that their

objective functions are identical and every feasible (that is, all the constraints are satisfied)

policy y for the limiting control problem yields a corresponding feasible policy {Z.I) for

the workload formulation, and every feasible policy {Z,I) for the workload formulation

yields a corresponding feasible policy Y for the limiting control problem. The cumulative

11



shutdown process J is not an explicit control in (27)-(30), since it is dictated by the

cumulative idleness process /.

3.3. The Solution to the Workload Formulation. Not only is the workload

formulation easier to solve than the limiting control problem, but the workload formulation

solution, which consists of the scaled inventory process Z and cumulative idleness process

/, is easier to interpret in terms of the original problem than the scaled centered allocation

process }'. The solution to the workload formulation requires two steps. The optimal

control process Z is derived in terms of the control process / in the first step, and the

optimal control process / is derived in the second step. Since the first step has been

carried out in Section 4 of Wein (1992), only the solution Z* will be displayed. Define the

one-dimensional weighfed mvenior}- process W by

A

W{i) = ^nnZk(t) ioT t>0. (31)

This quantity is the weighted sum of the finished goods inventory for each product, where

the weight is the expected eff"ective resource consumption. By (28). we also have

W{t) = B{t)-I{t) for t > 0. (32)

Without loss of generality, define the indices j and / by

hi; hjmm = — and (33)
i<<r<A' nik mj

mm = —

,

(34)
i<k<K rrtk mi

where it is possible for j = /. Then the optimal solution Z*{t) is

f
inn if A-=j and ir(/) > 0.Zm = '"' (35)

(O ii k^j and W{t)>0.

and
W(t)

Zt{i)= I
""' (30

if A- = / and W{t) < 0.

if A- 7^ / and H'(0 < 0.

12



Notice that the optimal control process Z* is expressed in terms of the control process I

via (32).

To describe the remaining control problem for J, let us define h = hj/nij and b =

bi/mi, where the indices j and / are defined in (33)-(34), and let

( hr if X > 0,

/(^)= , .. ^n (37)
1^
— ox II X < 0.

The second step of the workload formulation solution is to find a nondecreasing, nonan-

ticipating (with respect to X) control process I to

T

min limsup^£[/ f{W{t))di + CsJ{T)] (38)

subject to W{t) :^ B{t)- I{t) for / > 0. (39)

Recall that the shutdown process J measures the cumulative number of times that the

control process / is exerted. Problem (38)- (39) is a one-dimensional impulse control prob-

lem for Brownian motion. The word impulse stems from the fact that, due to the fixed

cost Ca, the optimal control process / takes the form of instantaneous jumps, or impulses.

exerted at certain points in time. A nearly identical problem (essentially a mirror image

of our problem), the only differences being that (39) is changed to \V{i) = B(t) + 1(f) and

the drift of the Brownian motion is negative, was solved by Bather (1966). The solution to

Bather's problem is an (s, S) policy: the controlled process W{t) is displaced to the level

S whenever the level .s is reached, where S > s; this suggests that an optimal pohcy to

our problem displaces W(t) to the level s whenever the level S is reached, where S > s. A

closed form solution to 5 and 5 does not appear possible for this problem. Bather reduces

the determination of s and S (and the optimal long run average cost) to the solution of

equations (6.1), (6.2) and (6.4) of his paper, and asserts that 5 > > .s. Under this

assertion, Puterman (1975) employs a regenerative argument to reduce the determination

of .s and S to the solution of two equations that are displayed on page 156 of his paper.

and notes that equation (6.4) of Bather appears to contain a minor misprint.

13



The same procedures can be used to derive analogous equations for our problem.

Using Putermcin's approach and Bather's assertion that S > > 5, we find that 5 is the

solution to

2^ = (^)(1 _ ^5 - e-^^)^ _ 2(1 - ^5 +^ - e--% (40)

and 5 can be determined from

S-s^i^){S-<f>-\l-e-^')), (41)

where 4) = 26/a^. If we let g denote the long run average optimal cost of (3S)-(39). then

it satisfies

g = b{<f>-'-s). (42)

However, upon numerically solving various problem instances of (40)-(41 ). we encoun-

tered several cases where S > .<: > 0. Closer examination reveals that Bathers original

assertion that S > > s does not always hold, and hence his solution is incomplete: since

our problem is the mirror image of his problem, (40)-(41) is only a partial solution to (3S)-

(39). The reason that 5 and 5 can be of the same sign is explained as follows. Although

the drift of B is positive in (38)-(39). the controlled process can still attain values below

s. Hence, if b is much greater than h in (37). the shutdown cost is not very large, and

the drift is not far from zero, it can be optimal for .s > 0. An analogous argument shows

that it is possible for 5 < S < in Bather's problem; for the inventory problem motivating

Bather's study, it is highly unlikely for the parameter values to satisfy the conditions that

imply 5 < 5 < 0, and so it is not surprising that he did not consider this case.

To complete the solution to (38)-(39), we simply use Puterman's regenerative approach

under the assumption that S > s > 0. In this case, the parameter A = S — s can be found

by solving

^^A^( ' .--)--• (43)
h VI -e--^-^ 2J (?

14



and then

5= --In
4>

The general theory of variational inequalitiies, which is now well developed, shows

that the Hamilton-Jacobi-Bellman equation of the impulse control problem has a unique

solution and this solution yields an (-5,5) optimal policy. The latter implies the existence of

a feasible (i.e., the sign constraint on s and 5 is satisfied) solution to either (40)-(41) or (43)-

(44). This, however, does not exclude the possibiHty that two local minima, corresponding

to feasible solutions to both (40)-(41) and (43)-(44), exist. In this case, the minimal cost

solution must be employed. Whether or not exactly one local minimum exists is a rather

tangential issue for this problem, and therefore we have made no effort to prove this fact.

It should be mentioned, however, that all of our numerical computations with equations

(40)-(41) and (43)-(44) have yielded one solution that violates the sign constraint and one

solution that satisfies the sign constraint. Moreover, the two solutions coincide when the

optimal value of S equals zero.

For completeness, the solution to Bather's problem when 5 < 5 < is given by (using

Bather's notation)

S-s
p

^
' Vl - e-A(S-^) 2/ A

and

1

;45)

^^="^"[(^)(^^^^^)J- ^''^
\(S- s)

Finally, note that if the shutdown cost Cj = in problem (3S)-(39). then the solution

to (43) is S = 5 (i.e., A = 0). K we let A -> in (44), then L'Hopital's rule yields the

limiting solution

S = ^ln(l + -^). (47)

When Cs = 0, problem (3S)-(39) becomes a singular control problem, and the solution

(see Section 6 in Wein) is

I(t)= sup [5(..)--ln(l-f-)l^. i>0. (4S)
o<s<r <P /'

15



so that the controlled process is a reflected Brownian motion in the interval ( -oo, <? ' ln( 1 -|-

{b/h)). Hence, as expected, the two solutions coincide as the shutdown cost C'a -^ 0.

4. The Proposed Scheduling Policy

In this section, we propose a scheduling policy that is partially based on the preceding

analysis. Recall that a scheduling policy dictates the shutdown/startup times for the

machine, and dynamically chooses a cutting configuration for each roll of paper that is

produced.

The shutdown policy is easily interpreted in terms of the optimal control process J*,

which represents the scaled cumulative idleness process. By (31 ) and (39). the [s.S) policy

derived in (40)-(41) and (43)-(44) suggests that the machine should be shut down when

the scaled weighted inventory process W{t) reaches the level 5, and should be reactivated

when W{t) drops to .s. Moreover, by reversing the heavy traffic scalings. the (^.S) policy

for the original system can be expressed solely in terms of the problem parameters. More

specifically, if we substitute s/y/n for s, S/y/n for 5, A/v^" for A. CJn^l'^ for C. and

v/n(l - p) for 6 in (40)-(41) and (43)-(44), then the scahng parameter n vanishes, and

these four equations become, respectively,

a\h + b) ~^ h \ G^ )

_ 2fl _ ^[LZ^ + 2{^-^—^f - e-2(i-p)57'^'y (49)

(1 - P)C,

and

2f \
1\ g^A

^"
\ L , I-H_2/,2(l-o)A/(T= ._ 1 J

(5i;

2(1 -p) L'/? + 6'V2(e2<i-p)A/'^^ -1

IG

[52)



The proposed shutdown/startup policy calculates s and S from these equations, and

employs the resulting {s, S) policy with respect to the original (that is, unsealed) weighted

L'

inventory process Xlit=i ""^k^kit)-

In Brownian approximations to queueing system scheduling problems (see, for exam-

ple, Harrison 19SS and Wein 1992), the policy for "who to serve next," which corresponds

to the cutting policy here, is typically interpreted in terms of the pathwise solution to

the LP that is embedded in the workload formulation. In our case, the pathwise solution

is given by (35)-(36). However, unlike the previous problems that have been analyzed,

there is no one-to-one correspondence between the A' cutting configurations and the A'

products. Consequently, we have been unable to interpret (35)-(36) to obtain a reliable

cutting policy.

Instead, we propose a heuristic pohcy that incorporates two essential ideas. The

first idea, which is due to Zipkin. is to use a myopic look ahead policy. He proposes a

service time look ahead policy for a single server multiclass make-to-stock queue, which

is essentially a special case (where A' = J,Cs — and the matrix R is diagonal) of the

problem considered here. This policy dynamically serves the class that minimizes the

expected reduction in cost rate per unit of time after one service completion. The policy

has its roots in Miller "s (1974) transportation look ahead policy for the decision of which

base to send an item repaired at a central depot, where transportation time plays the role

of service time. Numerical results in Veatch and Wein (1992) show that Zipkin"s policy

performs very well for multiclass make-to-stock queues.

We propose a simple extension to Zipkin"s policy that makes it adaptable to the

cutting problem considered here. Since a paper roll's service time is independent of how

it is eventually cut, the policy chooses the cutting configuration j = 1 K (only the

configurations identified by the LP in Section 2 will be considered) that minimizes the

expected inventory cost rate incurred after one service time: that is. at time /. we cut a



type j* roll, where

r = axgminE Y^Ck(^Zk{t) + Fk, - Dk{S})
, (53)

and the expectation is taken over both the service time S and the demand processes

Although this policy vi'orks well when no shutdown costs are incurred, an effective

cutting policy for this problem needs to look beyond one service time and, in particular,

must prevent the vector inventory process from entering a vulnerable position (for example,

incurring many costly backorders) during the potentially long shutdown period. Hence,

we derive a target inventor}' level tk for each product k at the moment of shutdown (i.e.,

when W{t) = S) to minimize inventory costs incurred during the shutdown period. In

order to obtain a closed form expression for e^., we assume that demand is deterministic

during the shutdown period. Under this assumption, the length of the shutdown period is

S-s

and the target inventory levels are found by solving

(54)

in ^ / Q(ei. - \ki)dt (55]

I._ 1 ''0

mm
k= \

such that y rrik^ii = S, (56)

k=l

where S is the unsealed maximum weighted inventory level derived in (49)-(52). The

solution to (55)-(56) is

When the weighted inventory process gets sufficiently close to S, we use the cutting con-

figuration that minimizes the Euclidean distance between the expected resulting inventory

levels and the target levels; that is, cut a type j* roll, where

arg mm
A,

J](Z,(0 + F,, --^-6,)-. (5S)

\k=\ ^'
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Our proposed cutting policy uses the myopic policy (53) when

K

I
k=l

Y^mkZk{t)<s + 'r{S-s), (59)

and uses the target inventory policy (58) when

K
J2mkZk{t)>s + ^{S-s), (60)

ife=i

where the parameter -) € [0,1] quantifies the proximity to machine shutdown. In the

simulation study in the the next section, we set the parameter ) — 0.9, and found that the

policy's performance was quite robust with respect to the specification of ->

.

5. An Example

In this section, we compare our proposed scheduling policy against several other heuris-

tics on a simulation model of a hypothetical system.

The Problem Data. The data for the simulation model are based on con^'ersations

with a manager of the facility under study. We consider a single paper machine that

produces three different products. Table I provides the size, demand rate and inventory

cost rates for each product. The demand rate for each product is assumed to be a compound

Poisson process; the average demand rate of orders is given in Table I, and all orders for

all products are independent Poisson random variables with mean 200 pounds. Hence, if

we denote the average demand rate of product k orders by A^.. then the term A^^ r^ in (IS)

equals 40, 200Ai.
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ACTIVITY 8.5" 11" 17" 22" 28" 35" WASTE pj

1



The optimal target inventory levels are given by ei = 68, 441 , e2 = HI- 280 and 63 =47, 609

pounds.

Straw Policies. Since our problem formulation is new, there are no obvious straw

policies to test against the proposed policy, which is denoted by PROPOSED in Table

III. We consider three other policies; all three policies use a shutdown/startup policy

characterized by an (^,5) policy on the total unweighted inventory process, where the

values of s and S are found via a search on the computer simulation model. The first and

most simplistic policy is called the LP policy in Table III, and it deterministically enforces

the solution (p\,P2-,p3) given in Table II. More specificallj^ the cutting policy continually

repeats a cycle often rolls, where the first nine rolls are activities (2,1.2,1,2.1.2,1.2). and the

tenth roll of each cycle is randomized according to the probabilities (0.193.0.572.0.235).

The second policy, called MYOPIC, uses the myopic policy defined in (53). but considers

not the three cutting configurations specified by the LP, but all configurations j with waste

Wj < w. The cost minimizing value of the parameter w is found using a search procedure.

The third policy, called MYOPIC+TARGET, uses our proposed cutting policy, but as in

the MYOPIC policy, considers all configurations j with waste Wj < iv.

Simulation Results. For three of the four scheduling policies, we ran ten independent

runs, each consisting of six years. To obtain sufficiently small confidence intervals, we

made 50 independent runs for the LP policy. Although we do not expect the demand

facing this facility to remain stable for six years, a sufficiently long period was required to

eliminate round off" effects due to shutdowns. All runs began with the system empty and

the machine activated. The cost minimizing values of the parameters for the scheduling

policies (the parameter 7 for the PROPOSED poHcy, the parameters .<i and S for the other

three policies, and the parameter w for the two myopic policies) were found b}- making

three runs of six years.



POLICY WASTE INVENTORY SHUTDOWN TOTAL

COST COST COST COST

PROPOSED 99,331(±195) 34,640(±575) 18,967(±361) 152,938(±663)

MYOPIC+TARGET 121,039(±383) 21,180(±380) 24,865(±589) 167,084(±535)

LP 99,267(±80) 67,840(±8431) 20,434(±254) 1S7,541(±8484)

MYOPIC 130,938(±370) 34,970(±703) 26,618(±551) 192.526(±850)

TABLE III. Simulation Results: Average Annual Costs.

The simulation results are reported in Table III, which contains the average total an-

nual cost, and its breakdown into inventory (holding and backorder), waste and shutdown

costs; 95% confidence intervals are reported for all cost quantities. Notice that paper waste

accounts for roughly two-thirds of the total cost. For ease of comparison. Table l\ reports

average costs as a percentage of the costs of the PROPOSED policy.

POLICY



the accuracy of our derived values for 5 and S, a two-dimensional search was undertaken

for the cost minimizing values. The search yielded an average annual cost of $149,932,

which is less than 2% lower than the cost under our derived values. However, the cost

minimizing values, s = —17.5 and S = 175.0, are significantly different than the derived

values, s = —39.74 and S = 211.17. Consequently, the cost minimizing s and S resulted

in lower inventory costs and higher shutdown costs relative to the derived values of .s and

5; its four normalized costs for Table IV are 100%, 75%, 131% and 98%.

The cost minimizing value of 7 in (59)-(60) was 0.9. The PROPOSED policy's per-

formance was remarkably robust with respect to this parameter. The average total cost

increased by 0.3% when 7 = 0.95 and increased by less than 0.2%i when -; = 0.7.

We also tested the PROPOSED policy under one slight variant: the (s,S) policy was

based on the total unweighted inventory ^j^-i Zk{t) rather than the weighted inventory

^j(._j ini.Zk{t). A search for the best {s,S) policy gave essentially the same cost ($150,037)

as the search under the weighted inventory policy ($149,932). This close agreement is

hardly surprising since the three mjt values are very similar. Hence, any discrepancy

among the various policies cannot be attributed to the fact that the PROPOSED policy

bases its (5,5) policy on the weighted inventory, and the other policies base their (s.S)

policy on the unweighted inventory.

As expected, the LP policy achieves the same waste cost as the PROPOSED policy.

However, since the LP policy is an open loop policy (i.e., the cutting policy is independent

of the state of the system), very high inventory costs are incurred. The cost minimizing

values of s and S are 5 = —15,000 and S = 235,000. Recall that i; and S are expressed

in imits of hours for the PROPOSED policy, and in units of pounds of paper for the other

three policies.

The MYOPIC policy achieves the worst performance of the fovir policies. Since the

MYOPIC and PROPOSED policies have similar inventory costs, it appears that the in-

ventory cost reductions gained by the MYOPIC policy while the machine was operating

24



were offset during the shutdown periods. Moreover, since the MYOPIC poHcy employs

activities that do not minimize average waste costs, a significant increase in waste cost

is incurred. Finally, the high backorder cost incurred during the long shutdown periods

forces this policy to employ more frequent shutdowns and hence incur higher shutdown

costs. The cost minimizing values of s and S are s = —50, 000, 5 = 100, 000.

For both myopic policies, the cost minimizing value of u), which is the maximum

allowable waste on a paper roll, was found to be 2.75", which was the lowest value that

included any activities producing product 3. This parameter value allowed ten cutting

configurations to be employed. When w was raised to 3.0", two more activities were

included and the overall cost increased by 6.3% for the MYOPIC pohcy and 9.49c for the

MYOPIC+TARGET policy. When w was raised to the next level of 4.75". eight additional

activities were included for a total of 20, and the cost roughly doubled for both policies.

The use of the target inventory levels clearly enhances performance, since the MY-

OPIC+TARGET policy achieves a much lower cost than the MYOPIC policy. The MY-

OPIC+TARGET policy achieves significantly lower inventory costs than the other three

policies. However, relative to the PROPOSED policy, this cost reduction is more than offset

by increased waste and setup costs. We were initially somewhat surprised that the PRO-

POSED poHcy, which uses only three activities, outperformed the MYOPIC+TARGET

policy, which can employ any number of activities; after all, the primary- reason for re-

stricting the number of cutting configurations was to obtain a mathematically tractable

problem. The discrepancy in performance between these two pohcies can best be seen

by comparing the MYOPIC+TARGET policy to the PROPOSED policy under the cost

minimizing values (as opposed to the derived values) of 5 and S: the two policies have

identical shutdown costs, the PROPOSED policy has 21.8% higher inventory costs than

the MYOPIC+TARGET policy, and the MYOPIC+TARGET policy has 21.9% higher

waste costs than the PROPOSED policy. Hence, the 11% difference in average total cost

between the two policies is due to the fact that waste costs comprise roughly two-thirds of
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the total cost. Therefore, since waste costs are minimized in the first step of our procedure,

the PROPOSED poHcy may not work as well when waste costs are small relative to inven-

tory and shutdown costs. However, we reiterate that the problem parameters employed in

this simulation study are based upon our best estimates from aji actual facility.

It is worth noting that not only does the PROPOSED policy outperform the other

three policies in the simulation study, but it is also simpler to employ than the other

policies. First, the PROPOSED poHcy is based on derived values of s and S, whereas the

other policies require a two-dimensional search using a simulation model. Furthermore,

the PROPOSED policy's performance is very robust with respect to the parameter 7,

which specifies the proximity to shutdown. In contrast, the performance of the two myopic

policies was very sensitive to the parameter w, which is the maximum allowable waste per

roll. Hence, the parameter 7 is much easier to specify than the parameter w.

6. Other Applications

In this section, we briefly describe several other settings where the two-step procedure

may be applicable.

Semiconductor Manufacturing. In semiconductor wafer fabrication, a batch of wafers

produced according to a particular process randomly yields chips of many different prod-

uct types, which are partially ordered with respect to quality. Here, Fi,j rejjresents the

expected number of type k chips in a batch of wafers produced according to process j.

These facilities usually have many more possible production processes than product types.

Each production process has its own variable cost, and costlier processes will typically

yield higher quality chips. The LP in the first step of the procedure minimizes average

variable processing cost subject to meeting average demand. Wafer fabrication facilities

often operate in a make-to-stock mode and often have only one bottleneck station, the

photoHthography workstation, and wafers visit this station ten to twent}- times during

processing. Hence, by focusing on the bottleneck workstation, we obtain a scheduling
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problem for a production/inventory system with customer feedback and random yield.

The Browniaji control problem in the second step of the procedure was expUcitly solved

in Ou and Wein (1992) and readers are referred there for details. Similar problems also

occur in fiber optics, ingot and crystal cutting, and blending operations in the petroleimi

industry.

Blood Separation. A variety of separation processes can be used to separate blood

into its various components (plasma, red blood cells, etc.), which are maintained in a

finished goods inventory servicing hospitals and other health care facilities. Here, each

separation process has its own variable cost, which are minimized in the first step LP, and

produces specific amounts of each component. One key aspect that is not captured in our

model is the perishability of the blood; typically, blood components (except for plasma)

have to be discarded after sitting in inventory for a certain number of days.

Steel Industry. In a tube mill, each product type can be made from several different

blooms, or starting stocks, and a particular starting stock can be used to produce several

different products. If we define an activity for each feasible combination of starting stock

and product type, then the activity cost includes both raw material costs for the starting

stock and processing costs, which differ by activity. The second step analysis develops a

dynamic production policy for the bottleneck operation of the tube mill.
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