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ABSTRACT

The preliminary design of a wing with strain actuation and conventional
flap actuation for vibration and flutter suppression experiments is
completed. A two degree of freedom typical section model with steady
aerodynamics is used to gain an understanding of the fundamentals of the
strain actuated aeroelastic control problem. Actuation issues and the
effects of fiber and geometric sweep are examined using the typical section.
Controllers are designed using the Linear Quadratic Regulator (LQR)
method and observers are designed using the Kalman filter. The results
are verified through a series of parameter variations and the incorporation
of unsteady aerodynamics. With the typical section analyses as a
foundation, the actual design is begun. The functional requirements and
the design parameters are explicitly outlined. Non-parametric studies are
used to determine several of the geometric design parameters. Specifically,
a scaling analysis is used to determine the piezoelectric thickness and the
spar thickness. Three parametric trade studies are used to determine the
remainder of the design parameters. A five mode Rayleigh-Ritz analysis
with two dimensional unsteady strip theory aerodynamics is used for all of
the parametric trade studies. The first trade study examines the
interaction of the fiber and the geometric sweep. The effect of fiber and
geometric sweep on the stability characteristics, the piezoelectric actuation,
and the relative authority of LQR controllers using piezoelectric actuation
or conventional flap actuation is observed. The second trade study consists
of the design of a tip mass flutter stopper. The final trade study investigates
the influence of taper on the dynamics of the wing.
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Introduction

Chapter 1

In recent decades, one of the focuses of aeroelastic research has been

the control of aeroelastic behavior. The objectives have included delaying the

onset of instability, ride control or vibration suppression, and maneuver and

performance enhancement. Many passive aeroelastic design techniques

involving tailoring composite laminates have been used and, more recently,

active control techniques have been developed.

Shirk, Hertz, and Weisshaar provided a historical background of

aeroelastic tailoring and a survey of work in the field and defined aeroelastic

tailoring as "the embodiment of directional stiffness into an aircraft

structural design to control aeroelastic deformation, static or dynamic, in

such a fashion as to affect the aerodynamic and structural performance of

that aircraft in a beneficial way." [1984] Preliminary work examined the

effect of bend-twist coupling on the in-vacuo structural dynamics of a wing

and developed accurate analysis methods [Jensen, et al. 1982 and Weisshaar

and Foist, 1985]. Wind tunnel tests of cantilevered bend-twist coupled plates

were completed to verify analytically predicted flutter and divergence speeds

[Hollowell and Dugundji, 1984]. Geometric sweep was subsequently added



[Landsberger and Dugundji, 19851 and, for completion, rigid body modes were

implemented [Chen and Dugundji, 19871.

Concurrent to the development of aeroelastic tailoring techniques,

active aeroelastic control techniques were beginning to be implemented. One

of the earliest flutter suppression experiments involved a clean cantilevered

delta-wing with a leading edge flap actuator and a trailing edge flap actuator

[Sandford, et al. 1975]. Because the addition of wing-stores can drastically

lower the flutter speed, an international investigation using a half-span YF-

17 model developed and tested wing-store flutter suppression systems

[Hwang, et al. 1980 and Hwang, et al. 1981]. One of the most recent series of

flutter suppression experiments used the Active Flexible Wing model [Perry,

et al. 1990]. The AFW model was a full span model with a rigid fuselage and

highly flexible bend-twist stiffness coupled wings. The AFW also had two

leading edge control surfaces and two trailing edge control surfaces, thereby

integrating passive aeroelastic tailoring techniques and active control

techniques. All of the above wind tunnel experiments were conducted in the

Transonic Dynamics Tunnel at the NASA Langley Research Center.

To date, conventional flap actuation has been used in the majority of

active control designs for flutter and vibration suppression. The main reason

for the dominance of flap actuation is the presence of high authority trailing

edge control surfaces on existing wings. Because flaps and ailerons were not

originally designed for these purposes, they are not necessarily the optimal

actuators for aeroelastic control. In general, flaps operate over a limited

bandwidth which may not include all important aeroelastic modes. Because

the flap actuation mechanism is typically hydraulic and a flap must generate

aerodynamic forces to deform the wing, the complete actuation mechanism

includes significant hydraulic and aerodynamic lags.
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As an alternative to conventional flap actuation, strain actuation is

being examined for use in aeroelastic control. The primary advantage to

strain actuation is that the actuators affect the structure directly by inducing

strain in the structure. An additional benefit is the bandwidth of strain

actuators which is large compared to the frequencies of structural dynamic

deformation. Since strain is induced in the structure directly, there are no

associated lags. Because of their relatively recent development, strain

actuators are still in the research and early development stages.

Piezoelectric actuators, one type of strain actuator, have been characterized

and modelled for incorporation into beams and plates [Crawley and

Anderson, 1990 and Crawley and Lazarus, 1991]. The use of piezoelectric

actuators to modify the static aeroelastic behavior has been examined

analytically [Ehlers and Weisshaar, 1990] and a two degree of freedom wind

tunnel model has been used to demonstrate strain actuated flutter

suppression [Heeg, 1992]. The most sophisticated experimental model to date

is a plate-like lifting surface with piezoelectric actuators, which has

successfully demonstrated vibration and flutter suppression using multiple

input/multiple output controllers [Lazarus and Crawley, 1992].

In the introduction of a new technology, such as strain actuated

aeroelastic control, there are three essential phases: development,

demonstration, and verification. The first phase introduces the new

technology and shows that the concept is valid. The second phase

incorporates the new technology into a more realistic environment while still

focusing on the fundamentals. The final phase brings the new technology to

maturation and prepares it for use on a full-size working system.

The development phase of strain actuation for aeroelastic control

applications has already been completed. Lazarus, using the strain actuated



plate-like lifting surface mentioned earlier, demonstrated the use of

piezoelectric strain actuation in aeroelastic control [Lazarus and Crawley,

19921. The aeroelastic models tested were flat plates with a 6 in. chord and a

12 in. span. The piezoelectric actuators were grouped into three spanwise

actuation areas for all three plates: one group covered the leading edge, one

the middle, and one the trailing edge. The sensors used were laser

displacement sensors placed in the walls of the wind tunnel.

The piezoelectric actuators used in these experiments are thin sheet

piezoelectrics which exhibit in-plane isotropy. Because of the in-plane

isotropy, these piezoelectrics can only induce bending or extensional strain

and not shear strain. Since the torsional mode is important in aeroelasticity

and is dominated by shear strain, a means for piezoelectric control over the

torsional mode must be developed. To enhance torsional authority, Lazarus

used both a graphite epoxy plate with bend-twist coupling and, as a

reference, an isotropic aluminum plate.

Using the strain actuators, Lazarus demonstrated significant vibration

suppression and flutter suppression. The vibration suppression experiments

showed good reduction of the first bending mode, but the piezoelectrics did

not demonstrate significant control of the torsional mode. Contrary to

expectations, the bend-twist coupled graphite-epoxy plate did not enable

more torsional control than the aluminum plate. This was likely due to

piezoelectric groupings chosen inappropriately for independent control of the

torsional mode. Lazarus also conducted flutter suppression experiments on a

modified aluminum test article and was able to increase the flutter speed by

11%.

The objective of this study is to further demonstrate strain actuated

aeroelastic control technology and compare the performance of the strain

18



actuators to that of the existing technology of conventional flap actuators.

This study begins the demonstration phase of the use of strain actuation for

aeroelastic control and constitutes the preliminary design phase of a research

project conducted by M.I.T. in cooperation with the NASA Langley Research

Center (LaRC). Following this preliminary design, a detailed hardware

design will be conducted. Once the detailed design of the wing model is

completed, the wing model will be built and tested in the Transonic Dynamics

Tunnel at LaRC. The complete study and experiment will be the

demonstration phase of the strain actuation technology for aeroelastic

control. In this document, several issues in the design of the demonstration

phase model will be studied to better understand the use of strain actuation.

The first section of this study examines the fundamentals of the strain

actuation problem and will be used as the foundation for the remainder of the

design. In Chapter 2, a typical section will be used as a low order model to

isolate the underlying physical mechanisms. The actuators to be

implemented on the typical section include a strain actuated force, a strain

actuated moment, a leading edge flap, and a trailing edge flap. The dynamics

of the typical section using steady aerodynamics and the interaction between

plant, sensors, and actuators will be examined to understand the control

challenges. Then, controllers will be designed using the strain actuators and

flaps alone and in various combinations. The intent is to gain insight into the

aeroelastic control problem for later use in the design. Having designed

controllers and elucidated any guiding principles, the effects of introducing

bend-twist coupling, or fiber sweep, and structural sweep will be examined.

In this simple model, only their effect on stability characteristics will be

studied. Finally, some parameter variations will be completed and unsteady
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aerodynamics will be incorporated to examine the robustness of the

qualitative results.

Having established the foundation, a preliminary design of the

demonstration phase model will be conducted. The first step, discussed in

Chapter 3, is to establish the functional requirements and the design

parameters. The functional requirements determine the design's objectives

[Suh, 1990]. The design parameters are those physical parameters which

may be altered to meet the functional requirements [Suh, 19901. The design

parameters will be set through a series of non-parametric and parametric

studies.

Chapter 4 summarizes the non-parametric studies which include a

survey and a scaling analysis. A survey of current commercial aircraft will

define the majority of geometric design parameters. A scaling analysis will

compare the piezoelectric authority of the earlier development phase

experiments to the piezoelectric authority expected in the current design.

This scaling analysis will establish the nominal structural thickness and

piezoelectric thickness.

The primary parametric study will be presented in Chapter 5 and

examines the effects of fiber sweep and structural sweep on the aeroelastic

behavior and on the use of piezoelectric actuators. Using a five mode

Rayleigh-Ritz analysis and two-dimensional strip theory aerodynamics, the

stability characteristics of the wing model for varying fiber and geometric

sweep will be determined. The trade space will be narrowed to satisfy the

functional requirements and further studies will focus on a region which is

robust to minor changes in fiber and geometric sweep.

To evaluate the smaller trade space and choose design fiber and

geometric sweeps, the effect on piezoelectric actuation authority will be

20



examined. Basic piezoelectric groups will be defined by strain contours to

provide effective, independent control of the important modes. Controllers

will be developed to compare the authority of the piezoelectric actuators and a

trailing edge flap and ensure that they are fairly matched.

As a second parametric trade study, a tip mass flutter stopper will be

designed in Chapter 6. The main purpose of the flutter stopper is to enable

the wing model to be brought safely to a stable aeroelastic condition after the

onset of flutter. The operating principle behind the design is to change the

wing model properties in such a way that the deployment of the flutter

stopper raises the flutter speed significantly. The hinge position, mass, and

length of the flutter stopper will be varied to understand their effect on the

flutter speed.

The final parametric trade study in Chapter 7 involves the taper ratio.

Various taper ratios will be included in the wing model to examine their

effect on the aeroelastic behavior and actuation of the wing model. Based on

these studies and the survey completed earlier, a design taper ratio will be

chosen.

The preliminary design and the scientific issues discussed during the

design process will then be summarized. This document is the preliminary

design documentation and the summary will include the baseline values for

all of the design parameters. Detailed design, construction, and testing will

follow during which these values may be incrementally altered.
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Foundation for Design

Chapter 2: Typical Section Analyses

2.1 Introduction

Before beginning the process of design, it is important to understand

the fundamental mechanisms of the problem. Engineers use simplified, low

order models to gain an understanding of the essential physics of the

problem. Aeroelasticians use the typical section. The typical section is a two-

dimensional chordwise segment of a wing whose properties and parameters

are thought to be representative of the wing as a whole. Normally, typical

sections are taken at the 3/4 span point of a wing and include only two

degrees of freedom: pitch and plunge.

In this design process, there are two important trends that need to be

understood: the effect of strain actuation and of geometric and fiber sweep.

This typical section analysis will be used to study these issues. First, the

equations of motion for a typical section using steady aerodynamics will be

derived and non-dimensionalized. Then a reference typical section will be

developed and its dynamics with changing airspeed will be studied.

Following this characterization, full-state feedback controllers will be

developed using the Linear Quadratic Regulator (LQR) method with varying

combinations of actuators. Next, output feedback controllers will be

developed using the Linear Quadratic Gaussian (LQG) method. Once these

actuation issues have been studied, the effect of geometric and fiber sweep on



the typical section dynamics will be examined. Finally, the robustness of the

actuation and sweep results will be verified with parameter variations and

the incorporation of full unsteady aerodynamics.

2.2 Description of model

In this section, the typical section will be introduced and its parametric

equations of motion will be derived. The geometry of the typical section used

in this analysis can be seen in Figure 2.1. This section closely resembles the

section described by Bisplinghoff, Ashley, and Halfman [1955] with the

addition of a leading edge flap. The two degrees of freedom of this section are

pitch (a) and plunge (h). The distance of the elastic axis aft of the midchord

is repesented by ab, where b is the semichord, and the distance of the center

of gravity aft of the elastic axis is xab. The actuators on this section are

strain actuators and conventional flaps. Steady aerodynamics will be used

and no aerodynamic or structural damping will be modelled. A time variation

in the angle of attack, a,, is the disturbance to the section.

K x

M F JA

E.LA.C.G.
U a Ka a

cib -. b C-bd-

b - b

Figure 2.1 Typical section geometry

To represent the wing as a typical section, several modelling

assumptions have been made. To approximate the stiffness of the rest of the



wing as it affects the typical section, two springs are placed at the elastic

axis. Using uncoupled stiffnesses, a bending spring (Kh) models the wing

bending stiffness and a torsional spring (Ka) models the wing torsional

stiffness. Similarly, the strain actuation effect is modelled as a force (F) and

a moment (M) at the elastic axis. The strain actuation force is approximated

by equating the deflection at the typical section due to distributed strain

actuators and the deflection due to a concentrated force acting at the section.

Since the strain actuation mechanism for creating moment is not as clearly

defined, the moment is estimated with half of the effect of the force [Lazarus

and Crawley, 1992a]. The leading edge flap (4) and trailing edge flap (P) are

modelled with no dynamics, thus allowing flap angles to be commanded

directly.

The aerodynamic forces and moments generated by flap deflections

must be calculated. While there exists much information on calculating the

aerodynamic coefficients of trailing edge flap configurations, leading edge flap

aerodynamics are not as well documented. The method chosen to obtain the

aerodynamic coefficients is to transform the wing-aileron-tab combination,

analyzed by Theodorsen and Garrick [1942], into a leading edge flap-wing-

trailing edge flap combination (Figure 2.2). The transformation involves

d

Figure 2.2 Transformation from Leading edge-Wing-
Trailing Edge to Wing-Aileron-Tab for use in
aerodynamic equations
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simple angle and length conversions (Equations 2.1). These aerodynamic

calculations were verified using thin airfoil theory [Kuethe and Chow, 1986].

aef= a-4 C = _c4
flr = 4 d =c, (2.1)

Yeff =

The equations of motion for this typical section can now be derived.

mii + xbma + Khh = F-pU2bCLf-pUbUbCL-pU2bCL. (a + a.)

mixb+(I + xb 2m) + Ka = M +pU 2b2 CMp + pU 2b 2CM + pU 2b2CM (a + a o)

(2.2)

These equations of motion describe the motion of the elastic axis and all

moments have been evaluated about this point. Using the elastic axis as the

reference point, the structural stiffness uncouples. However, the equations

are coupled by the static imbalance in the mass matrix and also by the

aerodynamic terms.

These equations are then non-dimensionalized using the semi-chord (b)

as the characteristic length, the torsional frequency (ca) as the characteristic

time, and the typical section mass (m) as the characteristic mass. A complete

set of non-dimensional parameters is obtained.

Non-dimensionalized plunge h
b

I
Radius of gyration R = nb2

mb
m

Mass ratio = b2

spb2

Frequency ratio h = __
Ca

U
Non-dimensional airspeed Ua -

coab
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Non-dimensional Laplace variable p =-
Wa

Fb
Strain actuation plunge control uh =

M
Strain actuation pitch control u =

Ka

Trailing edge flap control up = f

Leading edge flap control u4 =

(2.3)

These parameters may then be used to non-dimensionalize the equations of

motion.

1 xa --2

1 ap0 1- qC

[1 0 - C -qC Usa -CL

1 C+ e~ (2.4)

U2

where q =

Having established the equations of motion and derived the

appropriate aerodynamic forces, the equations will now be placed into state-

space form. State-space is the simplest form for control design. The non-

dimensional equations of motion (Equations 2.4) are of the following nature:

MI hp}+K K = fuaI + dao (2.5)

The transformation from these physical equations to state-space form is

straightforward.
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x = Ax + Bu + La
y=C(2.6)

where

A = 2K ) B = [Mf=[bh b. bb b]

huh

L = 0Mx) x = a u = u
L=[M-d] h ={7 uP

d
here * refers to d where r = tcoa

d'r

Clearly this transformation does not change the dynamics of the system; in

fact, the equations of motion are reproduced exactly as two of the equations in

this set. The remaining two equations are "dummy" equations used to

complete the format.

2.3 Control analysis for the reference case

Now that the equations of motion have been placed in state-space form,

the typical section will be analyzed from a control viewpoint. Before

controllers are designed, a reference typical section will be established. Then

the open loop behavior of the reference section will be characterized for

varying speeds. Based on this analysis, two design speeds will be chosen and

full state feedback controllers will be designed using the Linear Quadratic

Regulator method. Finally, output feedback controllers will be designed

using the Linear Quadratic Gaussian method to understand the effects of

noise and partial state measurements.

The reference typical section is chosen to be representative of high

performance, low aspect ratio wings, such as the development phase test
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article. The wing mass is assumed to be evenly distributed so that the center

of gravity lies at the midchord. In contrast, the elastic axis location is

forward of the midchord by 20 % of the semichord, which is representative of

a 4.5 degree forward fiber sweep. The flaps are both 10% of the chord. The

remaining parameters are chosen as representative values (Appendix A).

Characterization of open loop plant

Before beginning the design of controllers, the open loop plant must be

understood. The location and pattern of poles and zeros for the system are

vitally important for control purposes. To find the poles and zeros, the

appropriate transfer function, or input-output relation, must be found.

Using the state-space form, the output matrix C (Equation 2.6) may be

chosen to select or combine any of the states in any ratio as outputs. The

relation from the actuators to the measurements, or the transfer function,

once the output matrix has been chosen is described as

y = COBu where (c = (pI - A) -1  (2.7)

The poles of the system are the roots of the denominator of the transfer

function. The location of these poles in the complex plane defines the

stability and damping of the plant. The zeros, or roots of the numerator,

define the interaction of the actuators and measurements with the plant

dynamics.

By analyzing the poles as they migrate with change in airspeed,

important properties of the open loop plant may be determined. The poles of

the system may be found by taking the determinant of 0 (Equation 2.7). The

determinant can be expressed in the form of the characteristic equation of the

system.
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A(p)= 2 P h 1+ -2 - CM, (2.8)

The poles, or roots of the characteristic equation, are dependent on the

section geometry, structural properties, and air speed. As Figure 2.3 shows,

the poles begin on the imaginary axis and eventually coalesce with increasing

airspeed. This point of coalescence is known as the flutter point and occurs

for the reference section at U, = 1.90. After the flutter point, the poles

separate and become mirror images of each other, one in the left half plane,

or stable, and one in the right half plane, or unstable. During this period,

reversal of the trailing edge flap occurs at Ua = 2.40. Increasing the air speed

past flutter drives the poles down to the real axis. The divergence point

occurs for the reference section at Ua = 2.88.

Im

+1
X - Zero air speed poles, U=O0.00
O - Design point 1, Ua=1.71

A - Flutter speed, Uaf1.90

-1 +1
Re

O - Design point 2, Ua=2.00
- Reversal speed, Usf=2.40

0 - Divergence speed, U.=2.88

-1

Figure 2.3 Pole movement for nominal typical section as
airspeed changes

Because the poles travel a great deal with change in airspeed,

representative airspeeds must be chosen as design points for control. Based

on the pole movement, two design points are chosen as part of the reference

case. Design point 1 at Ua = 1.71 was chosen to be 10% below flutter while

the system is still marginally stable. Design point 2 at Ua = 2.00 was chosen
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to be 5% above flutter when the system is unstable. Both design points are

well before reversal and divergence so that the flutter phenomenon may be

isolated and studied.

Having examined the poles of the plant, the zeros will now be studied.

The zeros reflect the interaction of the actuators and measurements with the

plant dynamics. The displacement states will be chosen as the

measurements, or outputs, as the desired goal is to minimize the magnitude

of the displacements. Choosing these outputs, the transfer function from

each of the actuators to each of the measurements can be derived.

Uh
{} R: (p), n(p),ha n(p),, (P), (2.9)
a A(p) n(p), n(p). n(p), n(p)J u.p)

uI

where

n(p), 2 + 1-qCM,

n(p). =

fl(P~h, = p C

R -2
n(p), = + h

n(p),=1q + C

-22

CM CL9 CL4 a))

n(p)4 = 1 2 J1M + LC +o ay2acc



Note that the denominator of each of the transfer functions is the

characteristic equation.

By setting the transfer function numerators to zero, the zeros of each

single input-single output system can be found and their behavior with

change in airspeed studied. Figure 2.4 shows the movement of the zeros in

relation to the poles with change in airspeed. The pole/zero pattern changes

for different airspeeds which makes control over a range of airspeeds

complicated. The intersection of all four plunge output zeros and the

torsional pole at the same point indicates that the torsional mode can not be

detected through plunge measurements at that particular airspeed; it is

unobservable. The two design points chosen lie beyond the quintuple

crossing point and all of the zeros are higher in frequency than both poles.

Normally a pattern of pole-zero-pole is desirable for control and it can be seen

that neither design point possesses that pattern [Lazarus and Crawley,

1992a]. Figure 2.4 also shows the zeros which do not lie strictly on the real

axis for the pitch output transfer functions. None of these zeros move with

airspeed although the pole/zero patterns do change with airspeed which

would make robust control complicated.

Figures 2.5 and 2.6 allow a closer look at the individual pole/zero

patterns for the two design points selected. As discussed earlier, none of the

patterns have the desirable pole-zero-pole pattern. Additionally, several of

the transfer functions show near pole-zero cancellations which would indicate

that a mode may be nearly uncontrollable from a given actuator. This

indicates that the actuators may be able to be grouped into those which

primarily exert influence over the pitch mode and those which primarily

exert influence over the plunge mode. This will become clearer when the

controllers are designed. As a final point, the trailing edge flap has a zero in
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the right half-plane, or non-minimum phase zero, at the first design point

and both of the flaps show non-minimum phase zeros at the second design

point. Non-minimum phase zeros add phase lag rather than decreasing

phase lag, as a minimum phase, left half-plane, zero would. This tends to

make systems controllable only for frequencies below that of the zero. Thus,

non-minimum phase zeros impose a limit on performance and, therefore, may

indicate a drawback to using flaps for flutter and vibration control.
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Full State Feedback: Linear Quadratic Regulator

In this section, full state feedback controllers are designed. Full state

feedback allows a controller to utilize displacement and rate information and

to use combinations of these that do not appear on the physical airfoil.

However, full state feedback is an idealization, as, most often, all states can

not be measured for feedback. Following an explanation of the Linear

Quadratic Regulator (LQR) method, controllers will be developed for design

point 1. Then the different actuators will be compared. Finally, the results

will be verified by evaluating controllers at design point 2.

The optimal gains for full state feedback can be found by solving the

Linear Quadratic Regulator problem [Kwakernaak and Sivan, 1972]. The

solution to this problem provides for a stable plant with relatively high

damping. Solving the LQR problem entails minimizing the following scalar

cost functional.

J = (xQx +puTRu)dt (2.10)
0

Minimizing this cost functional minimizes the states and controls used

according to given weightings. Q, the state weighting matrix, is often chosen

as the quadratic of some performance vector, with Q = NTN and z = Nx,

where z is the performance vector. The performance vector defines which

states the designer feels are important. R, the control weighting matrix, is

often chosen to normalize the controls by their predetermined maximum

values. p, the control weighting, weights the importance of keeping the

controls low to the importance of minimizing the state variables, or

maximizing performance. Letting p approach zero allows the system to use

large amounts of control; this is known as the "cheap" control case. On the

other hand, letting p approach infinity prohibits the system from using more
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control than is necessary to stabilize the plant; this is known as the

"expensive" control case.

For the problem at hand, the weightings are chosen to give the costs

physical significance. The state weighting matrix is based on a performance

metric which only weights the plunge and pitch displacements, not the rates.

In addition, each of these states is normalized according to a maximum

displacement for the state. The maximum pitch displacement is calculated by

assuming one percent strain in the structure and calculating the resulting

angle at the 3/4 span point; the maximum plunge displacement is calculated

by assuming one half percent strain and calculating the resulting vertical

displacement at the 3/4 span point.

Similarly, the control weighting matrix normalizes the controls by

their assumed maximums. The strain actuators are assumed to have a

maximum actuation strain of 300p.e, the trailing edge flap to have a

maximum flap deflection of 5 deg, and the leading edge flap to have a

maximum flap deflection of 2.5 deg. The maximum actuation strain and the

maximum trailing edge flap deflection are chosen to be typical values for

these actuators. The leading edge flap deflection is chosen by calculating the

hinge moment caused by a 5 deg trailing edge flap deflection and finding the

leading edge flap angle which would cause an equivalent hinge moment

(steady aerodynamics assumed).

For the LQR results, two main tools are used for the comparison of

actuators. First, the locus of the closed loop poles are plotted, parameterized

by the control weighting p. Each actuator's or actuator combination's

effectiveness in manipulating the two modes may be determined from these

loci. Second, a cost analysis of the different actuators is performed. The state

cost and control cost of each actuator are calculated and their relationship is
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plotted. The costs are functions of the state covariance due to the inflow

angle disturbance. The disturbance is represented as a one degree broadband

white noise. The state cost is the weighted covariance of the states and the

control cost is the weighted covariance of the commanded controls. The

weighting matrices are the same as those used in the LQ cost functional.

One of the most important results from the LQ analysis is the

fundamental performance limitation of designs employing only a single

actuator. Such restrictions become most apparent in the limiting case of

"cheap" control. Lazarus showed that as the control weight p goes to zero, the

closed loop poles go to the stable finite zeros of the full Hamiltonian system

(Equation 2.11), if they exist, or to infinity along stable Butterworth patterns

[Lazarus and Crawley, 1992a].

H(p) = [NI(-p)B]T[N((p)B] (2.11)

One of the poles will travel to the zero and, therefore, a very limited amount

of damping will be introduced into the mode. This sets a finite limit on

performance. Figure 2.7 shows the closed loop pole loci for the single actuator

cases for a control weighting range of p = 10' to p = 10-" . In each of the

single actuator cases, only one of the poles may be effectively moved to

infinity along a stable Butterworth pattern.

Since each single actuator is only capable of truly controlling one mode

well, types of actuators may be defined: those which effectively control the

plunge mode, "plunge" actuators, and those which effectively control the pitch

mode, "pitch" actuators. Reviewing the single actuator pole loci, it becomes

obvious that both the bending strain actuator and the trailing edge flap

primarily control the plunge mode, as they are only able to move the plunge

mode effectively. Thus, both the bending strain actuator and the trailing
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Figure 2.7 Loci of the LQR closed loop poles ( p = 10 4 to
10 -4 . 5 ) for the four actuators acting
individually.

edge flap are "plunge" actuators. In a similar fashion, both the torsion strain

actuator and the leading edge flap primarily control the pitch mode, or are

"pitch" actuators.

These results can also be observed in the single actuator cost analyses

(Figure 2.8). Each of the four single actuator curves approaches a horizontal

asymptote as more control is applied; this implies that increasing the control

does not lessen the state cost or improve the performance of the system. It is

at this point that each actuator reaches its fundamental performance limit.

The actuator has not saturated; it has driven one of the modes to the finite

zero of the full Hamiltonian system and can not exert any further influence

on the mode.
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Since a lower state cost for a given control cost indicates superior

performance, the relative performance of the different actuators can be seen.

The bending strain actuator is a more effective actuator than the trailing

edge flap, as the bending strain actuator's state cost is consistently lower

than that of the trailing edge flap. The leading edge flap demonstrates its

relative ineffectiveness as it evidences a significantly higher state cost than

all of the other actuators for any given control cost.

The use of actuators in combination eliminates the performance limit

that the single actuator controller designs experienced. All of the designs
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which employ more than one actuator are capable of moving both of the poles

along stable Butterworth patterns to infinity. Examples of the pole loci for

combination designs are shown in Figure 2.9. This same result may be

observed in the cost analysis (Figure 2.10). For all of the combinations, as the

control effort is increased, the state cost continuously decreases. Notably, the

combination of all four actuators does not perform significantly better than

the best of the two actuator combinations. This result implies that an

optimal number of well chosen actuators for this typical section with two

modes is two actuators, or that it is important to have the same number of

effective actuators as important modes, and not significant to use more.

While all of the pairs of actuators eliminate the performance

limitation, certain pairs perform significantly better than other pairs. All of

the pairs which include the leading edge flap perform rather poorly, as the

leading edge flap in this example has proven to be a relatively ineffective

actuator. As the other three actuators are nearly equal in effectiveness, the

performance of their various combinations illuminate a basic guideline. An

effective pair includes a "plunge" actuator and a "pitch" actuator, such that

each important mode has an actuator which is capable of exerting

considerable authority on it. This explains why the torsion strain

actuator/trailing edge flap combination performs better than the bending

strain actuator/trailing edge flap combination in all control regimes, even

though the bending strain actuator is a slightly more effective single actuator

than the torsion strain actuator in the "cheap" control regime. Likewise, it

explains why the most effective "plunge" actuator and the most effective

"pitch" actuator, the two strain actuators, when combined form the most

effective pair which is essentially equivalent in performance to all four

actuators together.
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To verify that these results are applicable to other airspeeds in

addition to design point 1, design point 2 is analyzed in the same manner.

The main difference between the two design points is the presence of an

instability at design point 2. Since the leading edge flap has already been

determined an ineffective actuator, it has been excluded from further

consideration. All of the conclusions of the analysis of design point 1 are

reiterated here: the limit on the performance of single actuators, the

elimination of this limit in combinations of actuators, and the importance of

including a "plunge" actuator and a "pitch" actuator (Figures 2.11 and 2.12).
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The only new feature is the finite minimum control cost. Since the system is

initially unstable and the LQR solution guarantees stability, the solution

requires that a minimum amount of control be exerted to stabilize the

system. In the cost curves (Figure 2.12), the vertical asymptote that all of the

curves approach as control cost is decreased delineates the minimum control

that must be exerted to stabilize the system.
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Output feedback: Linear Quadratic Gaussian

In this section, the problems of noise and incomplete measurements

will be addressed through the design of Linear Quadratic Gaussian (LQG)

controllers [Kwakernaak and Sivan, 19721. While full state feedback

provides an optimal controller, realistically, all of the states will not be able

to be measured. This leads to the design of output feedback controllers in

which only certain combinations of the states are permissible for feedback.

The optimal output feedback gains may be obtained through a Linear

Quadratic Gaussian method, designing a Kalman filter for use in conjunction

with the already designed optimal controller. The Kalman filter estimates

the values of the states from the values of the measurements and a model of

the plant. Using the state estimates, the controller may operate as though

full state feedback has been achieved.

The design of the Kalman filter is the dual problem to the design of the

full state feedback controller. In this case, rather than balancing the

importance of the state cost against that of the control cost, the process noise

is balanced against the measurement noise [Kwakernaak and Sivan, 1972].

If the measurement noise is set to be high relative to the process noise, the

measurements will be of less value and the state estimates will be more

heavily based on the plant model. In contrast, if the process noise is high

compared to the measurement noise, the measurements will be emphasized.

There are three different sets of measurements provided to the system.

These include a measurement of the plunge state alone, a measurement of

the pitch state alone, and measurements of both the plunge and pitch states.

Only displacement measurements are used. The disturbance to the inflow

angle, a 1 degree broadband white noise signal, constitutes the process noise.

The measurement noise is computed as a percentage of the maximum value
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for the given state. Measurement noise levels of 1%, 5%, and 25% have been

evaluated. Only the results from the 1% noise level cases are shown in this

report, as all of the trends are applicable regardless of noise level. The only

significant change between noise levels is that higher measurement noise

levels degrade the performance of the entire system, thus having a higher

state cost for a given control cost.

To compare and contrast the different measurement systems, the same

type of cost analysis as used in the full state feedback case is completed. The

state cost is based on the actual states while the control cost is based on the

estimated states, as the commands would be based on the estimated states.

The weightings and normalizations used for the Linear Quadratic Regulator

problem are also used for the Linear Quadratic Gaussian problem.

The cost curves for the various LQG designs did not provide any

significant additional information to aide in understanding aeroelastic

control. In Figure 2.13, it can be seen that for each of the four actuators,

bending strain control, torsion strain control, trailing edge flap, and leading

edge flap, the systems which measured both plunge and pitch states

consistently performed the best. This is fundamental to any system: the

more well-chosen measurements that are available, the more accurate the

estimates will be and the better the overall system will perform. Notice that

for all four of the actuators, all of the measurement systems have the same

low cost asymptote. As the control cost decreases, the system is able to exert

decreasing amounts of control, the limiting case being when the controller is

unable to exert any control. As the control cost approaches this limit, which

measurement system is used will not alter the performance of the system.

If one is limited to using a single measurement, it is marginally better

to match the sensor type with the chosen actuator type. For instance, if the
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actuator chosen is the trailing edge flap or the bending strain control, the two

"plunge" actuators, than it is marginally better to measure the plunge state,

specifically at higher control costs. Likewise, the pitch sensor performs the

best when used in conjunction with the torsion strain actuator, a "pitch"

actuator, although this advantage is weak. Perhaps the most important

effect of using a single measurement is that the single actuator curves

asymptote to a higher value of state cost at high control costs than when

multiple measurements are used. This indicates that the use of a single

measurement further limits the performance of controllers using a single

actuator.
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The designs of controllers using both the Linear Quadratic Regulator

method and the Linear Quadratic Gaussian method have revealed several

important guidelines. First, controllers using a single actuator exhibit a

inherent performance limitation. Second, this limitation is removed when

two or more actuators are used. Finally, the use of a single measurement

further degrades the performance limitation of the single actuator controllers.

2.4 Fiber vs. Geometric Sweep

In this section, fiber and geometric sweep will be incorporated into the

typical section and their effects on the open loop behavior will be studied. To

begin, a simple Rayleigh-Ritz formulation will be used to formulate the

stiffness matrix with fiber sweep. A transformation will be derived to find

the elastic axis location and the uncoupled stiffnesses for the typical section.

To incorporate geometric sweep, a second transformation will be derived for

the aerodynamic forces. The geometric sweep will only be incorporated into

the aerodynamics. Finally, the flutter and divergence characteristics of the

typical section with fiber sweep and geometric sweep will be examined.

The first step is to derive the stiffness matrix with fiber sweep. A

simple two-mode Rayleigh-Ritz analysis will be used. The sign convention

can be seen in Figure 2.14. The two modes are a simple parabolic bending

mode and a linear torsional mode.

2

w(Y , Yt) = y ,(,y)q,(t)
i=1

(2.12)

72 ( =
1
3 -where I= -1
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x h,w

For 1

Figure 2.14 Sign convention for Rayleigh-Ritz modeshapes

Note that the barred coordinates are the wing fixed axes and the non-barred

coordinates are the reference aerodynamic axes. When evaluated at the 3/4

span point (or 1), these modes will have unit displacement and unit twist and

will be equivalent to the midchord plunge and pitch of the typical section.

h,(t)= w( ,O,t)= q(t)

d, dwi-h-- = c,(t) = - (,O,t)= q,(t) (2.13)

dho -=w(,o,t)

The typical section defines displacement positive down and positive angle is

leading edge up (Figure 2.14).

These modeshapes are then integrated over the wing to obtain the

stiffness matrix.

4Tf 4f1
I D -- D6

K = e4 1 r-1I (2.14)
41E 4D1
L D1642



1N
where D = (Q)(z - z -1)

(Q )k is the modulus of the kth layer

zk is the height of the kth layer
N is the total number of layers

No chordwise bending mode has been included and the stiffness matrix

depends only on spanwise bending and torsional stiffnesses and their

coupling term.

To incorporate this coupled stiffness matrix into the typical section

equations, an elastic axis location and the corresponding uncoupled stiffness

matrix must be found. The spring forces have been evaluated at the

midchord and need to be transformed to the elastic axis location. The typical

section equations are defined per unit span, so the stiffnesses in Equation

2.14 must first be divided by the span 1. Then, a transformation matrix is

established between the displacements at the midchord and those at the

elastic axis (Figure 2.1).

q = { =[ -a I=hE.A. T A '.A. (2.15)
q2 c 0  1 'E.A. E.A.

The distance of the elastic axis aft of the midchord, ab, is unknown. The

spring forces at the elastic axis are calculated through the appropriate

transformation for equilibrium equations using the same transformation

matrix T [Strang, 1986].

MF.A. )TTKT{ .A. } (2.16)

The transformation preserves the system dynamics. Eliminating the

resulting cross stiffnesses provides the expression for the elastic axis location



and the uncoupled stiffnesses (Equation 2.17). By definition, the elastic axis

is the position at which the stiffnesses uncouple. The location of the elastic

axis and the uncoupled stiffnesses are found by setting the off-diagonal terms

of '1KT to zero.

K12, 31 D16a
K11b 4 b DI

K 4

Ka 22 1-KxxK22 2 DND6

These uncoupled stiffnesses can be placed directly into the governing

equations of motion for the typical section (Equation 2.2).

Using a simple six-ply laminate, the relationship between fiber sweep

angle and elastic axis location can be shown. The stiffnesses are calculated

using plates with six plies of AS4/3501-6 graphite epoxy with all plies at the

fiber sweep angle (see Appendix B for material properties). Figure 2.15

shows the elastic axis location for varying fiber angle for a full span aspect

ratio of 3.92, like the reference typical section, and for an aspect ratio of 8.

Both aspect ratios show linear trends until a fiber sweep angle of

approximately -55 degrees. At this point, bend-twist coupling is decreased for

increasing fiber sweep angles. Eventually the fiber sweep angle will be 90

degrees with no bend-twist coupling. To achieve a reasonable level of bend-

twist coupling, fiber sweep angles of +/- 15 to +/- 45 degrees should be used.
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Figure 2.15 Location of elastic axis for varying fiber sweep
angle, ab is the distance of the elastic axis aft
of the midchord, where b is the semichord.

To incorporate geometric sweep into the aerodynamics, a correction

must be made on the lift-curve slope and the aerodynamic coupling of

bending and torsion must be included. Without any corrections for sweep,

the static aerodynamic forces are only due to the twist angle or angle of

attack.

M o pV'ebCL. jdh

where e is the distance from the aerodynamic
center to the midchord

andq, =-
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There are several corrections to the aerodynamic forces that must be

made for the incorporation of geometric sweep. First, there is a cos A

correction on the lift curve slope. Second, the geometry of the strip is altered.

Spanwise dimensions are shortened and chordwise dimensions are

lengthened. The chordwise dimensions in the aerodynamic strip forces are

explicit, but, since the strip forces are calculated for a unit span, the spanwise

dimension is implicit.

[Fc] 0 0 -pU2 , )( cosA)(A~cosA)

M = 0 0 0
Me, o o0 pU2e cos C cos A)(A cos A)

where bars indicate dimensions in the wing fixed axes
andi= 1

and ac =-

&f Idx
dh =dhaoy dCy

(2.19)

The final correction to the aerodynamic forces for geometric sweep is a

transformation of coordinates from the wind axes (x,y) to the wing axes

(£,y) is shown in Figure 2.16 and Equations 2.20.

y

Figure 2.16 Transformation of coordinates for addition of
geometric sweepgeometric sweep
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k -1 0 0 1 =(

h= 0 cosA -sinA I T- (2.20)

ah [0 sin A cosA JI

The inclusion of geometric sweep couples the bending and twisting

displacements in the wind axes. The aerodynamic transformation matrix,

TA, may now be used to transform the aerodynamic forces and moments to

the wing fixed axes.

C7 
h

M, = TTATdh- (2.21)
IMc} =a~

The typical section equations of motion have only two degrees of

freedom, a plunge motion (ql) and a pitch motion (q2). The displacement and

slopes must be expressed in terms of the two degrees of freedom and the

generalized aerodynamic forces on these two degrees of freedom must be

found. Recalling Equations 2.13, the appropriate transformation matrix is

h 71(i,0,t) 0
dh=, = y (Itot) 0 0 q1 =T Q1 (2.22)

Consequently, the generalized aerodynamic forces on the plunge and pitch

modes are

{=T TATT { T(2.23)

These transformations are only applied to the aerodynamic forces as the

remainder of the forces are already defined in the wing axes on the plunge



and pitch displacements. Now the aerodynamic forces are described in the

wing axes, defined about the midchord, and expressed in terms of the plunge

and pitch displacements. The aerodynamic forces must now be transformed

to the elastic axis location by the earlier transformation (Equation 2.15) from

the midchord to the elastic axis to be consistent with the other forces in the

equation of motion.

bK 1  0
m Ia E- .A. +  KK2 E.A.

a b I n I I E A . O 22 K11K 22 )J V E.A. (2.24)

+ T T MTATATMT . h =A 0

"0R.A.

Now that the geometric and fiber sweep have been incorporated into

the typical section equations, the stability behavior of the section for varying

geometric and fiber sweep can be studied. Choosing realistic values of sweep,

a trade space which includes geometric sweep angles of -30, 0, and 30 degrees

and fiber sweep angles of -45, -30, -15, 0, 15, 30, and 45 degrees is

established. Using a velocity iteration and solving for the roots of the

characteristic equation, the stability characteristics of the trade space can be

found by examining Figure 2.17.

To see the accuracy of the typical section analysis, the physical

parameters used correspond to plates used in a study by Landsberger and

Dugundji [1985]. Essentially the same trends appear using the typical

section analysis as seen in Figure 7 of Landsberger and Dugundji, noting the

different definition of positive fiber sweep angle. Wings with aft geometric

sweep and negative fiber sweep show a remarkable robustness to change in

fiber and geometric sweep. These sections all flutter and the variation in

flutter speed is not large. In contrast, the forward swept wing with negative

sweep angles is divergence prone and the speeds vary greatly for change in
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Figure 2.17 Typical section stability characteristics for
varying geometric and fiber sweep angles.
The data points for a fiber sweep angle of -45
degrees and geometric sweep angles of 0 and
30 degrees are superimposed.

fiber sweep. Likewise, the positive fiber sweep angles are also divergence

prone.

The discrepancies between the typical section analysis and

Landsberger and Dugundji's results are due to three modelling assumptions.

First, and foremost, is the lack of chordwise bending modelled in the typical

section. Jensen [1982] showed that the inclusion of a chordwise bending

mode in a Rayleigh-Ritz anlaysis is significant in correctly determining the

frequencies of bend-twist coupled plates. Second, only steady aerodynamics

have been included in the typical section model. Finally, a minor difference is

the fact that the laminates used in the typical section are [906 and the

laminates used in Landsberger and Dugundji are [8//0]s.
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The simple two degree of freedom model used in this section to analyze

the effects of fiber sweep and geometric sweep provided remarkably accurate

results. The trends compared favorably with previous analytical and

experimental results. A region in which the test article will consistently

flutter and where the flutter speeds are robust to small changes in either

fiber or geometrical sweep has been found.

2.5 Robustness of Qualitative Results: Parameter

Variation

Since the main emphasis of the typical section exercise is to achieve

better physical insight into the problem of aeroelastic control, it is important

to check the robustness of the qualitative results to parameter variation. To

a certain extent, this has already been completed, with the study of design

point 2. This section will examine the change in the open loop plant to

change in nominal physical parameters. The first change is to alter the

spacing between the elastic axis and the center of gravity. The second is to

alter the location of the elastic axis/center of gravity pair, holding their

internal spacing constant.

For the first series of parameter variations, the spacing between the

elastic axis and the center of gravity is changed. The parameters that must

be consistently altered are x., the distance from the elastic axis to the center

of gravity, which is non-dimensionalized by the semichord and the radius of

gyration, R.. The radius of gyration, much like a moment of inertia, is

comprised of two components: one which represents the distribution of mass

about the center of gravity and another which represents the parallel axis

contribution of the distance from the center of gravity to the axis of rotation,

or the elastic axis. Only the parallel axis portion is altered. This

58



parametrization corresponds to redistribution of mass in the wing while

keeping the stiffness constant.

As can be seen from Figure 2.18, five different spacings, including the

nominal case, are examined. The first alteration (xa = -0.2) has the center of

gravity located ahead of the elastic axis. The second case (xa = 0) has the

center of gravity superimposed on the elastic axis. The final two cases

(xa = 0.4 and Xa = 0.6) have the center of gravity located behind the elastic

axis, similar to the nominal case.

Ua

b b

E.A.

C.G.
Nominal

xa = -0.2

x= 0

xa = 0.4

xa = 0.6

Parameter variation on the spacing between
elastic axis and center of gravity
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To examine the effects of these parameter changes on the open loop

plant, the pattern of poles and zeros as they move with airspeed will be

examined and qualitatively compared to the nominal case (Figure 2.19). For

all of the cases in which the center of gravity is aft of the elastic axis, the

pattern is qualitatively similar. The case in which the center of gravity is

superimposed on the elastic axis shows a significantly different pattern.

Since the two are superimposed and only steady aerodynamics are being

used, the two modes are completely decoupled and flutter never occurs.

Likewise, when the center of gravity is ahead of the elastic axis, flutter never

occurs. Both of these cases are uninteresting in the design of aeroelastic

control for flutter. These results are consistent with the typical section

parameter variations in Bisplinghoff, Ashley, and Halfman [1955]

The second series of parameter variations involve the movement of the

elastic axis/center of gravity pair. This parametrization reflects a change in

stiffness and a change in mass distribution. The parameters that must be

consistently altered are a, the distance from the midchord to the elastic axis,

which is non-dimensionalized by the semichord and all of the aerodynamic

moment coefficients, which change when a is changed. The five different

locations tried are shown in Figure 2.20.

As before, the open loop plant with the varied parameters will be

studied by observing the changing pole/zero pattern (Figure 2.21). The cases

in which the elastic axis/center of gravity pair is located aft of the nominal

case evidence patterns qualitatively similar to the nominal case (a = 0 and a

= 0.2). With a = -0.4 and the elastic axis/center of gravity pair entirely

ahead of the midchord, the pattern changes slightly with the trailing edge

flap zero starting above both poles at zero velocity and crossing over to be

between the two poles and finally to zero frequency before flutter. This would
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Figure 2.19 Pole/zero movement with respect to the non-
dimensional airspeed, Ua, for the variation of
the spacing between the elastic axis and the
center of gravity. Cases are as follows: (a) xa
= -0.2, (b) xa = 0, (c) xa = 0.4, (d) xa = 0.6

mean that the pole/zero pattern for the design points studied would be

qualitatively different for this actuator; it also seems to indicate that aileron

reversal occurs much earlier and may precede flutter. With a = -0.6 and the

elastic axis ahead of the center of pressure, the same pattern occurs for the

trailing edge flap zero, with reversal occurring well before flutter.
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Additionally, the bending strain actuator zero continually increases in

frequency as opposed to its normal decreasing behavior. However, the

pole/zero patterns for this actuator do not change for either of the design

points.

Ua

b b

E.A.
C.G.

Nominal

a = -0.6

a = -0.4

a= 0

a = 0.2

Figure 2.20 Parameter variation on location of elastic axis
/ center of gravity pair.

The parameter changes outlined in this section and the resulting

changes in the open loop plant indicate that the lessons learned earlier from

the reference case would be able to be applied to many typical sections.

These typical sections must have the center of gravity located aft of the
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elastic axis. Another constraint is that the elastic axis must be located aft of

the center of pressure.

2 a)

+
: 1.5 ++

+*

.+ *
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Non-dimensionalized Airspeed
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Non-dimensionalized Airspeed

Non-dimensionalized Airspeed

0 2 4

Non-dimensionalized Airspeed
System Poles

xx Bending Strain Control / Plunge Output
+ + Torsion Strain Control / Plunge Output
* * Trailing Edge Flap / Plunge Output

o o Leading Edge Flap / Plunge Output

Pole/zero movement with respect to non-
dimensional airspeed, Ua, for variation of
location of elastic axis/center of gravity pair.
Cases are as follows: (a) a = -0.6, (b) a = -0.4,
(c) a = 0, (d) a = 0.2

63

Figure 2.21



2.6 Incorporation of unsteady aerodynamics

In a final attempt to verify the generality of the qualitative results, full

unsteady aerodynamics will be incorporated. Returning to the full

expressions for lift and moment, all of the non-circulatory terms as well as

any circulatory rate or acceleration terms must now be included. In addition,

Theodorsen's function, C(k), must be implemented with its complex

frequency dependent nature. To accomplish this, a rational approximation

will be used.

For the present purposes of control design, the simplest rational

approximation is a one pole approximation matched exactly to the tabular

values for Theodorsen's function at a reduced frequency of k = 0.5.

-0.4544s
C(s) = 1+ (2.25)

s + 0. 1902

This reduced frequency corresponds to design point 1. The fit of this

approximation to the tabular values can be seen in Figure 2.22.

By representing Theodorsen's function by a pole approximation, new

states must be added to the system. These states act as aerodynamic lags, or

lag states. The new states are defined as follows

x or
s + 0. 190 2  (2.26)

p = xp- 0. 1902U

Only one additional lag state is required for each displacement state, so the

total number of states is increased to six. Once these lags are incorporated,

the aerodynamic coefficients for displacements, rates, and accelerations can

be derived and these are shown, along with their values for the nominal

typical section in Appendix A.
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Figure 2.22 Comparison of one-pole approximations to the
tabulated values of Theodorsen's function

To implement the lag state and to provide rate and acceleration terms

for the trailing edge flap angle, the trailing edge flap has to be given some

dynamics. A simple model of the trailing edge flap is created, a 2 d.o.f.

spring-mass-dashpot system with critical damping and a natural frequency

100 times greater than the torsional mode of the typical section. In this

manner, the flap dynamics will not interfere with the main flutter

phenomenon.

S+ 98.994P + 49008 = 4900 (2.27)(2.27)
where f, is the commanded flap angle

The aerodynamic lag for the flap is implemented in exactly the same manner

as the aerodynamic lags on the displacement states. The addition of the flap



dynamics and lag state completes the full nine state system. The full matrix

equation of motion may be seen in Appendix A.

Solving the matrix eigenvalue problem, the plunge and pitch mode

poles may be plotted as the airspeed varies (Figure 2.23). The flutter point,

when one of the poles crosses into the right half plane, is clearly visible. The

modes have essentially coalesced and the mode which eventually goes

unstable is a combination of both the bending mode and the torsion mode.

1.5

-1.5 0.5nominal typical section, unsteady
J3
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pair ahead of the midchord: it begins initially above both poles and then

crosses to lie between the poles before flutter. Overlooking these two

disparities, the unsteady case and the steady case do look remarkably

similar. They both follow the same general pattern and the multiple crossing

point is again evident and indicates unobservability of the torsional mode

with plunge measurement at that velocity. To see how the disparities effect

control design, LQR designs are created for the different actuation schemes

with unsteady aerodynamics.

The LQR designs for the unsteady case closely parallel those for the

steady case. The same states are weighted in the cost functionals and the

same normalizations are used for both the states and the controls. Looking

at the closed loop pole loci, many of the same qualitative characteristics are

evident (Figure 2.25). For example, all of the single actuator designs show

the same performance limitation as before. Each single actuator moves one

pole along a stable Butterworth pattern and the other pole is pushed toward

a finite location in the left half plane, the location of a finite zero of the full

Hamiltonian system. A difference here is that the same pole is always moved

along the Butterworth pattern, regardless of actuator. This behavior

obscures any "typing" of actuators. In addition, the pole loci of the multiple

actuator designs demonstrate the same removal of any performance

limitations. Both of the poles may now be moved along stable Butterworth

patterns. As before, the combination of all actuators does not perform

significantly better than the best pair of actuators, indicating that two well

chosen actuators control the section effectively.
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Figure 2.24 Pole/zero movement with respect to non-

dimensional airspeed, Ua, for nominal typical

section with unsteady aerodynamics.

These same results are echoed in the cost analysis of the unsteady

aerodynamics controller designs (Figure 2.26). The performance limitation of

the single actuator systems again appears as the single actuator curves

asymptote out to a finite state cost for increasing control cost. The bending

strain actuator proves to be the most effective of the three actuators,

although all three are relatively close. As seen repeatedly before, the

multiple actuator combinations do not exhibit the performance limitation. All

of the curves also approach a low control cost horizontal asymptote indicating

that the system's state cost will never increase above that level, regardless of
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how little control is used. This is due to the presence of a finite amount of

damping in the unsteady aerodynamics case.

Overall, the same qualitative trends seem to hold for the unsteady

aerodynamics case as compared to the steady aerodynamics case. The same

fundamental principle is observed: it is important to have as many effective

actuators as vital modes and any additional actuators will show a greatly

decreased return. In addition to the parameter variations described earlier,

this comparison verifies the generalities of the results achieved.



2.7 Summary

In this chapter, strain actuation for aeroelastic control has been

studied through the use of a typical section. The parametric equations of

motion have been derived using two degrees of freedom: pitch and plunge.

Strain actuators and conventional flap actuators have been modelled and

controllers designed using these actuators in various combinations. It has

been shown that single actuator designs reach a fundamental performance

limit when controlling this two degree of freedom system. In addition,

controllers using more than two actuators did not perform significantly better

than the best combination of two actuators. Therefore, as a guiding principle,

it is important to have as many effective actuators as important modes. As

for the individual actuators, all of the actuators, save the leading edge flap,

demonstrated nearly equivalent performance levels. The leading edge flap

proved to be an ineffective actuator.

Following the controller analysis, the effect of geometric and fiber

sweep on the open loop stability characteristics of the typical section was

shown. The elastic axis location demonstrated essentially linear behavior for

change in fiber sweep angle up to 55 degrees. Negative fiber sweep angles

(forward with reference to the wing fixed axes) and aft geometric sweep

angles guaranteed flutter as the first instability and showed small variances

in flutter speed.

Finally, the results were verified using simple parameter variations

and unsteady aerodynamics. The open loop behavior was consistent

throughout the parameter changes so long as the center of gravity is aft of the

elastic axis and the elastic axis is aft of the center of pressure. Likewise, the

incorporation of unsteady aerodynamics did not affect the actuation trends

derived earlier using steady aerodynamics.
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Building the Design

Chapter 3: Functional Requirements and
Design Parameters

3.1 Introduction

The previous chapter provides the foundation for the design of the

demonstration phase test article. The typical section analyses show that

piezoelectric actuators are a viable alternative to conventional flap actuators.

In addition, the typical section analyses demonstrate that at least as many

actuators as there are important aeroelastic modes are necessary for effective

control. These guidelines will now be applied to the design of the

demonstration phase test article.

In a rigorous design process, preliminary design is preceded by the

establishment of the working requirements for the device. Oftentimes, for

smaller projects, this step need not be explicit; instead, the requirements are

internalized by a single designer. For larger projects with design teams, the

requirements must be formalized. The first section of this chapter identifies

the functional requirements of the demonstration phase test article. Once

these requirements have been determined, the next step is to enumerate the

design parameters. The design parameters are those parameters which can

be varied so that the design meets the functional requirements [Suh, 1990].
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The process of preliminary design is to establish the values of these

parameters. These values will be arrived at by non-parametric studies and

parametric trades in subsequent chapters.

3.2 Functional Requirements

The principle engineering science objective of this project is to

demonstrate the viability of strain actuation for aeroelastic control and to

compare the effectiveness of strain actuation with conventional control

surface actuation. Using these actuators, controllers shall be developed to

demonstrate significant vibration suppression and bending/torsion flutter

suppression.

The functional requirements for the test article which derive from the

engineering science objective, can be separated into three categories, tunnel

constraints, performance requirements, and safety and regulatory

requirements, and are presented below.

Tunnel Constraints

When designing any aerodynamic experiment, compatibility with the

tunnel selected for testing must be ensured. This flutter model will be flown

in the Transonic Dynamics Tunnel (TDT) at the NASA Langley Research

Center (LaRC). Although the wing is not intended to be tested at transonic

speeds, this tunnel has been selected because of its accessibility and its

adaptation to flutter testing. The test section of the tunnel is sixteen foot

square. Air or freon may be used as the working fluid in the tunnel. The

selection of the tunnel imposes the following constraints.

TC1. The model must be sized for the test section such that an infinite

medium may be assumed.
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TC2. The cantilevered wing model must be able to be mounted to

either the wall or ground mounting devices.

TC3. All design airspeeds must be well within the tunnel operating

envelope. [LWP-799]

TC4. For ease and safety, testing will be conducted using air as the

working fluid.

Performance Requirements

Numerous models can be built that will satisfy the limitations of the

tunnel, without actually accomplishing the stated project objective. To

ensure that the objective is met, specific performance requirements must be

established. Since this is a research project, these performance requirements

can be interpreted as goals and further divided into three sections: physical

model goals, field of view goals, and controller goals. Physical model goals

define geometrical, mass, and power requirements of the model. Field of view

goals have been set so that the unique advances of this project may be

isolated and enumerated. Finally, the controller goals establish desired

levels of control authority.

Physical Model Goals

The wing model must be representative of current and near future

aircraft wings in which bending/torsion flutter is critical.

PR1. The geometry must be representative of such aircraft.

PR2. The-actuation mass, authority, and power requirements must be

realistic when scaled to full size.

PR3. Sensor location, quantity, type, and range must be realistic for

such aircraft.
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PR4. The model must be designed such that flutter will occur below

static divergence and reversal.

PR5. The flutter mechanism should be a coalescence of the first two

modes.

Field of View Goals

Since the technology of strain actuation is currently in its development

stage, the following design goals have been established to focus resources on

the advances of the planned demonstration phase.

PR6. The model shall be designed to flutter well below the transonic

speed range, before compressibility becomes a significant factor.

PR7. To simplify the model characterization, only one model will be

used for all testing: vibration suppression and flutter suppression.

PR8. To introduce structural thickness and the possibility of bend-

twist coupling without introducing the complications of a monocoque wing

structure, the internal structure shall be a sandwich spar construction.

PR9. To introduce representative aerodynamic thickness, a high

performance, symmetrical airfoil shape shall be chosen for an aerodynamic

shell to surround the internal structure.

PR10. The airfoil shape will provide zero lift at zero angle of attack.

PR11. The aerodynamic shell shall not add appreciable stiffness to the

spar.

PR12. The flap stiffness will be high enough to assume chordwise

rigidity.

Control Goals

Recalling that the principle objectives of this project are to prove the

viability of strain actuation for aeroelastic control and to compare strain
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actuation to conventional flap actuation, the following requirements are

established.

PR13. Both the strain actuators and the conventional flap actuator

will be pushed to their current technical limit.

PR14. The model will be designed to enable independent control of the

first two modes by the strain actuation.

PR15. Developed controllers should improve performance by 20 dB in

vibration suppression.

PR16. Developed flutter suppression controllers should show a marked

increase in the flutter speed.

Safety and Regulatory Requirements

The three main categories here are safety issues, cost, and schedule.

SR1. A flutter stopper mechanism must be designed to ensure that a

fluttering model can be brought to a stable aeroelastic condition before

structural failure occurs.

SR2. The wing should be manufactured and mounted in such a

manner that bench top vibration tests will not endanger equipment or

operators and wind tunnel tests will not endanger the tunnel or its operators.

SR3. A stress analysis will be completed to ensure that maximum

stresses lie within material specifications and to satisfy all applicable safety

documents. [LHB 1710.15, May 1992]

SR4. Wing design, fabrication, and testing shall meet established

budget constraints.

SR5. Wing design, fabrication, and testing shall meet established

schedule constraints.



Because the remaining chapters summarize the scientific issues

involved in the preliminary design process, several of the functional

requirements will not be directly addressed. For example, PR3, PR11, and

PR12 will be addressed during the detailed design process. Likewise, several

of the control goals, PR15 and PR16, will be satisfied when the actual

controllers are designed and implemented. Of the safety and regulatory

requirements, only SR1, dealing with the design of a flutter stopper, will be

addressed in this chapter.

3.3 Design Parameters

Design parameters are those dimensions, values, or shapes over which

the designer has control. When these design parameters are properly chosen,

the design will meet the functional requirements. The design parameters

may be separated into three categories: geometrical, structural, and

actuation. These parameters will be selected to satisfy the requirements and

objectives outlined in Section 3.2.

Table 3.1 Design Parameters

Geometrical Span

Aspect ratio

Geometrical sweep angle

Airfoil shape

Aerodynamic thickness ratio

Aerodynamic taper ratio

Structural Spar thickness ratio

Spar taper ratio

Laminate layup



Fiber sweep angle

Facesheet material

Core material

Actuation Flap chord ratio

Flap span ratio

Flap location

Piezoceramic area coverage

Piezoceramic thickness

Piezoceramic sectioning

In addition to the design parameters listed above, a flutter stopper

must be designed. Because the mechanism of the flutter stopper has yet to be

determined, specific design parameters can not be listed. In Chapter 6, the

design principle and mechanism of the flutter stopper will be determined and

parametric trades will be completed on the appropriate design parameters.

There are two main methods of selecting values for these design

parameters. The first of these methods is non-parametric study. For

example, reference values for some parameters will be established based on

previous experience, "common knowledge," and manufacturing contraints.

These parameters include the span, the airfoil shape, and the materials.

Another set of parameters will be determined by a survey of transport

aircraft. The survey will set the aspect ratio and aerodynamic thickness and

provide target values for the geometric sweep and taper ratios. The final

non-parametric study is a scaling analysis comparing the current design to

the earlier development phase test article. This scaling analysis will

determine the piezoceramic thickness and the spar thickness ratio. All of the

non-parametric studies will be presented in Chapter 4.
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The remaining parameters will be determined by in-depth parametric

trade studies. The first parametric study, discussed in Chapter 5, involves a

trade between the fiber sweep angle and the geometric sweep angle. In

conjunction with this study, the piezoceramic area coverage and sectioning

and the flap parameters will be determined. The second parametric study,

discussed in Chapter 6, determines the parameters for the tip mass flutter

stopper. The final parametric study, discussed in Chapter 7, will examine the

effect of varying taper ratios.



Chapter 4: Non-Parametric Studies

4.1 Introduction

This chapter marks the beginning of the design process, in which

several of the design parameters will be determined. The first set of

parameters will be established based on previous experience and "common

knowledge." Others will be set through a survey of transport aircraft to

satisfy the requirement for similarity to aircraft in which bending/torsion

flutter is critical or PR1. The final study to be discussed in this chapter is a

scaling analysis which will determine the piezoceramic thickness and the

spar thickness ratio.

Values for the span, airfoil shape, materials, and laminate layup will

first be chosen to satisfy certain of the functional requirements based on

previous experience with the construction of laminated wings and model

testing at the Transonic Dynamics Tunnel. A 48 inch half-span will be

established as a reference, which fulfills the sizing requirement for the

tunnel, or TC1, as well as manufacturing constraints on the largest laminate

which can be cured at MIT. Following the guidelines of PR9 for

representative aerodynamic thickness and PR10 for zero lift at zero angle of

attack, the airfoil shape is baselined as a NACA 64-012 which is a high-

performance, no camber airfoil. As used in this document, "reference"

denotes values which are established but may be varied, re-examined, or

altered before being fully established; "baselined" denotes the final choice of

that parameter for the preliminary design. The baseline facesheet material

will be graphite-epoxy (AS4/3501-6), a typical intermediate-modulus



aerospace material, and the baseline laminate layup is [0 / / /0]s, where 0 is

not zero. For 0 = 0, the middle layers will be placed at an angle of 90 degrees

in order to provide transverse strength. The baseline laminate incorporates

bend-twist coupling to enable independent piezoelectric control of the first

two modes as required by PR14. The core material will be an aluminum

honeycomb to complete the sandwich construction required by PR8.

4.2 Survey of commercial aircraft

To choose values for several of the geometrical and aerodynamic

parameters, a survey was completed of transport aircraft (Table 4.1). The

survey included the 727, 737, 747, 757, 767, DC9, and DC10 (series 30,40).

The aspect ratio is a full span aspect ratio and the thickness ratio (t/c) is an

estimated average.

Table 4.1 Transport aircraft geometric parameters. 1/4
chord sweep angle is in degrees. (* indicates
estimated value, all other values from Jane's
All the World's Aircraft [19911)

727 737 747 757 767 DC9 DC10

Aspect Ratio 7.07 8.83 --- --- 7.9 8.71 7.5

1/4 chord sweep 32 25 37.5 25 31.5 24.5 35

Thickness ratio (avg) 11% 13 % 10 % --- 13 % 11 % 10 %

Taper ratio 0.30 0.34 0.29 * 0.16 * 0.27 --- 0.25

Using the table as a guideline, the wing model will have a reference full span

aspect ratio of 8, or a half span aspect ratio of 4. The aerodynamic thickness

ratio of the wing model will be baselined at 12%. The sweep angle values

listed in the above table provide a reference geometric sweep angle of 30

degrees. However, the effect of sweep angle on the aeroelastic stability of the
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wing needs to be investigated so that the aeroelastic requirements on the

wing model may also be satisfied (PR4, PR5, PR6).

Similarly, the taper ratio values provide guidance for selecting a

possible range of taper ratio down to 0.16. However, it should be noted that

many of these aircraft have root chords significantly larger than would be

obtained by a straight line extension of the outboard portion of the trailing

edge. This added wing root chord, thickness, and corresponding area

provides for increased fuel capacity, landing gear storage, and root thickness,

but does not significantly affect the aeroelastic behavior of the wing.

Therefore, for a straight trailing edge model, the taper ratio could be

significantly greater than 0.16.

4.3 Scaling analysis

To extrapolate the strain actuation authority from the earlier

development phase test article to the present design, and to determine an

appropriate spar thickness ratio and piezoelectric thickness, a scaling

analysis has been completed. One of the most important differences between

the development phase experiments and the current investigation is the

increase in the structural thickness of the test article and its effect on the

piezoelectric authority. In this section, the governing authority parameter

will be identified and scaled appropriately.

Using energy methods, the governing differential equation for an

anisotropic plate-like lifting surface with piezoelectric layers is derived

[Jones, 1975, Meirovitch, 1986, and Lazarus and Crawley, 1989].
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where: p is the plate area density
h is the plate thickness
w is the vertical displacement

DV is the bending stiffness

ma = C' QJzdz
is the piezoelectric actuation moment

Q* is the modulus of the actuator layer (4.1)

zU,zL are the heights of the upper and lower
surfaces of each actuator layer

A is the actuation strain

For a box beam, mA. = 2 Ez,mt,,

where E. is the actuator modulus
(4.2)

z is the height of the actuator midline
t, is the actuator thickness

The aerodynamic forces would include the typical lift and moment

expressions. They have not been shown in Equation 4.1 for clarity.

Non-dimensionalizing the plate equation (Equation 4.1) will provide

the appropriate scaling parameter. The dimensions will be non-

dimensionalized in the following manner: the spanwise dimension x by the

span L, the chordwise dimension y by the semichord b, the vertical

displacement w by a reference displacement wo, the time t by a reference

frequency co, all of the substrate stiffnesses Dij by a reference stiffness Do, all

of the piezoelectric moment terms mAij by a nominal reference mAo, and the

piezoelectric strains Ax and Ay by a reference strain Ao. The resulting

equation is
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To complete the non-dimensionalization, the governing plate equation

of motion (Equation 4.3) is divided by the dimensional portion of the second

term. The second term is used since the dynamics of a wing are referenced to

its fundamental, usually a spanwise bending mode [Crawley and Dugundji,

1980].

Non-dimensional groups which emerge are the traditional non-
phL'o2  Ldimensionalized frequency and the aspect ratio -.. Had theDo b

aerodynamic forces been shown explicitly, the mass ratio and reduced velocity

would have appeared as well. The newly identified non-dimensional

parameter, which expresses the relative strain actuator authority, is

mALAoc = mAA (4.4)
Dowo

In order to make the non-dimensional group above useful in scaling,

the length to be used for the reference vertical displacement, wo, must be

chosen. There are three possible choices: the span (L), the semichord (b), and

the thickness (h). Table 4.2 shows the scaling parameter for each of the

choices as well the simplified scaling parameter for a sandwich or box beam

construction. The simplified parameter for sandwich construction assumes

that the facesheets and piezoelectric actuators are all located at the same

height (h/2) from the neutral axis.
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It is apparent that the nature of the parameter changes with the

dimension chosen for wo. For beam-like problems, L might be the

appropriate choice. For plate analysis of large deflections, h might be

appropriate. But for aeroelastic problems in which the fundamental interest

is in controlling the angle attack of the wing, the choice of b is the natural

one, since it equates the non-dimensional parameter with the ability to

induce a given twist in the wing.

Table 4.2 Scaling parameters for three choices of
reference vertical displacement, wo. Es and ts
are properties of the substrate layers, Ea and
ta are properties of the actuator layer.

wo General Parameter Box Beam Parameter

L mA.LAO 2( 1)AO
DL h 1+ W

b mALOA 2(4(L)( 1 ) A
Dob h b 1+ IF

h mAOLmA 2 A( 1)A
Doh h 1+ Y

where f= E,t,

Examining the piezoelectric authority parameter, the methods which

can increase the piezoelectric authority are clear. In most problems the

substrate modulus and the structural aspect ratio will be predetermined.

Likewise, the modulus and actuation strain of the piezoelectrics is

established by the current material technology. Therefore, the thickness of
L

the actuator layer, t., and the slenderness ratio, -- , are the two terms which
can be altered to increase the piezoelectric authority.

can be altered to increase the piezoelectric authority.

86



Having determined the piezoelectric scaling law, the analysis logically

proceeds to a comparison of the development and demonstration phase test

articles. Two different cases will be examined: the first, a bending authority

case, which utilizes the bending stiffness for the nominal stiffness, and the

second, a torsional authority case, which utilizes the effective stiffness for

bend-twist for the nominal stiffness (see Chapter 2).

Bending Authority Effective Stiffness D = Du1

Torsional Authority Effective Stiffness D. = D6ID6 - D  (4.5)
D16

These effective stiffnesses have also been derived using a three-mode

static Rayleigh-Ritz analysis, which used extension, bending, and twist

assumed shapes [Lazarus and Crawley, 1989]. The bending and torsion

effective stiffnesses relate the bending and twist displacements to the

piezoelectric bending moment, respectively. The torsional authority effective

stiffness is not synonymous with the torsional stiffness, because the in-plane

isotropic piezoelectric actuators can not provide shear strain. For the

piezoelectric actuators to gain authority over torsional motion, they must

take advantage of bend-twist coupling.

The most significant difference between the development phase test

article and the current design is the spar thickness ratio. To incorporate

representative structural thickness and satisfy PR8, the reference thickness

ratio will be increased by a factor of 4 from 0.5 % in the development phase

test article to 2 % in the current design. A 2 % thickness is chosen to

introduce significant thickness without surpassing current strain actuation

peformance. Because the half-span aspect ratio also increases from 2 to 4,
L

the slenderness ratio ( ) increases only from 0.25 % to 0.5 %. In addition,
h

the current design is a sandwich spar construction with two six-ply plates
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surrounding a layer of aluminum honeycomb as compared to the single six-

ply plate of the development phase test article. The comparison of the

different test articles can be seen in Table 4.3.

To examine the effect of increasing the piezoelectric thickness, which is

the only remaining term in the relative strain authority parameter, the

piezoelectric thickness will be varied from 0.010 in. to 0.020 in. to 0.040 in.

The development phase experiment had a 0.010 in. piezoelectric thickness.

To isolate the effect of the geometrical changes on the relative strain

authority parameter, the laminate

Table 4.3 Geometrical comparison of development phase
and demonstration phase test articles

Development Phase Demonstration Phase

Span 12 in. 48 in.

Aspect ratio (half-span) 2 4

Thickness ratio 0.5 % 2 %

Slenderness ratio 0.25 % 0.5 %

and material properties of the development phase test article are also

assumed for the demonstration phase test article. The laminate of the

development phase test article is [30/30/0]s and will be used for each

facesheet of the demonstration phase test article. The material of the

development phase test article was graphite epoxy AS1/3501-6 with a

nominal ply thickness of 0.0053 in.

The bending authority comparison, seen in Table 4.4, shows that the

demonstration phase test article will achieve authority equal to that of the

development phase test article for sufficiently thick piezoelectrics. For ta =

0.010 in., the bending authority for an equal amount of piezoelectric coverage
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is less for the demonstration phase than for the development phase. This is

understandable as the demonstration phase test article is a much stiffer

structure having double the wing "skin" thickness and wing "skins" placed off

of the neutral axis. However, increasing the piezoelectric thickness provides

increasing strain authority and the loss can be regained. Notice that

doubling the piezoelectric thickness from 10 mils to 20 mils nearly doubles

the authority, while doubling the thickness from 20 mils to 40 mils does not.

The cause of this diminishing return is that adding piezoelectrics adds
1incrementally more stiffness than authority, as can be seen from the 1

1+ i

term in the Box Beam relative strain authority parameter of Table 4.2.

Table 4.4 Comparison of piezoelectric scaling
parameters for development phase and
demonstration phase test articles.

BENDING AUTHORITY

Configuration

Development Phase

Demonstration Phase - 0.010 in.

0.020 in.

0.040 in.

Parameter

824.8

361.3

589.7

823.0

% of Dev. Phase

43.8 %

71.5 %

100.6 %

TORSIONAL AUTHORITY

Configuration

Development Phase

Demonstration Phase - 0.010 in.

0.020 in.

0.040 in.

Parameter % of Dev. Phase

317.6

371.6 117.0 %

401.0 126.2 %

312.9 98.5 %
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The torsional authority case exhibits even more interesting behavior.

For a piezoelectric thickness of 0.010 in., the demonstration phase test article

has greater authority than the development phase. This is due to the

increase in aspect ratio and an increase in the overall bend-twist coupling

which arises due to the sandwich or box-beam construction. The bending

stiffnesses of a laminated plate can be expressed as

D = I (Qv),t t zh +
h=( 12)

where (Q~ ) is the modulus of the kth layer (4.6)
tk is the thickness of the kth layer

z, is the height of the midline of the kth layer
N is the total number of layers

The relative contribution of any given layer is weighted by the thickness of

the layer and the square of its distance from the neutral axis. The

thicknesses of the layers do not change from the development to the

demonstration phase so the important variable is the distance from the

neutral axis. In the development phase test article, the neutral axis is the

midline of the plate. Therefore, the isotropic piezoelectric layers are

relatively much further from the neutral axis than the anisotropic plate and

their isotropy is heavily weighted. In contrast, the sandwich construction of

the demonstration phase test article places all of the material at essentially

the same displacement from the neutral axis. Due to this construction, the

piezoelectric isotropy is less heavily weighted in the demonstration phase test

article than in the development phase test article.

The other principle trend observed in Table 4.4 is that there exists an

optimal thickness for torsional authority. Unlike the bending authority

comparison, the 0.040 in. piezoelectric layer is less effective than the 0.020 in.
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layer for torsional authority. This is due to the fact that increasing the

piezoelectric thickness increases the weighting of the piezoelectric isotropy

relative to the anisotropic laminates and the overall isotropy is increased.

Increasing the overall isotropy reduces the bend-twist coupling. Since the

piezoelectric actuators are isotropic and only have torsional authority

through the bend-twist coupling, their torsional authority is reduced. Note

that the appearance of this maximum is in contrast to the optimization for

bending of a piezoelectrically actuated beam, which finds no optimum

thickness for a fixed height, but does find an optimum height for a fixed

thickness [Lazarus and Crawley, 1992a].

Having completed this scaling analysis, important insight has been

obtained. Clearly, the demonstration phase test article must have a thicker

piezoelectric coverage than the development phase experiments had.

However, the torsional authority analysis indicates that for a 2 % thickness

and the proposed laminate, 0.020 in. of coverage is optimum and recovers the

authority of the development test article. Therefore, a piezoelectric thickness

of 0.020 in. and a structural thickness of 2 % will be used as baselines for the

remainder of the analysis.

The non-parametric studies are now concluded. The following list

recapitulates the design parameter list and the reference and baseline values

which have been established in this chapter.
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Summary of current reference and baseline
values for design parameters. Bold indicates
a baseline value.

Geometrical

Structural

Actuation

Span (half)

Aspect ratio (full span)

Geometric sweep angle

Airfoil shape

Aerodynamic thickness ratio

Aerodynamic taper ratio

Spar thickness ratio

Spar taper ratio

Laminate layup

Fiber sweep angle

Facesheet material

Core material

Flap chord ratio

Flap span ratio

Flap location

Piezoceramic area coverage

Piezoceramic thickness

Piezoceramic sectioning
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Table 4.5

48 in.

8

30 deg.

NACA 64-012

12 %

> 0.25

2%

> 0.25

[0 / 0 / 0]s

AS4/3501-6

Aluminum honeycomb

0.020 in.



Chapter 5: Design Trade 1: Geometric vs.
Fiber Sweep

5.1 Introduction

Geometric sweep and fiber sweep are two of the most influential

parametric trades to be made in this design. Together, they affect the open

loop stability and the authority of the strain and flap actuators. The two

parameters must be examined simultaneously due to their interactive nature

and baselined before the other parametric trades are conducted. The

motivating requirements are that the wing model must flutter before it

diverges [PR4] and the flutter speed must be within the tunnel operating

envelope [TC31 and within the incompressible region [PR6]. Additionally, a

coalescence of the first two modes has been specified as the desired flutter

mechanism [PR51. As discussed in Chapter 4, the geometric sweep should be

representative of transport aircraft [PR1]. Enabling independent control of

the first two modes by strain actuation is the main actuation requirement

which affects the sweep trades [PR14]. This chapter will investigate the

effects and interaction of these two parameters.

In order to examine these trades, a model will be developed using the

Rayleigh-Ritz assumed modes method and two-dimensional strip theory

aerodynamics. Following the model development, the model will be verified

by comparison with experimental data for a rectangular plate specimen.

Based on the trends for these plates, the trade space will be reduced to focus

on regions with desirable aeroelastic characteristics. Then a model of a built

up wing will be developed and analyzed using the same technique, examining



only the reduced trade space. The aeroelastic characteristics will be

examined. The flap and piezoelectrics will be modelled and their baseline

placement will be established. Finally, the effect of ply fiber angle and

structural sweep on controllers utilizing these actuators will be investigated.

5.2 Model Development

This section describes the methods and equations used to model the

aeroelastic behavior of the rectangular plates and the wing design. To begin,

the structural model will be developed using the Rayleigh-Ritz method with

five assumed shapes. The structural dynamics will be referenced to the wing

fixed axes (x,y) and will treat the wing as a rectangular plate even when

swept (see Figure 5.1). Following the structural development, the

aerodynamics will be added. The aerodynamics will use the full unsteady two

dimensional strip theory with a one pole approximation of Theodorsen's

function. The aerodynamic forces are naturally calculated in the wind axes

(x,y) and will be transformed to the wing fixed axes (£,y) to coincide with

the structural dynamics. The sign convention and method of sweep can be

seen in Figure 5.1.
+A x

+0 +M

U

+L a U

Figure 5.1 Sign convention for Rayleigh-Ritz and
aerodynamic analysis.



Structural Dynamics

A Rayleigh-Ritz method is used to determine the natural frequencies

and eigenvectors of the in vacuo structural plant [Meirovitch, 1986]. The

displacements are assumed to have the following form.

N

w(,y,t) = Y (x,y)q(t)
i=1

where 7(, y) = ,(£)9() (5.1)
N = total number of assumed shapes

To obtain accurate natural frequencies using the Rayleigh-Ritz method,

appropriate assumed Ritz shape functions (yi) are chosen with some prior

knowledge of the structural dynamics of the plant. Five shapes are used: two

beam bending shapes, two plate torsional shapes, and a chordwise bending

shape (see Appendix C). The two beam bending shapes are the natural

modes of a cantilevered beam [Blevins. 1984]. The chordwise bending shape

is a free-free beam bending mode in the chordwise direction with a parabolic

spanwise distribution. Jensen demonstrated the importance of including a

chordwise bending shape for the accuracy of the first three modes when using

bending-torsion stiffness coupled plates [Jensen, et al. 1982]. The plate

torsional shapes are the torsional modes derived by a partial ritz method

described in Crawley and Dugundji [19801 in the spanwise direction and are

linear in the chordwise direction.

Using these assumed shape functions, the resulting equations of

motion in the structural axes can be derived.

Miq(t) + Kq(t) = Q(t) (5.2)

Unless the assumed shapes are the exact orthogonal modes of the test

specimen, these equations will be fully coupled through the mass and stiffnes
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matrices. The generalized forces (Q) will be defined below in terms of the

aerodynamic forces. The homogeneous problem is evaluated to find the

natural modes, E, which are mass normalized and transformed to modal

form.

ETMET(t) + ETKE1t(t) = ETQEtr(t)

where q = E, E TME = I, and E TKE = .0 (5.3)

The uncoupled modes of the test specimen, E, are found to be a linear

combination of the assumed modes, y.

Aerodynamics

Now that the structural dynamics have been defined, the aerodynamic

forces due to the deflections of the wing will be incorporated into the model.

In this section, expressions for the two dimensional strip theory generalized

aerodynamic forces will first be derived in the wind axes. Following this

derivation, the generalized aerodynamic forces will be transformed into the

wing fixed axes for compatibility with the structural equation.

For incorporation into the modal equations of motion, the aerodynamic

force on each generalized coordinate must be found. The generalized

aerodynamic forces integrate the pressure distribution weighted by the

different assumed shape functions.

Q = If (x,y)p(x,y)dydx (5.4)

It is important to note that these are the generalized aerodynamic forces in

the wind axes due to the pressure distribution expressed in the wind axes

and weighted by the assumed shape functions referenced to the wind axes.
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The assumed shape functions here are the assumed shape functions of

Equation 5.1 transformed from the wing fixed axes to the wind axes. The

details of this transformation will be discussed later in this section.

To avoid the complications of unsteady aerodynamics due to camber,

the chordwise mode will not be included in the aerodynamics. Now that the

camber mode has been removed, the remaining four assumed shapes may be

represented in the wind axes by the deflection of the wing centerline and the

twist angle about that centerline.

y (x, y) = (x)- (y - y) a . , (x) (55)
where y, is the y location of the wing centerline

Again, these are the assumed shapes referenced to the wind axes and their

relation to the assumed shapes referenced to the wing fixed axes will be

shown later in this section.

The familiar aerodynamic lift and moment can be derived as portions

of the generalized aerodynamic forces when the new representation of the

assumed shapes in the wind axes (Equation 5.5) is substituted into the

generalized aerodynamic force expression (Equation 5.4).

Q = y., (x)Ldx+ a., (x)Mdx

where L= p(x,.y)dy (5.6)

M,= f-(y-y)p(x,y)dy

The lift, L, is a concentrated force in the wind axes acting at the centerline of

the wing and the moment, Mc, is a concentrated moment in the wind axes

about the x axis evaluated at the centerline of the wing.

To develop expressions for sectional lift and moment, 2D strip theory

aerodynamics will be used. Like the typical section analysis, a one-pole
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rational approximation for Theodorsen's function is used. In contrast to the

typical section analysis, the approximation will not be matched for one

reduced frequency, but will be a best fit over a reduced frequency range of 0

to 1. The resulting approximation is

0.55P+0.15
C(15) = (5.7)

5 + 0.15

The full unsteady lift and moment expressions for 2D strip theory have

damping and apparent mass terms as well as the lag terms and the steady

aerodynamic terms.

[AA 2 BIAP +BoA 1- BAP o +
L= PP bU _ +0.15 b osA

j= 2 AB5+BlR+BOB + ABP -a
L 1+0.15

N U 2  o + 1 5  i +

S= b2  cos Affil b2 bpp+ay +Bo + 3D 1 o

j=1 j [2D 2, + BIDP + BOD + 0. 15 a

(5.8)
Ab

where 5 = -

N = total number of assumed shapes
( 4 for aerodynamics )

Each of the four remaining assumed shapes contributes to the lift and

moment and the summation of their individual contributions is the total lift

and moment. The cos A in both terms is a correction on the lift curve slope

for geometrical sweep. The values of the coefficients (B's) are listed in

Appendix C. The two dimensional strip theory expressions for lift and

moment (Equations 5.8) are then substituted into the generalized

aerodynamic forces (Equation 5.6) and rearranged.



= pU2 P[2A2# + 1AIV + Ao, + P15

2 = 145 0. 15

where

21 =B2A cosA bB,,cosA l '
o ', JbB2cosA b2B2D cos A ao,

similar for A,, Ao,, and A3

Now the generalized aerodynamic forces have been expressed in terms of the

wing centerline displacement and twist angle of the assumed shapes in the

wind axes.

For simplification, vector/matrix manipulation will be used in place of

the integration of the generalized aerodynamic force components over the

wing (Equation 5.9). The wing will be evenly divided into ten spanwise

sections and the distributed aerodynamic forces will be modelled as

concentrated forces acting at the center of these sections; therefore, the

assumed shapes will only need to be evaluated at these points. To obtain the

concentrated force, the magnitude of the distributed force on a given section

must be multiplied by the spanwise length of the section (Ax). Now the

integration of the generalized aerodynamic force components in Equation 5.9

may be approximated by a series of matrix multiplications.
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bB 2BAX cos A 0

. .
v 

1
0xcosn A b 2 BDAXcos A 0 il

similar for A~ , A , and A 3

where y7 = centerline displacement of the ith assumed shape evaluated

at the midpoint of strip n
a0 = centerline twist angle of the ith assumed shape evaluated

at the midpoint of strip n

Ax = spanwise length of each strip

(5.10)

Equation 5.10 assumes that the strips are all of equal semichord (b) and

spanwise length (Ax). It is important to note that all quantities in Equation

5.10 are referenced to the wind axes.

Since the structural equation is referenced to the wing fixed axes

(x,y ), the generalized aerodynamic forces (Equations 5.9 and 5.10) must

also be placed in terms of these axes. The inclusion of sweep introduces an

aerodynamic bend-twist coupling. The angle of attack in the wind axes is a

combination of the twist angle in the wing fixed axes and the spanwise slope

in the wing fixed axes. The wing centerline displacement and twist angle in

the wind axes may be expressed in terms of the wing centerline displacement

and twist angle in the wing fixed axes.
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Yoi = ?oi

a0 =-(sinA) + (cosA)No,

where ao, =--- and a0, = (5.11)
dy O 0Y (5.11)

bars indicate quantities referenced to the
wing fixed axes

other quantities are referenced to the wind axes

The sweep affects only the local angle of attack, with the vertical

displacement remaining the same in both axes. To transform the generalized

aerodynamic forces (Equations 5.9 and 5.10) into the wing fixed axes,

Equations 5.11 must be substituted for all of the wind axes assumed shape

functions in Equations 5.9 and 5.10. These substitutions into Equation 5.9

duplicate the aerodynamic transformation in Section 2.4 if the two simple

modes are used.

Finally, the generalized aerodynamic forces, which are fully

transformed into the wing fixed axes, are mass normalized and incorporated

into the mass normalized modal equations of motion.

i (t)+ ET KEI(t) = 1pU b ETA2Ei (t) + 1 pU2 \ )ETAiEt) +

pU2ETAoEn(t) + 1pU 2ETAE (t) (5.12)
2 2

U
(t) + 0.15-Y(t) = l(t)

b

The second equation represents the dynamics of the first order lag states

introduced by the approximation of Theodorsen's function. The vector Y has

one additional lag state for every mode. The aerodynamic forces have now

been transformed into the structural coordinates and the time domain so that

they appear to act as modal forces on the natural, uncoupled modes. It is
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important to recall that the semichord, b, and the section length, Ax, are

referenced to the wind axes and can be transformed to the wing fixed axes

semichord, b, and section length, AY.

b=
cos A

and Ax = A cos A (5.13)

For the stability

state space form.

1 Y

analysis, these equations are manipulated into the

I
-M*-'B*

r
(5.14)

where M = I - pU2 b E TAE

K = ETKE- pU2 ETAoE

B' = -- pU'(b)E'AE
2 U

G = - 1pU2ET A3E
2

b= Zb
cos A

Equation 5.14 represents the final 12 state homogenous aeroelastic model

used for the stability analysis in this and subsequent chapters. Five assumed

shapes, two spanwise bending, two torsional, and one chordwise bending,

have been used in a Rayleigh-Ritz analysis to find the first five natural

modes. The highest, predominantly chordwise mode, has been truncated and

the aerodynamic forces acting on the remaining modes have been fit with a

first order lag, yielding a model with eight structural modes and four

aerodynamic lags.
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5.3 Application to simple rectangular plates

Before modelling and analyzing the actual built-up wing design, the

aeroelastic stability of simple rectangular plates will be examined. The

purpose is twofold. First, the aeroelastic stability of plates such as these have

already been predicted and experimentally confirmed by Landsberger and

Dugundji [1985] and will serve as a verification of the model. Second, the

plate analysis will be used to select portions of the overall trade space on

which to focus in subsequent analyses.

A wide trade space will be examined for this initial study. The aspect

ratio of these plates is the same as the reference aspect ratio of the wing

model. The physical dimensions are 3" by 12". The trade space includes the

ply fiber angles of-45, -30, -15, 0, 15, 30, and 45 degrees and the structural

sweep angles of -30, -15, 0, 15, and 30 degrees. Like the wing model, the

baseline layup is [0 / 0 / 0]s except for a ply fiber angle of zero degrees. When

the ply fiber angle is zero degrees, the middle layers will be placed at 90

degrees to maintain some chordwise stiffness. The material is graphite

epoxy, AS1/3501-6, and the elastic moduli are the "flexural" moduli taken

from Landsberger and Dugundji [1985](Appendix B).

Using the Rayleigh-Ritz approach described earlier, the natural modes

for the different ply fiber angles can be found (Table 5.1). Frequencies for the

negative ply fiber angles are the same as for their positive counterparts. The

natural modes are exactly the assumed shape functions for the [02/90]s

laminate. For all other laminates the natural modes are linear combinations

of the assumed shapes. Labelling a mode first bending indicates that the first

assumed shape (first beam bending) dominates that mode. The classification

of the second natural mode as first torsion or second bending is more

problematic [Jensen, et al., 1982]. For zero ply fiber angle, the second mode
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is clearly first torsion. As the ply fiber angle increases, the contribution of

second bending to this mode increases until the second natural mode more

closely resembles second bending than first torsion for a ply fiber angle of 45

degrees.

Table 5.1 Calculated natural frequencies for first three
modes of 3" by 12" plates. (Hz)

Mode [0/0/90]s [15/15/0]s [30/30/0]s [45/45/0]s

1B 11.1 9.0 6.4 5.0

2B 69.3 65.3 41.1 33.0

1T 39.6 44.1 63.8 60.9

Adding the aerodynamics, the stability characteristics can be

examined. Using a velocity iteration and finding the eigenvalues of the state

space system, the speed at which the first instability occurs is found. Figure

5.2 shows the trends for ply fiber angle and structural sweep. For clarity,

only structural sweep angles of -30, 0, and 30 degrees have been shown. This

figure matches Landsberger's predicted stability speeds precisely and shows

good correlation with the experimental data of Figure 7 in Landsberger and

Dugundji [1985].

The flutter and divergence boundaries in Figure 5.2 are defined by the

interaction of the geometric sweep and the fiber sweep. Forward geometric

sweep (A negative) and aft fiber sweep (0 positive) both create a "wash-in"

effect, in which the wing twists to increase the angle of attack as the wing

deflects upward. "Wash-in" wings are, therefore, more susceptible to

divergence. Conversely, aft geometric sweep (A positive) and forward fiber

sweep (0 negative) create a "wash-out" effect, in which the wing twists to
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Figure 5.2 Calculated flutter and divergence speeds for
the ply fiber angle vs. structural sweep angle
trade. 3" by 12" plates.

decrease the angle of attack as the wing deflects upward. "Wash-out" wings

have significantly higher divergence speeds than "wash-in" wings and

normally flutter first. When simultaneously varying the geometric sweep and

the fiber sweep, the nature of the first instability will depend on the relative

strength of the different sweep-induced effects.

Combining forward geometric sweep (A negative) and aft fiber sweep (0

positive) produces wings which consistently diverge first. The divergence

speeds are also robust to small changes in either geometric or fiber sweep. In

this case, the "wash-in" effect caused by the aft fiber sweep is augmented by a

similar effect due to the forward geometric sweep. When the geometric sweep

is zero, the aft fiber sweep "wash-in" effect still dominates and these wings

also diverge first.
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Similarly, aft geometric sweep (A positive) augments the "wash-out"

effects of forward fiber sweep (0 negative). All of the wings in this portion of

the trade space flutter first. In addition, the flutter speeds are robust to

small changes in either geometric or fiber sweep. When the geometric sweep

is zero, the forward fiber sweep "wash-out"effect dominates and these wings

also flutter first.

When the two sweep effects oppose each other, the nature of the first

instability and the speed at which it occurs vary for small changes in

geometric or fiber sweep. The "wash-in" due to forward geometric sweep (A

negative) counteracts the "wash-out" due to forward fiber sweep (0 negative)

and the stability boundary for these sweeps is composed of a flutter boundary

and a divergence boundary. The same is true when aft geometric sweep is

used with aft fiber sweep.

Based on these trends, a portion of the trade space may be chosen for

further examination. The wing is required to flutter before it diverges [PR4].

In addition, it is desirable to have a region in which the nature of the first

instability and its speed are robust to small changes in geometric and fiber

sweep. This reduces the trade space to non-forward geometric sweeps (A

positive or zero) and non-aft fiber sweeps (0 negative or zero), the only region

in which flutter is consistently the first instability and in which the flutter

speeds are robust to small variations in geometric or fiber sweep. The

numerical values of the flutter and divergence speeds and flutter frequencies

can be seen in Appendix C. Figure 5.3 shows a representative pole locus of

one design case in the remaining trade space. The case has a fiber sweep

angle of -15 degrees and a geometric sweep angle of 30 degrees and

demonstrates a classical first-second mode coalescence flutter. The poles on
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the real axis are the lag states and do not become complex until after flutter

has occurred.
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Figure 5.3 Pole locus for a ply fiber angle of -15 degrees
and a structural sweep angle of 30 degrees.
U = 0 to 50 m/s.

5.4 Application to Wing Model: Aeroelastic Behavior

Now that the aeroelastic model has been verified and a design

subspace identified, a more complete wing model will be analyzed. First a

model of the wing will be created which will include actuators, flutter stopper

mass, and other masses as appropriate. Following the model development,

the aeroelastic stability characteristics will be studied and the trends
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compared to those of the simpler rectangular plates for the reduced trade

space.

Figure 5.4 shows the simplified model developed of the built-up wing.

The structural box has a span of 48 in. and a chord of 12 in. The baseline

structural thickness ratio of 2% gives a box thickness of 0.24 in. The same

six-ply layups [02/0]s will be used for each facesheet for a total of 12 plies, but

the graphite epoxy used will be AS4/3501-6 (Appendix B). An aluminum

honeycomb serves as the core between the two facesheets and will be

modelled as an isotropic material with an elastic modulus two orders of

magnitude smaller than the longitudinal modulus of the graphite epoxy.

ip a~S 3.0

Sa All dimensions are
in inches

6.0 ,* .0- Jf

048.0

.0 12 0

Figure 5.4 Schematic of wing model used in analysis
dF .0 do 0

Figure~ ~l %. %ceai of wn moesdinaayi
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In addition to the changes in the structural core, there are several new

features. A fiberglass aerodynamic shell has been modelled. It covers a span

of 48 in. and a chord of 15.6 in. The symmetric airfoil chosen is a NACA 64-

012. In this analysis the skin will be modelled with mass only.

Aerodynamically, the wing will be considered to be a flat plate. A 20 mil

layer of piezoelectrics has also been added to the outside of each facesheet.

The piezoelectrics cover the entire chord of the structural box, but only 60 %

of the structural box span, or 28.8 in, and have been modelled with stiffness

and mass. An extra mass section has been added to represent the additional

mass of flap bearings and supports. This section has been indicated in Figure

5.5 and has been modelled with an evenly distributed weight of 0.5 lbs. A tip

mass has been added to provide for the tip mass flutter stopper to be

discussed in Chapter 6. It has the same aerodynamic chord as the wing and

adds an extra 3 in. to the span. For the current purposes it will be modelled

as an evenly distributed 2.2 lb weight. The properties for materials used in

the model are listed in Appendix C.

The natural modes are calculated using the Rayleigh-Ritz procedure of

Section 5.2 and are listed in Table 5.2.

Table 5.2 Natural frequencies for first three modes of
wing model. (Hz)

Mode [0/0/90]s [15/15/0]s [30/30/0]s [45/45/0]s

1B 3.3 3.5 3.2 3.0

2B 18.8 20.3 16.9 16.5

1T 14.4 15.9 19.8 19.2

Because of the mass nonuniformity and fiber sweep, all of the modes are

linear combinations of the assumed Ritz shapes. In particular, the second
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and third modes for all of the ply fiber angles except for zero degrees are

highly coupled versions of first torsion and second bending.

Incorporating the aerodynamics, aeroelastic trends similar to those for

the simpler rectangular plates appear and are shown in Figure 5.5. Ignoring

the numerical values for flutter speed, this plot replicates the left half of

Figure 5.2 for aft and zero geometric sweep angles. As was found for the

simple rectangular plates, the nature of the first instability and its speed are

robust to changes in geometric and fiber sweep for this subspace; therefore, a

geometric sweep angle and a fiber sweep angle may be chosen within this

subspace to satisfy other requirements.

-A - Lambda=0,Fluuer

- a- Lambda= 15, Fluter

---- Lambda = 30, Fluter

200

175

150

125

100

0

-45 -30 -15 0

Ply Fiber Angle (dg)

Figure 5.5 Flutter and divergence speeds for the ply fiber
angle vs. structural sweep angle trade. Wing
model.

A further requirement is that the flutter mechanism will be a first

mode/second mode coalescence [PR5]. The root loci can be examined to verify

this requirement. For a given fiber sweep angle, the root loci and, therefore,
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the flutter mechanism do not change appreciably for a change in geometric

sweep angle within the design subspace. Therefore, only the root loci for a

geometric sweep angle of 30 degrees will be shown. Figure 5.6 shows that the

flutter mechanism for a fiber sweep angle of -45 degrees is a complex three

mode mechanism. Figure 5.7 shows that the flutter mechanism for a fiber

sweep angle of -15 degrees is a coalescence of the first two modes. This

pattern is representative of fiber sweep angles of 0 and -30 degrees. Based on

these root loci, the -45 degree fiber sweep angle will be eliminated from

further consideration and the remaining trade space contains fiber sweep

angles of 0, -15, and -30 degrees and geometric sweep angles of 0, 15, and 30

degrees. Since all of these cases have shown desirable stability

characteristics, their effect on actuator authority may be considered before

making the final choice.
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Figure 5.6 Pole locus for a ply fiber angle of -45 degrees
and a structural sweep angle of 30 degrees.
U = 0 to 100 m/s.
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Figure 5.7 Pole locus for a ply fiber angle of -15 degrees
and structural sweep angle of 30 degrees.
U = 0 to 100 m/s.

5.5 Application to Wing Model: Actuation Issues

In this section, the effect of the ply fiber angle and structural sweep

angle on the actuation authority of the wing model will be studied. One of

the primary reasons for designing the composite laminate is to create bend-

twist coupling to enhance the piezoelectric authority on the torsional mode.

This must be done without reducing the authority of the trailing edge flap. In

order to prevent this, the laminate must be designed such that the torsional

node line does not cross the trailing edge near the flap, thereby reducing its

effectiveness.

In the analysis below, the trailing edge flap will be modelled and a

reference placement chosen. Then the piezoelectric actuation will be

modelled and a reference grouping or placement of actuator groups will be

established. Finally, some preliminary controllers will be designed using the
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Linear Quadratic Regulator method to examine the effect of fiber sweep angle

and geometric sweep angle on the actuation authority.

Trailing edge flap modelling and placement

To model the generalized forces due to the flap, its sectional

aerodynamic forces must be calculated. The influence of the flap will be

included in the aerodynamics, but the flap dynamics will not be considered as

an additional mode in the Rayleigh-Ritz analysis. To implement the flap

forces in the same manner as the aerodynamic forces in Section 5.2, the flap

forces must be placed into the form shown.

L = pU2b 2E, 2 + B1E5 + BC A+ O.15 jcosA
2 1 P + 0. 15  115)

M = -pU 2b2  + BF + BOF + cosA
2 [ 1+0.15 1 cos

Taking the original equations for lift and moment from Theodorsen [1935]

and extracting the contribution from a trailing edge flap, the following

expressions are obtained.

L = pb2 b(-UT3 -Tb#)+21rpUbC(k) {TIoUP +b-TI}

M = -pb 2[(T 4 +TIo)U2 + (T T c 4 1 T,)Ub - (T, + cT)b2] (5.16)

+pUb2 xC(k) -IToUP +b-Tj

Using the approximation of Theodorsen's function and the Laplace variable

from Section 5.2 , the lift and moment can be placed into the form of

Equations 5.15 with the coefficients B.
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B2E = - 2 T,

B~E = -2T 4 + 1. 1TI,

BOE = 4To
B3s = -1.08To +0. 135T(

B2, = 2 T, + 2 cT, (5.17)

B, = -2T, + 2T, + 2cT 4 - 0.45T n,

Bo = -2T4

B3, = -0.9To +0.0675Tlx

The distance from the midchord to the flap hinge line normalized by the

semichord is represented in Equations 5.17 as cf. The expressions for Ti's are

in Appendix A and are the same as for the typical section.

Now the generalized aerodynamic forces due to the flap may be

derived. The additional lift and moment due to the flap from Equations 5.15

are substituted into the generalized aerodynamic force equation (Equation

5.6).

Sby., B E 2 + o + 3  dP
=Qi =pU2 I1 - +0.15 cosA (5.18)

2 1+fb2 F OF F p2F

In contrast to aerodynamic forces of Section 5.2, the integration limits are

established by the spanwise location and size of the flap(see Figure 5.8).
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Figure 5.8 Inclusion of flap in wing model

For computational ease, the wing is divided into ten spanwise sections

as in Section 5.2 and concentrated forces are calculated for each section. A

vector multiplication weights each force by the modal displacement at the

center of the section. The summation of the weighted forces is the total

modal force. The modal force is returned to the time domain for incorporation

into the equations of motion.

1 2 b + b

: 2 U 2A p + Aa U P + AnXP + A7pF

, +0. 15 b y =  (5.19)

F,

where A 4 =Lr y,, a a . , F
F,2,

F2F10

F2, = B2,Axbf. (cos A)

F2 , = B2 Axb2 f, (cos A)2

{1 flap on nth section
f" = no flap on nth section

similar for Al, Ao , and Aj
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There are two geometric sweep corrections (cos A) incorporated into the forces

in Equation 5.19. One is a corrrection on the lift curve slope and the other is

a correction on the flap angle, j3 (P = p cos A, where P is the flap angle

referenced to the wing fixed axes). It is also important to note that b is the

semichord referenced to the wind axes and Ax is the length of each spanwise

strip referenced to the wind axes and that these two lengths change with

change in geometric sweep.

The mass normalized aerodynamic forces are then incorporated into

the equations of motion.

M'*(t)+ B'(t)+ KlK(t)+ G*(t) +

A20* (t)+A * (t)+A 0 * f(t)+A 3 * y(t) = 0

U (5.20)
(t)+ 0. 15 (t)= (t) (5.20)

b

y(t)+0.15 y(t) = (t)

where A2= 0 pU2( ETA2F

A 1= -pU2 bETA

A-. =1pU2E'A

A, * = -pU2ETAB

The flap forces are now expressed as forces on the natural, uncoupled modes

in the structural axes. There is one additional lag state for the flap

dynamics.

Since the aerodynamic forces are dependent on the trailing edge flap

velocity and acceleration, in addition to its position, there must be a model of

the flap dynamics. For simplicity, it will be assumed that the trailing edge

flap has perfect oscillatory dynamics (no damping or phase shift) with
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p/ = ,oe'. Using this approximation, the flap forces can be expressed solely

as a function of the commanded flap angle. In this manner, the overall

system no longer includes the dynamics of the flap and the flap forces may be

considered a non-homogeneous force. Now the flap dynamics and lag has

been incorporated into the state space input matrix and the total number of

states in the homogeneous problem remains at twelve.

i = -M' K* -M- 1B* -M'G* ! + BB

{U } = M[ =p JiB (5.21)
& 0 I -0.15 Ijb _

where B= -M 1 -[_2A * + iA O + A* + iO A 3 *where 7 1 O im+0. 15b f

A reference frequency, co, and velocity, U, must be chosen for the flap input

matrix. The dominant term is that due to the static deflection of the flap,
Ao, *

The reference flap design will cover 20% of the span and 20% of the

chord as shown in figure 5.9. The reference location of the flap will be from

60% to 80% of the span. The location was chosen to place the flap in an area

of large modal displacement, but far enough from the tip so that aerodynamic

effectiveness is not lost.

Piezoelectric actuation modelling and grouping

The piezoelectric actuators are modelled as layers of the laminated

plate. The forcing matrix is found by treating the piezoelectric induced strain

as thermal strain and determining the effect on the assumed shapes. The

forcing matrix must then be mass normalized to find the effect on the coupled

modes.
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To choose basic groupings and locations for the piezoelectric actuators,

the strain contours of the first two in vacuo natural modes will be examined.

Attention will be focused on curvature-induced strain and, therefore,

curvature contours will be examined in place of strain contours. Figure 5.9,

5.10, and 5.11 show the deflection and curvature contours for the wings with

fiber sweep angles of 0, -15, and -30 degrees, respectively. In each figure, the

top half of the page shows the first mode's deflection and curvature contours

and the bottom half shows the second mode's. There are four subplots

dedicated to each mode, the deflection contour and spanwise bending,

chordwise bending, and twist curvature contours. Each subplot represents

the wing, cantilevered on the left with the leading edge on the bottom. The

aspect ratio of each subplot is not equivalent to the actual wing aspect ratio.

The isotropic piezoelectrics can only exert extensional strain and not

shear strain. The top and bottom layers of piezoelectrics may act as a

bending pair, with the top compressing and the bottom extending or vice

versa. Therefore, the curvature contours on which the piezoelectrics can

operate are the spanwise and chordwise bending curvature contours.

Because the spanwise bending curvature is roughly two orders of magnitude

greater than the chordwise bending curvature, attention will be focused only

on the spanwise bending curvature contour.

Examining the spanwise bending curvature contours, it is apparent

that the inboard portion of the wing is high in strain. Piezoelectrics are

strain actuators and should logically be placed in areas of high strain for

maximum effectiveness. For these reasons, the piezoelectric actuators will

cover from the root to 60% of the span.
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Figure 5.9 Deflection and curvature contours for the two
primary modes of wing model with a [0/0/90]s
laminate.
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Deflection and curvature contours for the two
primary modes of wing model with a [-30/-
30/0]s laminate.
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For a fiber sweep angle of zero degrees (Figure 5.9), the only spanwise

bending curvature in the second mode is concentrated in the corners of the

root and are due to root warping. For fiber sweep angles of -15 and -30

degrees (Figures 5.10 and 5.11), there are higher levels of spanwise bending

curvature in the second mode due to the bend-twist coupling. This implies

that the piezoelectrics will be able to exert more effective control over the

second mode for these fiber sweep angles than for the zero degree fiber sweep

angle. Because of this increased authority over the second mode, attention

will be focused on the fiber sweep angles of -15 and -30 degrees.

For the present purposes, the piezoelectric coverage will be divided into

two areas of actuator effectiveness. In the typical section analyses of Chapter

2, it has been shown that at least two independent actuators are necessary to

provide effective aeroelastic control. For the fiber sweep angles of -15 and -30

degrees (Figures 5.10 and 5.11), there is a curvature nodeline in the spanwise

bending curvature of the second mode at roughly 30% of the span. This

indicates that dividing the piezoelectric coverage in half spanwise would

create two "actuators" that can control the first two modes independently:

acting together to actuate the first mode and opposing each other to actuate

the second. This defines the inboard piezoelectric bank to cover from the root

to 30% of the span and the outboard piezoelectric bank to cover from 30% to

60% of the span.

Full state feedback: Linear Quadratic Regulator designs

The final step of this trade study is to design a series of full state

feedback controllers. Controllers will be designed using each of the actuators,

the two piezoelectric actuation areas and the trailing edge flap, alone and all

three actuators together. First, the fiber sweep angle will be varied and then
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the geometric sweep angle will be varied. The performance of the different

actuators relative to one another will be evaluated, as well as the

performance of the three actuators together, and the trends across sweep

angles will be examined.

The LQR method described in the typical section analyses in Chapter 2

will be used to design the controllers. For all cases, the state penalty is on

the displacement states of the first two modes, which will be weighted

equally. All other states are weighted at zero. The controls are weighted

with representative maximum values: 200V for the piezoelectric banks and

+/- 1 degree for the trailing edge flap. The 200V is approximately the coercive

field of the piezoelectric.

Since the aeroelastic plant changes with change in airspeed, a

reference velocity is chosen at which to evaluate the plant. The reference

velocity for each of the cases is the flutter velocity determined for that

particular case in Section 5.4. It is the wing at this velocity which is used in

the controller designs. The flap forcing matrix, derived earlier in this section,

for each case uses the flutter speed and frequency for that case as its

reference speed and frequency.

As in the typical section analyses of Chapter 2, cost curves will be used

to compare the controllers. The covariance of the weighted states comprises

the state cost and the covariance of the weighted control inputs comprises the

control cost. To compute the covariance, a disturbance is created by

implementing an angle of attack variation using steady aerodynamics. The

disturbance intensity is 0.1 degrees RMS.

Using a structural sweep angle of 30 degrees, the effect of fiber sweep

angle on actuator authority can be seen in Figure 5.12. For each fiber sweep

angle, it can be seen that the inboard piezoelectric actuation area has the best
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performance. For the maximum control values assumed in this problem, the

trailing edge flap and the outboard piezoelectric actuation area have nearly

equivalent performance and the inboard piezoelectric actuation area performs

significantly better than both the trailing edge flap and the outboard

piezoelectric actuation area.

The relative performance of the piezoelectric actuators as compared to

the trailing edge flap in Figure 5.12 matches the relative performance of the

actuators in the typical section analysis in Figure 2.12. However, there are

some significant differences. A comparison of the typical section with the

current analysis shows that the trailing edge flap of the typical section was a

10 % flap with a maximum deflection of 5 degrees, whereas the trailing edge

flap in the current analysis is a 20 % flap with a maximum deflection of 1

degree. A maximum deflection of 1 degree for the flap is more realistic for
cob

aeroelastic applications. In addition, the reduced frequency (-) is decreased
U

from 0.5 in the typical section to approximately 0.2 in the current design.

The trailing edge flap demonstrates better performance for a lower reduced

frequency, due to the effect of the aerodynamic lags. Finally, the piezoelectric

actuation areas defined in the current analysis do not precisely parallel the

piezoelectric force and moment of the typical section. The typical section

piezoelectric force and moment assume piezoelectric coverage from the root to

the 75 % span as compared to the 30 % span coverage of each piezoelectric

actuation area in the current design. A more precise parallel would sum the

effects of the two piezoelectric actuation areas for the piezoelectric "force," for

maximum authority on the first mode, and difference the effects of the two

actuation areas for the piezoelectric "moment," for maximum authority on the

second mode.
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Another discrepancy with the typical section work is the performance

of the controller using all three actuators. In the typical section, the

controller using all three actuators performed significantly better than any of

the single actuator controller designs over all control cost regions (Figure

2.12). In Figure 5.12 it can be seen that the controller using all three

actuators performs only slightly better than the best single actuator

controller design in the low control cost region. This can be explained by
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examining the different flutter mechanisms. The typical section has a perfect

two mode coalescence (Figures 2.3 and 2.4) in contrast to the coalescence of

the current design (Figure 5.7). In the current design, the flutter mechanism

is dominated by the first mode. For the typical section, it was important to be

able to exert effective control over both of the modes because of the classic

coalescence. For the current design, it is more important to be able to exert

effective control over the first mode. The single actuators are capable of

exerting effective control over the first mode alone and, therefore, evidence a

better performance relative to the combination of all three actuators in the

current design as compared to the typical section.

Although the single actuators perform well in the low control cost

region, each of the single actuator curves has a horizontal asymptote in the

high control cost region. In contrast, the combination of three actuators has

no such limit. This inherent performance limit of a single actuator has been

seen in the typical section analyses (Chapter 2) and demonstrates that

effective high authority aeroelastic control requires at least two actuators.

The cost curve comparison reiterates the benefit of the bend-twist

coupling introduced by the fiber sweep angles of -15 and -30 degrees. The

single actuator curves of the zero degree fiber sweep angle show equivalent

performance to the single actuator curves of the -15 and -30 degree fiber

sweeps. However, the strain contours demonstrated that effective control of

the second mode requires the two piezoelectric actuation areas acting in

opposition. This indicates that the single actuator cases are only controlling

the first mode effectively. The benefit of bend-twist coupling is most clearly

seen in the curves of the three actuators working together. The three

actuator curve of the zero degree fiber sweep angle does not have the

performance limitation of the single actuator curves, but it does not improve
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the performance beyond this limit as well as the corresponding curve for fiber

sweep angles of -15 and -30 degrees.

These same results may also be seen in comparison of the structural

sweep angles at a ply fiber angle of -15 degrees (see Figure 5.13). The single

actuator performance limitations are shown with the same relative actuator

authorities. As before, when more than one actuator is used, the performance

becomes unlimited.
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10101
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Cost curves for the wing model with a [-15/-
15/01s laminate for varying geometric sweep
angles. All cases are analyzed at the
calculated flutter speed.
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5.6 Summary

The original trade space of fiber sweep angles of -45, -30, -15, 0, 15, 30,

and 45 degrees and geometric sweep angles of -30, -15, 0, 15, and 30 degrees

was reduced based on performance requirements and the analyses outlined in

this chapter. The wing model must flutter before it diverges [PR4]. To

satisfy this requirement, the trade space was reduced to fiber sweep angles of

0, -15, -30, and -45 degrees and geometric sweep angles of 0, 15, and 30

degrees based on the stability analyses of a simple rectangular plate.

Further stability analyses were completed on a built-up wing model. The

fiber sweep angle of -45 degrees was eliminated from further consideration

because it had a complex three mode flutter mechanism [PR51. Finally,

actuator analyses showed that a fiber sweep angle of 0 degrees, lacking bend-

twist coupling, does not provide a means for adequate control of the second

mode by piezoelectric actuators [PR14]. The remaining trade space includes

fiber sweep angles of-15 and -30 degrees and geometric sweep angles of 0, 15,

and 30 degrees.

The baseline fiber sweep angle and geometric sweep angle must now be

chosen from the reduced trade space. The physical model goals in Chapter 3

state that the wing model should be representative of aircraft in which

bending/torsion flutter is critical. Therefore, a baseline fiber sweep angle of

-15 degrees will be chosen since its second mode more closely resembles a

torsional mode than the second mode of the -30 degree fiber sweep angle.

Likewise, a baseline geometric sweep angle of 30 degrees will be chosen for

similarity based upon the survey of transport aircraft in Chapter 4. The

remaining trade studies involving the flutter stopper and the taper ratio will

be conducted in the following chapters using the analysis techniques

developed in this chapter.
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Summary of current reference and baseline
values for design parameters. Bold indicates
a baseline value.

Geometrical

Structural

Actuation

Span (half)

Aspect ratio (full span)

Geometric sweep angle

Airfoil shape

Aerodynamic thickness ratio

Aerodynamic taper ratio

Spar thickness ratio

Spar taper ratio

Laminate layup

Fiber sweep angle

Facesheet material

Core material

Flap chord ratio

Flap span ratio

Flap location

Piezoceramic area coverage

Piezoceramic thickness

Piezoceramic sectioning
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Table 5.3

48 in.

8

30 deg.

NACA 64-012

12 %

> 0.25

2%

> 0.25

[0 / 0 / 0]s

-15 deg.

AS4/3501-6

Aluminum honeycomb

20 %

20 %

60 % to 80 % of span

root to 60 % of span

0.020 in.

root to 30 % of span

30 % to 60 % of span
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Chapter 6: Design Trade 2: Tip Mass Flutter
Stopper

6.1 Introduction

As outlined earlier in the requirements in Chapter 3, the wing model

must have a mechanism which will aeroelastically stabilize the model after it

has begun to flutter. This chapter discusses the basic mechanism of a tip

mass flutter stopper and examines the relevant trade studies used to select

design parameters to meet the requirement. The goal of a tip mass flutter

stopper is to enable a change in properties of the wing model such that the

wing model with the stopper deployed will have a significantly higher flutter

speed than the wing model with the stopper undeployed. The flutter speed

when deployed dictates the highest speed at which flutter suppression may be

demonstrated, since the model will not be stabilizable at any higher speed.

Two principle mechanisms for this flutter stopper design will be

examined to understand their effects on the flutter speed. The first

mechanism is a change in the location of the center of gravity. Using a

simplified typical section, Bisplinghoff, Ashley, and Halfman derived an

expression for the flutter speed [Equation 9-22 in Bisplinghoff, et al. 1955]

(Equation 6.1). The denominator of the second fraction under the radical in

Equation 6.1 represents the distance of the center of gravity aft of the quarter

chord, or aerodynamic center. As the center of gravity is moved closer to the

quarter chord, the flutter speed increases, and as the center of gravity is

moved further aft, the flutter speed decreases. It is this quality that will be

exploited in the flutter stopper design.
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UF m R

b -c r pb [1+2(a+xa)

where m is the density ratio
xpb2

R. is the dimensionless radius of gyration

a is the distance of the elastic axis aft of the

midchord nondimensionalized by b
xa is the distance of the center of gravity aft of

the elastic axis nondimensionalized by b
Mw is the uncoupled natural torsional frequency

b is the semichord

(6.1)

The second principle flutter stopper mechanism to be studied is the

torsional inertia. A decrease in the torsional inertia should, in turn, increase

the torsional frequency and increase the frequency separation. The increase

in the frequency separation should delay coalescence and raise the flutter

speed. The torsional moment of inertia due to the flutter stopper may be

separated into two components.

I = IC..+ mr (6.2)

The first, distributed, component is the moment of inertia about the center of

gravity of the device. The second, parallel-axis, component is the moment of

inertia due to the displacement of the center of gravity from the reference

axis. A change in one or both of these terms can be exploited in the design of

a flutter stopper. Here the appropriate reference axis is the elastic axis of the

wing (see Equation 2.18 and Figure 2.15).

This chapter discusses the design trades studied to obtain a flutter

stopper design which will achieve the desired flutter speed margin of 1.3.

The initial design uses a distributed mass attached to the wing spar at two
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points, one a hinge and the other a retractable pin. When deployed, the pin

retracts and the mass will be free to rotate about the hinge point. This design

takes advantage of changes in the torsional inertia and a change in the center

of gravity location. First, the hinge location will be optimized to achieve the

highest flutter speed ratio. Using the optimal hinge location, the mass of the

flutter stopper will be varied to understand its effects and to choose an

appropriate mass. Finally, the length of the flutter stopper will be varied and

the effects of this parameter studied.

6.2 Variation in hinge position

Based upon the wing model described in the previous chapter (Section

5.4), the effects of the hinge location of the deployed flutter stopper on the

flutter speed are examined in this section. The trade study will consider the

baseline layup of [-15/-15/0]s and the baseline geometric sweep angle of 30

degrees. The model with the undeployed flutter stopper is exactly the wing

model described in chapter 5, a rectangular wing with an aerodynamic chord

of 15.6 in. and span of 48 in. and with an evenly distributed mass attached to

the tip with a 15.6 in. chord and 3 in. span (see Figure 5.5). The deployed

flutter stopper will be represented by the flutter stopper mass concentrated in

a 3 in. by 3 in. area centered on the actual hinge location (Figure 6.1). Five

different hinge locations are to be examined: the leading edge (y centroid of

-5.1 in.), the midchord (y centroid of 1.2 in.), the trailing edge (y centroid of

7.5 in.), and two intermediary positions with y centroids of -3.6 in. and -2.1 in.

The mass of the tip mass flutter stopper for the current trade is the reference

value of 2.2 lbs (1 kg).

Using the structural and aerodynamic analysis of Chapter 5 (Section

5.2), the flutter speed of the wing model with the flutter stopper undeployed
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and the flutter speeds of the deployed flutter stopper at the five different

hinge locations are found. Figure 6.2 shows the flutter speeds for the various

configurations and Figure 6.3 shows the flutter speed and dynamic pressure

ratios. Clearly, the leading edge hinge position provides the largest increase

in flutter speed. The change in flutter speed is remarkably linear with hinge

position.
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Figure 6.2 Fixed and deployed flutter speeds for hinge
position trade. Midpoint of deployed area
used as y axis coordinate of hinge. Mass is 2.2
lbs (1 kg). Undeployed length is 15.6 in.
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Figure 6.3 Deployed/undeployed flutter speed and
dynamic pressure ratios for hinge position
trade. Midpoint of deployed area used as y
axis location. Mass is 2.2 lbs (1 kg).
Undeployed length is 15.6 in.
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Comparing the flutter speeds of the various deployed positions changes

both the parallel-axis component of the torsional inertia and the location of

the wing center of gravity. The mass concentrated at the leading edge

provides the lowest torsional inertia being located the closest to the elastic

axis as defined in Chapter 2. It also moves the center of gravity of the wing

the furthest forward and, therefore, the closest to the quarter chord.

Lowering the torsional inertia should raise the torsional frequency. However,

Figure 6.4 demonstrates that the torsional (second mode) frequency is not

increased from the distributed flutter stopper mass to the concentrated mass

at the leading edge. This implies that the dominant effect is the change in

the wing center of gravity.
Undeployed Distributed Mass
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Figure 6.4 Pole loci for the undeployed flutter stopper
and the deployed flutter stopper at the leading
edge hinge position. (U = 0 to 100 m/s) Mass
is 2.2 lbs (1 kg) and undeployed length is 15.6
in.
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Comparing the flutter speeds of the distributed mass to the

concentrated mass at the midchord isolates the effect of changing the

torsional inertia. Reducing the distribution of mass reduces the torsional

inertia and, therefore, increases the flutter speed (Figure 6.2). However, the

increase in flutter speed due to this change in torsional inertia is fairly small,

specifically when compared to the effect of changing the center of gravity

location. In fact, moving the concentrated mass slightly aft of the midchord

achieves the same effect as the change in distribution, as indicated by the

intersection of the two lines in Figure 6.2. Thus the important parameter in

raising the flutter speed is the change in the location of the center of gravity

of the wing and the forward most position of the concentrated mass is

optimal. This is chosen as the baseline hinge position.

6.3 Variation in mass

Now that the hinge position has been optimized, the effects of

increasing the mass will be studied. The models of the undeployed stopper

mechanism will use the distributed mass model and the models of the

deployed stopper mechanism will use a mass concentrated in a 3 in. by 3 in.

area at the leading edge. The mass will be increased from 2.2 lbs (1 kg) to 5.5

lbs (2.5 kg) in increments of 0.55 lbs (0.25 kg). As before, the baseline layup

and geometric sweep angle will be used.

The same analysis techniques will be used to determined the flutter

speeds. For this trade study, the undeployed models' flutter speeds must be

recalculated as the mass has changed from the reference model studied in

Chapter 5. The flutter speeds may be seen in Figure 6.5 and the speed and

dynamic pressure ratios may be seen in Figure 6.6.
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Figure 6.5 Undeployed and deployed flutter speeds for
mass trade. Leading edge hinge position used
for deployed stopper. Undeployed length is
15.6 in.
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Figure 6.6 Deployed/undeployed flutter speed and
dynamic pressure ratios for mass trade.
Leading edge hinge position used for deployed
stopper. Undeployed length is 15.6 in.
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The increase in tip mass amplifies the tip mass' effect on the location of

the center of gravity. This is due to the fact that the mass of the flutter

stopper relative to the mass of the wing is larger and the movement of the

center of gravity of the flutter stopper will, therefore, have more effect on the

center of gravity of the wing as a whole. The increase in mass affects both

the undeployed and deployed flutter speeds.

The end result is that the flutter speed ratio increases with increasing

tip mass. However, this is due not only to an increase in the flutter speed of

the deployed model, but also to a decrease in the flutter speed of the

undeployed model. It is generally undesirable to lower the nominal flutter

speed, or the undeployed flutter speed and the tip mass should not be

increased indiscriminately. Therefore, to achieve the goal flutter speed ratio

of 1.3 without adding large amounts of mass, the baseline mass will be 3.3 lbs

(1.5 kg).

6.4 Variation in length

As a final trade, a change in the length of the flutter stopper will be

examined. Since the wing is to resemble a transport type wing, which

sometimes have extensions behind their tips but rarely in front, the length

extension will only be extended behind the trailing edge. The reference

length is 15.6 in., the aerodynamic chord length of the wing. The range of

lengths to be studied is 15.6 in. to 27.6 in. in increments of 3 in. The baseline

layup and baseline geometric sweep angle are used and the mass of the

flutter stopper is kept constant at the reference 2.2 lbs (1 kg). The deployed

state is a mass concentrated in a 3 in. by 3 in. area centered on the baseline

leading edge hinge position. Figures 6.7 and 6.8 show the flutter speeds and

ratios achieved by the variation in length.
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Figure 6.7 Undeployed and deployed flutter speeds for
length trade. Leading edge hinge position
used for deployed stopper. Mass is 2.2 Ibs (1
kg).
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Figure 6.8 Deployed/undeployed flutter speed and
dynamic pressure ratios for length trade.
Leading edge hinge position used for deployed
stopper. Mass is 2.2 lbs (1 kg).
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The increase in the flutter speed ratio is solely due to the decrease in

flutter speed with the stopper undeployed. The flutter speed of the deployed

state does not change, since the change in length only affects the wing

properties when the stopper is fixed to the spar. Increasing the length moves

the center of gravity of the flutter stopper, and, therefore, the wing center of

gravity, further aft of the quarter chord. This decreases the flutter speed of

the undeployed model. Since the deployed model's flutter speed is constant,

the speed ratio increases. Since it is much less desirable to achieve the

desired speed ratio by decreasing the flutter speed of the nominal plant and

the extension behind the trailing edge is somewhat unrealistic, no extension

will be baselined.

6.5 Final design

Based on the trade studies on hinge position, mass, and length, the

flutter stopper design has been baselined. The hinge position chosen is at the

leading edge since it provides the largest change in flutter speed. The mass is

set at 3.3 lbs (1.5 kg) to achieve a flutter speed ratio of 1.3. The length will

remain as the chordlength to maintain realism.

Having examined the trades, an alternative flutter stopper mechanism

is proposed. It has been observed that the movement of the center of gravity

dominates the change in flutter speed. A less complicated design uses a

movable mass rather than a hinged mass [Hwang, et al. 19801. In this

manner, the mechanism may remain fixed to the wing even when deployed.

This eliminates concerns about the dynamics of the hinged mass after

deployment. The same flutter speed ratio as the current design may be

obtained by simply making the initial position of the mass slightly aft of the

midchord and the final position the leading edge. The baseline mass will be
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3.3 lbs (1.5 kg). The aeroelastic influence of the movable mass is the same as

the hinged design. The dynamics of the movable mass are more fully

understood and, in fact, better represented by the models made in this

section. It is therefore recommended as the baseline design.
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Chapter 7: Design Trade 3: Taper Ratio

7.1 Introduction

The final trade that will be examined in this design process is a taper

ratio trade. Typical transport wings have tip chords which are considerably

smaller than the root chords. The survey of Chapter 4 indicated typical taper

ratios range from 0.30 to 0.16. The taper ratios examined in this chapter will

range from 1 to 0.5. These taper ratios are intended to resemble a taper ratio

of a transport wing if the trailing edge angle in the outer wing panel is

continued to the root and exclude the extra wing area often included at the

trailing edge/fuselage junction area.

To choose a nominal taper ratio for the wing design, the taper ratios

and the changes they induce will be studied. The preliminary step defines

the models and the changes that are required in the aerodynamic analysis.

Then, using the modified models, the flutter speeds and frequencies will be

calculated. Finally, it will be seen how the taper ratio affects the authority of

the actuators.

7.2 Structural and aerodynamic models

The only change in the structural model from the nominal wing is the

taper ratio. The wing will have the baseline layup of [-15/-15/0]s and the

baseline geometric sweep angle of 30 degrees. The tip mass will remain as it

was modelled in the reference model of Chapter 5, a 2.2 lbs (1 kg) distributed

weight. The taper ratio will be introduced by holding the tip chord of the spar

constant and altering the root chord accordingly. The aspect ratio will be
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reduced by a small amount because of the introduction of taper in this

manner. Figure 7.1 shows a typical taper ratio model with a taper ratio 0.67.

Taper ratios of 0.5, 0.67, and 0.75 will be studied.

zX I

3.0
-5.3

48.0

1

U

Figure 7.1 Schematic of wing model with taper. Taper
ratio of 0.67 shown.

The structural model for the Rayleigh-Ritz method includes the extra

skin and spar introduced by the taper. Due to limitations in the integration

code used, the taper is actually approximated by four 12 in. spanwise steps

for the leading edge and four 12 in. spanwise steps for the trailing edge. The

step height is roughly determined by the height of the tapered edge at the

midpoint of the step. A total of eight steps model the additional skin mass

and eight steps model the additional spar area. The additional spar area has

144



mass and stiffness properties. No piezoelectrics are modelled on the

additional spar area.

The aerodynamic model must also account for the tapered chord. A

reference chord is chosen at the 3/4 span point. The wing is again divided

into ten spanwise strips for the two dimensional strip theory analysis. The

generalized aerodynamic forces on each strip use the semichord of the

midpoint of that strip. The equations with the taper included may be seen in

Appendix D.

7.3 Flutter analysis

Before performing the stability analysis, the natural modes will be

determined. The frequencies of the first three modes are listed in Table 7.1.

Table 7.1 Natural frequencies for first three modes of
tapered and nominal wing models. (Hz)

Taper Ratio

Mode 0.5 0.67 0.75 1.0

1B 4.1 3.8 3.7 3.5

2B 21.1 20.6 20.6 20.3

1T 15.5 15.7 15.7 15.9

It is apparent that the change in frequencies is not large when the taper ratio

is changed. Likewise, the order in which the modes appear is maintained.

The larger the taper ratio, the closer the behavior is to the non-tapered

model.

Incorporating the aerodynamics and analyzing the stability of the

aeroelastic system, it becomes apparent that the incorporation of taper ratio
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affects the aeroelastic behavior very little. The flutter speeds for the different

taper ratios are listed in Table 7.2.

Table 7.2 Flutter speeds and frequencies for tapered and
nominal wing models.

Taper Ratio

Flutter 0.5 0.67 0.75 1.0

Speed (m/s) 55.1 54.1 54.0 54.1

Frequency (Hz) 8.3 7.8 7.7 7.5

The overall change in flutter speed is insignificant. Similarly, the pole loci for

the tapered wing models closely resemble the non-tapered model (see Figure

5.8) and a representative pole loci may be seen in Figure 7.2.

200

150

100

50-

0

-50

-150 -100 -50 0

Real Axis

50 100 150

Figure 7.2 Pole locus for wing model with a taper ratio of
0.67. Fiber sweep angle is -15 degrees,
geometric sweep angle is 30 degrees. U = 0 to
100 m/s
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Part of this robustness to change in taper ratio is due to the manner in

which the taper was introduced. By maintaining the tip dimensions, the

effect of the change in taper has been limited. Clearly, the tip and its

properties are dominant in determining the dynamic and aeroelastic behavior

of the wing. Adding material near the root has little effect on the behavior

and the desired dynamics have been maintained. For a representative taper

ratio with a realistic transport wing profile, a taper ratio of 0.67 is chosen as

a reference taper ratio.

7.4 Effect on actuation

As a final step in ensuring that the addition of taper has not altered

the wing design appreciably, the effect on the actuator authority will be

observed for the reference taper ratio of 0.67. First, the curvature contours

will be reproduced to verify that the definition of the primary banks of

piezoelectrics is still appropriate. Then controllers will be designed using the

Linear Quadratic Regulator method and the cost curves will be examined.

Like the non-tapered wing model in Chapter 5, the curvature contours

of the first two modes of the tapered wing model are examined to determine a

rough grouping of piezoelectric actuators. As discussed in Section 5.5, the

goal of the grouping is to enable independent control of the first two modes.

Since the piezoelectrics being used are in-plane isotropic, twist curvature can

not be induced. As a result, the piezoelectrics only actuate through the

bending curvature. As the curvature contours in Figure 7.3 show, only the

spanwise bending curvature is significant. The reference piezoelectric

coverage is from the root to 60 % of the span and the actuation areas are

defined from the root to 30 % of the span and 30 % to 60 % of the span. The

division of the piezoelectric actuation areas is roughly defined by the position
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of the curvature nodeline in the second mode. Examining Figure 7.3, these

groupings will still provide the independent control needed: acting together

to actuate the first mode and acting oppositely to actuate the second mode.

The final step is to design the LQR controllers and check the cost

curves for trends similar to those of the non-tapered wing model. The

controllers are designed using the same weightings as before and under the

same disturbance. The cost curves in Figure 7.4 closely resemble those for

the non-tapered wing model (upper right corner of Figure 5.12). The inboard

piezoelectric actuation area and the flap are well matched in authority as for

the non-tapered wing model. The inboard piezoelectric bank proves again to

be the most effective but is still fairly well matched by the flap and the

outboard piezoelectric bank.

148



Mode 1 Frequency = 3.8 Hz

10 20 30

Chordwise Bending Curvature

10 20 30

10 20 30

10 20 30

Mode 2 Frequency = 15.6 Hz

Deflection Contour

0-

10 20 30

10 20 30

8

6

1.5 4

2

10 20 30

10 20 30

Figure 7.3 Curvature contours for wing model with
taper ratio of 0.67. Fiber sweep angle is
degrees.
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10-1- x *
10 0

x 0
I * 0

I * 0
X * 0

10-2 x * o

1x o 0

. 10-3 -x ,
0 0x 000 0

ooo Outboard piezoelectric banko oo o

*** Trailing edge fap

Figure 7.4 Cost curv10-4e for wing model with a taper ratio of100.67. Fiber sweep angle is -15 degrees,10-6-10-2 10-1 10o  101 10 2  10 3Control Cost

xxx Inboard piezoelectric bank
ooo Outboard piezoelectric bank
* * * Trailing edge flap

Figure 7.4 Cost curve for wing model with a taper ratio of
0.67. Fiber sweep angle is -15 degrees,
geometric sweep angle is 30 degrees.
Evaluated at the calculated flutter speed and
frequency.

Throughout all of the analyses, the tapered wing models have behaved

in a very similar manner to the non-tapered models. The natural frequencies

and flutter speeds are barely affected. Likewise, the control analysis shows

that the actuators have the same performance trends. Much of this

similarity is due to the manner in which the taper has been introduced: by

keeping the tip chord constant. Due to these results and similarity to a

transport wing, a taper ratio of 0.67 will be included in the final design.
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Conclusion

Chapter 8

8.1 Summary of final design

The main purpose of this study has been to understand the important

issues in strain actuated aeroelastic control. In the process, a wing model has

been designed for aeroelastic control wind tunnel experiments. This wing

model employs both strain actuators and a conventional flap actuator. In

Chapter 3, the functional requirements and design parameters for such a

model have been outlined. Through a series of non-parametric and

parametric studies discussed in Chapters 4 through 7, baseline design

parameters have been chosen for the wing model and are summarized in

Table 8.1.

Table 8.1 Baseline design parameters

Span (half)

Aspect ratio (full)

Geometric sweep angle

Airfoil shape

Aerodynamic thickness ratio

Aerodynamic taper ratio

Spar thickness ratio

51 in.

8

30 deg.

NACA 64-012

12 %

0.67

2%
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Spar taper ratio

Laminate layup

Fiber sweep angle

Facesheet material

Core material

Flap chord ratio

Flap span ratio

Flap location

Piezoceramic area coverage

Piezoceramic thickness

Piezoceramic sectioning

0.67

[/ / 0]s

-15 deg.

AS4/3501-6

Aluminum honeycomb

20 %

20 %

60 % to 80 % of span

root to 60 % of span

0.020 in. top and bottom

root to 30 % of span

30 % to 60 % of span

The half span refers to the unswept length of the structural box and includes

the 3 in. span of the flutter stopper.

In addition to the above design parameters, a baseline design for a tip

mass flutter stopper has been determined. The basic flutter stopper

mechanism is a moving mass of 3.3 lbs fixed to the wing tip. Initially, the

mass will be held slightly aft of the midchord. When flutter is encountered,

the mass will be quickly moved to a position at the leading edge of the wing.

The operating design principle uses a change in the location of the wing

center of gravity to increase the flutter speed.

These studies and their results comprise the preliminary design phase

of the strain actuation demonstration experiments. Understandably, in the

detailed design process, these values may be slightly altered. However, to

maintain design integrity and continue to satisfy the functional

requirements, the design parameters shall only be incrementally changed.
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8.2 Summary of Scientific Issues

Throughout the course of this design process, several important

principles have been determined for strain actuated aeroelastic control. The

majority of these conclusions may be grouped into the following categories:

design of the passive structure, implementation of piezoelectric actuators,

and design of active controllers. The remaining few are related to the flutter

stopper mechanism and the addition of taper to the wing design.

The design of the passive structure with fiber and geometric sweep was

addressed in Chapters 2 and 5. There are two significant, related

conclusions. The first is that a model with a combination of aft geometric

sweep and forward fiber sweep can be guaranteed to flutter and that the

flutter speed will be robust to small changes in geometric or fiber sweep. The

second is that a model with a combination of forward geometric sweep and aft

fiber sweep can be guaranteed to diverge and that the divergence speed will

be robust to small changes in geometric or fiber sweep. In addition, it is

important to note the remarkable agreement of the simplified two mode

typical section analysis with the more complicated five mode analysis and the

experimental results in Landsberger and Dugundji [1985].

The next important topic is the implementation of the piezoelectric

actuators which was addressed in Chapters 4 and 5. First, it has been shown

that incorporating bend-twist coupling enables isotropic piezoelectric

actuators to exert independent control on the torsional mode as well as the

bending mode (Chapter 5). Second, the scaling study in Chapter 4

demonstrated that there is an optimal piezoelectric thickness for torsional

authority. In contrast to the bending authority, where increased piezoelectric

thickness always produced increased bending authority, the torsional

authority reached a maximum at a piezoelectric thickness of 0.020 in.
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Further increasing the piezoelectric thickness reduced the bend-twist

coupling necessary for torsional control because the isotropy of the thicker

piezoelectrics began to dominate the anisotropy of the laminate.

The third principle area of study was the design of aeroelastic

controllers. Both the typical section analyses of Chapter 2 and the Rayleigh-

Ritz analyses of Chapter 5 demonstrated several important guiding

principles. Controllers using a single actuator and full state feedback were

shown to have a fundamental performance limitation for high control costs.

Aeroelasticity involves the interaction of two modes and a single actuator is

not capable of effectively controlling both modes. Furthermore, when the

system is allowed only one measurement, the performance limitation is

increased. The use of multiple actuators in combination removed the

performance limitation, as both modes could be independently controlled. It

should be noted that, through typical section parameter variations, these

results were proven to be robust to changes in the sectional properties, given

that the center of gravity remains aft of the elastic axis and the elastic axis

remains aft of the center of pressure.

An interesting contrast between the typical section analyses and the

Rayleigh-Ritz analyses was the relative performance of the multiple actuator

controllers and the single actuator controllers. The typical section's flutter

mechanism was a perfect two mode coalescence. Therefore, the multiple

actuator controllers performed better in both the low control cost and high

control cost regions, because the single actuator controllers could not

effectively control both modes, as necessary. In comparison, the wing model's

flutter mechanism was dominated by the first, predominantly bending mode.

Because the flutter mechanism was dominated by a single mode, the single

actuators, which were able to effectively control that mode, performed as well
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as the actuator combinations in the low control cost region, when control

effort is "expensive." In the high control cost region, the inability of the single

actuator controllers to effectively control the second mode still limits their

performance.

Finally, the last two trade studies on the tip mass flutter stopper and

the addition of taper to the wing provided two main conclusions. The flutter

stopper trades indicated that the dominant effect on the flutter speed is the

change in the wing center of gravity. The change in torsional inertia

provided only a secondary increase in the flutter speed. The taper ratio study

demonstrated that when the tip dimensions are held constant, the dynamics

will not alter appreciably.

The primary purpose of this study was to examine the use of strain

actuators in aeroelastic control. While this study, as well as previous work,

establishes a solid foundation for strain actuated aeroelastic control, much

work remains to be done. The strain actuated aeroelastic control technology

will benefit greatly from material advances and enhanced strain capability.

Along with the material advances, the use of current anisotropic strain

actuators and the design of new anisotropic strain actuators to enhance

torsional authority should be examined. Finally, before this technology can

enter practical usage, the current demonstration phase must be brought to

fruition and the technology must be further verified in a realistic monocoque

wing structure.
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Appendix A

Parameters for Nominal Typical Section

Section Geometry a = -0.2 Aerodynamic Coefficients CL. = 21r
Xa =0.2 CL = 2.487

R2 =0.25 CL9 = -0.087
p = 20 20 C, = 1.885
h = 0.2

c =0.8 Cm = -0.3339c. = 0.8 8
c, =0.8 CM = -0. 146

Airfoil Parameters = 0.01
2b
L
- =3.92
b

State and Control Weighting Matrices
1 1

Q[ 0r?1 (0.406 )2

(0.282)2

0 0 0
(0.0429)2

Rhh 0 0 0 1

R 0 Ra 0 00 (0.0215)2  0
R= 0

0 0 0 R (0.0873)2
1

(0.0436)2
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Full Equations of Motion with Unsteady Aerodynamics

Si+ rK = Fu + a

100 0
010 0
001 0

00 0 + ULC
R U

Ra Ua

xa

0
0
0qCL

0
0

0

qCLO

1-C,, -qCM,

0 4900

0 0
0 0
0 0

0

0
0

+ 2C
Ra U
1- i-C,

0
0
0
o

-1

0
0

-9C,
Ua

-1
0
0

0
0
0

0

0

4900

0

0

0

0

0

0
-C-s-C

U

- - C
Ua

1
0

0
0

0 0
-1 0
0 -1

q C , - q , CL

0 98.994

0 0
-1 0
0 -1

0
0
0

-qCL.

D= c.

0
0
0

0

0

0

0

Ua CL
qC,

Ua CM
0
1
0
0

0

0

0

Ua
qC

Ua C
0
0

1

0

0

0
0qcO

0 -qCm

0 0
0.1902Ua 0

0 0.1902Ua

0 0

0
0
0

-CL
Ua

q CMUa

0

00

0
00

-qCM
0

0

0.1902U.

Uh

U = Ua

U,
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CL

CLa

CL,

CL

CL
CL,

CL

CL.

CL

CLi

CL,

CL

C A

= 7r

= -a = 0.6283

= -Ti = 0. 0132

=2,(

= l+2ri-a>=

= -T 4 + T1, = 0.4

= 2To = 2.487

= 2r (-0. 4544) =

= -0.4544

= T1,(-0.4544) =

= 2 r(-o. 4544) =

= 2 T1 (-0.4544)

Expressions
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Unsteady Aerodynamic Coefficients
CM, = ar = -0.6283

CM, = -(-a 2 ) = -0.2670

CM, = T 7 +(c-a)TI = -0.0087

Cm, = 2(a + ) = 1.8850

7.5398 CM, = -R(-a)+2;(a+)(-a) = -0.8796

74 = -T, + T +(c-a)T4 - T, +(a + )T,, = -0.1583

CM. = 2r(a +) = 1.8850

C, = -T - To + 2To(a +) = -0.3339

-2.8551 CM, = 2 r(a + -)(-0.4544) = -0.8565

Cm, = 2 ir(a + )(! - a)(-0.4544) = -0.5996

-0.1517 Cm = (a+ )T,,(-0.4544)= -0.0455

-2.8551 C. = 2 7(a + -)(-0. 4544) = -0. 8565

= -11301 CM = 2Txo(a +l)(-0.4544)= -0.3390

T, = - 1- c(2 + c2+ cacosc

T4 = -a cos c + cl /1-

T7 = -(+ c2 )acosc+ c/1-7 (7+2c2)

Ts = - 7/1-i(2c2 +1)+cacosc

To = 1-c 2 +acosc

Til = (a cosc)(1- 2c)+ /1- c2 (2-c)

S= are obtained 
from Theodorsen 

and Garrickfor T's are obtained from Theodorsen and Garrick
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Appendix B

Graphite/Epoxy AS1/3501-6

Standard Values "Flexural" Values

(N/m2) (lb/in 2) (N/m 2) (lb/in 2)

130 x 109  18.85 x 106 98 x 109 14.21 x 106

10.5 x 109  1.52 x 106 7.9 x 109  1.15 x 106

0.28 0.28 0.28 0.28

6.0 x 109 0.87 x 106 5.6 x 109 0.81 x 106

Ply thickness

Density (pg)

Property

EL

ET

VLT

GLT

(tp) 0.134 x 10-3 m (5.28 x 10-3 in.)

1520 kg/m3 (1.71 x 10-3 slug/in 3)

Graphite/Epoxy AS4/3501-6

Standard Values

(N/m2)

142 x 109

9.8 x 109

0.3

6.0 x 109

(Ib/in2 )

20.59 x 106

1.42 x 106

0.3

0.87 x 106

Ply thickness (tp) 0.134 x 10 -3 m (5.28 x 10 -3 in.)

Density (pg) 1530 kg/m3 (1.72 x 10-3 slug/in 3)
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Appendix C

Rayleigh-Ritz Assumed Modes
Uw(Yy,t) =

W,(5)
cosh(f l/)- cos(13

x)

al sinh fI - sin(1

cosh(f 2  -- COS( 2 -

a2 [sinh( 2 I - sin( 2) 1

C, cos( g + C12 sin( g, +

C13 COSh( f + C,4 sinh( f

C21 COS (g2

C23 cosh(f

C22si(g. x flC2281n9 g2

+ C24 sinh(f2

cosh A,
(2bE

Thj )

+0.5)+ cosA, 2+0.5 -
(2b

1Ytl sinhAl7 +0.5)
2b

Mode Shape Constants

Bending Modes (modes 1 and 2)
P, = 1.875104

p - 4.694091

a, = 0. 734096

o, = 1.018467

Chordwise Modes (mode 5)
X, = 4.730041

41 = 0.982502
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Torsional Modes (modes 3 and 4) 3" by 12" plates

Parameter

gl

fi

Cli
C12

C13

C1 4

g2

f2
C21

C 2 2

C 2 3

C 2 4

[0/0/90]s
1.8076926

6.9579725
-0.2357027

0.9067800

0.2357028

-0.2355829
5.0397936
8.3991159

-0.3869624
0.6450945

0.3869624

-0.3870816

Torsional Modes (modes 3 and 4)
Parameter [0/0/90]s

gi 1.7841521

f, 7.7841721

C11  -0.2123133

C12  0.9261321

C13  0.2123133

C14  -0.2122718

g2 5.0496840

f2 9.1054624
C21  -0.3762331

C22  0.6785082
C23 0.3762331

C 2 4 -0.3762854

[15/15/0]s
1.7430329

9.6855170

-0.1715679

0.9533305

0.1715679

-0.1715640

5.0479786

10.782076

-0.3486014

0.7467364

0.3496014

-0.3496089

Wing Model

[15/15/01]s

1.7628371

8.6788188

-0.1911872

0.9411888

0.1911872

-0.1911738

5.0521022

9.8862550

-0.3640053

0.7123485

0.3640053

-0.3640264

[30/30/0]s
1.6754004

15.776150

-0.1048742

0.9833190

0.1044268

-0.1044268

4.9784612

16.457978

-0.2661564

0.8772607

0.2653672

-0.2653672

[30/30/0]s
1.7005716
12.796221
-0.1294523

0.9740835

0.1294523
-0.1294522
5.0150805
13.638268
-0.3043933
0.8277837

0.3043933
-0.3043936

[45/45/0]s

1.6415197

23.128775

-0.0704409

0.9925122

0.0704409

-0.0704409

4.9085024

23.586840

-0.1953181

0.9384233

0.1952906

-0.1952906

[45/45/0]s

1.6722790

16.246035

-0.1013201

0.9843152

0.1013201

-0.1013201

4.9730101

16.907630

-0.2597920

0.8832612

0.2597920

-0.2597920
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Aerodynamic Strip Theory Constants

B 2 A = -2r

BIA =- 2 .2 7r

BOA = 0

B3A = -0.27n
B2c = 0

Bc = -1.1hn

Boc = 0

B3c = -0.135 7

B2B

BI

BOB

B3B

B1D

BOD

B3 D

Properties and Dimension:
Structural Box

Span 48 in.

Chord 12 in.

Thickness 0.24 in.

Graphite/Epoxy plates

Thickness 0.0317 in.

Honeycomb

Thickness 0.177 in.

Density 0.10 x 10 -3 slug/in3

Modelled Stiffness:

E 0.29 x 106 lb/in 2

v 0.3

G 0.11 x 106 lb/in 2

Aerodynamic Shell

Span 48 in.

Chord 15.6 in.

Thickness 0.040 in.

Density 2.85 x 10 -3 slug/ft 3

Leading edge extends past structural box

0.6 in.

Trailing edge extends past structural box

3 in.

=0

=3.1n

=4n

= -1.675rc

= -0. 257

= -0. 45rc

= 27c

= -0.8325 7

s of Wing Model

1.2192 m.

0.3048 m.

6.096 x 10 -3 m

0.804 x 10-3 m.

4.488 x 10-3 m.

91 kg/m3

2.0 x 109 N/m2

0.3

0.77 x 109 N/m2

1.2192 m.

0.39624 m.

1.016 x 10-3

2540 kg/m3

0.01524 m.

0.0762 m.
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Piezoelectric Coverage

Span

Chord

Thickness per side

Stiffness:

Flap

28.8 in.

12 in.

0.020 in.

0.73152 m.

0.3048 m.

0.508 x 10 -3 m.

E 8.7 x 106 lb/in 2  60.0 x 109 N/m2

v 0.3 0.3

G 3.2 x 106 lb/in 2  22 x 109 N/m2

Piezoelectrics cover both sides of the structural box

Span 9.6 in. 0.24384 m.

Chord 3 in. 0.0762 m.

Extends from 60% to 80% of the structural box span and

from the edge of the structural box to the trailing edge

Extra mass for motors, bearings, etc.

Mass 15.5 x 10-3 slugs 0.226 kg

Span 6 in. 0.1524 m.

Chord 1.5 in. 0.0381 m.

Adjacent to the immediate inboard side of the flap and to

the edge of the structural box
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Aeroelastic Data

Data for 3" by 12" plates. All speeds are in meters/second. All angles are in

degrees
F indicates flutter, D indicates divergence.
Numbers in parantheses are flutter frequencies in Hz.

Sweep Angle Ply Fiber Angle
0

16.6 D
15

10.8 D

17.9 D 11.1 D

21.1 F

(23.9)
21 F

(23.9)
22.5 F
(24.1)

30
8.5 D

45

7.4 D

9 D 8.2 D

12.5 D 10.6 D 10.4 D

15.7 D 14.6 D 18.6 D

25 D 42.2 F

(35.9)
38.6 F

(38.2)

Data for wing model. All cases exhibit

All speeds are in m/s [mph].
flutter first. All angles are in degrees.

Numbers in parantheses are flutter frequencies in Hz.

Sweep Angle

-45
65.8 [147.2]

(8.5)
63.1 [141.2]

(8.3)
64.9 [145.2]

(8.1)

Ply Fiber Angle
-30 -15

61 [136.5] 52 [116.3]
(8.2) (7.6)

58.9 [131.81 51 [114.1]

(8) (7.5)
61.3 [137.1] 54.1 [121.0]

(7.9) (7.5)

0

49.9 [111.6]
(7.2)

49.1 [109.8]

(7.1)
52.1 [116.5]

(7.1)
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-30

-15

0

-45
15.7 D

34.3 F

(27.9)
29.3 F

(26.4)
27.2 F
(25.4)

27.1 F
(24.6)

-30
34.7 D

30.1 F
(28.3)

26.9 F
(28)

26 F
(27.8)

26.9 F
(27.6)

-15
28.4 F
(26.5)
24 F

(26.7)
22.2 F

(26.9)
22.1 F

(27.2)
23.6 F
(27.8)

0

15

30
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Appendix D

The following changes have been made for the tapered wing:

All modeshapes are defined using a reference chord length cref.

The reference chord length is taken at the 3/4 span point.

The aerodynamic forces then take the form

2 AX cos A
b,,0

0

b3

-- , cAx cos A
ref

0

b 3

tBAx cos A
bref

0

2 ADAcos A

0

b r = cos and Ax = A cosA
cos A '

Similar for Ai. , Ao , Au

and the equations of motion are

if(t) + ETKE,(t) = pU2 ( 2ETA 2Er+(t) + pU 2
2 ,L( U~~ E TAEil(t)+

1pU2ETAoEI(t)+ 1pU2ETAsE"(t)2 2
U

y(t)+ 0.15 -(t) = ii(t)

The flap forces are altered in the same manner.
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Yo,, ao, .. . a 0o
A 2 =[&I

bos=
cos A

roil

jo

0
j,

aojlo
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