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ABSTRACT

As newer technologies in inertial instruments emerge, the need for more powerful
data analysis techniques is increasing because both unmodeled errors and unknown
factors may exist, and must be accounted for, in the instrument data. An online adaptive
Kalman filter has been developed for analysis of these inertial instruments using the
innovation sequence of the Kalman filter in order to determine the optimal filter
parameters.

Performance of the filter is improved by determining the proper system model, by
identifying any unknown parameters in the system matrices, or by identifying any
periodic noise in the signal. A fault tolerant algorithm is included in the filter. Maximum
likelihood techniques are used to estimate the parameters of the filter matrices by
choosing those parameter values that maximize the likelihood function of the parameters.
Correlation methods are used to determine the proper system model by comparing the
innovation sequence to a known signal. Power spectral density analysis is used to
identify periodic signals by examining the PSD of the innovation sequence.

Simulations to verify the filter performance have been run successfully for a number
of cases. In each of these simulations, the adaptive Kalman filter was able to modify the
filter matrices to achieve optimality. The adaptive Kalman filter has been applied to data
from various micromechanical gyroscope tests, including a stationary drift test and a
commanded rate test. These filters have been used for both raw data reduction and
reduced data analysis. By applying these adaptive Kalman filters to micromechanical
gyroscope data, real improvements in data analysis have been shown. The raw data
reduction adaptive filter improved data decimation by up to 50 percent over a triangular
filter. The reduced data analysis adaptive filter produced filter estimates twice as
accurate as the traditional Kalman filter, and has identified a pressure sensitivity and a
rate squared sensitivity in the micromechanical gyroscope.
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Chapter 1

Introduction

1.1 Motivation
As newer inertial instrument technologies emerge, better data processing is needed for

characterizing these instruments. These newer instruments are more sophisticated and

their behavior challenges traditional data processing techniques. Traditional data

processing has commonly used a triangular filter for reducing raw data and a Kalman

filter for analyzing this reduced data according to a prescribed instrument model. These

filters, however, can result in a less-than-optimum indication of instrument quality

because both unmodeled error sources in the original signal, such as high frequency

noise, and unknown factors in the instrument performance, such as temperature effects,

are not accounted for in either aspect of the data processing. Because it gives more

flexibility to data analysis, the need for adaptive filters has become significant. Instead of

using fixed values, the adaptive filter seeks out the true values of the system so that both

filter performance and instrument characterization are optimized.

Adaptive filter concepts can be used to develop filters for two aspects of data

analysis. Raw data reduction is an important aspect of data processing. By decimating

data, the computing time of the filter is reduced without sacrificing information on

instrument performance. The traditional triangular filters create a weighted average of

the raw data, but if noise in the signal can be eliminated before decimation of the data,

then this analysis can be improved.

Analysis of this decimated data is crucial to determining instrument performance. To

obtain optimal instrument performance, an adequate model of both the state vector and all

noise sources is necessary. Often, though, the noise model is poorly understood, and

unmodeled terms may exist in the system. A Kalman filter only analyzes the data with



respect to given parameters and a given state vector. With an adaptive filter, both the

state vector and noise parameters can be adequately determined during data processing.

1.2 Adaptive Filter Concepts
In the next four chapters, adaptive Kalman filter concepts are developed and verified

independently. First, the Kalman filter is reviewed. Next, a maximum likelihood

estimator is developed. Correlation methods are then used to identify unmodeled state

terms. Finally, power spectral density analysis is used to locate periodic noise sources.

1.2.1 Kalman Filter

Chapter 2 presents the Kalman filter. The innovation sequence (also known as the

residual) is discussed, and its importance in adaptive filters is shown. In an optimal filter,

the innovation sequence is a Gaussian white noise process. However, if the innovation

sequence is not white noise, then information can be extracted from the sequence to

optimize the filter. A white noise test procedure using correlation methods is presented.

Some limits of the Kalman filter are discussed, including its inability to change

parameters to reflect the data more accurately, and its inability to adapt the state model to

achieve an optimal model.

1.2.2 Maximum Likelihood Estimator

In Chapter 3, maximum likelihood estimation of system parameters is presented.

With this technique, unknown parameters in the Kalman filter matrices, such as the

measurement noise standard deviation, can be estimated by maximizing the likelihood

function of these parameters. By assuming that parameter values are slowly changing

with respect to the state estimates, an online estimator is developed.

The maximum likelihood estimator was chosen for several reasons. It is capable of

obtaining an unbiased efficient estimate, and it converges to the true values of the

parameters as the number of samples grows without bound. This estimator is capable of

estimating the true values of both constant and slowly varying parameter values.

The scoring method is used for the maximum likelihood estimator, because this

method has advantages over both a Newton-Raphson method and a conventional gradient

method. The scoring method converges over a wider range than the Newton-Raphson

method, and it converges more rapidly than a gradient method. The error in the scoring

method is of order 1/N, where N is the number of samples. Verification of this approach

is given with several analyses of simulated data.



1.23 Model Adaptive Filter

Chapter 4 discusses a model adaptive filter using correlation methods. By examining

the relationship between the autocorrelation function of a random process, such as the

instrument temperature, and the crosscorrelation function between that process and

another random process, in this case the innovation sequence, a relationship between the

two processes can be identified. A random process that is a function of another random

process will have a crosscorrelation function that is equivalent to the autocorrelation

function of the original signal, except for scaling and a time delay. If such a relationship

does exist, the state vector of the Kalman filter is modified to account for this previously

unmodeled term. The theory for this approach is derived, and verification of this filter

using simulated data is shown. Real data is then used to show the effectiveness of the

this filter in identifying a component of gyro drift error of an electromechanical

gyroscope model due to g2 terms, DOS. This accomplishment is then placed in an

historical context.

1.2.4 Periodic Signal Identification

Chapter 5 develops an approach for identifying unmodeled periodic signals in the

innovation sequence. By using the Fast Fourier Transform, power spectral density

analysis can identify any periodic signals in the innovation sequence. These unmodeled

periodic signals can be included in the state model either as noise or as state terms; in

both cases the filter performance will be improved. Although a periodic signal may be

aliased, it can still be removed from the data. Once again, the theory behind this filter is

given; verification of its effectiveness is demonstrated using simulated data for multiple

frequency noise signals and also for variations in the frequency of the noise.

1.2.5 Data Analysis Filters

In Chapter 6, the three adaptive filter concepts are combined into two filters. The first

adaptive filter, used for raw data reduction, is a combination of the maximum likelihood

estimator and the PSD filter. By optimizing the filter parameters and by eliminating

periodic noise, the best estimates of the data can be used for data decimation.

Verification of the operation of this filter is given, and the performance of this filter is

compared with that of a triangular filter for data decimation.

The second filter developed in Chapter 6 is a combination of all three adaptive filter

concepts. This filter is used for reduced data analysis. By using all three techniques, the

optimal estimates of the matrix parameters, as well as an accurate state model, can be



obtained. Verification of this filter is shown, and the improvements of this filter over a

traditional Kalman filter are shown for simulated typical gyro outputs.

1.3 Data Analysis
After developing these two adaptive filters, micromechanical inertial instrument

technology is discussed, and potential areas for the use of these filters are identified.

Data files are then analyzed from several test runs, and improvements in instrument

performance are shown.

1.3.1 Micromechanical Inertial Instruments

In Chapter 7, micromechanical inertial instrument technology is introduced, and

micromechanical gyroscopes are briefly surveyed. The advantages and disadvantages of

different gyroscope designs are presented. Also, the limitations and noise sources of

these instruments are discussed, and possible solutions using adaptive filters are

presented.

1.3.2 Data Analysis

In Chapter 8, adaptive filters are applied to outputs from various micromechanical

gyroscopes. Comparisons between the adaptive filters and the traditional triangular and

Kalman filter approach are made for all data analyzed. Various tests, including stationary

drift tests and commanded rate tests, were run on different micromechanical gyroscopes,

both the original micromechanical gyro design and the inverted gyro design.

Improvements in data analysis were shown in both raw data reduction and reduced data

analysis. The raw data reduction filter improvement ranged from 10 percent to 50

percent better than a triangular filter. The reduced data analysis filter is capable of

reducing the RMS of the innovation sequence to half the RMS of the Kalman filter. A

pressure sensitivity and a rate squared sensitivity were identified by the adaptive filter.

1.3.3 Future Work

Chapter 9 presents the conclusions of this thesis, as well as some recommendations

for future work. The algorithm used to compute the correlation functions can become

computationally burdensome. A more efficient algorithm would increase online

capabilities. This filter, if implemented on parallel processors, would easily be capable of

real-time processing. By assigning the model adaptive and frequency location tests to

secondary processors, the main processor could continue forward with data analysis, and

the state model can be adjusted as necessary.



Chapter 2

Kalman Filter Theory

2.1 History of Estimators
The motivation to develop an effective estimator has existed for hundreds of years. In

1795, at the age of 18, Karl Friedrich Gauss developed the least squares method. His

motivation was to find a method to determine the motion of the planets around the sun.

In his work, Theoria Motus Corporum Coelestium, Gauss realized that single

measurements were not accurate, but, by taking multiple measurements, the error of these

measurements could be minimized. In the 1940s, Wiener and Kolmogorov both

developed linear minimum mean-square estimators that spurred the development of the

Kalman filter. Wiener developed an algorithm that minimized the mean-square error by

choosing appropriate filter gains. Kalman then developed both the discrete and

continuous versions of the Kalman filter in the early 1960s. The Kalman filter is

basically a recursive solution to Gauss' original problem: the least squares estimator.

Because of its computational efficiency and simplicity, the Kalman filter is an ideal

choice for inertial instrument evaluation [45].

2.2 Kalman Filter Theory
A linear system can be expressed by the following stochastic difference equation,

x(ti+,) = 1(ti+lti )x(ti) + B(t i )u(ti)+ G(ti )w(ti) (2.1)

with available discrete-time measurements modeled by the linear relation,

z(ti) = H(ti )x(ti) + v(ti) (2.2)

where,



x = the state vector = n x 1 vector

= state transition matrix = n x n matrix

u = deterministic input vector = r x 1 vector

B = deterministic input matrix = n x r matrix

G = system plant noise input matrix = n x q matrix

z = the measurement vector = m x 1 vector

H = observability matrix = m x n matrix

ti = a discrete measurement time

and,

w and v are independent, zero mean, white Gaussian noise processes with covariances

E{w(t i )w(t )T } = Q(ti )Si (2.3)

E{v(ti)v(t )T} = R(ti )ij (2.4)

where Q is positive semidefinite and R is positive definite for all discrete time ti, E { ) is

the expectation function, and Bij is the Kroneker delta. The initial conditions of the state

vector are described by a Gaussian random vector with mean equal to Equation 2.5,

E{x(to)} = i(t )  (2.5)

and covariance equal to Equation 2.6,

E{[x(to) - i(to)][x(to) - (to )]T = P(to) (2.6)

The measurements, z, are processed to produce the state estimates, i. The state

transition equations are

i(t- ) = Q(t i , ti- 1)i(tl I) + B(ti 1 )u(ti_) (2.7)

P(t- ) = (ti,ti-1 )P(t+_l )(t i ,ti_ 1)T + G(ti-_l )Q(ti-_ )G(ti_ )T (2.8)

K(t) = [P(t )H(ti )T ]S(ti )-1 (2.9)

S(t i ) = H(ti )P(t- )H(ti )T + R(ti) (2.10)

The measurement incorporation equations introduce the new measurement into the state

vector estimates, as shown in Equation 2.11 through Equation 2.13.



ri = zi - H(t )i(t ) (2.11)

i(t+ ) = ( (t ) + K(t i )r(ti) (2.12)

P(t+) = [I - K(t )H(t )]P(t1-) (2.13)

where,

i = the estimate of x based upon the most recent measurement

r = innovation sequence

S = covariance of innovation sequence

and,

K = the Kalman gain matrix = n x m matrix.

The (+) and (-) superscripts on ti indicate whether the value at a particular ti is

immediately before or immediately after the measurement incorporation at time ti. The

notation (ti+l, ti) on 4 means that the matrix 4 is the transition between the state vector at

sample times ti and ti+1. In these recursive equations, (D, H, B, and G may be time

varying.

2.3 The Innovation Property of an Optimal Filter
In an optimal Kalman filter, the innovation sequence r (also known as the one step

ahead predictor or residual shown in Equation 2.11) is a Gaussian white noise sequence

with covariance S (Equation 2.10) [33, 34]. The innovation sequence is used to update

i(t[~) by incorporating the information from the newest measurement, as shown in

Equation 2.12. By proving that r is white noise in an optimal filter, this property of r can

then be used for filter optimization.

2.3.1 Innovation Sequence as White Noise in an Optimal Filter

First, define the error e(ti) as the difference between the true value of x(ti) and its

estimate i(t,-):

e(t )= x(t i ) - i(t) (2.14)

This leads to a new definition of the innovation sequence,

ri = He(ti ) + v(t) (2.15)

and its autocorrelation function,



E{rir } = E(He(ti) + v(t))(He(t) + v(t ))T (2.16)

with H and v defined above. For i > j, v(ti) is independent of both e(tj) and v(tj), so that

E{rirT } = E{He(ti )(He(t ,)+ v(tj))T

= E{He(ti)(zj - Hi(ti ))T (2.17)

Also, the orthogonality principle [33] states that e(ti) is orthogonal to zk, for k < i. Since
i(t) depends only on zk, for k <j, Equation 2.17 becomes

E{rir = 0 for i >j (2.18)

A similar exercise shows that this is true for all i < j. For i = j,

E{r irT } = S(t i ) = H(t )P(tI )H(ti )T + R(ti) (2.19)

Therefore, the innovation sequence is a white noise process, with only one nonzero

term in its autocorrelation sequence at i = j.

This can also be proved by examining Equation 2.11. The measurement zi is a
Gaussian random process, as is the state estimate i(t ). Therefore, the innovation

sequence is also a Gaussian random process because it is a linear sum of Gaussian

random variables. The innovation sequence is also a stationary process, as demonstrated

by Mehra [33].

When the innovation sequence is white noise, then the filter is optimal. However, if

the innovation sequence is not Gaussian white noise, then information required to

optimize the filter can be extracted from the innovation sequence. For example, suppose

a system is modeled with the following state vector

XZ =X[ ] (2.20)

But the measurements fit the model,

zi=[1 1]X + v(ti) (2.21)

Because of the inadequate model for the state vector, the H matrix that is implemented in

the Kalman filter is the 1 by 1 matrix [1], not the 1 by 2 matrix [1 1] that would be



expected from the measurement model. It is obvious that the state vector is an inadequate

model for this measurement. This mismodeling will be stored in the innovation

sequence,

r i = z, - H(t i )i (t ) (2.11)

which, in this example, becomes,

r i = x2(ti)+[Xl(ti)- A,(ti)]+ V(ti) (2.22)

In Equation 2.22, the difference term in xl is an unbiased Gaussian process. The

innovation sequence r will contain the unmodeled term x2, and r will no longer be a

Gaussian white noise sequence. However, the information needed to optimize the filter

can be extracted from the innovation sequence. By adapting the matrices H and x to

include the x2 term, the filter will be optimized.

2.3.2 White Noise Test for Optimality of Kalman Filter

A test is needed in order to exploit the innovation sequence for adaptive filtering.

The white noise property of the innovation sequence in an optimal filter discussed in

Section 2.3.1 will be used to develop an effective test. White noise has unique behavior

for both the autocorrelation function and power spectral density analysis, as shown in

Figure 2.1 [9]. Because a white noise process is independent, the autocorrelation

sequence of white noise is an impulse at the zeroth lag term. Also, a white noise

sequence is evenly distributed throughout the frequency domain, so that the power

spectral density of white noise is a horizontal line. Either of these two properties of white

noise could be used in a white noise test.

Autocorrelation Function Power Spectral Density

Figure 2.1. Descriptions of White Noise Properties

The autocorrelation function was chosen for identification of the innovation sequence

as white noise for two reasons. First, Mehra [33] shows that this function can be used to

determine the whiteness of a sequence. Second, a test using the autocorrelation function



can be implemented easily. After calculating the autocorrelation function, confidence

limits for this process can be established. The standard deviation of the measurement of

autocorrelation is 1/ 4W, where N is the length of the innovation sequence. The

confidence limits would be a given value times this standard deviation. For 95%

confidence limits, the value is 1.96; for 99% confidence limits, the value is 2.58. Next,

the number of points in the autocorrelation function that exceed these limits must be

determined. If the percentage of points that exceed the confidence limits is greater than

the confidence limit percentage, then the innovation sequence is not white noise. This

test procedure is outlined in Equation 2.23 through Equation 2.25.

First, define Ck, the autocorrelation matrix of r, as shown in Equation 2.23.

Ck = E{rirTk (2.23)

A biased estimate of Ck may be obtained using Equation 2.24. For a scalar

measurement, the estimate of Ck will be a scalar value. Mehra argues that the biased

estimate should be used for this white noise test [33].

N
Ck = ri r i-k (2.24)

i=k

From this point, Mehra [33] shows that the test for optimality uses the normalized

autocorrelation coefficients of the autocorrelation sequence, Pk. The normalized

autocorrelation matrix can be estimated from Equation 2.25.

At IA 1 (2.25)

The diagonals of p k are compared with the confidence limits, and if the required

percentage of the diagonal values are within this region, then the innovation sequence is

white noise.

This test for optimality was implemented on MatlabTM for the Macintosh. The

command xcorr calculates the normalized autocorrelation sequence [30, 42]. A

comparison test is then run to determine the percentage of the sequence outside the 95%

confidence limits.



2.4 Limitations of Kalman Filter
Although the Kalman filter is a very efficient estimator, it has certain limitations that

arise when the state vector cannot be fully described. The Kalman filter works with a

given state vector; if this description of the state vector is not adequate, then errors will

result. These errors will affect the state estimates, because the filter cannot improve the

state model on its own. For example, a trend error may exist in the data, but the Kalman

filter cannot compensate for this term.

Also, the Kalman filter operates with fixed parameters. For example, the

measurement noise covariance R is constant throughout data analysis. The Kalman filter

then makes the best possible state estimates based on this R; if this value of R is wrong,

then the Kalman filter estimates may not be optimal. These limitations of the Kalman

filter are the driving forces in developing adaptive filters that are capable of

compensating for unknown errors.

The following chapters will explore different methods of exploiting the information

contained in the innovation sequence. The three methods used are maximum likelihood

techniques, to enhance the estimates of the system parameters; correlation functions, to

improve the state model; and power spectral density, to isolate periodic noise signals.

Each of these methods seeks different information from the innovation sequence, and all

three methods can be used simultaneously, as will be shown later.
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Chapter 3

Maximum Likelihood Estimator

3.1 Motivation for Maximum Likelihood Estimator

Often, there is inadequate information about certain parameters in the Kalman filter

matrices (D, B, G, Q, and R. For example, R, the measurement noise covariance matrix,

may have uncertainty in its values. In order to obtain the optimal state estimates i, an

accurate description of these parameter matrices is necessary. One way to do this is to

use a priori statistical information in order to describe the parameter behavior for a

particular system. However, it is usually not feasible to develop a probability density

function model for the unknown variables, because the a priori estimates require previous

information about the system. Therefore, another technique must be developed to

determine these unknown parameters without previous data. The ideal approach would

be able to adjust the unknown values based on the present data, and it would be able to do

it with an efficient online method.

3.2 Maximum Likelihood Estimator
The maximum likelihood technique has been chosen for parameter estimation. This

method will find an efficient estimate, if such an estimate exists. The efficient estimate is

the unbiased (or at least negligibly biased) estimate with the lowest finite covariance of

all unbiased estimates. Also, if an efficient estimate exists, the maximum likelihood

estimator will have a unique solution that is equal to the efficient estimate. The

maximum likelihood estimator is also consistent; it converges to the true value of the

parameters as the number of sample elements grows without bound. This solution is both

asymptotically Gaussian and asymptotically efficient. Also, given a single sufficient

statistic for the estimated variable, the maximum likelihood estimate will be sufficient,

and it will also be at least asymptotically efficient and unbiased [31].



To develop an online maximum likelihood estimator, an assumption is made that the
parameters are essentially constant over a given interval of N sample periods, where N is
arbitrary. This assumption can be implemented in one of two ways. At every sample
time ti, the estimates can be based on the previous N measurements (tl, t2, t3, ... ), as

shown in Figure 3.1a. Or, at every N points, parameter estimates can be based on the
previous N data points (tN, t2N, t3N, ... ), as shown in Figure 3.1b. However, in order to

implement either maximum likelihood estimator, a likelihood function for the parameters
must be chosen.

N

N
I I I i I i I

i-N i i+1

Figure 3.1a. Estimate Intervals at Every Sample Time

N N

i-N i i+N

Figure 3.1b. Estimate Intervals at Every NSample Times

3.3 Maximum Likelihood Estimator Theory
For a given likelihood function L[O(t), i], where O(t) is the p length vector of

variables (unknown parameters) and £ is the set of realized values of the measurements

to be used as data, the objective of the maximum likelihood estimator is to find a value of
O'(t,) that maximizes L[O(ti),fi] as a function of O(t,). This value can be found by

solving Equation 3.1:

dL[ (ti ),fi (3.1)
d (t)= 0 (3.1

Peter S. Maybeck, in Chapter 10 of Stochastic Models, Estimation, and Control
Volume 2, argues that the preferred likelihood function is [31]

L = In f(t, Xz(,,Xa (4, £ lai ) (3.2)



which can also be expressed as

L = In fx(t),z,(t. Z(t,_N,a (4 , iiN+1 i-N, ,) (3.2a)

where,
x(ti) = state vector at time ti
a = the parameter vector

Z(ti ) = measurement history z(tl), z(t2), z(t3), ..., z(ti)
ZN(ti ) = most recent N measurements z(ti-N+1), z(ti-N+2), z(ti-N+3), ... , z(t i)

Z(ti-N) = measurement history z(tl), z(t2), z(t3), ... , z(ti-N)

f = probability density function
This likelihood function exploits all a priori information and yields an effective and
computationally feasible estimator. Equation 3.2a is similar to Equation 3.2, but it
provides a fixed-length memory parameter estimator.

Applying Bayes' rule

fAlj (3.3)f Bjf

to Equation 3.2 yields the following relation of probability densities:

f1 x(t z a = f1xt, Izt,),afz(t)fX

= fx(t )zi(t,),afz(t)Iz(t., ),afz(t_1 )ia

(3.4)

fx(t )(t t ),a iII fz(t .Z(t-1 )a
j=1

Each of these densities can then be written as

(2;))ll, I(ti exp{})
(3.5)

} = I- - x(t+ )j P(t, ) 4 - x(t+;)

where i(t +) and P(t+) are implicitly dependent upon the parameters (i.e. a) upon which

the density is conditioned, and n is the length of i. Also, the probability densities in the

product of Equation 3.4 are



(2 )= S(t exp{.}
(2r)x S(t )1' (3.6)

where S(t;) is defined in Equation 2.1; i(t) P(t-), and S(t) are again implicitly

dependent upon the parameters, and m is the length of the measurement vector z.

If Equations 3.5 and 3.6 are substituted into Equation 3.4, the likelihood function L

then becomes

In x(ti zt,,).. (41E£,a)

n +im ln(2r)- In jP( t+' )'l

_1 - i(t + )]T P(t )-1[ - i(t +

2

- ± flS(t
j=1

)]
(3.7)

2j

j=1

where n and m are the lengths of the vectors x and z, respectively.

Inserting Equation 3.2 into Equation 3.1 yields the following pair of simultaneous

equations:

= O (3.8)

(3.9)[n f(, .z, ~. (~. f £4 a) 4=x*(t) = 0 T

Substituting Equation 3.7 into Equation 3.8 leads to

4- )]T P(+ ) 4=x(ti) = OT

ct=a 0 )

(3.10)

(j ini-'
)x(t )T S(tj)-1 [j - H(t )x(t )

- H(t ) (t;)]T S(tj )-jl[j - H(tj )i(t )]

fro ,).ze, a (,4 9f

{}= {- [j - H(tj



For which the solution is

x (t i ) = (t0 )1a= (t )

Equation 3.11 demonstrates that the maximum likelihood estimate of the state vector is

given by the Kalman filter equations when the unknown parameters are replaced by the

best estimates of these parameters at time ti.
However, when Equation 3.7 is substituted into Equation 3.9, considerably more

work is necessary to find a solution. The derivative of L with respect to the parameter a

is given in Equation 3.12 [31].

-2 d In f(o z(t),a (R £| Ia)}

- tr Pt)- Pt)
dad

S(t))
-2 (t)' S(t) H

-[+ - p(t )]r P(t: )-1 dS (t ) P(t:)-l [5 _ t(t)

jl a

=1 f kt T

datr (3.13)

-aj - H(tja )(t(t ) a (tk )-X[l ak H(tj)i(tk)]
j=1 dGaa

Some important definitions of matrix differentiation that were needed for this problem are

given in Equations 3.13 and 3.14.

dtnXll _ dtnlXl dlXl_ 1 dlxl - -1 dIXI (3.13)
da,t dXI da, XI dat da At



X- 1 = _X- 1  X - (3.14)
da, dak

where X is a square matrix and ak is the kth component of a.

But, as shown in Equation 3.11, is equal to (tr+), so that the term 4- i(t~) is equal

to 0. Also, for two vectors f and g, Frg = tr(fgT) = tr(gfT). Making these substitutions

into Equation 3.12, the derivative of the likelihood function becomes

tr {P(t ). k - 2 jl A H(tJ )T S(ti )-1 [z - H(tj )i(t)]

+ tr{[S(t)-1 - S(t)- [z - H(t )x(tj )][zj - H(tj )i(t )]T S(tj )-1
j=1

X dak at=a (ti ) (3.15)

The optimal solution for a solves this equation. However, there is no closed form

solution to this problem; an iterative procedure must be used to find the optimal
parameter vector, a*(t).

Using Equation 3.2a, a fixed-length memory parameter estimator can be developed

with arguments similar to those shown in Equation 3.4. First, write the probability

densities for the likelihood function,

fx(,ZN )IZ(ti-N ).a = fX(ti ZN (t ),z(ti-N),afZN(tA )IZ(ti-N ),a

fZN(ti)ti|N a

(ti z(ti),a ft (3.16)
fZ(ti-Nja

= fx(ti)jAz(ti)., a fz(t) z(t,_),a
j=i-N+1

In Equation 3.4, the lower limit on the product is 1. In Equation 3.16, the lower limit

is i-N+1. Once again, the estimator yields the same state vector estimate as shown in

Equation 3.11. However, in this case, the parameter equation is



tr P(t) d(t+ -2 da H(tj S(tj)- rj
j=i-N+l 

(3.17)

+ tr [S(t)-' - S(tj)-1rr TS(t) - ,1] d )a=.* (ti
j=i-N+1 I

where r is the innovation sequence defined in Equation 2.11 and S is the covariance of r.

3.4 Derivation of the Maximum Likelihood Kalman Filter
Using the ideas presented in the Section 3.3 and Chapter 2, a Kalman filter with

maximum likelihood estimation of the parameters can now be developed [31]. The

recursive formula for Equation 3.1 can be written using the Newton-Raphson method,

L[,(i),Zi -l dL[ ,(i),Zi]T

O (ti) = 0 (ti) - dt02  d (3.18)

where 0*(ti) is the new estimate of the parameters at ti and .(ti) is the previous

estimate of the parameters. The first derivative matrix in Equation 3.18 can also be

written as

L[O. (ti ),Z ] L[OZ, ]T
d doO d=(tg) (3.19)

and is called the gradient or score vector. The second derivative matrix is named the

Hessian matrix, and it must be of full rank in order to be inverted. It is computationally

burdensome to use the Hessian, so the following approximation to the Hessian is used

d2L[* -J[ti (ti) (3.20)
d02

In Equation 3.20, J is defined as

S0 (ti)] L[,(t)]T dL[Z(ti)]O

ill , dt,) do t = (ti)1 (3.21)

and it is called the conditional information matrix [31]. It can be shown that



t A 2L[09z(ti)] Z=t;) ^0* (ti)] = E 2  10= * (ti) (3.22)

This approximation states that the second derivative matrix, the Hessian, for a particular
realization of Zi , can be adequately represented by its ensemble average over all possible
measurement time histories. With this approximation, only first order information about
the likelihood function is required, and Equation 3.18 can then be expressed as

dL (t), Z(323)

The scoring approximation, Maybeck argues, is a superior algorithm to both the
Newton-Raphson method, which uses the Hessian matrix, and the conventional gradient
algorithm [31]. With the conditional information matrix approximation, the error is of
the order 1/N for large N. Also for large N, the rate of convergence approaches that of the
Newton-Raphson method. Although scoring converges less rapidly near the solution
than Newton-Raphson, it does converge over a larger region. The computational
advantages over Newton-Raphson are also quite considerable. Scoring converges more
rapidly than a gradient algorithm, but it requires slightly more computation to do so.

There are some problems with the scoring method, however. The initial J entries
may be small, so that its inverse has large entries; this problem can be corrected by using
a precomputed J value based on simulations or previous analysis. Also, J and J-1 must
be constantly recomputed. However, after an initial transient, these values may be
computed infrequently since J does not vary much after this transient has vanished. In
this thesis, no problems with inverting J were encountered.

To generate parameter estimates, the score vector, (dL[i.(t),a.(t),Zi]/da)T , and the
conditional information matrix J[ti,i.(t),A.(t)] must be computed. The score is equal to

Equation 3.17 times -1, and the equation is evaluated with the actual estimate i.(t), not
with the maximum likelihood estimate a' (t). The score is composed of the most recent

N measurements. The score can be broken down into the sum of the N most recent single
measurement scores, s [Z ,i.(t,)], and a final term y[Z,,i.(ti)]:

a X(ti),'*(ti),Z,]= yk[Zi,*(ti)]+ SkZ ~(t (3.24)
A j=i-N+1

where



oak H()T S(tj)-lrj

(3.25a)

-- tr[S(t )-1 - S(t )-1 r rS(t )-1] d )(t)

and

yk[Zi,a] =- -1tr P(t+)-1 dP(t )} (3.25b)

The conditional information matrix can similarly be expressed in terms of a sum over

the N most recent terms and a final term, if the parameter value is allowed to assume a

true, but unknown value, at:

Jk[ti,, (t ),at ]= E{ yk[Z(ti ),a]y[Z(ti),a]la = at

+ E E{sk [Z(t ),a]s [Z(t),a]la = at (3.26)

j=i-N+1

where
E{sk1 [Z(tj ),a]sll[Z(t ),a]la = at)

S1 dtrS(t) S(t) )I dS(tj)

= tr S(t a ) k S(t d a, (3.27a)

[S(t)-dak (t da

and,
E{yk [Z(t),a]y[Z(ti),a]la = at)

1 [PP(t) )P( t + )
= -tr P(t ) Pt )I (3.27b)

2 dak;

{+ 1 (t ) a(t+ )T la = a }
+2P(t )- E d a a t

Equations 3.1 through 3.17 were derived without approximations. For Equations 3.18

through 3.27, the approximation has been made that the conditional information matrix J

is equal to the Hessian; an approximation will also be made that these equations hold for

values other than at.



3.5 Equations for Maximum Likelihood Kalman Filter
The maximum likelihood parameter estimator assumes that the parameters are

constant over a period of N sample times [31]. At a sample time ti, the quantities at time

ti-N are unchangeable because nothing done in the present can affect a past estimate.

Therefore, the initial conditions of the N-step recursion for parameter estimation are:

X(tN )= previously computed (3.28a)

P(tN ) = previously computed (3.28b)

di(t-N ) = 0 (for all k) (3.28c)
dak

P(t+-N)= 0 (for all k) (3.28d)
dak

E d Ia = (ti 0 (for all k and1) (3.28e)

To solve for the parameter estimates, the score vector s1 and conditional information

matrix J must be calculated. Both of these matrices depend on the derivatives of both the

state vector and its covariance with respect to the parameter vector. In turn, these

derivatives depend upon how the matrices of the system vary with the parameters. In

order to determine this dependence, the derivatives of the Kalman filter equations are

taken with respect to the parameter vector a. The Kalman filter is implemented as

discussed in Chapter 2, but between each of the updates of the state vector, the

derivatives of these vectors are also calculated. The procedure, then, for maximum

likelihood estimation in a Kalman filter follows the flowchart in Figure 3.2. In this

flowchart, the estimates of the parameters are made at every N points based on the

previous N points, as shown in Figure 3.lb.
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Figure 3.2. Flowchart for Maximum Likelihood Estimation

Before the filter can be implemented, certain values must be given. For example, the

initial values of x and P, as well as the general form of the dependence of 4, B, Q, G and

R on the parameter vector a, such as D/'Dak, R/~ak, etc., must be given. These matrices

must be reevaluated for every new estimate of the parameters, I'(t). Once these

functions of a are given, the following equations govern the filter.

No Is
j=N?



First, the state relation equations from Chapter 2 are processed using the most recent
parameter estimate i'(t) to evaluate 0, B, Q, G and R as required:

f (tf ) = *(tp t- 1 ) A(t1 ) + B(tj_ )u(tj_1) (2.7)

P(tJ )= 4(tj ,tj_ )P(t_)(t ,tj_-1) + G(tjl )Q(tj-1 )G(tj- 1 ) (2.8)

K(tj) = [P(t )H(j )T ]S(tj )-1 (2.9)

S(t ) = H(tj )P(t7 )H(tj )T + R(tj ) (2.10)

The score equations for the time propagation are given by the p set of "sensitivity

system" equations. These equations, as well as all following equations, must be

evaluated for k = 1, 2, ... , p, when the subscript k appears, (p is the length of the

parameter vector a). First, the state vector estimate derivative is updated:

dr(t ) _ tj °(tf-1 )  °Q(tJt_ dB(tj_ )

a D j 'j-1 ak ) k  X(t ) +  ak  (tj-1 ) (3.29)
dak dak dak dak

Next, the derivative of the covariance matrix P is calculated:

dP(t P(t- ))

dak 'tj-1 dak

+ (tjt ) P(t )D(t , t_)T

d aktj- 1

,ty + ) ) (tf_) t

dak

+G(t ) t-1 ) G(tjl)T + Q(tj-)G(tj_1 )T (3.30)
dak dak

+ G ( t yj - ) Q ( t j-1 )  dak _a

oG(tjl)T
dak

For the innovation sequence covariance matrix, S, the derivative update equation is:

aS (t,) P(t ) )r aR(t )(t = H(tj) P(t H(tj )T + (3.31)
dak dak dak



Also needed are the conditional information matrix computations for forward time

propagation (with time arguments tj-1 removed and a = i.(ti) reduced to a.). These

equations are used to solve E(sksl), and they are given in Equation 3.32 through 3.37.

The expectation needed to calculate E(sksl) is shown in Equation 3.32.

adi (tI) d.(ti )
E dak da .a

= E aj + A
dak daI

+(OE{
dA+ a + T

daxdak

= a(ti)

Ei++Td '
dak

da
k ,

A +

B IdBT
+ E{uuT'} a
dak da,

d1 dBT
+ Ei+uT ,

dak daI

+4E u adi*TIs} dB'
dak a1

dB rA

dak

+ -a,dB

dak L

.T} a,

da + T

u ak Ia .

Equation 3.32 requires the following expectations in order to be solved:

= QE{I+i+T A. QT + BEuuT I. }BT

+E{i+ul . }B + BE ui+T A }(T

E ai (tj )

+E + T

dak

)T la = i.(ti) =

I* +d__ EirA a I
kJ

A .}B + E{uu'TIa }BT

+o _Eja T.B +B Euif" a
ak x} ak

(3.32)

da1

Ia = a (ti)}
(3.33)

(3.34)

dA+T A DT

-- Ija laI

oi
T

da,

E@(t- )-(t )T



If u is precomputed, then E(u(T I .) can be written as uE(()T I . }) With this

assumption, Equation 3.35 and Equation 3.36 can be evaluated and used to solve

Equation 3.32 through Equation 3.34.

E(i(t )I } = Q(E( + a + Bu (3.35)

And finally,

E a = D(t) (ODE la* I+ E(xA+l +^ u (3.36)
dak k k k

where D(ti) is defined in Equation 3.38.

After these calculations are complete, E(skSl) can be solved with Equation 3.37.

E{sk1 [Z(tj ),a]s'1 [Z(ty ), a]la = a, (ti ))

1 rS(j) S(tj ) S)- S(tj)
S2 t )- S(t)- (3.37)

(t) d )T =T
+2S(t) H(t)E dak da = a (t i ) H(tj

Next, the measurement incorporation state relations at time t are:

S= z - H(t )i(tj) (2.11)

D(tj)= I - K(tj )H(tj) (3.38)

i(tj) = i(t i) + K(tj )rj (2.12)

P(tf) = [1 - K(tj )H(tj )]P(t ) (2.13)

The measurement update score equations are then be processed using these definitions:

nj = S(tj )-1rj (3.39)

C(tj)= S(tj)-' - njnT (3.40)

For k = 1, 2, ... , p, thefirst measurement update score equation is



I adi(t )T 1
s [Z , a(ti)] = dak 2tig A*001 dak(C~f

) t dak (3.41)

The second equation of the measurement update score equations can be developed by

taking the derivative of Equation 2.10, as shown in Equation 3.42.

di(t)
dak

di(t )
dak

dK(tj) dr
+ r + K(tj )

da, da,

SdP(t ) H(tj )T S(tj )-1

dak
+ P(t- )H(tj )T daS(t,) -

dak

dr _H (t )
dak -H(tj)dak Oak

(3.42)

(3.43)

(3.44)

Substituting Equations 3.43 and 3.44 into Equation 3.42 leads to the second measurement

update score equation:

di(t+)
dak

di(t )
da,

dP(t )
+ i [H(tj) nj]

,t,
(3.45)

A similar exercise with the derivative of Equation 2.13 gives the third measurement

update score equation:

dP(tt )
dak

D P ( t )
= D(t) P ) D(t)T +K(tj

dak
dR(t. )
R(t) K(tj)) a,

(3.46)

The measurement update conditional information matrix equations are

E i(t )Tla = A (tE da da la

= D(tj)E
di(tj ) di(tj )T

dak da a

dP(tj )
+D(tj) ak H(t, )

where,

and,

0K(tj )
dak

D(t )T (3.47)

dP(t?) D(tj)
S(tj )-1 H(tj) ) D(t)T



As well as,

E i(t )i(t )T j=i..)} = E i(tI )(t7 )T a- =i.(t) + K(tj )S(t )K(t )T (3.48)

And,

E i t) a = (ti)
dak

(3.49)

=J i(t ) &* I (t
D(tj) E i(t ) [ . + dak H(ty K(tj

dak dak

At the end of processing N points, the score vector and conditional information matrix

are computed, and a new parameter estimate is made using Equation 3.50.

(ti.)= (ti ) + J[ti , i* (ti ), (t ) {da (3.50)

This procedure is then repeated until all of the data has been processed.

3.5.1 Approximations for Online Operation

A quick look at Equation 3.32 and Equation 3.47 shows that a tremendous amount of

calculations are required to construct the conditional information matrix, J. Maybeck

suggests that the approximation

odi (tj ) d(t- )T di(t ) di(t )T

dak da, dak da

can be made, greatly simplifying the equations [31]. This approximation asserts that the
expectation of E{(d/da, 0 / daj) over all possible noise sequences can be adequately

represented by the value it would take due to a particular sequence that generated the

measurement data. Maybeck argues that this approximation reintroduces the dependence

of the Hessian matrix on the second derivative into the scoring approximation [31].



With this approximation, Equations 3.32 through 3.37 are replaced by Equation 3.52

for the conditional information matrix components:

E{skl[Z(tj),a] S, [Z(t ),a] a= .,)

1 s ( t_ )  )-1 aS(t ()

Str S(t)' (t ) S(t)- (t (3.52)

___(t )i (t;)d+ H(ty) S(tj )-iH(tj)
dak da,

and Equation 3.27b is replaced by Equation 3.53

E{ yk[Z(t ),a] [Z(ti ),a] a=.()

1 1P(t) dP(ti)

+ P(t )
da, dak

Maybeck has shown that this approximation is valid [31]. The simplicity of both

Equation 3.52 and Equation 3.53 demonstrate the effectiveness of this approximation.

Now, the propagation and state relations that are necessary for the state and score vector

computations can also be used to evaluate J.

The conditional information matrix J is the covariance matrix of the parameter

estimates, a [31, 43]. Therefore, the maximum likelihood estimator provides the optimal

state estimates and covariances, as well as the optimal parameter estimates and

covariances.

3.6 Verification of Maximum Likelihood Estimator
In order to verify the MatlabTM program code, as well as the theory, for the maximum

likelihood estimator, several runs were made with simulated data. In these test cases, the

true values of the parameters were known so that the estimator behavior could be studied.

The test cases include unknown measurement noise standard deviation, unknown process

noise standard deviation, and unknown measurement and process noises. Test cases were

not run for unknown values in 0, B, or G; these parameters were not significant in this

thesis. However, the estimator should work for these cases also.



3.6.1 Generation of Simulated Data

To create white noise and random walk, the rand function on MatlabTM was used.
The rand function creates a normally distributed Gaussian white noise sequence with a
mean of zero and a variance of 1 [30].

3.6.1.1 Generation of White Noise Sequences
To generate white noise sequences with variances other than 1, the output of the rand

function was multiplied by the desired standard deviation of the noise, as Equations 3.54
through 3.56 show. If N is a white noise sequence of n terms with zero mean and
variance 1, let R = oN, where R is also a white noise sequence, but with standard
deviation c. The variance of N is defined as

var N = - N = 1 (3.54)
i=1

Therefore,

var R = R (3.55)
i=1

Substituting Ri = oNi yields

var R = 2  = a 2 varN = a 2  (3.56)
i=1

As shown, the variance of the white noise sequence can be altered by multiplying by the
desired standard deviation.

3.6.1.2 Generation of Random Walk Sequences
Random walk is the integral of a white noise sequence. Therefore, a white noise

sequence generated by the rand function can be used to create a random walk sequence.
The following algorithm produces a random walk sequence [43]:

rw(t) = w(ti- 1) + b -7N(t ) (3.57)



where rw is the random walk sequence, b is the random walk standard deviation

parameter with units [ 1/4sec], At is the time step, and N is a white noise sequence of zero

mean and unit variance.

3.7 Results of Simulated Data Analysis
Table 3.1 shows the results of these test cases and the uncertainties in the parameter

estimates. In all three tests, the maximum likelihood estimate was able to converge

closely to the actual values of the parameters. Extensive testing showed that the

estimator is able to converge to the measurement noise from a significantly higher initial

guess, but that the process noise initial guess should be lower than the expected value.

Table 3.1. Results of Maximum Likelihood Estimator Verification

Test Number Parameters Initial Guess Actual Value Estimate

3A1 Measurement Noise 1.0000 0.09935 0.09700 + 0.00451

3A2 Process Noise 0.0100 0.09902 0.09028 + 0.01916

3A3 Measurement Noise 1.0000 0.10036 0.09835 ± 0.00461

Process Noise 0.0100 0.09922 0.07038 ± 0.01832

Figures 3.3 and 3.4 are plots that demonstrate the convergence of the parameter

estimates, and the convergence of the uncertainties of the parameter estimates. Both of

these plots are for typical parameter estimates, in this case the measurement noise

standard deviation. In Figure 3.3, the estimate reaches the correct value of 0.1 units,

although the initial estimate is an order of magnitude higher. The parameter estimates

usually converge to the correct value after five estimation intervals.

An additional test was run with varying measurement noise to determine the ability of

the maximum likelihood estimator to follow a varying noise process. The covariance of

the measurement noise for this test was generated using an increasing exponential

function. Figure 3.5 shows the estimated value of the measurement noise standard

deviation as a solid line, and the actual value of the standard deviation as a dashed line.
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3.8 Conclusions
These simulations demonstrate the effectiveness of the maximum likelihood

technique for estimating unknown parameters in the Kalman filter. This estimator is

capable of achieving accurate estimates of both Q and R. Figures 3.3 and 3.4 show that

the estimate quickly converges from an initial guess an order of magnitude higher to

approximately the correct value. Therefore, this filter quickly becomes an optimal filter.

Figure 3.5 shows that the estimator can follow a changing noise signal, and will therefore

remain optimal if the parameters of the system change. This achievement is significant;

the estimator will prevent performance degradation due to slowly varying noise signals.

Both the raw data reduction and reduced data analysis adaptive filters incorporate this

estimator.
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Chapter 4

Model Adaptive Filter Using Correlation Methods

4.1 Model Adaptive Filter
Often, when processing data, the system model which describes the behavior of the

instrument has not been or cannot be completely described. In order to test the

completeness of a given system model, a term could be added to the system model, and

the measurement data could then be processed using this enhanced model. However, the

results from this procedure may be misleading. When terms are added to a system model,

the Kalman filter tries to determine the value of the term, not whether it is actually

present. Therefore, terms that do not actually exist may appear to exist because of the

given system model. Another approach is therefore necessary. By exploiting the

information in the innovation sequence, the existence of unmodeled terms can be

determined during the initial data processing. In this approach, the innovation sequence

is reduced to white noise by enhancing the system model. Correlation methods are used

to determine whether or not an additional term should be added to the system model.

4.2 Theory of Correlation Functions
Two random variables X and Y can be expressed in terms of their correlation [4],

(px (tl,t2) = E{X(t )Y(t 2 )}  (4.1)

in which cp is the correlation function between X and Y, and E({) is the expectation

operator. The crosscorrelation function can also be written as an integral:

P(x ,(t,12)= f Yfxr(x, y)dxdy (4.2)



wherefxy is the joint probability density of X and Y.
The autocorrelation function of the random variable X is expressed as

Px (t ,t 2) = E{X(t1 )X(t 2 )} (4.3)

or in integral form as,

PXX(t 1,t 2) = f X1 (t )x 2 (t2 )f XX (X ,X2 )dldX2  (4.4)

If the two random processes are stationary, that is the probability density does not

change with time, then the correlation function can be simplified to be dependent only on
the time difference r = t2 - tl, as shown in Equation 4.5.

pxy (T) = E{X(t)Y(t + 'r)} (4.5)

4.3 Derivation of Model Adaptive Filter
Suppose that a random process P(t), such as temperature, pressure, rate, etc. is known

completely throughout the measurement interval [49]. If another random signal, S(t),
such as the innovation sequence, is an unknown function of this random process,

S(t) = kP(t - T)+ N(t) (4.6)

where k is an unknown constant, T is a time delay, and N(t) is a white noise process, then
the non-stationary crosscorrelation function between the signal and the random process is

(PsP (19 t2 )= S(t 1 )P(t 2 ) (4.7)

Substituting in for S(t) gives

PSP (t 1 ,t 2 ) = [kP(t - T) + N(t 1 )]P(t2 ) (4.8)

Expanding the expectation yields

9SP (t1 t2 ) = kP(t - T)P(t2 ) + N(t )P(t 2 ) (4.9)

But the first term in the crosscorrelation is just the autocorrelation of the random
process P(t), and if N(t) is a zero mean noise process and is independent of P(t), then the
crosscorrelation of S(t) and P(t) is,

(PSP (t1,t2) = kppp (t 1 - T,t 2 ) (4.10)



Equation 4.10 shows that the crosscorrelation function between P(t) and S(t) is

directly proportional to the autocorrelation function of P(t), which is usually known.

Therefore, by taking the crosscorrelation of S(t) and P(t) and the autocorrelation of P(t), a

relationship between the signal S(t) and P(t), if it exists, can be found.

In a real system, however, the assumption that N(t) and P(t) are independent is not

valid. Therefore, the crosscorrelation function becomes:

(PSP (T)= kqpp (- T)+ (NP( T) (4.11)

In this case, the scaling and delay can still be found, as shown in the next section.

Figure 4.1. Autocorrelation ofP(t)

1 k 2

, 2

T

Figure 4.2. Crosscorrelation of S(t) and P(t) with Scaling and Delay



4.3.1 Implementation of Model Adaptive Filter

The system model is not modified unless the innovation sequence does not test as

white noise. If the innovation sequence is colored noise, then the model adaptive filter

implements the following procedure to identify possible unmodeled terms. First, the
autocorrelation function of the random process P is determined. The crosscorrelation

between the random process P and the innovation sequence r is then taken.

The delay, if it exists, must be determined next using the following steps. By
calculating (pSp, the delay will move the crosscorrelation with respect to the

autocorrelation of P(t). At the zeroth lag of the autocorrelation, the value will be a
maximum. For the autocorrelation, this value is q)2, as shown in Figure 4.1. At t = *0,
the value of the autocorrelation function will be i2. Therefore, the crosscorrelation

maximum will correspond to a scaled value of q)2. The delay can be calculated by

determining the time difference between the maxima of the crosscorrelation and

autocorrelation. In this thesis, the delay was assumed to be zero for all processes.

The value of k must then be calculated. First, the autocorrelation is shifted by the

delay T so that the maxima are aligned. After removing the delay, the error of the best

estimate of k can be written as:

E = (PP T) - kpp, (T) (4.12)

If the sum of the squares of this error is minimized with respect to k, then the best
estimate of k can be found. First, rewrite e as the sum of the squares of Equation 4.12.

N

E = ((sp (t)- k pp (Tj (4.13)
j=1

The subscript j represents the discrete increments of the correlation functions. Next,
minimize e with respect to k:

N

=dk -2 , ( t'j )( Pr (j) - k , (j) )  (4.14)
j=1

Now, set the derivative equal to zero, and solve for k.

I PP (Tj )SP(Tj

k j=' (4.15)

j=1



The signal S is the innovation sequence, and the process P is the unmodeled variable.

To determine whether the process P should be included in the system model, P is

multiplied by the best estimate of k, and this product is subtracted from the innovation

sequence for all past time, resulting in a difference sequence. This difference sequence

represents the innovation sequence if the additional term was included in the original

system model. The RMS of this difference sequence is then compared with the RMS of

the innovation sequence. If the addition of this term improves the RMS by at least five

percent, then the term is included in the system model. Otherwise, the term is not added.

4.4 Verification of Model Adaptive Filter
To demonstrate that this model adaptive theory is valid, gyro outputs were generated

in Matlab TM for several cases of unmodeled terms: trend, scale factor, and rate squared.

This data was then analyzed using the model adaptive filter, and results of these tests are

shown in Table 4.1 and in Figures 4.3 through 4.8. Table 4.1 lists the actual model

values, the initial model estimates, and the final model estimates determined by the filter.

Table 4.1. Results of Model Adaptive Filter Verification

Test Number Modeled Terms Actual Model Initial Model Final Model

4A1 Constant 2.0000 0.0000 2.0083 ± 0.0080

Trend 2.0000 Not Modeled 1.9981 ± 0.0013

4A2 Constant 2.0000 0.0000 1.9986 ± 0.0033

Trend None Not Modeled Not Modeled

4A3 Bias 1.1000 0.0000 1.0996 ± 0.0039

Scale Factor 0.0150 Not Modeled 0.0150 ± 8.94e-5

4A4 Bias 1.100 0.0000 1.1007 ± 0.0036

Scale Factor None Not Modeled Not Modeled

4A5 Bias 1.1000 0.0000 1.1008 ± 0.0051

Scale Factor 0.0150 0.0000 0.0150 ± 1.06e-4

Rate Squared 0.0003 Not Modeled 2.98e-4 ± 1.9e-6

4A6 Bias 1.1000 0.0000 1.1006 ± 0.0036

Scale Factor 0.0150 0.0000 0.0149 ± 7.58e-5

Rate Squared None Not Modeled Not Modeled



For Tests 4A1 and 4A2, the data was generated at 100 Hz for 10 seconds. Using an

estimation interval of 100 points, the trend term was added at the first interval in Test

4A1, as seen in Figure 4.3; it was never added in Test 4A2. In Figure 4.4, the dashed line

represents the innovation sequence, and the solid line represents the innovation sequence

after the trend (scaled by k) has been subtracted from the innovation sequence. The

improvement in the RMS of the innovation sequence by removing the trend term was

62.8 percent. In Test 4A2, no trend term was identified.

In Tests 4A3 and 4A4, the data was generated at 100 Hz for 8.6 seconds, and an

estimation interval of 100 points was again used. For these tests, the commanded rate

profile was from 100 deg/sec to -100 deg/sec in 25 deg/sec increments. In Test 4A3, the

scale factor term was added at the first estimation interval. Figure 4.5 shows the

innovation sequence for Test 4A3 for all time. The innovation sequence appears to have

a transient because the estimate of the bias is adjusting to compensate for the poor system

model. Figure 4.6 compares the pre-modified (dashed line) and post-modified (solid line)

residuals. In Test 4A3, the improvement by adding the rate dependent term was 72.3

percent. The scale factor term was never added in Test 4A4.

In Tests 4A5 and 4A6, the commanded rate profile ranged from ± 100 deg/sec to + 25

deg/sec in 25 deg/sec increments. The first commanded rate was +100 deg/sec, the

second was -100 deg/sec, the third was +75 deg/sec, and so on. In Test 4A5, the first rate

squared term test, the term was added at the second interval, which was the first

opportunity for the filter to differentiate between the rate and the square of the rate due to

the sign of the rate. The term was added when the improvement in the residual was 24.2

percent. The rate squared term was never added in Test 4A6.

In the three tests that did not have unmodeled terms (Tests 4A2, 4A4, and 4A6) the

estimate of the scaling term k was always of a small enough magnitude such that the

suspected unmodeled term would not affect the innovation sequence. This prevented the

inclusion of a nonexistent term accidentally. In these three tests, the post-modified

residual was almost identical to the pre-modified residual.
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Figure 4.7. Unmodeled Rate2 Term Innovation Sequence, Test 4A5
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4.5 An Example of the Model Adaptive Filter in a Historical Context

For electromechanical gyroscopes, accelerations along the principal axes can cause

drift errors in the output of the gyroscope. The three first-order drift error terms are DI,

DO, and DS, which correspond to the accelerations along the input axis (IA), the output

axis (OA) and the spin axis (SA), respectively. For the ball bearing gyroscopes, which

were the first type of gyroscopes widely used, the error term DIS, which corresponds to

the drift error due to the product of accelerations along both IA and SA, was identified as

the only second order error term. When gas bearing gyroscope technology emerged,

another second order term, DOS, corresponding to the error due to the product of the

accelerations along OA and SA, was identified as an additional error source. This was

only discovered after significant testing was done without the DOS term included in the

state model. If the ball bearing error model DIS is used to analyze data from a gas

bearing gyroscope, then DOS effects will be unmodeled, and the results are suboptimal.

However, if this term could be modeled during processing, then improvement in the

gyroscope performance is rapidly achieved. The model adaptive filter can identify DOS

as the next significant error term in the gas bearing gyroscope error model, based on the

output of a vibration test.
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Figure 4.9. Gas Bearing Gyro Output from Shaker Test, Test 4B

For this application of the model adaptive filter, data from multiple position and g-

level vibration testing at a certain frequency, consisting of 244 measurements, was used.



The output of the gyro for this test is shown in Figure 4.9. The data was reduced so that

each measurement represented an average of the data over an integral number of

vibrations. Each acceleration term is represented as a constant times the sine function,
Asin(ot) where A is the amplitude of vibration and o is the frequency of vibration. This

data reduction technique eliminated the first order drift error terms from the data because

the integral of the sine over one cycle is zero.

In Figure 4.9, measurement numbers 1 through 72 represent vibration with the input

axis (IA) perpendicular to the earth's axis. Measurement numbers 73 through 144

represent vibration with the output axis (OA) parallel to the earth's axis, and

measurements 145 through 216 represent vibration with the spin axis (SA) parallel to the

earth's axis. In each of these 216 measurements, the vibration is orthogonal to the earth's

axis, causing vibration along one or two of the gyroscope axes, depending on the

gyroscope orientation. The remaining 28 measurement numbers are various orientations

that were chosen to cause simultaneous acceleration along all three gyro axes.

Initially, the data was analyzed using only the DIS model. The innovation sequence

from that test is shown in Figure 4.10. Figure 4.10 shows that improvement in the state

model can probably be made. In the second filter test, the model adaptive filter was used.

The initial state vector was DIS only. The DOS term was identified as the term to analyze

for possible inclusion. Using an estimation interval of 30 points, the model adaptive filter

identified the DOS term as significant, and successfully added this term to the state vector

during the first estimation interval. By adding this term to the system model. the

improvement in the RMS of the residual was 86.2 percent. Figure 4.11 shows that, at the

first attempt to add to the system model, the model adaptive filter identified the DOS term

as a correlated variable, and then successfully added this term to the state vector. Both

Figures 4.10 and 4.11 have a bad data point at Measurement Number 73. No explanation

for this spike has been found. The improvement in the system model is easily seen by

comparing Figure 4.10 to Figure 4.11, in which the DOS term was never added.

Table 4.2 shows the true values of the DIS and DOS terms, the estimate of DIS for the

first filter test, and the estimates of DIS and DOS for the second filter test. It should be

noted that, in the second filter test, the filter estimated the coefficient DOS. However, in a

proper model, the term would be 1/2DOS. Therefore, the estimate of DOS must be

multiplied by two in order to determine the true value of DOS. This factor of 1/2 would

be readily apparent during post processing mathematical analysis of the results and the

new system model. For the second order terms, the expression for acceleration is

squared, and the average of the sine squared over an integral number of cycles is 1/2.



The estimate for DOS shown in Table 4.2 has been multiplied by 2 to determine the

proper estimate.
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Figure 4.10. DIS System Model Innovation Sequence, Test 4B1

Figure 4.11. Model Adaptive Filter Innovation Sequence, Test 4B2



Table 4.2 shows that the RMS of the innovation sequence is improved, and the

estimates of DIS and DOS are very close to their true values, which have been established

through extensive testing. It should be noted that, if the DOS term is included in the

original system model, then the RMS of the innovation sequence is 0.0215 deg/hr.

Table 4.2. Model Adaptive Filter Analysis of Gas Bearing Gyro Data

Coefficient Actual Value Filter Test 4B 1 Filter Test 4B2

DIs -0.0319 ± 2.389e-4 -0.0314 ± 1.67e-4 -0.0319 ± 6.679e-4

DOS 0.0111 2.397e-3 Not Modeled 0.0112 5 4.686e-4

RMS of r - 0.0822 0.0555

4.6 Conclusions
By using correlation methods, the model adaptive filter is able to identify unmodeled

terms and include them in the system model during data processing. The data verification

runs have demonstrated that this filter is capable of identifying a variety of unmodeled

terms, from trend to an acceleration dependent error coefficient such as DOS. These

simulations have shown that by using the maximum likelihood technique to determine the

scaling factor k, only significant terms are identified and added to the model. In none of

the tests in which the system model was correct did the model adaptive filter add a term.

In Chapter 6, this filter is incorporated into the reduced data analysis filter.
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Chapter 5

Power Spectral Density Analysis

5.1 Motivation for PSD Analysis
Besides the unmodeled effects discussed in Chapter 4, periodic noise signals may

exist in instrument outputs. A periodic noise signal may be due to stray electrical signals

or a malfunction in the instrument hardware. For example, in the micromechanical

gyroscope, the inertial element is vibrated at its natural frequency. Later, this sinusoidal

signal is demodulated to obtain the DC signal. However, if there is a discrepancy

between the demodulation frequency and the vibration frequency, then a periodic noise

signal will result. This periodic noise signal may not be removed by the baseband filter,

and could therefore exist in the gyroscope output. Another possible periodic noise source

is the 60 Hz frequency of AC power sources. Poor circuit design may result in a 60 Hz

signal in the output of an instrument. Fortunately, modeling these periodic noise signals

is easily accomplished with a combination of sine and cosine terms. The identification of

these periodic signals can be accomplished using power spectral density methods.

5.2 Power Spectral Density Theory
The power spectral density function (PSD) of a stationary random process determines

the frequency content of that process. The power spectral density function can be defined

in terms of the correlation function, as shown in Equation 5.1 [4].

x (W) = I Jy ( r)e-J(dr (5.1)
-00



where o is 2n times the frequency in Hertz, and j = "-. The units of the power spectral

density function are [units2/Hertz]. The PSD may also be expressed in terms of Fourier

Transforms, as discussed in the next section.

5.2.1 Fourier Transforms

The Fourier transform of a functionf(t) is expressed as

F(tjm) = f (t)e-Jdt (5.2)

The inversion formula from the frequency domain to the time domain is

f(t) = F(o)e'adw
-00

(5.3)

Using these two equations, it can be shown

convolution, shown in Equation 5.4,
that the Fourier transform of a

x(t) * y(t) = f x(r)y(t- )d (5.4)

is equal to the product of the Fourier transforms of

Equation 5.5.
each of the variables, as shown in

x(t) * y(t)e - "dt = X(Wo)Y(Wo) (5.5)

A similar approach can be taken with the correlation function, which was discussed in

Chapter 4. For stationary random processes the correlation function is

0000

(Pxy () = J xyfxr(x,y)dxdy
-00-00

The Fourier transform of a correlation function is

J px (h)e-jM dT = X(t)Y(w )

where Y(o.) is the complex conjugate of Y()).

(5.6)

(5.7)



5.2.2 Power Spectral Density Function for Finite Data Sets

Substituting Equation 5.7 into Equation 5.1 gives an expression of the PSD in terms

of Fourier transforms:

Sxr(() = X(o)Y(O) (5.8)

However, this equation is only valid for all time, i.e. the bounds of the Fourier transform

are -o to oo. In real data analysis, a finite segment of data is used, 0O t 5 T. In order to

analyze this data for a finite segment of data, X7 (t) is defined as a segment of the random

process X(t). The periodogram of this truncated signal X7(t) is defined by

periodogram = F{XT (0} 2 (5.9)

where F {} is the finite Fourier transform [4]. Taking the expectation of the periodogram

yields:

E F{IF{XT (t)12 }
T T

= E I X(t)e-j.dt X(s)eJ("ds
T (5.10)

0 0

TT

= T f E{X(t)X(s)}e-0('-s)dt ds
00

The subscript T on X has been dropped because the range of integration of X is now only

over the interval T, and this is the definition of XT(t). If X(t) is stationary, then the

expectation becomes the autocorrelation function of X(t), and Equation 5.10 becomes [4]

TT

E{ IF{XT(t)} 2 } = T J J p, (t- s)ei (-S)dsdt (5.11)
00

Now, letr = t - s. The double integral of Equation 5.11 can be rewritten as

TT Tt-T

S (t - s)e-J0(t-s)ds dt =- f f (px ()e-Jdrdt (5.12)

00 0 t



Next, change the order of integration, and break up the integral into two intervals:

E IF{X, (t)}12

T
B w p (T)e-udt dr+ p,(T)e-jdtm

-T 0 0 r

By integrating with respect to t, Equation 5.13 becomes

E IF{XT (t)12 }
1 1

= - (r + T) px r)e- j "dTr+ T
-T 0

which can be rewritten more compactly as

(5.14)

(T - ) pxx ( )e-J "dT

E( IF{XT (t)}12 } = T(i- I )(T )e-"dr

As T --, oo, the expectation becomes
As T --+ oo, the expectation becomes

E {IF{XT ()} - (5.16)f pxx (T)e -j c d = Dxx (o)
-00

Therefore, an approximation to the power spectral density is:

X(O) = F{X,(t)}1

where

T

fXT (t)e-jadtF{XT (t)} =

Therefore, over a finite span of data, the power spectral density of that data can be

expressed using Equation 5.17.
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5.2.3 Discrete Fourier Transforms

The derivation of the PSD approximation in Section 5.2.2 used the continuous Fourier

transform. However, in signal processing, the data is usually discrete, and the derivation

above must be adjusted for discrete data sets. If N is the number of samples in a batch of

data, and gk is the kth term of the sequence g, then the discrete Fourier transform of g is

[4]

N-1 .2mk

Gn = gk N n = 0, 1,..., N - 1 (5.19)
k=O

with the inversion formula,

N-1 .2enk

gk = Ge k=0, 1,..., N - 1 (5.20)
n=0

In these equations, N is equal to 2T/At. This approximation to the continuous Fourier

transform may still be used in Equation 5.17 to determine the power spectral density

function. If the value N is chosen to be a power of 2, then a Fast Fourier Transform

(FFT) may be used [4]. The FFT greatly reduces the required number of calculations

from N2 to N log2 N. Numerous computer algorithms have been written for the FFT, and

it will not be discussed further in this thesis.

5.2.4 Nyquist Criterion and Aliasing

The Nyquist criterion states that, if the sampling rate is 2f Hertz, then the only range

in which frequency information will be available is 0 Hertz to f Hertz. In the discrete

case, 2f is equal to 1/At, which is the time interval between samples. If a frequency

component is greater than f, then that frequency component will be aliased into the range

0 Hz tof Hz. For example, if the sampling rate is 100 Hz, a 1225 Hz signal would show

up in the power spectral density function as a 25 Hz signal, and a 1985 Hz signal would

show up as a 15 Hz signal.

If information is contained in a high frequency signal that is aliased because of the

sampling rate, then that information is lost and cannot be reconstructed. However, if the

high frequency signal is noise, then the fact that it is aliased by the sampling rate is not

important. Whether the noise is aliased or not, it can be removed with a combination of

sines and cosines at that frequency. The goal of this filter is to remove unwanted signals,

not to determine the information in those signals.
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Figure 5.1. Flowchart for PSD Adaptive Filter



5.3 Filter Design
To implement the periodic noise identification filter using PSD methods, the

following procedure, shown in Figure 5.1, was used. An estimation interval was

established so that the innovation sequence could be examined over a given segment.

Next, that segment of the innovation sequence was tested for whiteness. If the innovation

sequence tested as white noise, then no changes were made to the system model.

However, if the innovation sequence was colored noise, then a Fast Fourier Transform

was taken of the segment of the innovation sequence. Next, the Power Spectral Density

of the innovation sequence was constructed using Equation 5.17. Then, the location of

maximum power was identified, and the frequency of this power concentration was

noted. The filter then proceeded to the next segment of data. If this sequence tested as

non-white noise, then the PSD was again constructed. If the frequency of maximum

power was within a given tolerance of the previously identified frequency, then a sine and

cosine term at that frequency were added to the filter. This two step procedure ensures

that the innovation sequence is colored due to periodic noise, not for another reason, such

as a poor system model or a bad data point. Also, the next frequency must be identified

within two estimation intervals of the first frequency. If this criterion is not met, then the

frequency will not be added to the filter.

5.4 Filter Verification
Several tests were run with simulated data to verify the performance of this filter.

First, periodic signals were added to a random process at both a single frequency and at

multiple frequencies. Next, the periodic signals were given a frequency uncertainty of
0.1%, which is the typical uncertainty in the natural frequency of an inertial element in a
micromechanical gyroscope*. For all of these tests, control tests were run to demonstrate
that the filter only adds frequencies when they exist, not all the time.

5.4.1 Single and Multiple Frequency Noise
Table 5.1 presents the results from these simulated data test runs. In each of the tests,

the goal was to estimate the mean of the data while eliminating unwanted periodic noise.

The size of the FFT was chosen to be 8192 for all tests. The sampling rate for each of

these data sets was 50 Hz. The estimation interval for each of these tests was 100 points.

Also, the standard deviation of the measurement noise was 0.1 units for all tests. The

Noise Frequency column in Table 5.1 gives the actual value of the frequency, before it

* A more detailed discussion of the micromechanical gyroscope is given in Chapter 7.



was aliased. However, when the FFT size was chosen, the aliased frequency of the noise

could not be identified exactly, and usually a frequency was identified slightly above and

slightly below the actual aliased frequency, as the results in Table 5.1 show. In Figures

5.2 through 5.5, the innovation sequence is shown for various tests. For Tests 1 through

5, the frequency tolerance was 1%, and the white noise tolerance was 5%. For a

frequency tolerance of 5%, a beating pattern appeared in the innovation sequence due to

the mismatching between the true aliased frequency and the filter estimate of the aliased

frequency.

Table 5.1. Results of Periodic Noise Identification

Test Number Mean Noise Freq. Freq. ID (Hz) Mean Estimate

5A1 3.2 253 Hz 2.9968, 2.9785 3.1913 ± 0.0055

5A2 3.2 Not Added None ID 3.2005 ± 0.0033

5A3 3.2 253 Hz 2.9846,3.0151,2.9541 3.2049 ± 0.0057

1027 Hz 23.0225, 22.9980 N/A

5A4 3.2 253 Hz 3.0090, 2.9541 3.1986 ± 0.0044

5A5 3.2 253 Hz 2.94, 2.97, 2.86 3.1962 ± 0.0050

1027 Hz 22.9919 N/A

Each of these tests is discussed below. Test 5A2, however, is not discussed, because

it was a control test. This test demonstrated that the adaptive filter will not add frequency

terms when there is no periodic signal present in the measurement data.

In Test 5A1, the aliased frequency of 253 Hz was 3 Hz. This periodic noise signal

had unity amplitude. The first frequency identified was 2.9968 Hz, and it was identified

at 4 seconds. The second frequency, 2.9785 Hz, was identified at 14 seconds.

In Test 5A3, the aliased frequencies of 253 Hz and 1027 Hz were 3 Hz and 23 Hz,

respectively. Both of these periodic noise signals had unity amplitudes. The first

frequency 23.0225 Hz, was identified at 5 seconds; the second, 2.9846 Hz, at 10 seconds;

the third frequency, 22.9980 Hz at 16 seconds; 3.0151 Hz at 22 seconds; and finally,

2.9541 Hz at 34 seconds. These improvements are easily seen in Figure 5.3; at the times

listed, the peak to peak variation of the innovation sequence is reduced by the addition of

these terms.

For Test 5A4, the amplitude of the periodic noise was reduced from 1 to 0.1. In

Figure 5.4, the removal of periodic noise is not noticeable as a change in amplitude. The

first frequency, 3.009 Hz, was added at 6 seconds, and the second, 2.9541 Hz, at 30

seconds.



For Test 5A5, the amplitudes of the two frequencies were reduced from 1 to 0.1. The

first frequency, 2.9358 Hz, was added at 8 seconds, 2.9663 Hz at 14 seconds, 22.9919 Hz

at 18 seconds, and 2.8625 Hz at 30 seconds.

Figure 5.2. Innovation Sequence for Test 5A1

Figure 5.3. Innovation Sequence for Test 5A3
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5.4.2 Distributed Frequency Noise

The purpose of this test was to determine the optimum sampling rate for identifying

an aliased distributed high frequency noise signal. This signal may be present in the gyro

output if a low pass filter does not adequately remove all high frequency components.

This test demonstrated that a sampling rate of at least 1000 Hz will provide adequate

information to remove an aliased high frequency signal of 4400 ± 4.4 Hz from the gyro

output. In Chapter 8, real micromechanical gyroscope data is collected and analyzed

using the conclusions of this simulation.

5.4.2.1 Motivation

One of the limiting factors in the performance of the micromechanical gyroscope is

noise. Noise in the micromechanical gyros comes from measurement noise, random

walk, amplification noise, and variation in the drive frequency. If any of these noise

sources can be adequately modeled, then the characterization of the gyro performance

will be enhanced.

In the micromechanical gyroscope*, the outer gimbal is driven at the resonant

frequency of the inertial element (-2200 Hz). A rotation about the input axis will

produce an output signal at this frequency. This output modulates a 100 kHz carrier

signal, which, after amplification, is demodulated and passed through a low pass filter.

The resulting signal at 2200 Hz is then demodulated at the resonant drive frequency. The

two resulting frequencies are located at DC and at 4400 Hz. Only the DC signal passes

through a baseband filter. This procedure is shown in Figure 7.2. However, if this low

pass filter performs inadequately, then some of the 4400 Hz signal will be present in the

gyro output.

If the resonant drive frequency was at exactly at 2200 Hz, then identification of any

4400 Hz noise could be accomplished at a low sampling rate because all the spectral

power would be concentrated at 4400 Hz. However, the drive frequency may be

mismatched with the resonant frequency, whose uncertainty is about 0.1%. Therefore,

the sampling rate must be higher in order to recover enough of this information to

determine the presence of poorly filtered high frequency noise. The spectral energy of

the high frequency signal is distributed about 4400 Hz, not concentrated at 4400 Hz. As

the signal is aliased, the distribution of the frequency becomes less recognizable, until the

aliased signal has a completely random PSD.

Additionally, the filter designed for frequency location does not attempt to include a

sinusoidal noise model unless the innovation sequence is colored noise. If the innovation

* A more detailed discussion of the micromechanical gyroscope is given in Chapter 7.



sequence tests as white noise, then no changes are made in the system model. Therefore,

the sampling rate must be sufficiently high so that the innovation sequence will be

colored noise if high frequency periodic noise is present.

These two requirements stipulate that the sampling rate must be sufficiently high so

that the innovation sequence of the Kalman filter tests as colored noise and that the

frequency detected by the FFT corresponds to the aliased value of the drive frequency.

5.4.2.2 Approach

A test plan was designed to determine the optimum sampling rate for high frequency

noise detection. The frequency identification approach presented previously was

implemented with a Kalman filter. The following test procedure was conducted for 1000

runs at each of 14 different sampling rates. First, a sinusoidal data set was generated

using MatlabTM for the Macintosh [30]. The frequency for each point was determined by

the rand function in a normal distribution mode. If the frequency exceeded the 0.1%

tolerance, the frequency was recalculated using the rand function, until the value was

within the 0.1% tolerance.

Once the data set was generated, it was run through a single state Kalman filter.

When the filter was finished, a test was conducted to determine whether or not the

innovation sequence was white noise. A count was made of the number of non-white

sequences from each of the 1000 runs. Similarly, an FFT was taken of the innovation

sequence, and the identified frequency from the analysis of the FFT was compared to the

known value of 4400 Hz. If the identified frequency was within 2.5% of the expected

value of 4400 Hz, the frequency was considered identified. A count was also made of the

number of successful frequency identifications. While this approach is slightly different

than that discussed in Section 5.4.1, the idea is the same: first, the data being evaluated

must test as white noise; then the frequency must be identified.

5.4.2.3 Results
After completing 1000 runs at each of the 14 sampling rates, a plot (Figure 5.6) was

generated to show, based on the simulation, the probability of detecting the correct

frequency (solid line) and of identifying the innovation sequence as colored noise versus

the sampling rate (dashed line). Also, Table 5.2 was created to show the same results.

The figure clearly shows that a sampling rate of about 1000 Hz is needed in order to

properly identify the aliased frequency noise. Figure 5.6 also shows that the probability

of the innovation sequence testing as non-white noise was the driving factor in the choice

of an optimal sampling rate. The values in Figure 5.6 are presented in Table 5.2.



Table 5.2. Probabilities for Aliased 4400 Hz Frequen cy Signal

Sampling Rate P(Freq. ID) P(colored noise)

280.74 0.2250 0.0250

328.33 0.3960 0.0350

383.99 0.6040 0.0700

449.09 0.4970 0.0970

525.22 0.8100 0.2290

614.26 0.7150 0.4620

718.38 0.7470 0.7340

840.17 0.9950 0.9530

982.59 1.0000 1.0000

1149.2 1.0000 1.0000

1344.0 1.0000 1.0000

1571.8 1.0000 1.0000

1838.3 1.0000 1.0000
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Figure 5.6. Probability of Detecting Frequency and Noise

Figure 5.7 shows the aliased frequency as a function of the sampling rate (solid line),

and also shows the aliased frequencies that were identified in this simulation (dashed
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line). The sawtooth pattern in the aliased frequency is the probable cause of the variation

in frequency identification shown in Figure 5.6. A larger identification tolerance (~ 5%)

would reduce this variation.
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Figure 5.7. Aliased Frequency vs. Sampling Rate for 4400 Hz Signal

Additional tests were run for high frequency signals of 2200 Hz and 6600 Hz. The

analysis methodology was identical to the 4400 Hz analysis. However, at each

frequency, only 250 test runs were made. The results are shown below in Figures 5.8 and

5.9 and Tables 5.3 and 5.4. In each plot, the solid line represents the probability of

correct frequency identification to within 2.5%, and the dotted line represents the

probability of the innovation sequence testing as colored noise.



Table 5.3. Probabilities for Aliased 2200 Hz Frequen cy Signal

Sampling Rate P(Freq. ID) P(colored noise)

280.74 0.6560 0.3280
328.33 0.9280 0.6040

383.99 0.9920 0.8840

449.09 0.8840 0.9680

525.22 1.0000 1.0000

614.26 1.0000 1.0000
718.38 0.9200 1.0000

840.17 1.0000 1.0000

982.59 1.0000 1.0000

1149.2 1.0000 1.0000

1344.0 1.0000 1.0000

1571.8 1.0000 1.0000

1838.3 1.0000 1.0000
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Figure 5.8. Probabilities for 2200 Hz Signal



Table 5.4. Probabilities for Aliased 6600 Hz Frequency Signal

Samplin Rate P(Fre. ID) P(colored noise)

280.74 0.1840 0.0200

328.33 0.0440 0.0040

383.99 0.1440 0.0160
449.09 0.3360 0.0200

525.22 0.4880 0.0440

614.26 0.5640 0.0840

718.38 0.6040 0.1800

840.17 0.6000 0.3400

982.59 0.9280 0.6400

1149.2 0.9840 0.8520

1344.0 0.7400 0.9760

1571.8 1.0000 1.0000

1838.3 1.0000 1.0000
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Figure 5.9. Probabilities for 6600 Hz Signal
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These figures and tables show that the required sampling rate varies as the high

frequency signal varies. Variations in the probabilities may also be linked to the

estimation interval over which the white noise and frequency identification tests are

applied.

5.5 Conclusions
The power spectral density approach is effective in identifying both concentrated and

distributed frequency signals. This filter only considers adding periodic noise sources

when the innovation sequence indicates that such model enhancement is necessary. Both

the raw data reduction and reduced data analysis filters incorporate the PSD analysis.
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Chapter 6

Adaptive Data Analysis Filter Development

6.1 Introduction
In this chapter, two adaptive filters are created: one for raw data reduction and one for

reduced data analysis. Each of the three filter concepts developed and verified in Chapter

3 through Chapter 5 have been combined to produce these two filters. By implementing

these two adaptive filters, micromechanical inertial instrument performance can be

improved.

6.2 Raw Data Reduction Adaptive Filter
For raw data reduction, data points are averaged over a time interval, and the size of

the data set is decimated. For example, a 100 Hz data set is averaged and decimated to a

1 Hz data set. Each decimated data point is a representation of data near that point, i.e., a

mean or a weighted mean. Therefore, the purpose of a raw data reduction filter is to

estimate a mean for a given set of data. By eliminating unwanted periodic noise from the
data and by determining an accurate estimate of the unknown system parameters, the

decimated data will be a more accurate representation of the raw data. The adaptive filter

methods used for the raw data reduction adaptive filter are the maximum likelihood

estimator and the PSD analysis. At the end of an estimation interval, the estimate of the

mean is recorded as a decimated data point, and the state estimate of the mean and the

covariance of this state estimate are reset to their initial values so that all decimated data

points are independent.

6.2.1 Verification of Raw Data Reduction Filter

To verify this combination of filter concepts, simulations were run under various

conditions. The simulated data sets were a combination of periodic noise signals and



unknown measurement noise standard deviations. The results for two runs, Test 6A1 and

Test 6A2, are listed below in Table 6.1. For each of these tests, the simulated data set

was over a 40 second time span at a sampling rate of 50 Hz, for a total of 2000 data

points. In Test 6A1, a 3 Hz sine wave with an amplitude of 1 unit was added to a zero
mean random process with a measurement noise a of about 0.10 units. In Test 6A2,

unity amplitude sine waves at both 3 Hz and 17 Hz were added to a zero mean random

process with a measurement noise a of about 0.10 units. The estimation interval for both

tests was 2 seconds (100 points).

Table 6.1 shows that the filter was successful in identifying both the true value of the

measurement noise standard deviation and the frequency of the periodic noise. As

discussed in Chapter 5, the PSD analysis filter is not always able to exactly identify the

frequency of the periodic noise because of the size of the Fast Fourier Transform. Table

6.1 lists all of the frequencies identified for each of the two tests.

Table 6.1. Results of Raw Data Reduction Filter Verification

Test Number Value Estimated Actual Value Initial Estimate Final Estimate

6A1 Measurement Noise 0.1001 1.0000 0.0969 ± 0.0069

Frequency 3 Hz None 2.991, 3.027 Hz

6A2 Measurement Noise 0.1019 1.0000 0.0931 ± 0.0073

Frequency 1 3 Hz None 2.997, 3.009 Hz

Frequency 2 17 Hz None 16.9983 Hz

Figures 6.1 and 6.2 show the innovation sequence for both tests. For Test 6A1,

shown in Figure 6.1, the periodic noise was identified at the first possible opportunity,

i.e., 4 seconds, because two sequential identifications of a given frequency are needed.

Once identified, most of the periodic noise component was quickly removed from the

data. Both this improvement in the innovation sequence and the proper estimate of the

measurement noise covariance demonstrate the success of the raw data reduction adaptive

filter.

For Test 6A2, shown in Figure 6.2, the first frequency component, 17 Hz, was also

identified at 4 seconds. The second frequency component, 3 Hz, was first identified at 8

seconds. With a more accurate noise model, the improvement in the innovation sequence

is quite significant, as Figure 6.2 shows. The data is reduced from a peak to peak

variation of 4 units to a peak to peak variation of about 0.2 units, which is the expected

variation due to the measurement noise.
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removed, i.e. the innovation sequence from 8 seconds to 40 seconds. The frequency
concentrations at 3 Hz and at 17 Hz in Figure 6.3 do not exist in Figure 6.4 because the
raw data reduction filter identified and removed these frequency components. In this
portion of the innovation sequence, small concentrations at both 3 Hz and 17 Hz exist,
but these amounts are three orders of magnitude less than that in the original data.

6.2.2 Raw Data Reduction Adaptive Filter vs. Triangular Filter

Once these tests were run to verify the operation of the filter, simulation tests were
run to determine any improvement in data decimation using this raw data reduction
adaptive filter over a triangular filter. Simulated 100 Hz data sets were generated over
100 seconds for various cases. These data sets were then analyzed using both the raw
data reduction adaptive filter and a triangular filter. In data decimation, the purpose is to
provide estimates of the mean of a segment of data over a given interval. Therefore, the
raw data reduction adaptive filter must "re-estimate" the mean over each interval. This

requires that, after the estimate of the mean is recorded, the values of the state vector and

its covariance are reset to their initial values and allowed to converge again over the next
estimation interval. However, the noise estimates, as well as the frequency estimates,
will be allowed to converge over the entire data set. This is permissible because it is

assumed that the noise sources, such as the frequency of the periodic noise, are nearly
constant throughout the data acquisition.

The comparison of these filters was based on equal bandwidths. By comparing

bandwidths, each filter makes estimates based on the same number of data points, and an

accurate picture of the behavior of each filter can be drawn. In a triangular filter, a
weighted average of data is taken over a certain number of points [22]. For equal
bandwidth, the full size of the triangular filter must be equal to the estimation interval of
the raw data reduction adaptive filter. The frequency of the bandwidth is equal to one-
half the sampling frequency divided by the number of points used in the interval.

For the first test, Test 6B1, a periodic signal of frequency 1206.25 Hz with an
amplitude of 0.5 units was added to a zero mean white noise source with a standard
deviation of 0.10 units. Figure 6.5 is a semilog plot of the standard deviation of the

decimated data versus the bandwidth for both the triangular and adaptive filters. The

solid line represents the log of the standard deviation of the raw data reduction filter, and

the dashed line represents the log of the standard deviation for the triangular filter. As

Figure 6.5 shows, the raw data reduction filter performs better than the triangular filter.

At the higher bandwidths, the improvement in the data is visibly obvious, about 33
percent at a 2 Hz bandwidth. At the lower bandwidths, the triangular filter performance



approaches that of the raw data reduction filter because of the attenuation of the periodic

noise by the triangular filter.
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Next, a data set without periodic noise was generated for a white noise source with a

standard deviation of 0.10 units and a mean of 1.42 units, Test 6B2. A comparison of the

standard deviations for this test are shown in Figure 6.6. Once again, the solid line

represents the log of the standard deviation of the raw data reduction filter, and the

dashed line represents the log of the standard deviation for the triangular filter. In this

test, the raw data reduction adaptive filter gave a lower standard deviation of the

decimated data than the triangular filter did, about 10 percent at 2 Hz bandwidth.

Figures 6.5 and 6.6 show that the raw data reduction filter is more effective than the

triangular filter, whether or not a periodic signal exists. These two tests demonstrate that

the raw data reduction filter is more effective than a triangular filter for data decimation.

6.3 Reduced Data Analysis Adaptive Filter
Once the data has been prepared for analysis, e.g. data decimation, instrument

performance must be characterized according to a system model. Traditional analysis has

used a Kalman filter with a prescribed system model. Because of the rigid system model,

this method cannot account for an inaccurate description of the noise, unmodeled system

behavior, and unknown periodic noise. By combining the three adaptive filter concepts

discussed in Chapters 3 through 5, a more powerful adaptive Kalman filter has been

developed. All three concepts are included so that, if the raw data reduction adaptive

filter is not needed, the reduced data analysis adaptive filter can determine the system

parameters as well as identify periodic noise.

One modification made in the combination of these filters is addition of a fault

tolerant algorithm. A faulty commanded rate test encouraged the development of this

fault tolerant algorithm. This commanded rate test is discussed in Section 8.3, and the

fault tolerant algorithm is presented in this chapter.

6.3.1 Fault Tolerant Algorithm

A fault tolerant algorithm can detect unexpected jumps in the gyro output by
examining the innovation sequence. The variable e is defined in Equation 6.1 as

N

e = XriS 1r (6.1)
j=1

where N is the length of the estimation interval, r is the innovation sequence and S is the

covariance of the innovation sequence. This variable e is a chi-squared distribution

random variable with m x N degrees of freedom, where m is the dimension of the



innovation vector r. For order greater than 30, the chi-squared variable can be

approximated by a normal distribution.
For each estimation interval, the variable e is computed, and the mean, which is equal

to the degrees of freedom, is subtracted from the value. This value is then compared to a

confidence limit, which is equal to some number times the standard deviation. For this

variable, the standard deviation is equal to

a E = 42rmaN (6.1)

If the value of e exceeds this confidence limit, then the covariance matrix P is reset to its

initial values, and the state vector x is allowed to converge to new values.

6.3.2 Verification of Reduced Data Analysis Adaptive Filter

Before this adaptive Kalman filter can be compared with a traditional Kalman filter,

the proper behavior of this filter must be verified. Once again, simulated data sets were

generated for a variety of conditions. Table 6.2 shows the results from these filter

verification tests. For Tests 6C1 through 6C4, the data was generated at 100 Hz over a 45

second span. The estimation interval for each test was 100 points, or 1 second. In all of

these tests, the maximum likelihood estimator determined the measurement noise

standard deviation. Random walk was not studied in these tests. Also, the data analyzed

here is not decimated; there is no difference in the performance of the filter whether the

data set is decimated or not.

In the first test, Test 6C1, the unmodeled term was a rate squared term, using a

commanded rate profile similar to that discussed in Section 4.4 for the rate squared test.

In Test 6C2, trend was the unmodeled term. For Test 6C3, both trend and a periodic

noise component were added to the data set. In Test 6C4, only the measurement noise

standard deviation, bias and scale factor were estimated. Although these data files were

not decimated before analysis, no differences in operation would occur in decimated data

analysis.

In Test 6C1, the rate squared term was successfully added to the system model. Once

added, the filter correctly determined the true values of the bias, scale factor, and rate

squared terms, as well as the measurement noise a. In Test 6C2, the trend term was

added, and again all noise parameters were determined accurately. In Test 6C3, the filter

identified the trend, as well as the periodic noise component. The filter located the

correct aliased frequency of 6.25 Hz, and determined that most of the periodic noise was

at this frequency. Therefore, only the sine and cosine estimates at 6.25 Hz are presented

in Table 6.2. The estimates of the other identified frequency, 6.2378 Hz, were of the



order 10-3, and the covariances of these estimates were also of this magnitude. For Test

6C4, the filter accurately estimated the proper values for the bias, scale factor and

measurement noise standard deviation. Plots of these tests are not included, but would

appear similar to those presented in Chapter 4.

Table 6.2. Results of Reduced Data Analysis Filter Verification

Test True Model Actual Values Initial Values Final Estimates

6C1 Bias 1.1000 0.0000 1.0975 ± 1.96e-3

Scale Factor 0.0150 0.0000 0.0151 ± 4.36e-5

Rate Squared 1.200e-4 Not Modeled 1.205e-4 ± 6.9e-7

Measurement Noise 0.09957 1.0000 0.1006 ± 0.0065

6C2 Bias 1.1000 0.0000 1.1082 ± 0.0067

Scale Factor 0.0150 0.0000 0.0150 ± 6.20e-5

Trend 0.0200 Not Modeled 0.0197 ± 2.43e-4

Measurement Noise 0.09957 1.000 0.0999 ± 0.0065

6C3 Bias 1.1000 0.0000 1.1201 ± 0.0154

Scale Factor 0.0150 0.0000 0.0150 ± 6.5e-5

Trend 0.0200 Not Modeled 0.0193 ± 4.49e-4

Sine - 1206.25 Hz 0.2500 Not Modeled 0.2201 ± 0.0079

Cosine - 1206.25 Hz Not Modeled Not Modeled -0.0923 ± 0.0079

Measurement Noise 0.09957 1.0000 0.09907 ± 0.0065

6C4 Bias 1.1000 0.0000 1.0984 ± 0.0012

Scale Factor 0.0150 0.0000 0.0150 ± 2.81e-5

Measurement Noise 0.07468 1.0000 0.0754 ± 0.0049

6.3.3 Comparison of Reduced Data Analysis Filter with Kalman Filter

Once the behavior of the reduced data analysis filter was verified, a comparison was

made with the performance of a traditional Kalman filter. Each of the data sets in Table

6.2 was also analyzed by a Kalman filter, and a comparison of the performances for each

filter are presented in Table 6.3. The four tests examined the performance of each filter

for unmodeled trend terms, unmodeled periodic noise, unmodeled rate squared terms, and

an inadequate measurement noise model.

For Test 6C1, the reduced data analysis filter performed significantly better than the

Kalman filter. With the adaptive filter, the bias estimate is closer to the true value, and

the innovation sequence RMS for the adaptive filter is half the RMS of the Kalman filter.



Also, the rate squared term was identified in the adaptive filter, it was never modeled in

the Kalman filter. If the a posteriori residual was calculated, the adaptive filter RMS

would be significantly lower than that of the Kalman filter. The a posteriori residual is

the difference between the measured and expected values at each data point, based on the

final state vector estimates.

For Test 6C2, the trend term is unmodeled in the Kalman filter. Again, the

innovation sequence RMS is higher for the Kalman filter. The uncertainty of the bias

estimate in the Kalman filter is about 0.0015. This uncertainty means that the estimate

cannot converge more rapidly to the correct estimate than this value. In fact, the plot of

the bias estimate in Figure 6.7 shows that the bias estimate was accounting for the trend

term. However, in Figure 6.8, the adaptive filter bias estimate is unaffected by the trend

in the data, once the final system model had been determined. The adaptive filter is a

better filter not only because it removes the time dependence of the estimates by

modeling for trend, but also because it determines the true model of the system.

In Test 6C3, neither the trend nor the periodic noise are modeled by the Kalman filter.

This mismodeling of the state vector in the Kalman filter results in poor estimates of both

the bias and the scale factor. While the adaptive filter estimates for all the state

parameters are accurate to within a standard deviation, the Kalman filter estimates are

several standard deviations away from the true system values. Also, for the Kalman

filter, the innovation sequence RMS is twice as large as the RMS for the adaptive filter.

Inadequate information about the measurement noise standard deviation was

examined in Test 6C4. In this test, the Kalman filter performed as well as the reduced

data analysis filter. This test demonstrated that the reduced data analysis filter provides

performance at least equal to that of a Kalman filter.



Table 6.3 Kalman Filter versus Reduced Data Analysis Filter

Test Actual Model Kalman Filter Reduced Data Analysis Filter

# Terms Values Initial Values Estimates Initial Values Estimates

6C1 Bias 1.1000 0.0000 1.3495 ± 1.491e-3 0.0000 1.0975 ± 1.96e-3

Scale Factor 0.0150 0.0000 0.0150 ± 3.26e-5 0.0000 0.0151 ± 4.36e-5

Rate Squared 1.200e-4 Not Modeled Not Modeled Not Modeled 1.205e-4 ± 6.9e-7

Msmt. Noise 0.09957 0.1000* Not Estimated 1.0000 0.1006 ± 0.0065

Innov. Seq. RMS - 0.4142 - 0.2110

6C2 Bias 1.1000 0.0000 1.5484 ± 1.491e-3 0.0000 1.1082 ± 0.0067

Scale Factor 0.0150 0.0000 0.0109 ± 3.25e-5 0.0000 0.0150 ± 6.20e-5

Trend 0.0200 Not Modeled Not Modeled Not Modeled 0.0197 ± 2.43e-4

Msmt. Noise 0.09957 0.1000 Not Estimated 1.000 0.0999 ± 0.0065

Innov. Seq. RMS -- 0.2073 - 0.1068

6C3 Bias 1.1000 0.0000 1.5486 ± 1.49e-3 0.0000 1.1201 ± 0.0154

Scale Factor 0.0150 0.0000 0.0109 ± 3.25e-5 0.0000 0.0150 ± 6.5e-5

Trend 0.0200 Not Modeled Not Modeled Not Modeled 0.0193 ± 4.49e-4

Sine - 1206.25 Hz 0.2500 Not Modeled Not Modeled Not Modeled 0.2201 ±0.0079

Msmt. Noise 0.09957 0.1000 Not Estimated 1.0000 0.0993 ± 0.0065

Innov. Seq. RMS -- 0.2734 - 0.1224

6C4 Bias 1.1000 0.0000 1.0989 0.0015 0.0000 1.0984 i±0.0012

Scale Factor 0.0150 0.0000 0.0150 ± 3.25e-5 0.0000 0.0150 ± 2.81e-5

Msmt. Noise 0.07468 0.1000 Not Estimated 1.0000 0.0754 ± 0.0049

Innov. Seq. RMS -- 0.0800 - 0.0801
*This is a reasonable estimate of the noise of the instrument, based on previous analysis.
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6.4 Conclusions on Adaptive Filters
These simulated data tests have demonstrated that both the raw data reduction and

reduced data analysis adaptive filters can improve instrument performance over the

traditional filters used for these tasks. The raw data reduction adaptive filter reduces the

standard deviation of the decimated data whether or not periodic noise exists. The

reduced data analysis adaptive filter is better than the Kalman filter for two main reasons.

When no improvement to the system model is made, the adaptive filter still determines

the true value of the measurement noise and process noise, instead of using a fixed value.

If model adaptation is necessary, the adaptive filter performs substantially better. This

improvement alone is important for determining instrument performance. In Chapter 8,

these adaptive filters will be applied to micromechanical instrument data in order to

improve the characterization of instrument performance.
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Chapter 7

Micromechanical Inertial Instruments

7.1 Introduction
Micromechanical inertial instruments are inertial instruments such as accelerometers

and gyroscopes that are fabricated on a silicon wafer. Because the fabrication techniques

are similar to those used for computer chip production, the required electronics can be

placed on the same chip as the inertial instrument, minimizing off-chip processing. These

instruments can be mass produced, resulting in uniformity, low cost, small size, low

readout noise and high production rates. Also, because these instruments are solid state,

they can withstand large g-forces without failing. However, these instruments, because

of their minute size, have a wide range of noise sources. Brownian motion, as well as

pressure variations, have a significant effect on these instruments.

7.2 Micromechanical Gyroscopes
Presently, several forms of micromechanical gyroscopes are being developed. Each

is a unique attempt to improve upon the performance limits of the previous gyroscope.

The vibratory micromechanical gyroscope demonstrated the concept of micromechanical

gyroscopes, but the performance was not adequate. The inverted gyroscope design
improved on the vibratory gyro with subtle changes in operation. The tuning fork
gyroscope is a fundamentally different approach to the same problem.

7.2.1 Vibratory Gyroscope

The basic vibratory micromechanical gyroscope is fabricated from a single silicon

block, with gold electroplate as an inertial element, as shown in Figure 7.1. Two

torsional flexures connect the outer gimbal to the case. Similarly, two flexures connect



the inner gimbal to the outer gimbal. These two orthogonal sets of flexures are weak in

torsion, but stiff in all other directions [12,13].
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Figure 7.1. Vibratory Micromechanical Gyroscope

Torquing electrodes embedded in the chip vibrate the outer gimbal, creating an

oscillatory angular momentum vector, H, about the Vibratory Driven Axis, shown in

Figure 7.1. In order to achieve maximum resolution, the outer gimbal is vibrated at the

resonant frequency of the inner gimbal. If there is an angular rate about the input axis,

the inner gimbal will oscillate about its flexures at a magnitude proportional to the

angular rate about the input axis. Readout electrodes, mounted above the inner gimbal,

detect a change in capacitance as the inner gimbal oscillates. By sensing this change in

capacitance, the angular rate about the input axis can be determined using Equation 7.1

[12,13].

Ix + Iy - Iz  (p0KQ

=[I x (n

where,
0 = the output angle of the inner gimbal

Ij = moment of inertia about the j axis

(7.1)



(P0 = the drive angle of the outer gimbal

Q = the mechanical resonant quality factor
Q = the angular input rate to the gyroscope

and,

on = the natural frequency of the inner gimbal.

Closed loop operation is achieved by torquing the inner gimbal back to a null position.

This gyro has been designed, built and tested successfully. One major drawback to this

design is the presence of noise.

Open loop operation of a typical micromechanical gyroscope is shown in Figure 7.2.*

The inertial element is driven at its natural frequency, and a 100 kHz carrier signal is

applied to the output axis. Motion from mass imbalance or rate input causes a

modulation of this 100 kHz signal at the resonant frequency of the gyro element. If the

resonant frequency of the element is 30 kHz, then the modulated frequencies are 70 kHz
and 130 kHz. These carrier signals then pass through the preamp, postamp and various

filters. At the carrier demodulation, the 100 kHz signal is removed, and the resulting
frequency components are 30 kHz, 170 kHz and 230 kHz. The low pass filter removes

the 170 kHz and 230 kHz signals. The remaining 30 kHz signal is then demodulated at

the natural frequency, resulting in a D.C. signal and a 60 kHz signal. Next, a low pass

filter allows only the D.C. signal to pass. This D.C. signal is the rate sensed by the

gyroscope. For closed loop operation, this signal would be remodulated and applied to
rebalance the capacitor plates.

Carrier

(30 kHz, 170 kHz, 230 kHz) (D.C., 60 kHz)

filters
I I

Gyro I o mt Carrier A '
Demod ' 'A I

S(D.C.)
(70 kHz, 130 kHz) (30 kHz)

Figure 7.2. Schematic of Micromechanical Gyroscope Operation

* Schematic provided by Anthony Kourepenis.



7.2.2 Noise Sources

One major source of error is the stability of the scale factor that converts the gyro

output from volts to deg/hr. Presently, the scale factor is so large (-106 deg/hr/volt) that

the output voltage reading must be accurate to gtvolts in order to achieve an accuracy of

less than 10 deg/hr. A preamplifier was added to the circuit to reduce this problem.

However, more improvement is necessary in this area before the gyroscope performance

is satisfactory.
Because of the minute size of this instrument, Brownian motion and damping are

forces that significantly limit gyroscope performance [3,40]. A method of isolating the

gyroscope in a vacuum is needed in order to reduce the impact of these effects. Once this

problem has been solved, the performance of the gyroscope will greatly improve because

the Q (Equation 7.1) will increase, raising the magnitude of the inner gimbal oscillation

for a given input rate. The data analysis adaptive filter can adjust for noise sources such

as Brownian motion and pressure sensitivity. Other contributing noise sources are

preamplifier noise and feedback capacitance. Feedback capacitance is a significant

problem because the capacitance change sensed by the electrodes is on the order of tens

of attofarads (10-18 Farads). However, thermal variations have a very small effect on

these instruments.
Bandwidth is an important component of the gyroscope performance [3,40]. The

readout noise is proportional to the bandwidth, and the mechanical noise of the

instrument is proportional to the square root of the bandwidth. In order to improve

instrument performance, the noise due to bandwidth must be reduced. Improvement at

higher bandwidths has been demonstrated in Chapter 6, using the raw data reduction
adaptive filter.

Another significant noise source is random walk [3,40]. Using the maximum

likelihood estimator, the random walk parameter can be adequately determined, and more

accurate estimates of the system model may be obtained.

7.2.3 Inverted Gyroscope
The inverted gyroscope design is an attempt to improve the vibratory gyroscope

performance. This design is very similar to the basic vibratory gyroscope, but the method

of operation is different. In this gyroscope, the inner gimbal is vibrated at the natural

frequency of the outer gimbal. When an inertial rate is applied about the input axis of the

gyro, the outer gimbal will oscillate with a magnitude proportional to the input rate.

Because the outer gimbal oscillates to generate output, the oscillations are relative to a

fixed case, providing a more stable and more accurate output than the vibratory



gyroscope. The scale factor of the inverted gyro is four times less than that of the original

micromechanical gyroscope (360,000 deg/hr/volt vs. 1,200,000 deg/hr/volt). The

inverted gyroscope design is affected by the same noise sources as the original design.

7.2.4 Tuning Fork Gyroscope

The third design, expected to be the most accurate, is the tuning fork gyroscope. This

design exploits the Coriolis force in order to detect input rates. In this design, a tuning

fork is constructed on a silicon wafer, as shown in Figure 7.3. The prongs of the fork are

vibrated 1800 out of phase at a given frequency, creating an oscillating velocity vector at

the end of each prong.

Figure 7.3. Schematic of Tuning Fork Gyroscope

If an angular rate is applied along the axis of the tuning fork, the Coriolis force bends

the prongs of the fork in the direction perpendicular to the plane of the gyroscope as

shown in Figure 7.4. Using electrodes above and below the tuning fork to measure

capacitance, the deflection of the prongs can be measured and the input rate to the gyro

can be calculated.
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Figure 7.4. Tuning Fork Gyro Operation

The Coriolis force is proportional to the angular rate and velocity at a given time, as
shown in Equation 7.2.

F = 2o0x v (7.2)
where,

F = the Coriolis force about the input axis

to = the input rate

and,

v = velocity of the prong.

Using beam theory, the deflection measured at the end of the tuning fork can be

converted into a force applied at the end of the beam. With a known velocity vector, the
angular rate about the input axis of the tuning fork gyro can be determined.

7.3 Conclusions
Many of the noise sources that affect micromechanical gyroscopes can be modeled

for use in an adaptive Kalman filter. The maximum likelihood estimator can determine
the random walk of the instrument, as well as the measurement noise a. Pressure

sensitivities may also be included in the system model with the correlation method.
Bandwidth of the instrument may be increased by using the raw data reduction adaptive
filter, which has shown improvement at higher bandwidths over the triangular filter.
Brownian motion may be modeled for using the maximum likelihood estimator, as

discussed by Matthew Skeen in his thesis, Maximum Likelihood Estimation of Fractional

Brownian Motion and Markov Noise Parameters [43].
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Chapter 8

Micromechanical Gyroscope Data Analysis

8.1 Approach
Data from different micromechanical inertial instruments and from various test

procedures were analyzed to demonstrate that both of the adaptive filters improve the

estimates of instrument performance. These analyses were compared with those of the

traditional triangular and Kalman filters. Data was collected from both the original

micromechanical design and from the inverted gyro design. The tests that were

conducted include stationary drift tests, commanded rate tests and pressure variation tests;

sampling rates were also varied throughout these tests. For all of these tests, six channels

of data were taken: rate input, gyro output, fixture temperature, quadrature, pump

pressure, and gyro temperature.

8.2 Stationary Drift Test with Original Gyro Design, Test 8A
For Test 8A, data was collected at 3 Hz for 16 hours in a stationary drift test with IA

perpendicular to the earth's axis using the original vibratory gyroscope design. The gyro

output was analyzed using both raw data reduction and reduced data analysis.

8.2.1 Raw Data Reduction of3 Hz Stationary Drift Test

A PSD of the gyro output was constructed for Test 8A. As shown in Figure 8.1, no

significant frequency component exists in this output. The gyro output was decimated at

various bandwidths, ranging from 0.002 Hz to 0.033 Hz, using both the raw data

reduction adaptive filter and the triangular filter (Test 8A1). Figure 8.2 presents a

comparison of the standard deviations of the decimated data at various bandwidths (in

deg/hr, using a conversion factor of 1.23887 x 106 deg/hr/volt). The dashed line

represents the triangular filter standard deviations, and the solid line represents the raw



data reduction adaptive filter standard deviations. The data reduction adaptive filter

performed, on average, 10 percent better than the triangular filter. The greatest

improvement was 403 deg/hr at a bandwidth of 0.033 Hz.

Figure 8.1. Power Spectral Density for Test 8A
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Figure 8.2. Standard Deviation vs. Bandwidth for Test 8A1
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8.2.2 Reduced Data Analysis of 3 Hz Stationary Drift Test
After the data decimation analysis, the gyro output was then analyzed using the

reduced data analysis adaptive filter with an estimation interval of 1000 points. Because
this is a stationary drift test, the bias term cannot be distinguished from the rate dependent

terms. Therefore, in Test 8A2, only the bias and the measurement noise standard

deviation were estimated; a random walk parameter was included in a second analysis of

this data, Test 8A3. This data was then analyzed using a Kalman filter, Test 8A4, with a

given measurement noise standard deviation of 123,887 deg/hr. In Tables 8.1 through

8.3, these results are compared, and the innovation sequence RMS is presented. This data

has been converted to deg/hr using a conversion factor of 1.23887 x 106 deg/hr/volt.

Table 8.1. Data Analysis on Stationary Drift Data, Test 8A2

Term Adaptive Kalman Filter

(deg/hr) Initial Final

Mean 0.0000 -449,164 ± 48

omeasurement 1,238,870 19,377 ± 438

Random Walk (*/hrNs) Not Modeled Not Estimated

Innov. Seq. RMS -- 19,447

Table 8.2. Data Analysis on Stationary Drift Data, Test 8A3

Term Adaptive Kalman Filter

(deg/hr) Initial Final

Mean 0.0000 -448,455 ± 307

omeasurement 1,238,870 19,323 ± 437

Random Walk (*/hrNs) 12,388.7 451 ± 726

Innov. Seq. RMS - 19,451

Table 8.3. Data Analysis on Stationary Drift Data, Test 8A4

Term Traditional Kalman Filter

(deg/hr) Initial Final

Mean 0.0000 -449,093 ± 303

omeasurement 123,887 123,887

Random Walk (*hrN's) Not Modeled Not Estimated

Innov. Seq. RMS - 19,452
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The adaptive filter improved the standard deviation of the estimate of the mean by 84
percent over the traditional Kalman filter. Table 8.2 suggests that there is no random
walk in the data over the 16 hour time span, because the standard deviation of the random
walk parameter is almost twice as large as the estimate itself.

8.3 Scale Factor Test with Inverted Gyroscope Design, Test 8B
The inverted gyroscope design was used for the second test, Test 8B. Data was

collected at 1 Hz over 95 minutes for a commanded rate test, with a commanded rate
profile of 100 deg/sec to -100 deg/sec in 10 deg/sec increments, as shown in Figure 8.3.
Figure 8.4 shows the difficulties encountered during data acquisition. The bias term of
the gyroscope jumped dramatically (around 1.5 volts) near 3900 seconds. This
unexpected shift in bias encouraged the development of the fault tolerant algorithm that
was discussed in Chapter 6. This data set was used to successfully demonstrate that the
fault tolerant algorithm is capable of detecting and accounting for radical jumps in system
behavior.

Raw data reduction was not done for this data because the comparison used in this
thesis, the standard deviation, loses it meaning in a commanded rate test. In order to
properly determine the standard deviation of the reduced data, each segment must be
examined individually, and this procedure is not necessary for demonstrating the
effectiveness of the raw data reduction adaptive filter.

Figure 8.3. Commanded Rate Profile for Test 8B
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Figure 8.4. Inverted Gyro Output for Test 8B

8.3.1 Reduced Data Analysis of Commanded Rate Test

When this data was analyzed using the reduced data analysis filter, the fault tolerant

algorithm shifted the bias estimate at 3900 seconds, as expected. A comparison between
the reduced data analysis adaptive filter and Kalman filter is shown in Table 8.4. All of
the results in this table are given in volts. No attempt is made to convert the voltage

output into deg/hr because of the noise in the test and the large bias shift. In later tests

with better data, the results will be presented in deg/hr.

Table 8.4. Results for Commanded Rate Test, Test 8B

Parameter Kalman Filter, Test 8B1 Adaptive Filter, Test 8B2

(Volts) Initial Value Final Estimate Initial Value Final Estimate
Bias 0.0000 -0.9340 ± 1.3e-3 0.0000 -1.9412 ± 7.3e-3

Scale Factor 0.0000 0.0124 ± 3.1e-5 0.0000 6.23e-3 ± 1.7e-4

Msmt Noise 0.1000 0.1000 1.0000 0.0656 ± 0.0052

Innov. RMS - 0.6246 - 0.1553

Figure 8.5 shows the innovation sequence for the traditional Kalman filter. This filter

is unable to account for the jump in the bias term, and the innovation sequence reflects

the poor bias estimate. Figure 8.6 shows the innovation sequence versus time for the
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reduced data analysis adaptive filter. With this filter, the bias estimate quickly adjusts for
the jump in the data, and the innovation sequence quickly returns to a white noise
sequence.

1
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Figure 8.5. Innovation Sequence of Kalman Filter for Test 8B1

Figure 8.6. Innovation Sequence of Adaptive Filter for Test 8B2
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Figure 8.8. Bias Estimate of Adaptive Filter for Test 8B2
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As shown in Figures 8.5 and 8.6, the adaptive filter was able to compensate for the
jump in the gyro output. While the innovation sequence of the Kalman filter in Figure
8.5 is erratic after the bias jump, the adaptive filter innovation sequence, in Figure 8.6,
has adjusted for this bias shift. Figures 8.7 and 8.8 show that the adaptive filter bias
estimate (Figure 8.8) successfully shifted to the new value of the bias, while the bias
estimate of the Kalman filter (Figure 8.7) gradually shifted towards the new bias estimate.

8.4 Stationary Drift Test with Inverted Design, Test 8C
For the third test, Test 8C, the motivation was to examine the performance of the raw

data reduction filter to identify and model periodic noise. This concept was explored in
detail in Section 5.4.2. To obtain data with periodic noise, the data acquisition system
was connected to point A in Figure 7.2. Since the data is taken after the drive frequency
demodulation, but before the baseband filter, there will be a high frequency noise signal
equal to twice the drive frequency of the inertial element of the gyroscope. For this
inverted gyroscope, the drive frequency is 2500 Hz, so that the high frequency noise is at
5000 Hz. The data was sampled at 1500 Hz, which causes the 5000 Hz signal to be
aliased to a 500 Hz signal. This stationary drift test was conducted for 6 seconds. Figure
8.9 shows the PSD of the original signal from this test. This data set was analyzed using
both the raw data reduction adaptive filter and triangular filter.

Figure 8.9. PSD of Gyro Output for Stationary Drift Test, Test 8C
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8.4.1 Raw Data Reduction of 1500 Hz Stationary Drift Test

For Test 8C1, the data was decimated using both the raw data reduction adaptive filter

and the triangular filter at various bandwidths. Figure 8.10 is a plot of the log of the

standard deviations in deg/hr for both filters as a function of bandwidth. The solid line

represents the adaptive filter;, the dashed line represents the triangular filter. As the

bandwidth increases, the adaptive filter has a lower standard deviation that achieves a

51.38 percent improvement at 10.71 Hz bandwidth, which, using a conversion factor of

360,000 deg/hr/volt, gives an improvement of about 3620 deg/hr. Larger bandwidths are

not possible with the adaptive filter because there are too few data points (less than 70

points) in an estimation interval, and the filter cannot converge to the true estimate of the

mean in such a short interval.

104

........... .. ....... ...... .......

103
0 2 4 6 8 10 12

Bandwidth (Hz)

Figure 8.10. Standard Deviation vs. Bandwidth for Test 8C1

8.4.2 Reduced Data Analysis of 1500 Hz Stationary Drift Test

After completing the raw data reduction, the data set was analyzed using two state

vector estimators: the reduced data analysis adaptive filter and the Kalman filter.

Because this was a stationary drift test, only the mean of the data could be estimated.

Two tests were run using the reduced data analysis adaptive filter with an estimation

interval of 100 points: one estimating measurement noise a (Test 8C2), and one

estimating both the noise a and the random walk parameter (Test 8C3). Table 8.5

through Table 8.7 present the results of these analyses. In the first two tests, frequency
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components were removed at multiple frequencies. The reason for the wide range of

frequency components most likely has to do with frequency beating that results from the

inability of the filter to identify a frequency component exactly. In Test 8C4, a Kalman

filter was used, with a given measurement noise standard deviation of 36,000 deg/hr.

Table 8.5. Data Analysis on High Frequency Drift Data, Test 8C2

Term Reduced Data Analysis Filter

(deg/hr) Initial Final

Mean 0.0000 37,404 ± 1008

(measurement 360,000 26,388 ± 1836

Random Walk Not Modeled Not Estimated

Freq. ID (Hz) 15.93, 478.6, 494.8, 510.3, 526.6

Innov. Seq. RMS -- 31,428

Table 8.6. Data Analysis on High Frequency Drift Data, Test 8C3

Term Reduced Data Analysis Filter

(deg/hr) Initial Final

Mean 0.0000 38,268 ± 2664

omeasurement 360,000 27,180 ± 1944

Random Walk 3600 11,628 ± 20,988

Freq. ID (Hz) 16.11, 478.64, 494.75, 510.31

Innov. Seq. RMS - 31,752

Table 8.7. Data Analysis on High Frequency Drift Data, Test 8C4

Term Traditional Kalman Filter

(deg/hr) Initial Final

Mean 0.0000 36,432 ± 396

omeasurement 36,000 36,000

Random Walk Not Modeled Not Estimated

Freq. ID (Hz) Not Estimated

Innov. Seq. RMS - 53,496

These three tables show that the traditional Kalman filter performs non-optimally

when unmodeled noises, such as periodic noise, exist in the signal. The periodic noise

sources could be removed during raw data reduction, but if a periodic signal is not

identified and removed during this phase of data analysis, the Kalman filter will give non-
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optimal results. The RMS of the innovation sequence in Test 8C4 is almost twice as

large as those in Tests 8C2 and 8C3. Test 8C2 and Test 8C3 have nearly identical

performance, suggesting that, over this time span of 6 seconds, random walk is not

identifiable. The large uncertainty in the random walk parameter estimate also suggests

that random walk does not exist.

8.5 Pressure Variation Test for Inverted Design
For Test 8D, the pressure around the gyroscope varied because of a leak. The test

itself involved commanded rates at 100 deg/sec, 90 deg/sec and 80 deg/sec with 0 deg/sec

rates between each of the nonzero commanded rates. Data was taken at 1 Hz for 12.5

minutes, as shown in Figure 8.11.
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Figure 8.11. Gyroscope Output for Test 8D

Because of the current setup of the gyroscope, however, pressure readings near the

gyroscope cannot be taken accurately; the pressure is on the order of millitorr, much

smaller than the pressure reading accuracy. Therefore, the pressure variation was

modeled as linearly dependent on time. The slope for this approximation is unknown

because of the limits of the measuring instruments. With this linear model, time was used

to test whether an additional pressure-dependent term could be added to the system

model. The gyro output was analyzed using both the reduced data analysis adaptive filter

and the traditional Kalman filter. The reduced data analysis adaptive filter successfully
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identified the time/pressure dependence of the instrument, and adjusted the system model

accordingly. Also, the adaptive filter determined the correct value for the measurement

noise, using an estimation interval of 100 points. The results from these two test runs are

compared in Table 8.8, using a conversion factor of 360,000 deg/hr/volt.

Table 8.8. Results for Pressure Variation Test, Test 8D

Parameter Kalman Filter, Test 8D 1 Adaptive Filter, Test 8D2

(deg/hr) Initial Value Final Estimate Initial Value Final Estimate

Bias 0.0000 -89,450± 18900 0.0000 42,118 ± 9166

Scale Factor 0.0000 3174 ± 30 0.0000 3431 ± 60

Press. (o/hr/s) Not Modeled Not Modeled Not Modeled -405 ± 17

Msmt Noise 36,000 36,000 1.0000 55,388 ± 1783

Innov. RMS - 92,469 - 52,145

As Table 8.8 shows, the bias estimate for the Kalman filter is very poor, and the

Kalman filter innovation sequence RMS is almost twice as large as that of the reduced

data analysis adaptive filter. The adaptive filter added the pressure sensitivity/trend term

at the first interval, when the inclusion of the term improved the RMS of the innovation

sequence by 60.2 percent. Figure 8.12 shows the innovation sequence before (dashed

line) and after (solid line) the pressure sensitivity/trend term was added to the model.
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Figure 8.12. Modified Innovation Sequence, Test 8D2
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Although the pressure contributes significantly to the performance of the gyroscope,

the final design of the gyroscope will be sealed in a vacuum, and therefore unaffected by
variations in pressure.

8.6 Commanded Rate Test for Original Design
For this test, Test 8E, the original micromechanical gyro design was given

commanded rates from +100 deg/sec to -100 deg/sec in 10 deg/sec increments four times.

This data was sampled at 1 Hz over a 16 hour period. The first data analysis test done,
Test 8E1, used a traditional Kalman filter to determine the bias and scale factor. Test 8E2
was conducted with the reduced data analysis adaptive filter, testing for a rate squared

term and the measurement noise standard deviation using an estimation interval of 200

points. Table 8.9 shows a comparison between Test 8E1 and Test 8E2. The results have

been converted to deg/hr using a conversion factor of 1.23887 x 106 deg/hr/volt. The

addition of the rate squared term improved the innovation sequence by 5.73 percent. This

improvement is very close to the tolerance given, but the final estimate of the rate squared

term suggests that it may exist.

Table 8.9. Results for Commanded Rate Test, Test 8E

Parameter Kalman Filter, Test 8E1 Adaptive Filter, Test 8E2

(deg/hr) Initial Value Final Estimate Initial Value Final Estimate

Bias 0.0000 -447,346 ± 516 0.0000 -447,778 ± 98

Scale Factor 0.0000 3587 ± 11.7 0.0000 3588 ± 2.23

Rate Squared Not Modeled Not Modeled Not Modeled 0.2360 ± 0.0337

Msmt Noise 123,887 123,887 1,238,870 20,934 ± 1671

Innov. RMS - 21,416 - 21,577

Residual RMS - 21,294 - 21,286

The Residual RMS mentioned in Table 8.9 is the a posteriori residual that was

discussed in Section 6.3.3. Table 8.9 demonstrates that the reduced data analysis

adaptive filter can detect terms that have a very slight affect on the innovation sequence.

At the highest rate, 100 deg/sec, the rate squared term contributes only 2360 deg/hr to the

instrument, which has a noise of about 21,000 deg/hr. This slight improvement, however,

is significant to the instrument's performance.

If the given measurement noise was an order of magnitude smaller, then the Kalman

filter's performance would approach that of the adaptive filter, except for the rate squared
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term. The high given measurement a does demonstrate that the Kalman filter is limited

by its given parameters, whereas the adaptive filter can adjust to the true values.

For Test 8E3, the temperature was used as the potential mismodeled term. The filter

did not identify this term as significant. This result is not surprising since the

performance of the micromechanical instruments has not been shown to be dependent on

temperature. The results for this test are not shown.

8.7 Conclusions
Characterization of micromechanical inertial instruments can be improved using these

adaptive filters. For raw data reduction, improvements from 10 to 50 percent over the

triangular filter have been achieved. With the reduced data analysis adaptive filter, both a

pressure dependent and a rate squared dependent term have been identified. Also, the

measurement noise of the instrument can be determined, even if it is initially unknown.

The reduced data analysis filter provides information as least as accurate as the traditional

Kalman filter, and it should be used for data analysis.
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Chapter 9

Conclusions

9.1 Results
Although the Kalman filter is an efficient estimator, it has certain limitations to its

performance. If the given state vector is inadequate, then suboptimal results will be

obtained. Also, the system parameters are constant in a Kalman filter. To overcome the

limitations of the Kalman filter, adaptive filter concepts have been used to derive and

develop two adaptive filters.

A maximum likelihood estimator has been developed for parameter estimation. This

estimator is capable of accurate estimates of both Q and R, as well as estimating time

varying parameters. A state vector determination filter has been developed using

correlation methods. This filter is effective in online location and inclusion in the state

vector of previously unmodeled terms. Trend, pressure and acceleration dependent terms

have been identified and included in the state vector. Power spectral density analysis is

used for periodic noise identification. This filter has successfully identified unmodeled

frequency components in both simulated and real data.

These three concepts have been combined into two adaptive filters; one for raw data

reduction, the other for reduced data analysis. These filters improve the analysis over

traditional methods, including triangular filters and Kalman filters. The raw data

reduction adaptive filter has improved data decimation by as much as 50 percent in real

micromechanical gyroscope output. The reduced data analysis filter is quite effective in

identifying unmodeled terms. This adaptive filter has identified both a pressure

sensitivity of the micromechanical gyroscope, as well as a rate squared dependence. This

filter has also accurately estimated the measurement noise standard deviation of various

instruments. Random walk was found to not be a significant error source in any of the
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instruments analyzed. Because of their versatility and performance accuracy, both of

these filters should be considered for use in future data analysis.

9.2 Implementation of Adaptive Filters
Both of these filters can be used online. For the 3 Hertz drift data, the filters could

easily process this data online; it took about 5 hours for each filter to analysis 16 hours of

data on a Macintosh IIfx. However, for the 1500 Hz data, online implementation is not

possible. Future research is necessary to determine the capabilities of these filters for real

time applications.

9.3 Recommendations for Future Work
There is plenty of additional work that may be done to improve both of these adaptive

filters. The MatlabTM xcorr function that was used to generate the correlation sequences

can probably be improved. For large data sets, computing the correlations was very

burdensome; a more efficient algorithm would greatly improve the online capabilities of

this filter. This algorithm could be implemented with minimum effort. Also, amplitude

tolerances could be used for the PSD analysis.

Also, by using parallel processors, this filter could be implemented online. By using

three processors, one filter could perform the Kalman filter and maximum likelihood

estimator equations to generate the innovation sequence, another filter could determine

the PSD of this innovation sequence, and the third processor could test additional terms

for inclusion in the system model. With parallel processing, the filter outputs would not

be delayed by either the PSD or correlation methods; real time output would be

generated, and the model could be adapted as the secondary processors determined a new

system model.

The fault tolerant algorithm introduced in Chapter 6 should be more fully developed.

This algorithm, though effective, is very simple, and a fault tolerant algorithm similar to

that presented by Alan Willsky and Harold Jones in "A Generalized Likelihood Ratio

Approach to the Detection and Estimation of Jumps in Linear Systems" [51] should be

included in this filter.
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