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Abstract

A three-dimensional stability analysis of the particle bed nuclear reactor

using perturbation theory is detailed for a plane-parallel approximation of a particle

bed fuel element with hydrogen as the propellant. With the introduction of normal

mode perturbations to the flow variables, the governing equations of the flow through

the particle bed are solved to determine the boundary for stable operation as a

function of particle Re and bed inlet-to-outlet temperature ratio. Using this

technique, the stability boundary with no bed thermal conductivity is found to be

qualitatively similar to that calculated by previous simplified analyses that assume

parallel flow through the bed. With the addition of 2.5 W/mK of bed conductivity,

the model indicates increased stability for the low Re regime(Re<30). Finally, with

the introduction of frits, significant stabilization is indicated for this low Re regime.

In all cases examined, the nominal bed operating point of 40 GW/m 3 is found to lie

in a stable region.
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Chapter 1

Introduction

The development of nuclear thermal propulsion(NTP) for space applications

began with the ROVER/NERVA program in the mid 1950's. This program resulted in

the design, construction, and testing of 20 reactors and lasted until 1973 at which point

funding was stopped. Interest in NTP was rekindled in 1990 with President George

Bush's Space Exploration Initiative(SEI) which included among its goals a manned

mission to Mars by the year 2016. For such a mission nuclear propulsion is highly

advantageous and several designs have been proposed including solid core

reactors(similar to the NERVA design), gaseous nuclear rockets, and particle bed

reactors(the focus of this work).

The basic principle of NTP is the conversion of thermal energy into kinetic

energy. To accomplish this, hydrogen propellant at high pressure(30-60 atm) is passed

through a nuclear reactor core where it is heated to high temperature(2000-3000 K) and

exhausted at high speed through a converging-diverging nozzle. A schematic of a generic

design is given in Figure 1.1. By employing such a design, many advantages over

chemical and other forms of propulsion may be realized. The high temperatures to

which the propellant(H2) is raised and its low molecular weight give Isp 's in the 850 -

1000 s range resulting in shorter trip time, which in the case of manned missions is

paramount for minimizing crew exposure to background radiation encountered in space.



TURBOPUMP

SHIELDING

NUCLEAR
REACTOR

ENERGY

KINETIC ENERGY

Figure 1.1 Schematic diagram of a generic nuclear thermal thruster.
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Also, the large power density possible with hydrogen cooling allows for engine designs

with high thrust- to-weight ratios(4-20 neglecting shielding). With thrust-to-weight ratios

in this range, reductions in initial mass to low earth orbit for lunar and martian missions

of 35% and 50-65% respectively may be realized. 1

1.1 The Particle Bed Reactor

One of the more promising designs for fulfilling the SEI goals is the particle bed

reactor(PBR) which has been the focus of much research recently. A schematic diagram

of a PBR thruster is shown in Figure 1.2. The reactor itself consists of a set of cylindrical

fuel elements encased in hexagonal moderator blocks of graphite(beryllium in some

designs) assembled within the chamber of the thruster. Hydrogen is introduced into the

chamber at high pressure, distributed to the various fuel elements through the inlet

plenum, heated within the fuel elements, and exhausted at high velocity via the outlet

plenum through a converging-diverging nozzle.

A cut-away diagram of a typical fuel element is shown in Figure 1.3 with a

similar element shown in cross section in Figure 1.4. From Figure 1.3, the hydrogen

passes through inlet pipes within the moderator material and is introduced uniformly into

each element via the inlet plenum. A typical element (See Figure 1.4) consists of a

number of spherical fuel particles packed within the annular region between porous cold

and hot frits. The fuel particles are nominally 0.5 mm in diameter and consist of a core of

UC 2 surrounded by successive layers of pyrolitic carbon(PyC) and ZrC. The hydrogen

passes radially through the cold frit at low temperature, is heated by the energy release

from the fuel particles, passes through the hot frit, and exits axially down the central

channel of the fuel element into the outlet plenum.
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Figure 1.2 Schematic diagram of a PBR thruster.
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Figure 1.3 Cut-away diagram of a typical fuel element. 2

The PBR offers several advantages over other reactor designs. The small size of

the particles provides a large surface area for heat transfer to the propellant which in turn

gives high power densities(20-80 GW/m 3 ). These large power densities allow for the

design of small, low-mass reactors which are easier to shield(50% less shielding than

NERVA) and allow for redundant engines for higher system reliability. The direct

particle cooling by the propellant gives high exit gas temperatures(>3000 K) while the

plenum nature of the design maintains the moderator and most of the structural elements
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at propellant inlet temperatures(<300 K). Compared to an updated NERVA design, the

PBR offers similar thrust and Isp with much smaller size and mass(See Table 1.1).

Table 1.1 Operating Parameters for PBR vs. NERVA Composite(from Nuclear

Thermal Propulsion Workshop-July, 1990).

PBR NERVA

BASELINE 3 COMPOSITE 4

Thrust(N) 334,000 334,000

Specific Impulse(s) 971 925

Thrust/Weight w/o shield(N/kg) 20 4

Pressure(atm) 60 60

Gas Exit Temperature(K) 3200 2700

Power Density(GW/m 3) 40 1.5

With all the benefits listed above, a possible problem with the PBR design is flow

instability during operation. A plausible mode of instability may be envisioned in the

case of a flow perturbation. If a perturbation to the flow occurs causing a localized

reduction in propellant mass flow, the particles in this region will become hotter than

those in the bulk of the element. As the temperature rises, the viscosity of the hydrogen

will increase and consequently the resistance to flow in this region will also increase.

With increased resistance, more flow will tend to divert from this region, and the element

will experience thermal runaway until failure.

1.2 Overview

To explore the issue of stability, this work utilizes three techniques to determine

the regions of stable and unstable operation for a particle bed reactor. These include a



one-dimensional approximation(parallel stream model), a three-dimensional local

stability analysis using perturbation theory, and a complete stability analysis similar to

the local analysis including the boundary conditions on the particle bed along with the

effects of the cold and hot frits. Finally, the complete model is compared to experimental

data and conclusions and recommendations for future work are offered. The three

dimensional governing equations of flow through a parallel plane fuel element are given

in Chapter 2. Chapter 3 outlines the methods used for stability analysis, while

comparisons to experimental data and conclusions and recommendations are offered in

Chapters 4 and 5 respectively.



Chapter 2

Governing Equations for the Particle Bed Reactor

In this work the fuel element is modelled as a plane-parallel isotropic

homogeneous porous bed matrix(See Figure 2.1). The governing equations for a

compressible convective fluid passing through such an element are adapted from Prasad

et. al. 5 and presented below.

State p=pRT (2.1)

Continuity

Momentum

-a+ (pu)+ a (pv) +at ax ay

p u ap t i T)

E t ax K T)

: p av _ ap i T )
e at ay K Ti

p: aw -p i T
e t az K T

ET
Energy (pc)m -+

at
pc ua aT+ aT+ i

P I ax y az
m(a x2  a'y2 +2km ax 2 a2+

(pw) =
az

(2.2)

pb -4IVilu
K

- pblIVlv
K

pb- IV Iw
K

(2.3a)

(2.3b)

(2.3c)

(2.4)



)La

I 7-"§_0 .........
sss~ "';:;I:;:;: ~ : : : : : : : :;I:;: :;';Ci:::: i: : -: : : ~s ~~I~~~~~i::n as~n~~y~:~u~~z;a~~; ~~..~ :L -Y.:i:j: :F:: .:li:~:: I:::: :~I :: -: -:i -~: ::--:::::: :~:Z;.nn~--hX~ ~~~ ~,,, ~ ~ iX~~~~ .'.~.~:rrrrrx:::::::~:~:~:~:~::~:.:ss~:-~~~s~~ ~il~i~~~x~ ::j::i.ii:.: :::i :::::: ii~: ::::: ::j: :j:7 ::::: i::::: ::::i :::::: ::::i ;:i~ :: :; : : : ~x : : :~~ x~~ :s:~:;:.: :~s-: : : : : : : : : :::::: ;""":::~ ::~::::OY i~.~?:~ ;S~t2:f ~:;I:; \.C .
~:~:~::" :~:~:~:~:~:IL ~:~::: : ;:;,i~i~i~:~ ::s~::::~":'~5~:":'~':":-: : : : : :-X : : ... ;XZ;iX'~~ :5~5~~~

............~X1LU ...........::~::,::, ~ .......~ ~ ::::: - -:: :: -- " :" ' t: : ,I: ~ ,:r~ :~~i-Y ~i~(.~~i:~~~' :~a.. ~
ee", :: :i .r :~ -i:: ~ ~ii:r - :i:~ ~ SZ c:::~:::::

le: :;;:: :al :i~:~-: - a- 1 : ;: - : ~(~5 ~:-~:~
.~: .: x~:~~:~R:~ ~ ~ ""'"'~ %

.. ......ii

U L: :~::::'~ ~~g i::N 7. ...........x ::: :::: ::i i:: i: : : :::W. .. .. % ... ................ ....... .............5' ' ' ;.. .. .. .. ... .. ... .
I ~ :-~ :::: : -: :: i::: -:: .:: ::i :: .~ .:: ~. ::: :::: .: ~iiii~8i ~ :::::~::~~:;/ -e-le:~ X:ee.:....... ...................... :: ~ ~ i: : : ::~ :: :: s ~ : : : : :...... .......................~ :~v .. U .- : : .: " ... .... .. .. .. ... .... ..ii~ i i" ~:~':'~:~ ~j:: : : re ~ x: :~j ~ r- ~~~x ~ .......................w :x~................ ....... ::::::: :: ;;S; )~ :........................:' :~:

,:i ..~:: ~s .:. ..... ...... :ex. : ~ ~ ~ :uC M -3 Mr. ... X .)i:j: ...::::: ::: j: :j :: :j: : :: roxx ~ ~~a;::::: ;;"KO M:::::~~:~:::: iiii:i
::::: .:. :::: ::::: :::: ::: :::: ::::: :::: :::: :::: ' I .. .........:~:~ m sc

COLD
FRIT

PARTICLE
BED

r a

HOT
FRIT

Figure 2.1 Plane-parallel approximation for a PBR fuel element.

Z
'U
.jCL

m
H2

W ............~$
X . .. ... ... .. .... .... .. X.

.. .. .. .. ..... Ei'.i.' i.' '.,iiiiiii...... s.. . v..~::~~;
........ .. ~ ::~:~::..: i~".~~~I; ::: ::. :::ii :: .. :::s~~ ,iiiiii ,,,i)ii',',

: : : : :::::: :: :::: :~:~::~:~:#,~ ~ k~~~~~~~lsm::::::::~: "::' !

'"~Y

00 Y
I,:o° l - .'. i .. , .. .-.::- -.- .. .:°*. -,,T -. ::I TT: R :,-- -°- * : ,-- I-.



The above equations include the familiar fluid quantities of pressure(p), temperature(T),

density(p), gas constant(R), specific heat(c), and velocity(magnitude I I and components

u, v, w in the x, y, and z directions respectively) along with the bed matrix properties of

porosity(e), permeability(K), inertia parameter(b), density of the particles(pm), specific

heat of the particles(cm), effective thermal conductivity of the bed matrix(km), and

volumetric heat addition from the bed to the fluid(q). The permeability and inertia

parameter are functions of the porosity and are given by 6

e3 d2

K = 2 (2.5)
150(1- )2

1.75"-
b = 1.75-1 (2.6)

Included in the momentum equations is the temperature dependence of the viscosity of

the fluid(it) which, for hydrogen, follows the functional form 7

Cg(T) = Tg (2.7)

where gi is the viscosity at the bed inlet with Ti the inlet temperature and n=2/3 for

hydrogen over a temperature range of 300-3000 K.

The bed properties are found in the final two terms of the momentum equations

and represent the Forchheimer & Brinkman modification to Darcian flow. Simply stated,

the first of these terms represents laminar flow(Darcian flow) through a porous bed while

the second term accounts for turbulent flow. For laminar flow, the pressure drop through

the bed is proportional to the velocity of the flow; however, for turbulent flow the

boundary layer around the particles becomes significant. In this situation an "inertial

core" appears outside these particle boundary layers, and in this region the pressure drop



is proportional to the square of the flow velocity.

Several assumptions have been made in the formulation of the flow equations. In

the case of the momentum equations, gravity terms are assumed negligible since the bed

thickness is small(1 cm) and the fluid is a gas(hydrogen), shear stress is neglected as a

minor effect compared to the Forchheimer-Brinkman term, and the convective portion of

the fluid acceleration([V * V] V) is considered small in porous media.8 For the energy

equation, the substantial derivative of pressure and the viscous stress term are assumed

small and the particle and fluid temperatures are assumed equal. Throughout the analyses

which follow, the bed porosity is assumed uniform, and all specific heats and thermal

conductivities are held fixed at their bed inlet values.



Chapter 3

Methods Used in Stability Analysis

The stability boundaries for the particle bed reactor were determined using three

increasingly complex methods: parallel stream model, local stability analysis, and

complete stability analysis. The parallel stream model is similar to the formalism of

Bussard and DeLauer 9 in that only the radial flow through the reactor element is

considered. Using this assumption, the pressure drop through the bed is calculated at the

bed exit with respect to the particle Reynolds number with a positive change of pressure

drop with increasing mass flow indicating instability. In the local stability analysis,

Equations 2.1 - 2.4 are linearized and a harmonic perturbation is introduced for each of

the flow variables. The growth rate of this perturbation is then calculated for a range of

perturbation wavenumbers at the inlet and exit to the bed. A positive growth rate

indicates instability with stability indicated by a negative growth rate. Finally, the

complete stability analysis includes the radial dependence of the perturbations with

boundary conditions imposed at the bed inlet and exit. The effects of the cold and hot

frits are also included in this analysis.

3.1 Nondimensionalization Procedure

To facilitate manipulation of the equations used in the various analyses herein,

flow properties are nondimensionalized using the bed input flow quantities pi, Pi, Ti, and



ui, length scales are nondimensionalized by the particle diameter(d), and the following

dimensionless parameters are introduced:

Reynolds Number

Forchheimer Number

Darcy Number

Temperature Ratio

Prandtl Number

Specific Heat Ratio

Thermal Conductivity Ratio

Re = Piuid
[ti

b
Fs = -

d

K
Da = -

d 2

To (exit) -T i

Ti

Pr= 
ti c

k

S = (pc)
pic

= k
k

To distinguish between dimensional and nondimensional parameters, all nondimensional

variables and parameters will be indicated in bold face throughout this presentation.

3.2 Parallel Stream Analysis

In the parallel stream analysis, the flow properties are assumed to only vary

radially(x-axis), thus Equations 2.1-2.4 are approximated to zeroth order by the

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)



following, with the zeroth order quantities(x-dependent quantities) indicated by the

subscript "o".

State Po = Po RTo (3.8)

Continuity

Momentum

Energy

d-(poUo) = 0
dx

dx K Ti K f0

dT d2T
poUoC--d = km + qdx dx'

Integration of the above set of equations yields the zeroth order solutions to the governing

equations of the flow. For the zeroth order solutions used in this and later analyses, the

second derivative of temperature with respect to the x-direction in Equation 3.11 has been

neglected for simplicity. By making this approximation, integration of Equation 3.11

from the bed inlet to exit yields the following relationship between q, Re, and 4 at the bed

inlet:

Re c Ti gi
q= id (3.12)

where f is the thickness of the bed. This relationship will prove important in the analyses

which follow.

Using the nondimensionalization procedure from Section 3.1, Equations 3.8 - 3.11

become:

Po = PO To

(3.9)

(3.10)

(3.11)

State (3.13)



d
Continuity (poUo) = 0 (3.14)

dx

Momentum dpo _ M 1TFs (3.15)
dx Po ReDa o Da (3.15)

dT d
Energy (Pouo) f = (3.16)

dx i

where y is the specific heat ratio for hydrogen at the inlet and Mi is the Mach number at

the bed inlet. The inlet Mach number may be derived using the speed of sound at the

inlet along with Equation 3.12 to give

Y'-1 qoeMi = p- 1 qo (3.17)
y pi -,ryRT

Using Equations 3.13-3.16, the zeroth order solutions as well as the derivatives of the

zeroth order quantities with respect to x may be calculated. Looking at continuity first,

integration of Equation 3.14 yields

1
Uo= - (3.18)

po

Substitution of this result into Equation 3.16 gives

dT_ ddT d (3.19)
dx f

and upon integration, Equation 3.19 becomes

To = d-x + 1 . (3.20)

Expansion of Equation 3.14 gives the zeroth order velocity gradient and differentiation of

Equation 3.13 yields after some manipulation the corresponding gradient for density.

Both relations are as follows:



duo  1 dp,= .(3.21)
dx p2 dx

dpo 1 dpo _ d (3.22)
dx To dx (3.22)

Finally, substituting Equation 3.20 into Equation 3.15 and integrating gives

p2 = 1 -fM X+1) -1 + t a Fs d X+1 - 1 (3.23)

o '4doReDa [ -} d40Da [K £

which is the zeroth order pressure as a function of x through the bed.

In the parallel stream analysis, the stability of the reactor is determined by

calculating the pressure at the bed exit as a function of Reynolds number. The inlet

pressure to the bed is fixed throughout the analysis and q is assumed constant through the

bed. Instability is indicated if with increasing mass flow the pressure at the exit

increases. The input parameters for the analysis are as follows: pi = 60 atm, Ti = 300 K,

d = 0.0005 m, E = 0.4, c = 14,600 J/kg K, y = 1.409, gi = 9 x 10-6 kg/s m, and

R = 4,157 J/kg K. With these input parameters, the pressure change with respect to Re at

the bed exit was calculated using Equation 3.23. The results are plotted in Figure 3.1

with the pressure derivative given by D(log Pexit) / D(log Re) for a range of Re and 0.

From Figure 3.1, the region of instability occurs at low Re and large 4. These trends

become more apparent in the contour plot generated from Figure 3.1 and are presented in

Figure 3.2. The neutral stability boundary is indicated by the zero pressure gradient

contour with increasing stability to the right of this contour and increasing instability

above this curve.
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The neutral stability boundary generated by the parallel stream model is

qualitatively very similar to the boundary generated by Bussard & DeLauer 9, Maise's

modification to Bussard & DeLauer 7, and the analysis by Witter 10. It should be noted,

however, that the curves do not exactly coincide. In the Bussard & DeLauer analysis, the

assumption is initially made that the inlet-to-outlet pressure ratio is one; that is, the

pressure drop through the bed is assumed negligible. With this assumption, the density of

the flow becomes proportional to the inverse of T and a stability criterion may be derived

from the one-dimensional governing equations of the flow. With this criterion, the Ergun

pressure drop relation, 11 which is analogous to Equation 3.10, is used to locate regions of

positive pressure drop with increasing mass flow. The assumptions made in such

analyses seem extreme, however. Stability is based on the behavior of the pressure

through the bed, yet the assumption is initially made that there is no pressure variation

between the bed inlet and outlet. No such assumptions are made in the analysis presented

herein.

3.3 Local Stability Analysis

In the local stability analysis the flow quantities in the governing equations

presented in Chapter 2 are replaced by quantities of the form (Ao + A') where Ao

represents the zeroth order solutions to the flow variables and A' represents perturbations

about these zeroth order solutions. With these substitutions, the governing equations are

linearized to yield the following first order approximations:

p' p' T'
State = + (3.24)

P,, Po To

ap' p, U p' au' apo av' aw'
Continuity -2+ p' o+ u + p --- + u ', + p + po = (3.25)

at ax ax ax ax 0 y az



Momentum

: P a ap b uo[ O up'+ [nu T -' T+ T: u']= 0 (3.26a)

apo av'+p' b v i TSat ax K T K 00)y:P av+ ap'y + Kb p O u o v +  T, = 0 (3.26b)

z: P w'+ p' ob w' i w'= 0 (3.26c)
P at az K K T

Energy

aT' [ To aT' OaTo, [2 aT' a 2T' a 2T'1
(pc) " - +c p'Uo +poo -+ '  - km - + 2 + = 0 . (3.27)mat 

ax 0 0 ax 
ax ax+ ayIn the above equations, the perturbation quantities are replaced by normal mode

perturbations with constant amplitude of the form

A'(x,y,z,t) = Ae(ik + t) (3.28)

where k is the wavevector whose components(kx, ky, kz) give the wavenumber of the

perturbation along the x, y, and z axes and Co = oRe + i coj where (oRe and om represent

the real and imaginary parts, respectively, of the growth rate of the disturbance. Making

this substitution and nondimensionalizing gives the following first order solution:

State P - + (3.29)
Po Po To

Continuity

(ikx P +dp + (ikyp°)v + (ikzPO)w + (Co + duo + ikx uo)p= 0 (3.30)
dx ) ~-YO -- rDI dx IXUI-



Momentum

x:ReFs T"o (ikRe + (ReFs (nuo 0 "1)x: o Re+ poUo+ + p+ 0 T=O
Da Da yM Da Da

(3.30a)

y: o Re+ po uo +Da v+ p =0 (3.30b)
E Da Da Mi

z: P Re + po Uo +D + (ikR t2 (3.30c)

E Da DaMi

Energy

(po u + uo p + [oS+ ikp uo +o Re Pr + k2 +k T = 0 (3.31)

where u, v, w, p, p, and T represent the amplitudes of the flow perturbations. The

coefficients of these amplitudes are all determined either as input parameters or solutions

to the nondimensionalized zeroth order equations given in Section 3.2. With the above

set of equations, the issue of stability may be examined at any point within the bed. To

accomplish this, the determinant of the matrix of coefficients of the perturbation

amplitudes is equated to zero. For a solution to exist for the above system of equations,

this determinant must yield an indicial equation which is not identically equal to zero.

This is in fact the case for the above equations. The indicial equation yielded is fifth-

order in co and a function of kx, ky, and kz. To determine stability, kx, ky, and kz are

specified and the roots of the resulting fifth-order polynomial in co are calculated. From

the form of the disturbance specified in Equation 3.28, stability is indicated if the real part

of o is negative while instability occurs when the real part of o is positive. The results of

this analysis for a range of 0 and Re are given in Figure 3.3. The cases presented in
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Figure 3.3 all used as inputs wavenumbers equal to a bed thickness for the x, y, and z

directions. This choice was determined to yield the most unstable results for the

combinations of wavenumbers examined. The stability boundaries of Figure 3.3 are

markedly different from those of the parallel stream analysis. According to the local

stability analysis, most of the 4-Re space examined is unstable as is the nominal

operating point of the bed.

3.4 Complete Stability Analysis

Due to the difference between the parallel stream and local stability models, as

well as for completeness, a complete stability analysis is needed where boundary

conditions as well as the effects of the cold and hot frits are included. The results of the

local stability analysis, as mentioned in Section 3.3, are very different from those of the

parallel stream model where only the x-dependence of the flow was examined. In the

local analysis, all perturbation quantities were assumed harmonic along the x, y, and z

axes. This assumption may be the cause of the discrepancies noted above in that the flow

perturbations along the x axis may not be harmonic. To examine this possibility, in the

complete stability analysis which follows, the perturbations are assigned the new form

A' (x,y,z,t) = A(x)e(i(ky + k')+ot) (3.32)

to include this x-dependence explicitly in the perturbation amplitude while maintaining

the harmonic nature along the y and z axes. Using the above form for the perturbed

quantities, the complete analysis is outlined first for the bed alone, then for the cold frit

plus the bed, and finally for the entire fuel element including both frits. The details of

these analyses follow.



3.4.1 Complete Stability Analysis for the Particle Bed Without Frits

As mentioned earlier, to account for the x-dependence of the perturbation

quantities, disturbances of the form in Equation 3.32 are substituted into the first order

approximation to the governing flow equations(Equations 3.24-3.27) and after

nondimensionalization yield the following set of equations:

State Px = P + T (3.33)
Po Po To

Continuity

dux 1 fdpo duo dpx Pok2 + k']
dx p x dx) dx po Fs T 12

e Da ReDa]

(3.34)

Momentum

dp- _ yMF po ReFs T ReFs nT- 1
px Re + po U - -+ ( px + (nu T

dx Re E Da Da k Da U Da

(3.35)

Energy

X d2  2_ 2+k]T +( dTo dT dTX = d2T CoS+R r(ky +k ) T x + u -)o p + Pu x Pd ) u

RePr dxRePr Y a dx P+POOdx

(3.36)

where ux, Px, etc. are the amplitudes of the perturbations as a function of x. The above

represent a complex system of equations which is time consuming to solve due to the

second order differential in the energy equation. This second order term is thus neglected

in the complete analysis as it was in the parallel stream model. Making this

approximation, Equation 3.36 becomes



dT 1 (1 dTo (ldTodx - CoS + (ky + k2 Tx u - px .(3.37)
dx pouo RePr Y I ou dx po dx)

Differentiating and manipulating Equation 3.33 using the zeroth order relations from

Section 3.2 gives

dpx px dpx 1 d Po dTx 1 dpo pod

dx To dx To £ To dx To dx Tj£

Equations 3.34-35 and 3.37-38 now represent a system of first order linear differential

equations in x for the perturbation amplitudes. To determine the neutral stability

boundary, this system of equations is solved using a fourth-order Runge-Kutta technique

with inlet boundary conditions px(O)=0, Tx(O)=O, px(O)=O and ux(0)--0.01. The initial

condition for the velocity perturbation is used to scale the solutions. Due to the plenum

nature of the PBR design, any pressure perturbations are contained entirely within the

bed; consequently, the perturbation in pressure at the outlet, as at the inlet, is given by

px(exit)=0. Using these boundary conditions, an iterative procedure is followed whereby

0 and Re are varied until the outlet boundary condition on the pressure perturbation is

met. Having satisfied the exit condition, co is now varied along with 0 and Re until the

exit condition is satisfied for o=O, thus giving a point on the neutral stability boundary.

The results of this analysis for km=O and 2.5 W/mK are presented in Figure 3.4 along

with the earlier results of the parallel stream model for comparison. Figure 3.5 shows

characteristic plots of the perturbation quantities as a function of radial position. From

Figure 3.4, for km=0O the results of the complete analysis are almost identical to those of

the parallel stream case. This outcome gives reassurance that the complete model is

correct since it uses a very different approach from the parallel stream model yet yields

similar results. These results are also verified by a similar analysis by Kerrebrock 12

which was carried out in parallel to this work. The results also indicate that there is a



strong x-dependence to the perturbation quantities which are not harmonic in all cases

and may explain the unusual results of the local analysis. It should be noted that the

disturbance wavenumbers in the y and z directions were chosen to be 1 per bed

thickness(l/cm) in this and subsequent analyses. This choice was found to yield the most

unstable behavior by the local analysis. It is possible, however, that certain combinations

of wavenumbers not explored in the local model may lead to instances of greater

instability. By introducing conductivity the bed is slightly more stable at high Re(>20)

and significantly more stable at low Re. This behavior is very different at low Re from

that predicted by the parallel stream analysis.
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3.4.2 Complete Stability Analysis for the Particle Bed Including the Cold Frit

For the purpose of generating a more realistic model, the impact to stability with

the introduction of a cold frit on the inlet side of the bed is explored. A similar method to

that detailed in 93.4.1 is used to model the flow through the cold frit. The frit is assumed

to be made of aluminum with e=0.4, --0.0015 m, cA1 =800 J/kg K, kAl =237 W/mK, and

km=237(1-E) W/mK. The assumption is also made that q=0 within the frit.

With the assumption of no volumetric heat addition within the cold frit, the zeroth

order energy equation(Equation 3.16) yields the following:

dT = 0 (3.39)
dx

T O= 1 . (3.40)

The inlet Mach number is also modified by the above assumption and is given below:

M R = yR-Ti Re Bi (3.41)
y pi d

Using Equations 3.39-3.41, the zeroth order and first order equations used for the particle

bed in §3.4.1 are modified for the cold frit. The majority of these changes are

straightforward and are not detailed here. However, with no x-dependence on the

temperature through the cold frit, the zeroth order pressure equation and first order

perturbed momentum equation are significantly modified and thus given by Equations

3.42 and 3.43 respectively:

2 2 1 Fs
p = 1- 2 M + - X (3.42)

SRe Da Da

dp_. = 7MT po o ReFs I1 ReFsdpx Re Re+ Da + I lux + RFs u p, . (3.43)
dx Re tE Da Da Da 0



With the above changes, the governing equations for the cold frit are solved in a

similar manner to those for the particle bed. The initial conditions used are the same as

those for the bed, but in this case were applied at the inlet to the cold frit. Using these

initial conditions, the radial dependence of the perturbation quantities through the cold

frit is calculated for o--O and a range of Re. The calculated values for these perturbations

at the outlet to the frit for a given Re are then used as initial conditions at the bed inlet.

With these initial conditions now specified for a given Re and Co=0, the governing

equations for the particle bed are solved for an initial value of . As before, the constraint

at the outlet of the bed is px(exit)=0; consequently, 4 is varied until this outlet condition

is satisfied thus giving a point on the neutral stability boundary. Typical results for the

radial dependence of the perturbation quantities through the cold frit and particle bed are

similar to those of Figure 3.5. Figure 3.6 presents the neutral stability boundary derived

in this case along with those derived earlier for comparison. From Figure 3.6, the

addition of the cold frit tends to stabilize over the range of Re examined with more

stabilization occurring at Re<30.
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3.4.3 Complete Stability Analysis for the Particle Bed Including Both Frits

To finalize the flow stability model for the PBR, both the cold and hot frit are

added to the bed. In the case of the hot frit, as with the cold frit, the assumption is made

that q-0. This assumption leads to the following results from the zeroth order energy

equation:

dT- 0 (3.44)
dx

To = + 1 (3.45)

where the zeroth order tempertature through the hot frit is the exit temperature of the

particle bed. As with the cold frit, these results are used to modify the governing

equations for the bed to determine the flow equations for the hot frit. The hot frit is

assumed to be made of graphite with e-0, i=0.003 m, cGr=1884 J/kgK, kGr=41.87

W/mK, and km= 41.87(1-E) W/mK.

The solution procedure of the boundary value problem with the inclusion of the

hot frit is similar to that used in §3.4.2. As before, the inlet boundary conditions are

taken at the cold frit inlet. For a specified Re and o=0, the radial dependence of the

perturbation quantities in the cold frit is calculated using a standard fourth-order Runge-

Kutta technique. The outlet conditions at the cold frit are then used as the inlet conditions

to the particle bed. With the inlet conditions specified for the particle bed, the

perturbation quantities are calculated through the bed for o-0, the specified Re, and an

initial value for 4. The perturbation values calculated at the bed exit are then used as the

inlet values for the hot frit governing equations. Once again, for Co=0 and the specified

Re, the radial dependence of the perturbation quantities is calculated through the hot frit.

As in the previous analyses, the boundary condition at the exit of the hot frit is

px(exit)=0. If this condition is not satisfied by the calculated pressure perturbation, an



iterative procedure is followed whereby the bed and hot frit equations are solved for

various values of 0 until the exit boundary condition is satisfied, thus yielding a point on

the neutral stability boundary. Again the radial dependence of the perturbation quantities

is similar to that of Figure 3.5 with the neutral stability boundaries for this and previous

cases shown in Figure 3.7.
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Chapter 4

Comparison of Stability Model to Experimental Results

To date there has been little experimental research on the flow instability of an

actual PBR element. The research which has been conducted has been either

inconclusive or only qualitative in nature. Recently, Conley 13 performed a qualitative

experiment in which a cylindrical column of SiC beads was heated using microwaves

with nitrogen gas flow introduced. The results indicate that local areas of high

temperature may develop within a particle bed implying some sort of a flow anomaly.

During the summer of 1992, Lawrence performed the most quantitative test to date on a

simulated particle bed element at Brookhaven National Laboratory 14. In this

experiment, titled the flow instability test(FIT), the particle bed was constructed from a

highly resistive stainless steel mesh which was rolled to form a cylindrical particle bed

and was then heated electrically. The bed was instrumented with a series of

thermocouples to measure variations in bed temperatures for various flow conditions.

With He as the propellant, a series of experiments were conducted in which 0 and Re for

the bed were varied. Lawrence noted divergences in temperature between thermocouples

within the bed for various flow conditions.

Using the material properties for Lawrence's bed along with the properties of He,

the parallel stream model of Section 3.2 and complete stability analysis of §3.4.1 were



repeated for the FIT configuration and are given in Figure 4.1 along with a sampling of

data from the FIT experiment. The results of the models presented in Figure 4.1 for He

are similar to those for hydrogen presented in Chapter 3. With the introduction of bed

thermal conductivity, which in the case of the Brookhaven bed was calculated to be 12

W/mK, the complete model predicts stability throughout most of the 4-Re space

examined. The model does not include frits, which Lawrence's test did include, but from

the results of §3.4.2-3.4.3, their inclusion should add to the stability of the bed.

Lawrence's data represent points in O-Re space for diverging temperatures

between thermocouples within the bed. These data lie near the parallel stream stability

curve, but according to the complete model, should not be in the unstable flow regime.

The question then must be asked if in fact these points represent flow instability.

Granted, the model used here is a plane-parallel model whereas the experiment used a

cylindrical geometry. Also, as mentioned earlier, flow stability is very sensitive to bed

thermal conductivity; consequently, a poor estimate of the FIT bed conductivity could

significantly change the stability boundaries. However, for the model to agree with the

FIT results, the FIT bed thermal conductivity would have to be almost zero, which seems

unlikely considering the bed is made of stainless steel wire. The issue of geometry

should also be a minor distinction. A more likely explanation of Lawrence's data may lie

in the FIT bed itself. The local hot spots may have something to do with the seams which

Lawrence mentions are present within the bed. These seams may cause local areas of the

bed to be starved for flow, which could explain the thermocouple discrepancies noted in

the data. In the final analysis,however, all these issues indicate a need for more

experimental research on flow instability in PBRs.
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Chapter 5

Conclusions and Recommendations for Future Work

The results of this work indicate that the PBR is subject to flow instability at low

Re and high 0, but is stable at the nominal operating point of 40 GW/m3. The region of

instability is found to agree qualitatively with results obtained by other researchers for the

case where the effective thermal conductivity of the particle bed is assumed negligible.

However, the complete stability model presented here predicts significant stabilization of

the bed(especially at Re<30) with increased bed conductivity. This result is not suprising

considering increased thermal conductivity aids in distributing heat throughout the bed

and thus alleviates local hot spots; yet until now, this additional stabilization at low Re

had not been considered. Bed stability is also found to increase significantly at low Re

with the inclusion of frits. The complete analysis indicates that the inclusion of a cold frit

tends to stabilize somewhat at low Re, due to the pressure drop introduced by the frit.

With the inclusion of the hot frit as well, the analysis indicates a significant stabilizing

effect at low Re. This stabilization is probably due to the added heat distribution

provided by the hot frit by way of its higher thermal conductivity and the assumption of

no volumetric heat addition. These results indicate that the use of frits should allow

stable operation of the bed over the entire sequence of startup to full power operation.

Nevertheless, it is important to recognize that regions of instability can exist, and as such,

should be avoided during all phases of PBR operation.



As mentioned earlier, the models presented here are for a plane-parallel

approximation of a fuel element. In practice, PBR fuel elements are cylindrical in nature,

and in some cases, have variable-area channels. Consequently, to better model the fuel

element, the governing equations used in the analyses should be rewritten in cylindrical

coordinates and the analyses repeated. Several other assumptions are made in the

models; most notably, the volumetric heat addition in the bed is assumed constant and the

effective conductivity of the bed is estimated from the conductivity of the fuel particles.

In actuality, with the large temperature variations through the fuel element, the fission

cross-section of the uranium in the UC 2 particles may vary significantly, thus affecting

the volumetric heat addition through the element. Also, due to the point contacts between

the particles, an effective conductivity for the particle bed must be measured or calculated

because as was shown in this work, the conductivity is a major factor in determining

stability. Finally, transient flow models for the particle bed may also be investigated to

describe fuel element behavior at start-up and shut-down. Even with these modifications

and new approaches, truly characteristic results for particle bed flow stability will only be

achieved when a specific design exists for which a model may be tailored. To verify the

accuracy of such a model, experimental data for this specific element must then be

provided.



Appendix A

Mathematica Code

The solutions to the governing flow equations for the various models presented

herein were obtained using the Mathematica® version 2.1.0.2 software package for the

Macintosh computer. A representative code for the complete stability analysis is

provided in this appendix.



PARTICLE BED REACTOR
Complete Stability Analysis 7 JULY 1993

Disturbance of the form A'= A(x) exp{i (ky + kz ) + o)t)

0=13.69 Re=100 scaling u[0] = .01

km =0

Kalamas

" Input Parameters

f=13.69;
Rd=100;
e=0.4;
km= 0;
kg=. 182;
rm= 5662;
cm=1300;
cp=14305;
Ti=300;
mi=9*10 -6;
d=. 0005;
g=1. 409;
pi=6080000;
K=3*10A-10;
b=10 ^ -5;
R=4157;
n=.667;
lb=.01;
x=.;

q= f Rd cp Ti mi/(d ib)

" Dimensionless Parameters

M=((g-1)/g) q .01/(f pi (g R Ti)^.5);
Fs=b/d;
Da=K/d^2;
1=km/kg;
Pr=mi cp/kg;
S=rm cm R Ti/(pi cp);



Nondimensionalized Zeroth Order Quantities ( po, dpjdx, To, dTjdx, PH2o,

dPH2 Jodx, Uo, dujdx)

po2 = -R/(pi^2 K)*(.75 ((f d x/lb+1)^(n+2)-l)
*q lb^2 mi/(cp fA2)
+ ((f d x/1b+1)A2-1) b q^2 lb^3/(cp^2 Ti fA3))
+ 1;

po = po2 ( 0 .5);

dpo = -R d/(po pi^2 K)*(((f d x/lb+l)^(n+l))
*q lb mi/(cp f)
+ (f d x/lb+l) b q^2 lb^2/(cp^2 Ti f^2));

To = f d x/lb + 1;

dTo = f d/lb;

rH2o = po/To;

drH2o = (dpo - d f rH2o/lb)/To;

uo = 1/rH2o;

duo = - drH2o/(rH2o^2);

Nondimensionalized Perturbation Parameters [ growth rate (co) and transverse wave

numbers (ky, kz )

w= 0;
ky=. 05;
kz=. 05;



M Nondimesionalized Perturbed Governing Equations to First Order

A=NDSolve[{u'[x] ==

rH2'[x] ==

p'[x] ==

T' [x] ==

-((w + duo) rH2[x] + uo rH2'[x]
+ drH2o u[x]
+ rH2o (kyA2 + kz^2) p[x]/((Fs/Da
+ ((f d x/lb+l)An)/
(Rd Da)) g MA2))/rH2o,

p'
-

[x]/To
rH2o T'
rH2o d

- d f p[x]/(lb To^2)
[x]/To - (drH2o/To
f/(lb To^2)) T[x],

- g MA2/Rd ((Rd Fs/Da
+ ((f d x/lb+1)^n)/Da) u[x]
+ Rd Fs uoA2 rH2[x]/Da
+ n uo ((f d x/1b+l)A(n-1))/
Da T[x]),

(S w T[x]
uo f d rH2[x]/lb
rH2o f d u[x]/lb),

p01]==0, T[0]==0, rH2[0]==0,
(p, T, rH2, u}, {x, 0, 20)}]

{{p -> InterpolatingFunction[{0.

T -> InterpolatingFunction[{0

rH2 -> InterpolatingFunction[

u -> InterpolatingFunction[{0

20.},
20.}

i., 20
20.}

u[0]==.01},

<>] ,
<>],

}, <>

<>]}

0 Perturbation Quantities as a function of x/d

Xp=Plot[Evaluate[ p[x]/.A], {x, 0, 20},
AxesOrigin-> {0,0},
AxesLabel->{"x/d", "p(x)/pi"},
DefaultFont->{"Helvetica", 10},
PlotLabel->"Pressure Perturbation"]
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-Graphics-

XT=Plot[Evaluate[ T[x]/.A], {x, 0, 20),
AxesOrigin->(O, O),
AxesLabel->{ "x/d", "T(x)/Tii"),
DefaultFont->{ "Helvetica", 10) },
PlotLabel->"Temperature Perturbation"]
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Xu=Plot[Evaluate[ u[x]/.A], {x, 0, 20),
AxesOrigin->{0,0.01),
AxesLabel->{"x/d", "u (x)/ui" },
DefaultFont->{"Helvetica", 10)},
PlotLabel->"Velocity Perturbation"]
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-Graphics-

Xd=Plot[Evaluate[ rH2[x]/.A], {x, 0, 20),
AxesLabel->{"x/d", "rH2(x)/rH2i"},
DefaultFont->{"Helvetica", 10)},
PlotLabel->"Density Perturbation"]

rH2(x)/rH2i

0.0025

0.002

0.0015

0.001

0.0005

Density Perturbation

x/d
5 10 15 20

-Graphics-



Bibliography

1. Zubrin, Robert M. "Nuclear Rocket Utilizing Indigenous Martian Fuel(NIMF)."

NASA Nuclear Propulsion Workshop/NTP. Cleveland, Ohio: Lewis Research

Center: July 10-12, 1990.

2. Lazareth, O. W. , K. J. Araj, F. L. Horn, H. Ludewig, and J. R. Powell. "Analysis of

the Start-up and Control of a Particle Bed Reactor." Space Nuclear Power

Systems 1987. (Malabar, Florida: Orbit Book Company, 1988). pp. 223-227.

3. Ludewig, H. "Particle Bed Reactor Based Nuclear Rocket Concept." NASA Nuclear

Propulsion Workshop/NTP. Cleveland, Ohio: Lewis Research Center: July 10-

12, 1990.

4. Farbman, G. H. and B. L. Pierce. "The Enabler(Based on Proven NERVA

Technology." NASA Nuclear Propulsion Workshop/NTP. Cleveland, Ohio:

Lewis Research Center: July 10-12, 1990.

5. Prasad, V. and N. Kladias. "Non-Darcy Natural Convection in Saturated Porous

Media." Proceedings of the NATO Advanced Study Institute on Convective Heat

and Mass Transfer in Porous Media. ed. by S. Kakaq, B. Kilkis, F. A. Kulacki,

and F. Aring. (esme, Izmir, Turkey. August 6-17, 1990. pp. 173-224.

6. Charmchi, M. , J. W. McKelliget, M.. Rand, and G. Maise. "Thermo-Hydraulic

Characteristics of Gas-Cooled Particle Bed Reactors." Proceedings of the Fourth

International Topical Meeting on Nuclear Reactor Thermal-

Hydraulics(NURETH-IV). Vol. 1. Karlsruhe, FRG. 1989. pp. 139-145.

7. Maise, G. "Flow Stability in the Particle Bed Reactor." Brookhaven National

Laboratory, Informal Report BNL/RSD-91-002. January 16, 1991.

8. Prasad, V. "Convective Flow Interaction and Heat Transfer Between Fluid and

Porous Layers." Proceedings of the NATO Advanced Study Institute on



Convective Heat and Mass Transfer in Porous Media. ed. by S. Kakaq, B. Kilkis,

F. A. Kulacki, and F. Arinq. Cesme, Izmir, Turkey. August 6-17, 1990. pp. 563-

615.

9. Bussard, R. W. and R. D. DeLauer. Nuclear Rocket Propulsion(New York:

McGraw-Hill, 1958). pp. 129-133.

10. Witter, J. K. , D. D. Lanning, and J. E. Meyer. "Flow Stability Analysis of a Particle

Bed Reactor Fuel Element." Proceedings of the 10th Symposium on Space

Nuclear Power and Propulsion. CONF-930103. M. S. Genk and M. D. Hoover,

eds(New York: American Institute of Physics, 1993), p 1541.

11. Ergun, S. "Fluid Flow Through Packed Columns." Chemical Engineering Progress.

48-2. 1952. pp. 89-92.

12. Kerrebrock, J. L. and J. Kalamas. "Flow Instability in Particle-Bed Nuclear

Reactors." to be presented at AIAA/SAE/ASME/ASEE 29th Joint Propulsion

Conference and Exhibit. AIAA 93-1758. Monterey, California. June 28-30,

1993.

13. Conley, B. R. "Experimental Modeling of a Particle Bed Nuclear Rocket."

presented at the AIAA Northeast Regional Student Conference. MIT:

Cambridge, Massachusetts. April 3, 1993.

14. Lawrence, T. J. "Flow Instability Test for a Particle Bed Nuclear Thermal Rocket

Fuel Element." Massachusetts Institute of Technology: Department of Nuclear

Engineering Master's Thesis. May, 1993.


