
Changes in the Horizontal Angular Vestibulo-ocular Reflex
of SLS-2 Space Shuttle Astronauts Due to Weightlessness.

by

Christopher Francis Pouliot

S.B., Massachusetts Institute of Technology, 1993

Submitted to the Department of Aeronautics and Astronautics
in Partial Fulfillment of

the Requirements for the Degree of

MASTER OF SCIENCE

in

AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Cambridge, Massachusetts
February, 1995

© Massachusetts Institute of Technology 1995. All rights reserved.

Signature of Author
Department of Aeronautics and Astronautics

Certified by
Dr. Charles M. Oman

Thesis Supervisor

Accepted by

Chairman,
Professor Harold Y. Wachman

Department Graduate Committee

MASS',. y !A . -4,TITF7E
n-,ry

FE B 1C 1995

v

Changes in the Horizontal Angular Vestibulo-ocular Reflex of
SLS-2 Space Shuttle Astronauts Due to Weightlessness.

By Christopher Francis Pouliot

Submitted to the Department of Aeronautics and Astronautics
on October 12, 1994 in partial fulfillment of the

requirements for the Degree Master of Science in
Aeronautics and Astronautics

ABSTRACT

Vestibulo-Ocular Reflex (VOR) data was recorded in 4 astronauts (3m, if;
age 36-51) before, during, and after a 14 day space shuttle mission (November,
1993). 129 days before launch subjects were tested in parabolic flight.
Subjects were then tested pre-flight, 122/110/88/18 days before launch; in-
flight, 4/10 days after launch; post-flight, 0/1/2/6/9/11 days after landing.
Horizontal eye position (bi-temporal EOG) was sampled by computer. Subjects
were blindfolded eyes open and instructed to keep head erect, and to gaze
straight ahead. Alertness was maintained with conversation. To study "head
erect" yaw axis dynamics, subjects were accelerated to a angular velocity of
120 deg/sec within 0.5 seconds with their heads erect. After 1 minute, the chair
stopped within 0.5 seconds, and the subjects continued to keep their heads
erect. Post-rotatory recording of the VOR continued for 1 minute. This
procedure was repeated in the opposite direction. To study "dumping" yaw axis
dynamics, the same procedure was used, except that after chair stop, subjects
immediately pitched their head forward 90 degrees, and maintained face down
position for 1 minute. All 4 head erect and dumping procedures were then
repeated. Horizontal SPV was calculated using order statistic fast phase
filtering (Engelken & Stevens, 1990). Momentary SPV dropouts were detected
and removed using an iterative model fitting method (Balkwill, 1992) A first
order exponential model was fit to the remaining data to yield a per- and post-
rotatory gain and time constant. The data was also ensembled averaged.
Techniques for near real time statistical data analysis were further developed.

In parabolic tests, the mean head erect time constant of all three subjects
tested shortened (2/3 changes were significant, p < 0.05), confirming for the first
time for individual subjects the finding of DiZio and Lackner (1988). After
several days in orbit, the head erect time constant of two of the four subjects
("slow adapters") was reduced (58%; 72%) compared to preflight. (1/2
significant, p < 0.05). The time constants of the other two subjects ("fast
adapters") were virtually unchanged (99%) or increased (123%) significantly (p
< 0.05). Per-rotatory data showed similar trends. In all four subjects, in-flight
dumping time constants were statistically indistinguishable from in-flight head
erect. The "fast adapters" showed a significant increase of the in-flight dumping
time constant when compared to pre-flight, whereas the "slow adapters" did not.

Changes in VOR time constant are thought to result from the effects of
otolith cue conflict on central oculomotor velocity storage mechanisms. It is
hypothesized that the "slow adapters" never fully recovered velocity storage
which was lost in parabolic flight and initial entry into orbit, due to otolith conflict.

Page 2

This would explain why, after 4-10 days in orbit , a) their in-flight head erect
time constants were shorter than pre-flight, and b) their in-flight dumping time
constants were similar to their in-flight head erect time constants, and c) their in-
flight dumping constants were similar to pre-flight.

Similarly, "fast adapters" lose velocity storage in both parabolic flight and
initial entry into orbit. However after 4-10 days in orbit, it is hypothesized that
"fast adapters" regain velocity storage. This would explain why a) their in-flight
head erect time constants were not shorter than pre-flight, b) their in-flight
dumping time constants were similar to their in-flight head erect time constants,
and c) their in-flight dumping time constants were significantly larger than pre-
flight.

No statistically significant VOR gain changes were seen in parabolic or
orbital flight. Dumping was present in all subjects early post-flight. Near real
time data processing facilitated science decision making during pre-, in-, and
post-flight data collection.

Supported by NASA Contract NAS9-16523.

Thesis Supervisor: Dr. Charles M. Oman
Title: Director

M.I.T. Man-Vehicle Laboratory
Senior Research Engineer
Department of Aeronautics and Astronautics

Page 3

Acknowledaments

Many thanks to my parents, who have always fully supported me throughout my
life, including the good and the bad.

Thanks to all my friends, who when needed,. have helped me forget that I was a
student at a place like MIT.

Thanks to my advisor, who has given me the rare opportunity to be able to
perform a experiment flown on the space shuttle, and who has helped me
improve my English grammar.

Thanks to NASA Contract NAS9-16523, which has paid my tuition for the past 1
1/2 years.

Page 4

Table of Contents

Abstract 2
Acknowledgments 4
Table of Contents 5

Chapter 1: Introduction & Background

1.1 Introduction 7
1.2 Previous Science Results 9
1.3 Previous Engineering Results 11
1.4 Goals of Thesis Research 14

Chapter 2: Experimental Methods

2.1 Subjects 15
2.2 Ground Equipment 16
2.3 Ground Experimental Protocol 17
2.4 Differences in Experimental Methods for In-flight

and KC-135 Testing 19

Chapter 3: Data Analysis

3.1 Calibration of Eye Position Data 21
3.2 Calculation of Slow Phase Velocity

3.2.1 PFMH Filter 22
3.2.2 Calculation of Eye Velocity 22
3.2.3 AATM Filter 23

3.3 Tachometer Analysis 23
3.4 Outlier Detection and Removal 23
3.5 Decimation 24
3.6 Model Fitting 24
3.7 Run Segment Rejection Criteria 25
3.8 Near real-time statistical analysis 28
3.9 Statistical Comparisons of the Data

3.9.1 Kolmogorov-Smirnov Test 31
3.9.2 Two-Sample t-Test for Independent Samples 34
3.9.3 Sum of T-square statistic 34
3.9.4 Actual use of the statistical tests 35

Chapter 4: Results

4.1 Completion status of runs 36
4.2 Run rejection results 36
4.3 Near Real-Time Analysis Experience 38
4.4 Directional Asymmetry Analysis 39
4.5 Comparisons

4.5.1 The Effect of an Acute Exposure to
Zero-gravity on Slow-Phase Velocity 44

Page 5

4.5.2 The Effect of Prolonged 0-G Exposure
on Head erect Slow-Phase Velocity 47

4.5.3 The Effect of Prolonged 0-G Exposure on
Per-rotatory Slow-Phase Velocity 50

4.5.4 Changes in early post-flight head-erect
responses 53

4.5.5 Changes in early post-flight per-rotatory
responses 56

4.5.6 The Effect of Pre-Flight Dumping on
Slow-Phase Velocity 59

4.5.7 The Effect of Dumping on In-flight
Slow-Phase Velocity 62

4.5.8 The Effect of Prolonged 0-G Exposure on
Dumping Slow Phase Velocity 65

4.5.9 The Effect of Dumping on Early Post-flight
Slow-Phase Velocity 68

4.5.10 Changes in early post-flight dumping
responses 71

Chapter 5: Discussion and Conclusion

5.1 "How did subject's pre-flight head erect VOR responses
compare with results from previous studies ?" 74

5.2 "How did the head-erect SPV response change in
parabolic flight ?" 75

5.3 "How did the head-erect SPV response change in prolonged
weightlessness ?" 76

5.4 "How did the head erect SPV response change post-flight ?" 79
5.5 "Was the pre-flight dumping response consistent with

previous studies ?" 80
5.6 "How did the dumping SPV response change in prolonged

weightlessness ?" 81
5.7 "How did the dumping SPV response change post-flight ?" 82
5.8 "Did near-real time SPV analysis facilitate decision making

during testing ?" 82
5.9 "Are there any recommendations for future analysis and

future studies ?" 83

Biblioaraohv 89

Appendix A: Ground data analysis Matlab scriots 92

Appendix B: In-flight specific data analysis Matlab scripts 148

Appendix C: Parabolic specific data analysis Matlab scripts 169

Page 6

Chapter 1: Introduction & Background

1.1 Introduction

Space flight causes many potential medical problems for astronauts.

Calcium is lost in the bones, muscle strength is reduced, immunity is decreased,

and vestibular function is changed. The changes in the vestibular system are

believed to be the cause of space motion sickness (SMS), which affects over

70% of astronauts. For shuttle flights of short duration, this can affect the

performance of the astronaut for an appreciable part of the mission. Before we

can establish any long term presence in space, we must fully understand the

above mentioned medical problems. In this experiment the effect of zero-gravity

on the horizontal vestibular ocular reflex (VOR) is studied.

If a person is subject to a step change in head angular velocity, the slow

phase velocity (SPV) of the eyes first increases suddenly in the direction

opposite to that of the rotation and then decays in a quasi-exponential manner.

Upon returning the subject to rest, after a prolonged spin, the post-rotatory VOR

is similar to the per-rotatory VOR, except the direction of the SPV is the same as

the direction of the initial rotation (Figure 1.1).

10

60-

404

-10 80 1 1040 r 4

U,

0-

20 40 60 80 100 120

Time (sec)

Figure 1.1: Example of the quasi-exponential behavior of the SPV (The black
lines are model fits)

Page 7

A common way to model this quasi-exponential behavior (Groen, 1962) is:

spy(s) _ -Ks (1.1)
o,(s) Ts +1

where K is the gain and T is the apparent time constant. The time response of

this model to a step input, Dw is:

spv(t) = AcoKe - t/T (1.2)

The value of K and T can be found by finding a decaying exponential which

minimizes the squared difference between the exponential curve and the actual

data. The value of K depends on gaze instructions and with the subject told to

"stare straight ahead and do not spot imaginary targets of the periphery", the

value of K is typically 0.6. (Collins, 1962)
The problem now is that the firing frequency of the primary semi-circular

canal afferents exhibit the following dynamics:

spy(s) -kTiT 2 Ta (TLS + 1)s 2

(o(s) (T 2 s + 1)(Tas + 1) (1.3)

where T1 = short time constant of the quasi steady flow development, T2 = long

time constant of cupola return, Ta = peripheral neuron adaptation, and TL = rate

sensitivity time constant. (Fernandez & Goldberg,1972) However these are the

dynamics of the primary afferents, not the VOR. It was hypothesized that there is

a neural process going on at the vestibular nucleus, which is often referred to as

"velocity storage" (Raphan, Matsuo & Cohen, 1979). The vestibular nucleus

processes the information from the semi-circular canals (SSC) and other

information regarding motion received from other sources, such as tactile cues,

and sends it to the oculomotor nuclei, where the information is used by the

oculo-motor system to complete the vestibulo-ocular reflex.
A model that included velocity storage and took into account the above

mentioned dynamics of the primary afferents is shown in eqn 1.4 (Oman &

Calkins, 1993). It said that the VOR is determined from a direct pathway from

the SSC plus an indirect pathway which includes velocity storage, which is

modeled as a leaky integrator. The dynamics are:

Page 8

T V

2 (1+KT,)(+1)
spy(s) -kTT 2 Ta (TLS + 1)s KvT v) (+ KT s+1)a (1.4)

0o(s) (T2 s + 1)(Tas + 1) (TVs + 1)

where Kv and Tv are the gain and time constant of the leaky integrator. The

zero associated with the indirect pathway is believed to cancel the canal pole. If
the peripheral adaptation is neglected, and terms multiplied by T1 are
neglected since T1 is small (@ 0.005 seconds) then the model dynamics can be

reduced to:

spy(s) _ kT1s
o(s) TVs + 1

which is the transfer function identical to equation 1.1 in form.
It has been seen that the apparent time constant of the SPV profile

changes depending on the subjects orientation to the gravity vector. For

example if the subject performs a "dumping" maneuver in which the subject
pitches his head 90 deg forward from an earth vertical plane to an earth
horizontal plane at the start of the post-rotatory period, the time constant is
reduced to 41% of the head-erect post-rotatory time constant. (Benson & Bodin,
1966a) Another example is that in parabolic flight, the time constant is reduced
to 69% of the 1-G value. (DiZio & Lackner, 1988). It was hypothesized that
when there is vestibular conflict the brain relies more on the SSC information
and less on the velocity storage information, hence causing the time constant to
decrease since the time constant of the SSC is smaller than the velocity storage
time constant. The vestibular conflict during a dumping maneuver occurs
because the otoliths signal that the head is pitched forward 90 deg, and the
SSC signal rotation in an off vertical axis. The vestibular conflict in orbital and
parabolic flight occurs because in zero-g the otoliths do not respond in a
familiar way and the SSC are telling you that you are spinning. It is believed
that this vestibular conflict may cause SMS. (Oman & Calkins, 1993)

1.2 Previous Science Results

There are two categories of rotation experiments that can be performed
to test the VOR: These are active rotation, in which the subject is stationary and

rotates his head, and passive rotation in which the subject is seated in a rotating

Page 9

chair and spun. In active rotation experiments it is hard to determine the time

constant. Active movements may not elicit a "true" reflex since eye movements
may be influenced by feed forward, "efference copy" signals in the central

nervous system (CNS). One study using active movements showed a decrease

in gain (Clement, 1985), another an increase in gain (Kornilova, et. al, 1993),

and three other experiments showed no significant change. (Watt, 1985 &

Benson, 1986 & Thorton, 1989).
Passive rotation experiments were performed before and after 4 previous

missions, and in orbit on 2 earlier shuttle flights. The general form of the

experiments were a one minute 120 deg/sec rotation, with collection of data one

minute after rotation. Some experiments had some runs with dumping, others

did not. One problem when testing for significant changes in the VOR, is that

the standard deviation of the VOR parameters is approximately 20 - 30% of the

mean. This means that large changes must occur in order to significantly

determine if any changes occurred. The post-flight results for the previous

missions are in Table 1.1, and in-flight in Table 1.2.

Mission
SL-1:

D-1:

SLS-1:

Results Reference

Time constant decreases (Oman, Kulbaski, 19

Time constant decreases (Liefield, 1993)

Gain increase trend
No significant change in dumping time constants

Strength of motion sickness related to adaptation

No significant change in gain (Oman, Weigl, 1989)

Time constant decreases
Post-rotatory dumping inconsistent (Oman, Balkwill, 199
Post-rotatory head erect VOR were inconsistent

88)

3)

No significant change in time constant or gain
but trend was towards increased gain and
decreased time constant (Omarn, Calkins, 1993)

Table 1.1: Post-flight results for passive testing on previous missions

Page 10

IML-1:

Mission Results Reference

SL-1: No usable in-flight data obtained

D-1: Experiment not performed
SLS-1: 3/4 subjects head-erect and dumping time

(Oman, Balkwill, 1993)

constants increased compared to pre-flight head erect data

No evidence for change in gain

IML-1: Gain increases and (Oman, Calkins, 1993)

Time constant decreases
and were correlated to SMS

Table 1.2: In-flight results for passive testing on previous missions

1.3 Previous Engineering Results

On earlier flights (SL-1, SLS-1), the strategy of the SPV data analysis

has been to first to take raw eye position and convert it to slow phase velocity.

Then two paths have been chosen to further analyze the SPV data. The first

path is to fit the SPV data with a model (henceforth called "parametric analysis")

and then average and normalize the pre-flight model parameters and the post-

flight model parameters, and use a t-test or analysis of variance to test to see if

there are statistically significant changes in the model parameters. The second

path (henceforth called "ensemble averaging") involved averaging of the SPV

time series for two different groups of data. Then statistical tests are performed

to determine whether there are significant differences between comparison

groups.
In the SL-1 analysis done by Oman and Kulbaski, an acceleration based

algorithm was implemented (Massoumnia, 1983), in which the fast phase of

nystagmus was detected and then removed from differentiated eye velocity. A

first order exponential model was fit to the data by taking the log of the SPV

data and performing a linear regression. The data was also ensemble

averaged and a chi-square statistical method was used to find statistical

differences between selected subsets. A chi-square test is a way to tell if two

ensemble averaged time series are significantly different from each other. To

do this a chi-squared value is calculated.

Page 11

2 (Yi -- xi)2
2 = (1.6)

i=1 0 p
where X2 is the chi-square statistic, op2 is the pooled variance, N is the number

of degrees of freedom, and xi and yi are the ensemble averaged time series

being compared at time i. Then this value is compared to a chi-square

distribution. If the calculated chi-square value is much greater than N then the

average squared difference between the two time series is greater than the

pooled variance. Since the distribution of chi-square is known, it is possible to

test whether the two time series are significantly different. The assumptions that

the chi-square test makes are that the number of degrees of freedom is large,

and the successive samples are not correlated. (Kulbaski, 1986)

In the D-1 analysis, the eye position was obtained be electronic

differentiation of low pass filtered horizontal EOG data. Then the average SPV

was found by manual sampling from the eye velocity chart records at 0.5
second intervals. The differentiator gain was calibrated by reference to the EOG
position signal. Gain and time constants were not calculated. For the statistical

tests, the SPV time series were ensembled averaged compared using the same

chi-square method. (Oman & Weigl, 1990)
In the SLS-1 analysis a new method to determine the slow phase

velocity was used. The problem with the Massoumnia acceleration based

algorithm was that 10-50% of the fast phase beats were missed, and the data

had to be manually edited to remove these artifacts. A completely automated

algorithm - order statistic filtering (Engelken, Stevens, 1990) was adopted. First

the position data is filtered using a predictive median hybrid filter, which

removes much of the high frequency noise. Second the data is digitally

differentiated. Lastly the data is filtered using an asymmetrically trimmed mean
statistical filter, which extracts the SPV envelope by assuming that the eye

spends more time in the slow phase than in the fast phase. It was found that

this algorithm worked well. It was found, however, that dropouts, which were

when the eye instantaneously goes to zero velocity for reasons such as

drowsiness and lack of attention, still remained. An automatic dropout detection

algorithm based on a logarithmic linear regression was developed. (Balkwill,

1992)
The remaining data was ensembled averaged, but it was determined that

the chi-square test may not have been sufficiently conservative. For a low

Page 12

number of runs, which is inherent in space physiology, the sum of the

differences squared will not be distributed like a chi-square distribution. It will

be distributed like a sum of t2 distribution. The problem with this is that sum of

t2 distribution had not been calculated, so a monte carlo simulation was set up

to determine the distribution. (Pouliot, 1991)
A Raphen-Cohen model was fit to the data, and averaged, with statistical

significant differences found using a t-test. (Oman & Balkwill, 1993)

After the SLS-1 analysis it was desired to re-analyze the D-1 and SL-1

data sets using OS-filters. The SL-1 data set was selected to be analyzed first.

D-1 re-analysis is planned for the future. OS filters were used to calculate slow

phase velocity, and the automatic dropout detection algorithm was used.

Ensemble averaging and testing using a sum of t2 test was utilized. Models that

were fit to the data included a first order exponential model, velocity

storage/adaptation model, and a fractional exponent adaptation model (Landolt

and Correia, 1980). The analysis pipeline from eye position to model fitting was

quasi-automated (Liefield, 1993)
The IML-1 analysis was somewhat similar to the SLS-1 analysis. OS

filters were used to calculate slow phase velocity, and the same automatic

dropout detection algorithm was used. Instead of using more complicated

models like the Raphen-Cohen model, only a first order exponential model was

employed, using a log-linear regression method. The rationale behind this was

that in the SL-1 re-analysis, it was found that the more free parameters a model

had, the more variable the parameters, and the more difficult to determine

statistical significance (Liefield, 1993). So since the VOR response is quasi-

exponential it was believed that a simple exponential should capture the major

trends of the data. The gain and time constant from this model were normalized

with respect to the subject, run direction, and per or post rotatory phases, based

on the pre-flight mean value, in order to combine subjects to increase the

apparent number of runs. Then a two-way ANOVA with replications was used

to find statistically significant differences. (Oman, Calkins, 1993)
In all the previous missions to date, the amount of time to process the

data was enormous. This was in part due to the limited power of the computers

at the time, and part to lack of automation of the analysis pipeline. It would take

many months after the mission in order to even have a preliminary idea of what

the results would be. In this analysis it was desired to make the analysis

pipeline work near real-time, so that if the astronauts or investigators wanted to,

Page 13

they could look at the data after testing to see if responses were back to normal.
Also if any decisions needed to be made about how to spend the limited
available post-flight testing time, an informed decision, based on the data, could
be made. For example if in the early post-flight period, the NASA administrators
tell experimenters that they have only a certain amount of astronaut testing time,
time could be better allocated to subjects, and or testing conditions, which
would optimize the testing, since the experimenters would have some sense of
how the subjects were performing in the experiment.

1.4 Goals of Thesis Research

The goals of this thesis were to analyze and draw conclusions of a very
large database of EOG data taken from the SLS-2 mission of the space shuttle,

and to continue the evolution of the analysis and statistical algorithms so that
the analysis and preliminary statistical testing can be completed in near real
time. The important science related question were:

1) How did subject's pre-flight head erect VOR responses compare with
results from previous studies ?

2) How did the head-erect SPV response change in parabolic flight ?

3) How did the head-erect SPV response change in prolonged
weightlessness ?

4) How did the head erect SPV response change post-flight ?
5) Was the pre-flight dumping response consistent with previous studies ?

6) How did the dumping SPV response change in prolonged
weightlessness ?

7) How did the dumping SPV response change post-flight ?
8) Did near-real time SPV analysis facilitate decision making during

testing ?
9) Are there any recommendations for future analysis and future studies ?"

Page 14

Chapter 2: Experimental Methods

2.1 Subjects

Subjects used in this experiment were five crew members of the STS-58
Space Life Sciences - 2 mission of the Space Shuttle Columbia. There were 3

males and 2 females ranging in age between 36 and 51. The subjects were

assigned a random subject code to maintain confidentiality. Their codes were

T, V, W, X, and Y. All subjects were free of any vestibular disease. However

subject T had esophoria, reduced acuity in the right eye, and a history of

childhood strabismus surgery in that eye. For two of the subjects this was their

first time in space.
Pre-flight testing occurred on four separate days. They were L -

122 (BDC1, meaning base-line data collection session #1), L - 110 (BDC2), L -

88 (BDC3), and L- 18 (BDC4), where for example "L - 122" means 122 days

before launch. "Early post-flight testing" occurred on R+0 (BDC5), R+1 (BDC6),

R+2 (BDC7), where for example "R+2" means 2 days after landing. "Late post-

flight testing" was performed on R+6 (BDC8), R+9 (BDC9), R+1 1 (BDC10). All

pre- and post-flight testing took place at Johnson Space Center in Houston

Texas. Not every subject was tested on each testing day and table 2.1 shows

which days each subject was tested.
One of the subjects who had flown previously had been tested on the

earlier mission. For this subject, the preflight database included two sessions

(L-122, L-18) from this flight, and four preflight sessions from the previous flight.

In-flight testing occurred on two different days. They were flight-days 4

and 10. The testing occurred in the Spacelab.
Parabolic flight testing occurred on L-129. The testing occurred on a

NASA KC-135 aircraft.
Subject W was not available for in-flight and parabolic flight testing, and

this subjects' preflight and post-flight VOR responses were highly variable, with

a high proportion of dropouts, because the subject often found the testing

provocative. Because of this high variability, the likelihood of a statistically

significant pre/post-flight comparison was deemed small. Since the focus of this

thesis was the comparison between preflight, parabolic flight, in-flight, and post-

flight results, Subject W's data was not included in this analysis.

Page 15

Sub. L-122 L-110 L-88 L-18 R+O R+1 R+2 R+6 R+9 R+11

T x x x xx x x x

V x x x x x x x x x

W x x x x x x x x x x

X x x xx x x

Y x x x x x x x x x x

Table 2.1: Ground Test Matrix (x = single test session, xx = double test session)

Table 2.2: KC-135 and Flight Test Matrix (x = single test session)

2.2 Ground Equipment

Ground testing was conducted using a motorized, computer-controlled
rotating chair. The chair could accelerate/decelerate a Aw of 120 deg/sec

within 0.5 seconds. The setup was capable of maintaining a chair speed of

120 deg/sec within +/- 2.5 deg/sec.
Eye movements were recorded by an electro-oculography (EOG) system

which included neo-natal electrodes, an EOG amplifier (10 x), a low-pass filter

(3rd order, 30 Hz cutoff), and a Macintosh Ilci computer, running the Labview
software package developed for data acquisition (Liefield, 1993), which

sampled the data (120 Hz).
A tape recorder was used to record voice conversations for each testing

session. For in-flight, parabolic flight, and early post-flight sessions a video-

record of the session was made.

Page 16

2.3 Ground Experimental Protocol

The procedure used was similar to that on SLS-1. Subjects were fitted

with 5 electrodes at least fifteen minutes prior to testing. This allowed ample

time for the electrodes to settle. The horizontal EOG signal was measured by

two electrodes, one placed on each outer canthus. The vertical EOG signal was

measured by two electrodes, one placed below the right eye and one above the

right eye. Both the horizontal and vertical EOG signals were referenced to an

electrode placed on the neck.
The subject was then seated in the rotating chair and given red goggles

to wear, whose purpose was to stabilize the corneo-retinal potential. The

subject was also given headphones to wear that would allow the researchers to

communicate with him while minimizing ambient sound cues.
Gaze instructions were then given to the subjects. They were told to

keep their eyes open and try to stare straight ahead and try not to spot

imaginary targets on the walls of the room.
There were four testing options. They were calibrations, spontaneous

nystagmus checks, head-erect runs, and dumping runs.

- A calibration consisted of the subject facing a wall. The wall mounted

targets subtended +/- 10 degrees both horizontally and vertically. The subject

was then told to look at the calibration targets in the following order: Center -

Right - Center - Left - Center - Up - Center - Down - Center - Right - Left - Right -

Left -Right - Left - Right - Left - Right - Left - Right - Left.

- A spontaneous nystagmus check consisted of having the subject place

covers over the goggles and then having the subject stare straight ahead for ten

seconds and then close his eyes and stare straight ahead with his eyes open

for ten seconds.
- A head-erect run consisted of the chair spinning at 120 deg/sec for 60

seconds and then the chair would stop and data collection would continue for

the next 60 seconds (Figure 2.1). The subject would hold his head so that his

neck was straight and the head was in-line with the torso of the body for the

entire 120 seconds. The subject was instructed to say "start" when he felt the

chair start, "gone" when the direction of spinning sensation was ambiguous,
"stop" when he felt the chair stop, and "gone" when the sensation of spinning

was ambiguous.

Page 17

- A dumping run was like the head-erect run except when the subject

feels the chair stop he would say "stop" and the operator would say "down" and

the subject would pitch his head 90 degrees forward, and hold it there for the 60

second post-rotatory period. (Figure 2.1)

Chair
Angular
Velocity

Head
Erect
Test

Dumping
Test

120 deg/sec

60 sec 120 sec

Time

Figure 2.1: Schematic of Head Erect and Dumping Test Procedures

Each time the subject would say "gone" the operator would press a

button which would add a pulse to the tachometer signal which would enable

the researchers latter to know when the subject said "gone". The delay

between the subject saying "gone" and the operator pressing the button was on

the order of 0.5 seconds
Both clock-wise and counter-clockwise runs were performed. The

direction of the run was alternated between runs in order to balance residual

Page 18

effects of the previous run on the current run since the long time constant of

semicircular canal neural adaptation is longer than 60 seconds.
The nominal experimental protocol was as follows:

Run 01: Calibration
02: Spontaneous Nystagmus Check
03: CW head-erect run
04: CCW head-erect run
05: CW dumping run
06: CCW dumping run
07: Calibration
08: CW head-erect run
09: CCW head-erect run
10: CW dumping run
11: CCW dumping run
12: Calibration

Run codes were created for computer data files by the following file

specification format: SBRR, where S = subject code, B = sequential BDC

number, and RR = run number. For example T204, would represent one of

subject T's CCW head-erect runs on BDC2 (L-45). KC-135 data had the file

specification format: SPBRR, where P indicates that the data was taken in

parabolic flight. In-flight data had the file specification format: SFBRR, where F

indicates flight data.

2.4 Differences in Experimental Methods for In-flight and KC-135 Testing

There were several differences between the methods of the in-flight and

KC-135 testing vs. the ground testing.

For the in-flight testing the differences were:

a) A manually rotated chair used. The chair was a lightweight Body Restraint

System, originally built for 1983 European Vestibular Experiments on

Spacelab-1 (Kass, et al, 1986) which was manually spun to accelerate to the

desired speed of 120 deg/sec within 1 second and maintain that speed usually

within 10 %. The subjects sat with their legs crossed. A belt mounted digital

tape recorder (the Cassette Data Tape Recorder) was used for data collection

Page 19

instead of a Macintosh. 2 and 4 K EOG amplifiers were used instead of 10 K.

The data was sampled at 100 Hz instead of 120 Hz. There was no middle EOG
calibration. There was no tachometer. The angle between the target and the

subjects eyes was 9 deg instead of 11.7 deg
For the KC-135 testing the differences were:

a) A lightweight, motorized, servo controlled chair was used. The chair had

been developed for similar experiments on Spacelab IML-1 (Oman and

Calkins, 1993). The subject's head was restrained by a helmet, which

necessitated monocular (right eye) rather than binocular EOG calibrations, and

prevented testing using "dumping" head movements. The angle between EOG
calibration targets was 10 deg instead of 11.7 deg. The EOG amplifiers had 2 K

gain instead of 10 K gain.

b) Parabolas were flown sequentially, providing alternating periods consisting

of approximately 20-25 seconds of 0-G, preceded by a variable interval of 1.0 -
1.8 G. For operational reasons, it was not possible to precisely control the

duration of the hypergravic interval. During this time, the chair was smoothly

accelerated to 120 deg. sec in 2 seconds. Immediately after 0-G was

established, the chair was decelerated in 2 seconds to a stop, and EOG
recording continued for the remaining interval of 0-G. The per-rotatory interval

was 46.0 sec (± 5.9 sec SE), and post-rotatory data was recorded for 22

seconds beginning at the onset of 0-G as determined by an accelerometer.

Model fitting was based upon 19 seconds of data beginning 3 seconds after the

onset of 0-G. The three second delay was incorporated to allow time for the
operator to bring the chair to a halt. 1-G control runs were performed with the

aircraft on the ground, just prior to flight, using a similar per-rotatory interval

(51.4 sec. ± 1.6 sec SE) and an identical 22 sec. post-rotatory recording period.
All subjects took scop/dex to reduce their susceptibility to motion sickness and

thus maintain alertness.

Page 20

Chapter 3: Data Analysis

3.1 Calibration of Eye Position Data

To determine the calibration factors from A/D units to degrees of eye

movements, an interactive algorithm was used. (Balkwill, 1992) The horizontal

eye position data from the calibrations was shown on the computer screen.

Then the expert-user marked 5 regions where the subject was fixating on the

right target and then regions where the subject was focusing on the left target.

An average value in A/D units was calculated for the right target and then for the

left target. The known angle ABC (20 deg),where A = left target, B = subject's

head, C = right target was divided by the difference in values between the left

and right targets in A/D units This value was the calibration factor for the

calibration run. Usually three calibration runs were performed per session. To

get a more accurate calibration factor for each individual run a linear

interpolation was performed between calibration runs. This was an estimate of

the calibration factor for the run. (Balkwill, 1992)

3.2 Calculation of Slow Phase Velocity

Two order statistic filters and one linear filter was used to calculate the

slow phase velocity from the eye position data. An order statistic filter is a non-

linear digital filter which uses a sliding window of odd-length of the input data

samples. The input data samples are rank-ordered and the ordered samples

are linearly weighted. A linear combination of the ordered statistics constitutes

the filter output. The first ordered statistic filter is called a predictive finite-

impulse response median hybrid filter (PFMH) which smoothes the input data

while preserving saccadic transitions. The linear filter is differentiating filter

whose purpose is to calculate eye velocity from eye position. The second order

statistic filter is called an adaptive asymmetrically trimmed mean filter (AATM)

which extracts the slow-phase velocity from the total eye velocity (Figure 3.1)

(Engelken & Stevens, 1990)

Page 21

Slow Phase
Eye Position PFMH Differentiating AATM Velocity

Filter - p Filter N- Filter

Figure 3.1 Block Diagram for calculation of slow phase velocity from eye

position

3.2.1 PFMH Filter

The PFMH filter uses an odd length sliding window of length 2N + 1. The

first N samples are used to calculate the forward predictor, Xf. The last N

samples are used to calculate the backward predictor, Xb. For a first order FIR

predictor the N samples are given weights that linearly depend on its position,

with the sample farthest from the N+lst sample given the least weight, and the

sample closest to the N+lst sample given the greatest weight. The median of

the forward predictor, backward predictor, and the N+1st sample is the output of

the filter.
This filter assumes the data is a combination of a root signal and some

undesired noise. Repeated use of the PFMH filter will remove the noise,

however for data-sets with a high noise/signal ratio the root signal obtained may

not be the desired root signal. (Engelken, 1990)
For this experiment two filters were used of lengths N=6 and N=10, and

each filter made two passes on the data. The values for N were the ones used

on SLS-1 and were based upon the duration of the fast phases being around

50-100 ms.

3.2.2 Calculation of Eye Velocity.

Eye velocity was calculated from PFMH filtered eye position by using a

linear nine point FIR velocity filter consisting of a three point differentiating filter

convolved with a seven point low pass filter with a 10 Hz corner frequency

(Massoumnia, 1983).

Page 22

3.2.3 AATM Filter

The key assumption in the AATM filter is that the eye spends more time in

the slow-phase than in the fast-phase. The filter uses this fact to extract the

slow-phase velocity from the total eye velocity. A frequency histogram is

calculated in the window and the dominant mode is assumed to indicate the

SPV. The output of the filter is an average of the velocity samples in the

neighborhood of the dominant mode. (Engelken, 1990)

3.3 Tachometer Analysis

The tachometer signal needed to be analyzed in order to extract some

necessary information with respect to rotation of the chair. This information was

the delay, spin length, run length, and spin velocity. An algorithm was

developed to find these important parameters. (Pouliot, 1992) The algorithm

basically looked for large changes in the tachometer signal which will occur at

the chair start and stop. The first large change will be assigned the chair start

and the second will be assigned the chair stop. From this information, the rest

of the parameters can be calculated.
For the in-flight data collection, there was no tachometer signal, so the

start and stop points were determined manually by looking at the record of the

chair yaw accelerometers, and looking at the EOG data and looking for the first

saccades.

3.4 Outlier Detection and Removal

The length of each per-rotatory and post-rotatory section had to be

normalized to 60 seconds. If the run segment was less than 60 seconds then

the median of the previous 5 samples was added to make the run segment 60

seconds. If the run segment was greater than 60 seconds then data beyond 60

seconds was truncated. In order to remove dropouts, an automated algorithm

was developed. (Balkwill, 1992) The basic idea in this method is to look at the

natural logarithm of the data and then perform a least squares linear fit. The

root-mean square error (RMS) about the line was calculated, and any data point

greater than 3*RMS or below 7.4 deg/sec, along with all points within 1/2

second, were marked as bad. A new linear fit was performed based upon the

Page 23

data with the previous bad sections ignored. However the RMS is calculated

based upon the whole data-set, and then the process is repeated. When the

RMS of the current fit converges to within 20% of the previous RMS value then

the bad sections are designated as dropouts.

3.5 Decimation

It was desired to decimate the data from a sampling rate of 120 Hz down

to 4 Hz in order to save computation time and disk space. In order to do this the

120 seconds of 120 Hz data was broken down into 30 equal segments and then

the mean and variance of each segment was calculated. This information was

saved as the decimated data. (Balkwill, 1992) In a similar manor, the in-flight

100 Hz data was decimated down to 4 Hz.

3.6 Model Fitting

It was desired to fit a first order exponential to the decimated data. To do

this constrained optimization was used in order to obtain the fit that minimized

the RMS between the data and the model fit. (Liefield, 1993) The per and post

rotatory data were fit separately since the per and post rotatory segments

should be asymmetric due to the long adaptation time constant being around 80

seconds. The model thus yielded a gain and time constant for both the per and

post rotatory phases

Page 24

3.7 Run Segment Rejection Criteria

In some cases, dropouts can be prolonged, and the model fit is based on

a relatively small sample of SPV data. It is probably inappropriate to average

the model fits based on small amounts of data, runs containing large electrode

motion related SPV artifacts, or responses where SPV response was virtually

absent due to fatigue with other data where this was not the case. A

quantitative run-rejection criterion was developed, and applied uniformly across

all subjects and all conditions. For some of the previous missions a quantitative

run rejection rule was not used. For example in SLS-1 the run rejection

criterion was "the SPV envelopes were examined visually, and discarded if

appropriate." (Balkwill, 1992) This could conceivably have lead to an added

bias due to experimenter prejudice.
In determining the criterion, histograms of the parametric data were

examined. It was determined that atypical run segments with extreme outliers

or a virtually absent per- or post-rotatory response could usually be identified by

using the following criteria:
1) The model-fitting routine hit a lower bound. (K < .06) or (T < .15)

2) Percent good of a run segment was less than 60%.

3) Mean-square error was greater than 200.

The rationale behind the first criterion was that if the model fitting routine

hit a lower bound then the run parameters were not physiological realistic for a

120 deg/sec step response. This might occur for example if the subject showed

little response for most of the run. (figure 3.2)

The rationale behind the second criterion was that if over 40% of the first

25 seconds of the run segment had been discarded by the outlier detection

algorithm than not enough data is there to make any further conclusions based

upon this run segment. (figure 3.3)
The rationale behind the third criterion was that if the mean-square error

was greater than 200 than the data was extremely noisy and should not be

used. (figure 3.4)

Page 25

1n(~

a 4C -

10 20 30 40 50

Time (sec)

Figure 3.2: Example of model-fitting routine hitting a lower bound (Model fit is

the black line). Low frequency SPV oscillations are typical of a sleepy subject.

100

80

40-

20- +

0,- 4., N

4.+ .+

-20
60 70 80 90 100 110 12

Time (sec)

Figure 3.3: Example of % good < 60 % (Actual % good = 35 %)(Model fit is th

black line)

0

Page 26

4

* +

80- -

Soo

Figure 3.4: Example of MSE > 200 (Actual MSE = 1370)(Model fit is the black

line)
4. + + +

4.-

0-

(510 20 30 40 50 60

Time (was below 25 deg/sec.c)

Figure 3.4: Example of MSE > 200 (Actual MSE = 1370)(Model fit is the black
line)

It was decided that if one of the run-rejection criteria was met, than both
the gain and the time-constant of the run-segment should be thrown out due to
the direct relationship between the gain and time-constant.

These criterion differed a little from the previous missions in which a
quantitative run rejection criterion was used. In IML-1 (Oman & Calkins, 1993),
the run rejection criterion was to remove all outliers in the histogram distribution
greater than 2 SD's. But in looking at the individual runs it was found that some
runs that were in the middle of the distribution were unreliable since for
example, if there were a lot of dropouts, the model fitting routine could give
unreliable results. In the SL-1 re-analysis (Liefield, 1993), the criterion was the
following:

1) more than 10 seconds worth of data was removed from a run
segment.

2) The model fitting routine hit a constraint (.18 < K < 1.8) or
(5 < T < 45)

3) Peak SPV response was below 25 deg/sec.

Page 27

The first criteria is the same the SLS-2 criterion #2, since 40% of 25 seconds

(the number of seconds the % good statistic was based on) is 10 seconds. The

second criteria is similar to the SLS-2 criteria #1, however it was decided to

reduce the lower bound in order to not throw away low gain data, and .06 is

very much below what is considered to be physiologically reasonable. The third

criterion was not used, for the same reason why the lower bound was reduced,

for it was not desired dismiss low gain responses, and in Liefield's thesis, as an

afterthought he questioned the justification of this rule.

3.8 Near real-time statistical analysis

It was desired to calculate some statistical parameters in near real time

during the post-flight BDC sessions in order to obtain a basic understanding of

how the subjects were performing in the experiment. Two different ways of

looking at the data in near real-time were developed. The first was to look at

individual run reports (Figure 3.5), as was done by Oman and Calkins (1993),

except that the results were fit by a model (Eqn 1.5), superimposed on the data,

and the mean square error was also calculated. The second way was to

calculate histograms (Figure 3.6), means, and variances, of the parametric data.

Page 28

SLS-2 EO72 ROTATING CHAIR RUN SUMMARY

subject V
session 06
run 03
test type BDC

spin length 59.99
run length 121
spin velocity 118.1

per-rotatory gain 0.652
per-rotatory time constant 11.64
per-rotatory percent good data 95
per-rotatory MSE 25.64

post-rotatory gain 0.7014
post-rotatory time constant 11.4A2
post-rotatory percent good data 89
post-rotatory MSE 47.09

150

-100-

0-1500

020 4060 10 120

Time since chair start (sec)

Figure 3.5: Example of a run report for one of subject V's early post-flight runs.

14

12

10

c 8
6

--4

2
0 o Il

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Bin (Time constant (sec))

Figure 3.6: Example of a histogram for Subject V's early post-flight per-rotatory

time constants.

The calculation of the histograms, means, and variances was performed

by exporting the parametric information describing each run from Matlab to

Page 29

subject session run # test type direction type of run delay run length spin length spin velocity calibration #
V 6 3 BDCO C FE 1.04 121 59.99 118.1 0.1199
V 6 4 BDC OCW FE 1.03 121 60.01 -119.1 0.1188
V 6 5800 MON DMP 1.03 121 60.01 118.1 0.1178
V 6 6 800C OW DMP 1.03 121 60.01 -119.0 0.1168
V 6 8 BOC CN FE 1.05 121 59.98 118.1 0.1142
V 6 9 BDC OCW -E 1.04 121 59.99 -119.1 0.1127
V 6 10 BDC ON DMP 1.04 121 59.99 118.1 0.1111
V 6 11 BDC OCW DAP 1.04 121 60.03 -118.9 0.1095
V 7 3 BDC ON lE 1.03 121 60.01 118.1 0.1121
V 7 4 BDC OcW FE 1.04 121 60.01 -118.9 0.1115
V 7 5 BDC CN DAP 1.04 121 60.00 118.2 0.1109
V 7 6 BDC CON DMP 1.03 121 60.00 -118.9 0.1103
V 7 8 BDC CWN E 1.04 121 60.00 118.2 0.1052
V 7 9 BDC OCW HE 1.04 121 60.01 -118.9 0.1007
V 7 1 0 BDC CON DP 1.03 121 60.00 118.2 0.0963
V 7 11 BDC ONW DMP 1.03 121 60.01 -118.9 0.0918

subject session run # per- % good per-rot gain per-rot t.c. per-rot MSE post - % good post-rot gain post-rot time constant post-rot MSE
V 6 3 95 0.65 11.64 25.64 89 0.70 11.42 47.09
V 6 4 83 1.20 6.67 36.99 76 0.48 14.13 52.61
V 6 5 86 0.92 9.15 37.76 63 1.05 5.79 16.34
V 6 6 83 0.87 7.77 27.40 59 0.06 0.15 102.80
V 6 8 91 0.60 11.34 49.16 76 0.85 11.84 49.98
V 6 9 62 0.75 8.29 66.43 76 0.94 10.74 52.24
V 6 10 88 1.01 9.50 33.34 77 0.86 6.04 31.22
V 6 11 100 0.74 10.41 57.30 53 0.71 5.81 19.48
V 7 3 72 0.69 9.14 25.29 83 0.48 14.08 25.76
V 7 4 36 0.06 0.15 55.77 85 0.72 11.33 33.18
V 7 5 85 0.79 9.87 22.23 65 1.05 4.50 23.91
V 7 6 71 0.43 10.19 46.84 78 0.61 8.88 25.96
V 7 8 84 0.99 8.34 19.24 66 0.92 8.23 42.26
V 7 9 52 0.61 6.85 37.01 49 0.90 10.71 26.08
V 7 10 82 0.52 11.61 30.79 70 0.91 5.98 16.59
V 7 11 67 0.95 8.24 24.69 72 0.77 7.19 14.19

a)
a)

-u
CL

a)U)

0

E
u

0)

cm

iz

Microsoft Excel. This information included for both the per and post-rotatory

segments: subject (T, V, X, or Y), BDC # (1-10), chair direction (cw or ccw),

post-rotatory head condition (he or dmp), percent good, gain, time constant, and

mean square error. (Figure 3.7)
Then templates were made for each subject in Excel so that histograms,

means, and variances could be calculated. A template is a Excel worksheet

with all the columns and rows labeled, the formulas already calculated, and the

graphs set so when the data is imported all the statistical calculations and

histograms could be performed. The templates for each subject was made for

pre-flight, early post-flight, and late post flight in order to calculate histograms,

means, and variances for different subsets of the data. Preflight included BDC's

1-4, early post-flight BDC's 5-7, and late post-flight BDC's 8-10. The subsets

were per-rotatory gain, per-rotatory time-constant, head-erect post-rotatory gain,

head-erect post-rotatory time-constant, dumping post-rotatory gain, dumping

post-rotatory time constant.
Using the macro programming language in Excel was studied but it was

determined to be not feasible to use since it did not allow any flexibility of a real

programming language but rather it was a string of pre-determined commands.

In the future when a more suitable macro programming language becomes

available it would be better to use this rather than the templates.

3.9 Statistical Comparisons of the Data

3.9.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) non-parametric test determines if two

cumulative frequency distributions (A, B) came from the same population. It

asks how probable it is that the greatest observed difference in their respective

cumulative frequency distributions (CFD):

ks = maxlCFD(B) - CFD(A)I (3.1)

would occur if the distributions A and B, were really the same. (Siegel, 1956)

The KS test was used to test pairs of sequences of parametric data, and pairs of

SPV time series. The KS test can (in part) determine if one curve decays faster

than another if both start from the same value, and assuming both decay

exponentially. The example below (Natapoff, 1994, personal communication)

Page 31

shows the time histories of two hypothetical SPV curves (Figure 3.8) and their

corresponding cumulative frequency distributions (Figure 3.9). The maximum

difference (13 x 0.05 = 0.65) in the CFDs occurs at x = 112. A total of (4, 17)

measurements of (A, B) lie below x = 112. Thus the difference at x = 112 is 13

out of the 20 points in each set. Since the two-tailed KS test has a critical value

of 11 at the a = 0.01 confidence level, the CFDs are significantly different.

This use of the KS test can not detect certain types of differences. It will

not, for example, distinguish one permutation of a set of numbers from another,

and therefore is not sensitive to the time sequence of these numbers. For

example, the same sequence occurring in inverted time order would be

indistinguishable from the original, and long sequences that converge to the

same value. In this experiment, the KS test was used to compare ensemble

average SPV responses under different conditions. 60 second long sequences

were used, except that a shorter interval was used for both when the

comparison involved flight data.

Page 32

120--

115-

110-

105-

100

U..
U E

* Trial A

* Trial B
N N

N E

0 0

U a U a a

U•

1I~

20

Time (seconds)

Figure 3.8: Time histories of two sample trials

1.00'

0.75.

0.2!

100 105 110 115 120

Magnitude of SPV (deg/sec)

Figure 3.9: Cumulative Frequency Distribution

Page 33

I I I I I I I I I I I I
i

* a a

a

a * S * *

3.9.2 Two-Sample t-Test for Independent Samples

The parametric data was compared by referring the t-statistic to the two
tailed student t-distribution for nl + n2 - 2 degrees of freedom.

X1 -X 2t = X 2 (3.2)
1

(s - + -

where

S (nl - 1)s + (n 2 - 1)s 2 (3.3)S = (3.3)
n, +n 2 -2

3.9.3 Sum of T-square statistic

The statistic below would be distributed as x2 if xi, yi are based on

averages of large number of measurements and if the measurements for

different values of i were independent. These assumptions were made in the

analysis of earlier missions, D-1 and SL-1. However for the AATM algorithm,

which uses a 1 second moving averager, adjacent samples at 4 Hz are

correlated. A new sampling frequency at which adjacent samples to be

independent was found by looking at the auto-correlation of one subject's data.

The auto-correlation with a delay of 1.5 seconds was found to be small if a new

sampling rate of 2/3 Hz was used. Then the sum of t2 statistic was calculated:

, t2 . (Yi xi) 2 (3.4)

i=l Gp

Since the distribution of this statistic (as opposed to x2) is not readily

available, it was used qualitatively. A very large sum of t2 would suggest a

significant result, while a low sum of t2 would suggest a non-significant result.

By looking at a large number of t2 values and comparing them to the plots of the

actual data, and other statistical tests, it was determined that a sum of t2 of 1000

would be the breakpoint between the two above mentioned trends.

Page 34

3.9.4: Actual use of the statistical tests

Responses under two different conditions were compared using six

statistical tests. The t-test and KS test were both performed on the gain and

time constant parametric data. Both the sum of t2 and KS tests were performed

on the ensemble averaged data. A rule of thumb was adopted to determine if

the results of the two comparisons taken together indicated a real difference. If

either the gains or time constants were found to be significantly different by the

t-test, and if the KS test for the ensemble average data also indicated a

significant difference, then the two cases was determined to be different. The

other two tests, i.e. KS test for the parametric data, and the sum of t2 data for the

ensemble data were used as secondary indicators.

Page 35

Chapter 4: Results

4.1 Completion status of runs

The number of runs performed per subject varied. Reasons why some

runs were not performed included time constraints, nausea of the subject,

operator error, and equipment malfunctions. Table 4.1 lists the number of runs

performed for each subject during the pre-flight, in-flight, early post-flight, late

post-flight, and KC-135 testing periods.

Subject Pre-flight In-flight Early post Late post KC-135

T 16 8 16 24 16

V 32 13 16 24 14

X 32 16 16 0 0

Y 32 9 18 24 13

Table 4.1: Number of runs performed for pre-flight, In-flight, Early Post-flight,

and the KC-135

4.2 Run rejection results

As outlined in section 3.7, three run segment rejection criteria were used.

The results of these criteria are listed in tables 4.2, 4.3, 4.4, and 4.5 for the pre-

flight, in-flight, early post-flight, and KC-135 testing periods. The first column is

the percent rejected category which is the total number of run segments

rejected divided by the total possible number of run segments. A run segment

differs from a run since a run is composed of both a per-rotatory and post-

rotatory segment, while a run segment segment is either a per-rotatory segment

or a post-rotatory segment. The next three columns are the categories

constraint hit, % good < 60, and MSE > 200, which are the three run rejection

criteria outlined in section 3.7. The percentage listed for these three categories

is the percentage of the rejected run segments that this run segment rejection

criteria was used. There is some overlap in these categories, e.g. one run

segment might hit a constraint, and have a % good < 60. However the run

Page 36

rejection routine first used the constraint hit criteria, then the % good on the

remaining segments, and finally the MSE criteria. Hence the relatively low

percent rejected using the MSE criteria was in part due to the order in which the

criteria were applied.

Subject Percent Rejected Constraint Hit % good < 60 MSE > 200

T 66 % 52 % 48 % 0 %

V 19 % 17 % 83 % 0 %

X 77 % 65 % 35 % 0 %

Y 27 % 18 % 70 % 12 %

Table 4.2: Results of outlier detection for pre-flight

Subject Percent Rejected Constraint Hit % good < 60 MSE > 200

T 19 % 100 % 0 % 0 %

V 15 % 100 % 0 % 0 %

X 13 % 100 % 0 % 0 %

Y 0% 0% 0% 0%

Table 4.3: Results of outlier detection for in-flight

Subject Percent Rejected Constraint Hit % good < 60 MSE > 200

T 47 % 67 % 33 % 0 %

V 13 % 50 % 50 % 0 %

X 84 % 85 % 15 % 0 %

Y 33 % 25 % 67 % 8 %

Table 4.4: Results of outlier detection for early post-flight

Page 37

Subject Percent Rejected Constraint Hit % good < 60 MSE > 200

T 25 % 75 % 25 % 0 %

V 7% 100 % 0% 0%

Y 15 % 50 % 50 % 0 %

Table 4.5: Results of outlier detection for KC-135

One interesting conclusion that can be drawn from the run rejection

results is that for all subjects and especially subject X, the percent rejected

during in-flight and in the KC-135 was less than the pre-flight.

4.3 Near Real-Time Analysis Experience

The purpose of the near real-time analysis was so the experimenters

could have an idea of how the data looked. Complete analysis of one session

on four subjects typically required 4-7 hours of computing on a Macintosh

Quadra. User interaction was required for EOG calibration analysis. However

most of the subsequent processing which was automated in batch mode, using

the method developed in Matlab by Liefeld (1993). Run reports were

automatically generated. Data was then manually exported to Excel

spreadsheets for rapid histogram generation and statistical analysis. On prior

missions, this analysis took several days of interactive work. During preflight

testing, analysis was performed at MIT between test sessions. During post-flight

testing, data was analyzed at Johnson Space Center, and results from a given

day's session were generally available the next day. The histograms, means,

and variances were useful to see if the subjects data appeared normally

distributed, and to see if there were any trends in the data as compared to pre-

flight norms. The run reports which showed both the SPV envelope and the

model parameters proved useful in keeping the experimenters in touch with the

actual data from each run, to see if any runs were abnormal, and in planning for

subsequent preflight test sessions. The use of the near real-time analysis was

apparent preflight, in-flight and early post-flight.

In preflight testing, one subject asked if they could be excused from two

test sessions, since test data for this subject was available from a previous

Page 38

mission. Test data obtained was compared to the earlier results, and fell within

the previously established range.
During the mission, one Subject (Y) reported abnormally long rotation

sensation durations, and asked whether the one minute rotation protocol should

be extended. Subject Y's preflight data base was examined, and it was useful

to know that the durations reported did indeed lie beyond the range of recorded

preflight durations. A decision was made to maintain a consistent 1 minute

rotation period.
During early post-flight testing, one subject found dumping runs

extremely provocative, and asked what the impact on experiment science would

be if these runs were omitted in subsequent testing. The preflight and early

post-flight data base of this subject was examined, and based on the large

variance of this particular subject's data, a decision was made not to ask this

subject to perform further dumping runs, since the likelihood of a positive

statistical finding was minimal.

4.4 Directional Asymmetry Analysis

Asymmetries are not unusual. They can arise from differences between

right and left in oculo motor performance, end organ response, or the neural

pathway between the end organ and the oculo motor system. The question is

whether the asymmetry relates more to the direction of the stimulus, or to the

direction of the response.
Performing an ANOVA individually on the gain and time constant data of

each subject with rotation direction and condition being factors, showed no

subjects having rotational direction being significant. (Table 4.6)

Subject Parameter dF F (Dir) Prob (Dir)

TGain 1 0.041 0.841
T.C. 1 1.615 0.212

V Gain 1 0.555 0.460
T.C. 1 2.692 0.108

X Gain 1 0.048 0.829
T.C. 1 0.044 0.837

Y Gain 1 0.312 0.580
IT.C. 1 0.002 0.968

Table 4.6: Pre-flight Stimulus Direction Asymmetry ANOVA Results

Page 39

Asymmetries are also found that depress the SPV when grouped by the

direction of the SPV response, not by the direction of rotation stimulus. So for

example CW per-rotatory is compared to CCW head erect and CCW dumping

runs because all these produce slow phase nystagmus to the left. These

response asymmetries were noted in several subjects in the D-1 (Oman &

Weigl, 1988) and SLS-1 analysis (Balkwill, 1992). Subject T had a history of

strabismus surgery and esophoria in the right eye, an oculomotor abnormality.

An ANOVA (Table 4.7) on the gain and time constant data of each subject with

response direction and condition being factors showed subject T's time

constant with a significant response direction asymmetry.

Subject Parameter dF F (Dir) Prob (Dir)

T Gain 1 0.140 0.710
T.C. 1 21.146 0.000

V Gain 1 0.225 0.637
T.C. 1 0.808 0.373

X Gain 1 0.005 0.943
T.C. 1 0.694 0.419

Y Gain 1 2.706 0.108
T.C. 1 2.618 0.114

Table 4.7: Pre-flight Response Asymmetry ANOVA Results

Subject T's time constants were consistently reduced when

as shown in Table 4.8:

Direction per he dmp
cw 16.75 31.91 15.15
ccw 22.56 23.05 13.76
average 19.65 28.69 14.65

Table 4.8 Pre-flight Mean Time Constants for Subject T

SPV was to the left,

Although the ANOVA did not show a significant reduction in gain, the ensemble

average SPV envelopes for Subject T were consistently reduced in magnitude

when the SPV response was in a leftward direction, as shown in Figures 4.1

and 4.2:

Page 40

a.

i Ct ln S10-

10 20 30 40 50 60
Time (seconds)

Figure 4.1: Subject T, pre-flight CCW per-rotatory (solid line) and. negative of

pre-flight CW per-rotatory (dotted line) SPV response

100

80)

-

-2(10 20 30 40 50 60
Time (seconds)

Figure 4.2: Subject T, pre-flight CW head erect (solid line) and negative of pre-

flight CCW head erect (dotted line) SPV response

Page 41

The effect of head tilt on Subject's Ts SPV responses was present in
both the CW and CCW directions (Figures 4.3-4.4), and therefore in the

response when averaged across both directions (Figure 4.5). Because the goal

of this experiment was to find the effect of zero-gravity on SPV, and since it

was expected that - like dumping - the zero-G effect would be present in both

the CW and CCW responses, for further analysis it was considered justified to

group Subject Ts CW and CCW cases together, rather than treating them

separately.

10C

o I

"0 10 20 30
Time (seconds)

Figure 4.3: Subject T, pre-flight CW head erect (solid

dumping (dotted line) SPV response

line) and pre-flight CW

Page 42

0- 10 20 30 40 50 60
Time (seconds)

Figure 4.4: Subject T, pre-flight CCW head erect (solid line) and pre-flight CCW
dumping (dotted line) SPV response

0 10 20 30 40 50
Time (seconds)

Figure 4.5: Subject T, pre-flight head erect (solid line) and pre-flight dumping
(dotted line) SPV response

Page 43

4.5 Comparisons

4.5.1 The Effect of an Acute Exposure to Zero-gravity on Slow-Phase Velocity

It was found that when a subject was exposed to an acute exposure to
zero gravity in parabolic flight that the SPV response was significantly different

than in 1-G in 2/3 subjects (Subjects V and Y), and in these two subjects the

time constants were shorter. Subject T's time constant was also shorter, but the

difference was not significant . Subject X was not tested due to technical
problems. (Table 4.9, Figures 4.6-4.8)

Parametric Ensemble

Subject KC-1G KC-OG ttest KS sum t2 KS
p<= p<= p<=

T Ensemble 150.55 0.111
Gain 0.39 0.34
T.C. 23.44 22.78
Parametric
Gain 0.39 0.33 0.389 0.125
T.C. 30.98 30.28 0.937 0.500

V Ensemble 1901.90 0.006
Gain 0.48 0.42
T.C. 14.79 7.95
Parametric
Gain 0.45 0.43 0.706 1.000
T.C. 16.85 8.64 0.000 0.125

Y Ensemble 3140.79 0.038
Gain 0.78 0.73
T.C. 20.01 12.57
Parametric
Gain 0.72 0.74 0.728 1.000
T.C. 26.75 13.52 0.007 0.080

Table 4.9: Results of Comparison Between KC-135 1-G and KC-135 0-G
(Results when p <= 0.05 or .t2 > 1000 indicated in bold)

Page 44

0-C,

0 2 4 6 8 10 12 14 16 18
Time (seconds)

Figure 4.6: Subject T, KC-135 1-G (solid line) and KC-135 O-G (dotted line)
SPV response

0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

Figure 4.7: Subject V, KC-135 1-G (solid line) and KC-135 O-G (dotted line)
SPV response

Page 45

801-

AI %Jq

5
r

2(-

2 4 6 8 10 12 14 16 18 20
Time (seconds)

Figure 4.8: Subject Y,
SPV response

KC-135 1-G (solid line) and KC-135 O-G (dotted line)

Page 46

4.5.2 The Effect of Prolonged 0-G Exposure on Head erect Slow-Phase
Velocity

It was found that in-flight head erect runs were significantly different than
pre-flight head erect runs for 2 subjects (Subjects T and Y). Subject T's in-flight
head erect time constant was found to be shorter. Subject Y's in-flight head
erect time constant was found to be larger. For subjects V and X, the in-flight
head erect runs could not be proved to be significantly different. (Table 4.10,
Figures 4.9-12)

Parametric Ensemble

Subject Pre-HE FLIGHT-HE t-test KS sum t2 KS
<= P <= p <=

T Ensemble 3895.06 0.000
Gain 0.48 0.31
T.C. 28.31 15.39
Parametric
Gain 0.47 0.31 0.056 0.667
T.C. 28.69 16.63 0.026 0.667

V Ensemble 247.82 0.976
Gain 0.61 0.64
T.C. 13.69 13.13
Parametric
Gain 0.62 0.63 0.896 0.320
T.C. 13.74 13.45 0.828 0.820

X Ensemble 773.42 0.227
Gain 0.46 0.35
T.C. 19.39 15.78
Parametric
Gain 0.46 0.35 0.287 0.500
T.C. 20.33 14.63 0.212 0.500

Y Ensemble 1651.50 0.022
Gain 0.87 0.84
T.C. 18.49 22.49
Parametric
Gain 0.88 0.86 0.868 0.500
T.C. 18.141 22.19 0.016 0.125

Table 4.10: Results of Comparison Between Pre-flight Head erect and In-flight
Head erect (Results when p <= 0.05 or .t2 > 1000 indicated in bold)

Page 47

0 10 20 30 40 50 6(
Time (seconds)

Figure 4.9: Subject T, Pre-flight Head erect (solid line) and In-flight Head erect

(dotted line) SPV response

-0 10 20 30 40 50 60
Time (seconds)

Figure 4.10: Subject V, Pre-flight Head erect (solid line) and In-flight Head erect

(dotted line) SPV response

Page 48

Time (seconds)

Figure 4.11: Subject X, Pre-flight Head erect (solid line) and In-flight Head erect

(dotted line) SPV response

-0 10 20 30 40 50 60
Time (seconds)

Figure 4.12: Subject Y, Pre-flight Head erect (solid line) and In-flight Head erect

(dotted line) SPV response

Page 49

4.5.3 The Effect of Prolonged O-G Exposure on Per-rotatory Slow-Phase
Velocity

It was found that in-flight per-rotatory runs were significantly different than
pre-flight per-rotatory runs for 2 subjects (Subjects T and X). In these two
subjects the in-flight per-rotatory time constants were shorter. For subjects V
and Y the in-flight per-rotatory runs could not be proved significantly different
than pre-flight per-rotatory runs. Subject V's in-flight per-rotatory time constant
was found to be larger. (Table 4.11, Figures 4.13-16)

Parametric Ensemble

Subject PRE-PER FLIGHT- t-test KS sum t2 KS
PER

p<= p<= p <=
T Ensemble 12594.00 0.004

Gain 0.56 0.31
T.C. 18.6 11.41
Parametric
Gain 0.53 0.28 0.001 0.009
T.C. 19.65 12.37 0.021 0.074

V Ensemble 270.00 0.876
Gain 0.76 0.67
T.C. 9.10 11.21
Parametric
Gain 0.81 0.70 0.143 0.112
T.C. 9.38 11.87 0.001 0.006

X Ensemble 1779.14 0.079
Gain 0.51 0.20
T.C. 13.17 11.23
Parametric
Gain 0.50 0.39 0.444 0.005
T.C. 11.08 8.24 0.078 0.028

Y Ensemble 710.16 0.260
Gain 1.05 0.97
T.C. 13.13 13.47
Parametric
Gain 1.04 0.92 0.197 0.307
T.C. 12.75 13.61 0.409 1.000

Table 4.11: Results of Comparison Between Pre-flight Per-rotatory and In-flight
Per-rotatory (Results when p <= 0.05 or ,t2 > 1000 indicated in bold)

Page 50

0-

3 10 20 30 40 50 60
Timne (seconds)

Figure 4.13: Subject T, Pre-flight Per-rotatory (solid line) and In-flight Per-

rotatory (dotted line) SPV response

1

i

-2f
0 10o 20 30 40 50 60

lime (seconds)

Figure 4.14: Subject V, Pre-flight per-rotatory (solid line) and In-flight per-

rotatory (dotted line) SPV response

Page 51

C,
a

0

-2 10 20 30 40 50
Time (seconds)

Figure 4.15: Subject X, Pre-flight per-rotatory (solid line) and In-flight per-

rotatory (dotted line) SPV response

1

0

2(10 20 30 40 50
Time (seconds)

Figure 4.16: Subject Y, Pre-flight per-rotatory (solid line) and In-flight per-

rotatory (dotted line) SPV response

Page 52

4.5.4 Changes in early post-flight head-erect responses

The difference between early post-flight head erect and pre-flight head

erect SPV responses could not be shown to be statistically significant for three

subjects (T, V, Y). Subject Y's early post-flight head erect time constant was

found to be significantly larger. (Table 4.12, Figures 4.17-4.19) Subject X's

early post-flight data was not assessed, because only a single data point

remained after application of the run segment rejection criteria.

Parametric Ensemble

Subject Pre-HE Early-HE t-test KS sum t2 KS

P <= P <= P <=

T Ensemble 2404.07 0.517

Gain 0.48 0.45
T.C. 28.31 24.33

Parametric
Gain 0.47 0.43 0.500 1.000
T.C. 28.69 23.27 0.105 0.820

V Ensemble 177.436 0.876

Gain 0.61 0.71
T.C. 13.69 11.76
Parametric
Gain 0.62 0.73 0.239 0.919
T.C. 13.74 11.68 0.081 0.189

X Ensemble
Gain 0.46 0.86
T.C. 19.39 8.13

Parametric
Gain 0.46 0.86
T.C. 20.33 8.13

Y Ensemble 1309.96 0.704

Gain 0.87 0.83
T.C. 18.49 21.22
Parametric
Gain 0.88 0.82 0.420 0.516
T.C. 18.14 21.73 0.009 0.006

Table 4.12: Results of Comparison Between Pre-flight Head erect and Early

Head erect (Results when p <= 0.05 or _t2 > 1000 indicated in bold)

Page 53

" 10 20 30 40 50 60
Time (seconds)

Figure 4.17: Subject T, Pre-flight Head erect (solid line) and Early Head erect

(dotted line) SPV response

"'-UO 10 20 30 40 50 60
Time (seconds)

Figure 4.18: Subject V, Pre-flight Head erect (solid line) and Early Head erect

(dotted line) SPV response

Page 54

" 10 20 30 40 50 60
Time (seconds)

Figure 4.19: Subject Y, Pre-flight Head erect (solid line) and Early Head erect

(dotted line) SPV response

Page 55

4.5.5 Changes in early post-flight per-rotatory responses

The difference between early post-flight per-rotatory and pre-flight per-

rotatory SPV responses could not be shown to be statistically significant for

three subjects. (V, X, and Y). Subject T showed the early post-flight per-rotatory

time constant to be significantly shorter. (Table 4.13, Figures 4.20-23)

Parametric Ensemble

Subject Pre-PER Early-PER t-test KS sum t2 KS

p<= p<= p<=

T Ensemble 2932.84 0.079

Gain 0.56 0.53
T.C. 18.60 14.51

Parametric
Gain 0.53 0.65 0.061 0.320
T.C. 19.65 13.21 0.008 0.080

V Ensemble 197.006 0.704
Gain 0.76 0.78
T.C. 9.10 9.50

Parametric
Gain 0.81 0.79 0.838 0.844

T.C. 9.38 9.44 0.913 0.264

X Ensemble 274.587 0.516

Gain 0.51 0.56
T.C. 13.17 9.58

Parametric
Gain 0.50 0.56 0.357 0.667
T.C. 11.08 8.78 0.044 0.000

Y Ensemble 510.39 0.704

Gain 1.05 0.92
T.C. 13.13 14.94

Parametric
Gain 1.04 1.01 0.674 0.664

T.C. 12.75 13.29 0.598 0.962

Table 4.13: Results of Comparison Between Pre-flight per-rotatory and Early

Per-rotatory (Results when p <= 0.05 or .t2 > 1000 indicated in bold)

Page 56

-% 10 20 30 40 50 60
Time (seconds)

Figure 4.20: Subject T, Pre-flight Per-rotatory (solid line) and Early Per-rotatory

(dotted line) SPV response

0 10 20 30 40 50 60
Time (seconds)

Figure 4.21: Subject V, Pre-flight Per-rotatory (solid line) and Early Per-rotatory

(dotted line) SPV response

Page 57

-b 10 20 30 40 50 60
Time (seconds)

Figure 4.22: Subject X, Pre-flight Per-rotatory (solid line) and Early Per-rotatory

(dotted line) SPV response

0 10 20 30 40 50 60
Time (seconds)

Figure 4.23: Subject Y, Pre-flight Per-rotatory (solid line) and Early Per-rotatory

(dotted line) SPV response

Page 58

4.5.6 The Effect of Pre-Flight Dumping on Slow-Phase Velocity

It was found that the pre-flight dumping runs were significantly different

than the pre-flight head erect runs for 3/4 subjects (Subjects T, V, and Y). In

these three subjects the pre-flight dumping time constants were shorter than the

head erect time constants. Subject Y's dumping gain was found to be shorter.

Subject X's dumping time constant did show a trend towards shortening, but

was not significant different. (Table 4.14, Figures 4.24-4.27)

Parametric Ensemble

Subject Pre-HE Pre-DMP t-test KS sum t2 KS
p<= p<= p<=

T Ensemble 10720.7 0.001

Gain 0.48 0.38
T.C. 28.31 15.67

Parametric
Gain 0.47 0.46 0.811 0.768
T.C. 28.69 14.65 0.000 0.000

V Ensemble 1598.28 0.079

Gain 0.61 0.64
T.C. 13.69 7.97
Parametric
Gain 0.62 0.69 0.460 0.662
T.C. 13.74 7.85 0.000 0.000

X Ensemble 287.67 0.353
Gain 0.46 0.71
T.C. 19.39 12.42
Parametric
Gain 0.46 0.43 0.773 1.000
T.C. 20.33 16.70 0.471 0.500

Y Ensemble 14822.2 0.022

Gain 0.87 0.67
T.C. 18.49 10.96
Parametric
Gain 0.88 0.70 0.041 0.028

T.C. 18.14 11.19 0.000 0.000

Table 4.14: Results of Comparison Between Pre-flight Head Erect and Pre-

flight Dumping. (Results when p <= 0.05 or .t2 > 1000 indicated in bold)

Page 59

Time (seconds)

Figure 4.24: Subject T, Pre-flight head erect (solid line) and Pre-flight dumping

(dotted line) SPV response

0 10 20 30 40 50 60
Time (seconds)

Figure 4.25: Subject V, Pre-flight head erect (solid line) and Pre-flight dumping

(dotted line) SPV response

Page 60

C I

C)
o

2
4

01

o 10 20 30 40 50 60
Time (seconds)

Figure 4.26: Subject X, Pre-flight head erect (solid line) and Pre-flight dumping

(dotted line) SPV response

100

8 -

0 4C

0- "

-2d
0 10 20 30 40 50 60

Time (seconds)

Figure 4.27: Subject Y, Pre-flight head erect (solid line) and Pre-flight dumping

(dotted line) SPV response

Page 61

4.5.7 The Effect of Dumping on In-flight Slow-Phase Velocity

Did the SPV time constant shorten when a dumping head movement was

made in-flight ? We were unable to show a significant difference between the

in-flight dumping and head erect time constants of any of the subjects. Subject

T's in-flight dumping gain was found to be larger, and Subject Y's dumping gain

was found to be shorter. (Table 4.15, Figures 4.28-31)

Parametric Ensemble

Subject FLIGHT-HE FLIGHT- t-test KS sum t2 KS
DMP

p<= P <= P <=

T Ensemble 255.41 0.856

Gain 0.31 0.45
T.C. 15.39 12.35
Parametric
Gain 0.31 0.46 0.014 0.000
T.C. 16.63 12.15 0.442 1.000

V Ensemble 425.57 0.981

Gain 0.64 0.59
T.C. 13.13 14.09
Parametric
Gain 0.63 0.63 0.993 0.820
T.C. 13.45 13.52 0.966 0.820

X Ensemble 413.30 0.227

Gain 0.35 0.37
T.C. 14.63 11.37

Parametric
Gain 0.35 0.45 0.184 0.516
T.C. 14.63 11.02 0.261 0.516

Y Ensemble 2961.45 0.732

Gain 0.84 0.69
T.C. 22.49 22.79
Parametric
Gain 0.86 0.77 0.006 0.000
T.C. 22.19 23.33 0.778 0.500

Table 4.15: Results of Comparison Between In-flight Head erect and In-Flight

Dumping (Results when p <= 0.05 or _t2 > 1000 indicated in bold)

Page 62

6C " -CL

-

-2 10 20 30 40 50 60
Time (seconds)

Figure 4.28: Subject T, In-flight Head erect (solid line) and In-flight Dumping

(dotted line) SPV response

10C

8m

0 --

C

0

0 10 20 30 40 50 60
Time (seconds)

Figure 4.29: Subject V, In-flight Head erect (solid line) and In-flight Dumping

(dotted line) SPV response

Page 63

0 10 20 30 40 50
Time (seconds)

Figure 4.30: Subject X, In-flight Head erect (solid line) and In-flight Dumping

(dotted line) SPV response

"0 10 20 30 40 50
Time (seconds)

Figure 4.31: Subject Y, In-flight Head erect (solid line) and In-flight Dumping

(dotted line) SPV response

Page 64

4.5.8 The Effect of Prolonged O-G Exposure on Dumping Slow Phase Velocity

It was found that in-flight dumping runs were significantly different than

pre-flight dumping runs for 2 subjects (Subjects V and Y). For these two

subjects the in-flight dumping time constants were larger. For subjects T and X,

in-flight dumping runs were not found to be significantly different than pre-flight

dumping runs. (Table 4.16, Figures 4.32-35)

Parametric Ensemble

Subject Pre-DMP FLIGHT- t-test KS sum t2 KS
DMP

p<= P <= P<=

T Ensemble 316.40 0.970
Gain 0.38 0.45
T.C. 15.67 12.35
Parametric
Gain 0.46 0.46 0.830 0.500
T.C. 14.65 12.15 0.084 0.125

V Ensemble 1276.80 0.011
Gain 0.64 0.59
T.C. 7.97 14.09
Parametric
Gain 0.69 0.63 0.570 0.919
T.C. 7.85 13.52 0.000 0.047

X Ensemble 1103.57 0.353
Gain 0.71 0.38
T.C. 12.42 11.37
Parametric
Gain 0.43 0.45 0.756 0.500
T.C. 16.70 11.02 0.127 0.125

Y Ensemble 11377.9 0.000
Gain 0.67 0.69
T.C. 10.96 22.79
Parametric
Gain 0.70 0.77 0.515 0.320
T.C. 11.19 23.33 0.000 0.000

Table 4.16: Results of Comparison Between Pre-flight Dumping and In-flight

Dumping (Results when p <= 0.05 or It 2 > 1000 indicated in bold)

Page 65

0 10 20 30 40 50
Time (seconds)

Figure 4.32: Subject T, Pre-flight Dumping (solid line) and In-flight Dumping

(dotted line) SPV response

-0 10 20 30 40 so
Time (seconds)

Figure 4.33: Subject V, Pre-flight Dumping (solid line) and In-flight Dumping

(dotted line) SPV response

Page 66

0 10 20 30 40 50
Time (seconds)

Figure 4.34: Subject X, Pre-flight Dumping (solid line) and In-flight Dumping

(dotted line) SPV response

"" 10 20 30 40 50
Time (seconds)

Figure 4.35: Subject Y, Pre-flight Dumping (solid line) and In-flight Dumping

(dotted line) SPV response

Page 67

4.5.9 The Effect of Dumping on Early Post-flight Slow-Phase Velocity

It was found that early post-flight dumping runs were significantly different

than early post-flight head erect runs for 3/3 subjects (Subjects T, V, and Y). In

these three subjects the dumping time constants were shorter for all three

subjects. (Table 4.17, Figures 4.36-38) Subject X's early post-flight data was

not assessed, because only a single data point remained after application of the

run segment rejection criteria.

Parametric Ensemble

Subject Early-HE Early-DMP t-test KS sum t2 KS
p<= P <= P <=

T Ensemble 3696.65 0.004

Gain 0.45 0.46
T.C. 24.33 14.36
Parametric
Gain 0.43 0.47 0.589 1.000
T.C. 23.27 13.82 0.000 0.000

V Ensemble 2256.02 0.011

Gain 0.70 0.81
T.C. 11.76 6.63
Parametric
Gain 0.73 0.87 0.172 0.333
T.C. 11.68 6.40 0.000 0.000

Y Ensemble 6588.71 0.011

Gain 0.83 0.77
T.C. 21.21 11.84

Parametric
Gain 0.82 0.77 0.279 0.333
T.C. 21.73 11.84 0.000 0.000

Table 4.17: Results of Comparison Between Early Head erect and Early

Dumping (Results when p <= 0.05 or _t2 > 1000 indicated in bold)

Page 68

100

60

a

02 10 20 30 40 50 60
Time (seconds)

Figure 4.36: Subject T, Early Head erect (solid line) and Early Dumping (dotted

line) SPV response

100

8C

%

a.

-

o-,--- _ -- -- .---.. - --- ._. w ---- - - _o-

0 10 20 30 40 50 60
Time (seconds)

Figure 4.37: Subject V, Early Head erect (solid line) and Early Dumping

(dotted line) SPV response

Page 69

- 10 20 30 40 50 60
Time (seconds)

Figure 4.38: Subject Y, Early Head erect (solid line) and Early Dumping (dotted

line) SPV response

Page 70

4.5.10 Changes in early post-flight dumping responses

The difference between early post-flight dumping and pre-flight dumping

SPV responses could not be shown to be statistically significant for three

subjects (T, V, Y). (Table 4.18, Figures 4.39-41) Subject X data was not

analyzed due to an extensive amount of outliers.

Parametric Ensemble

Subject Pre-DMP Early-DMP t-test KS sum t2 KS

p<= p<= P <=

T Ensemble 247.475 0.517

Gain 0.38 0.46
T.C. 15.67 14.36
Parametric
Gain 0.46 0.47 0.987 0.250
T.C. 14.65 13.82 0.459 0.500

V Ensemble 228.048 0.138

Gain 0.64 0.81
T.C. 7.97 6.63
Parametric
Gain 0.69 0.87 0.112 0.750
T.C. 7.85 6.40 0.104 0.750

Y Ensemble 1297.88 0.976

Gain 0.67 0.77
T.C. 10.96 11.83
Parametric
Gain 0.70 0.77 0.467 0.600

T.C. 11.19 11.84 0.487 0.400

Table 4.18: Results of Comparison Between Pre-flight Dumping and Early

Dumping (Results when p <= 0.05 or It 2 > 1000 indicated in bold)

Page 71

60

Q.. I Ir
) 40

2 --

0 10 20 30 40 50
Time (seconds)

Figure 4.39: Subject T, Pre-flight Dumping (solid line) and Early Dumping

(dotted line) SPV response

100

80O

60

CL 40 -

$0

20

0-

-20o
0 10 20 30 40 50

Time (seconds)

Figure 4.40: Subject V, Pre-flight Dumping (solid line) and Early Dumping

(dotted line) SPV response

Page 72

0 10 20 30 40 50
Time (seconds)

Figure 4.41: Subject Y, Pre-flight Dumping (solid line) and Early Dumping
(dotted line) SPV response

Page 73

Chapter 5: Discussion and Conclusion

This chapter reviews the experimental results in the context of the eight major

scientific and engineering questions associated with this study.

5.1: "How did subject's pre-flight head erect VOR responses compare with

results from previous studies ?"

SPV responses of all subjects showed intervals of response "dropouts",

as noted by Balkwill (1992) and Liefeld (1993) on previous missions. On

average, the outlier detection and removal algorithm removed 34% of the

original SPV data (T:34%; V:29%; X:47%; Y:27%). Subjects V and Y had the

most consistent VOR. Their percentage of runs rejected pre-flight (Table 4.2)

was 19 and 27 % respectively. Subjects T and X results were less consistent.

Their percentage of run segments rejected were 66 and 77 % respectively.

(Table 4.2). Even after outliers were removed in this way, the standard

deviation of the remaining gain and time constant data was 20-40% of the

mean, as shown in Figures 5.1-5.4 below. This variability is consistent with the

results of Oman and Calkins (1993) when IML-1 astronauts were repeatedly

tested, and somewhat different run segment rejection rules were used. The

large coefficient of variation of parametric values in this apparently "normal"

population of astronauts demonstrates the intrinsic variability of the human VOR

response, a problem often ignored in other studies.

Mean post-rotatory apparent time constants were 28.7, 13.7, 20.3, and

18.1 sec for Subjects T, V, X, and Y respectively. In the earlier SL-1 study,

Kulbaski (1986) found time constants in the range between 7.4 and 16.7

seconds. On IML-1, time constants between 11.5 and 15.9 seconds were

reported (Oman and Calkins, 1992). However, time constants in the latter two

studies were computed using log-linear regression. Liefeld's (1993) re-analysis

of the same SL-1 data using a linear, first order model similar to that used in this

study showed longer time constants (11.3-17.5 sec). It was concluded that the

apparent time constants were likely within the range expected based on

previous work, when differences in model fitting techniques were taken into

account.
As expected based on previous studies (e.g. Balkwill, 1992, p.148), 3/4

subjects showed an eventual reversal of per-rotatory SPV just prior to chair

Page 74

stop. The mean per-rotatory apparent time constants of all 4 subjects were

shorter than the corresponding post rotatory time constants by an average of 7.0

sec. This difference in apparent time constant when the SPV data is fit with a

first order model (Eqn. 1.5) can be attributed to the presence of neural

adaptation in the actual responses (corresponding to Ta in Eqn 1.4).

Preflight responses were examined for trends in gains (Figs. 5.3 and 5.4)

and time constants. As on previous missions, no consistent trends were seen.

Pre-flight responses were also examined for asymmetries associated either with

the direction of rotation stimulation, or the direction of SPV response. A small

amount of response asymmetry is not unusual. Subject Ts SPV response was

reduced for leftward SPV(Figs. 4.1-4.2). ANOVA (Table 4.7) demonstrated a

statistically significant reduction in time constant in the leftward SPV direction.

Based on this subject's medical history, the asymmetry was thought to be

oculomotor in origin. Since effect of gravitational exposure is likely similar for

both response directions for all subjects, including Subject T, CW and CCW

responses under each condition were averaged together for further analysis

(Section 4.4).

5.2: "How did the head-erect SPV response change in parabolic flight ?"

On SLS-1, it was not possible to test the subjects in parabolic flight to

evaluate their head erect VOR response after an brief exposure to

weightlessness. However, on SLS-2, three of the four subjects were tested in

the NASA KC-135 in 0-G parabolic flight, and in the aircraft on the ground in 1-

G. The mean head erect time constants of all three subjects shortened in

weightlessness. Subjects V and Y showed a significant shortening of the head

erect time constant (Section 4.5.1). The ratio of the 0-G/1-G KC-135 time

constants was 60% (98 %, 51 %, and 32 % for subjects T, V, and Y

respectively). The average time constant ratio (60 %) compares closely to the

value of 69% found by DiZio and Lackner (1988) in a population of 15 subjects.

In the DiZio and Lackner study individual subject mean responses and their

standard deviations were not reported. Hence, the present study has shown for

the first time that the population trend demonstrated by DiZio and Lackner is

true for the majority of subjects tested as individuals.

Subject Ts results were notable because of the large variation in the 0-G

time constant data. Four of the data points clustered in the 20-25 second range,

Page 75

suggesting that the time constant shortened on these runs. Three other runs

produced more scattered data with longer time constants, including one (not

plotted in Fig. 5.1) of 60.8 sec. It may be that Ts average time constant was

skewed by one or two aberrant runs, and that if the KC-135 testing was

performed again, this subject would probably show a shorter mean time

constant.
The percentage of run segments rejected in parabolic flight due to

dropouts and outlier parameter values (T:25%, V:7%, and Y:15%). These

percentages were lower than in preflight testing, possibly due to the excitement

of the weightless experience, or subjects use of scop-dex.

It was not possible to demonstrate a significant difference between 0-G

and 1-G gain parameters (Figs 5.3, 5.4 and Table 4.9). Absence of a significant

change in gain is consistent with previous studies by Jackson and Sears

(1965), Vesterhauge, et al (1984), and DiZio and Lackner (1988).

As reviewed in Section 1.1, it has been hypothesized that the reduction

in post-rotatory time constant observed in zero-gravity parabolic flight is due to

vestibular conflict. The semicircular canals presumably function normally,

while the otoliths do not respond in a familiar way during rotation. It was

hypothesized that when this vestibular conflict occurs, velocity storage is lost,

causing a shorter apparent time constant of the post-rotatory VOR.

5.3: "How did the head-erect SPV response change in prolonged

weightlessness ?"

Although technical difficulties were encountered with in-flight EOG

recording, the SLS-2 in-flight data set was somewhat larger than that obtained

on SLS-1. The SLS-2 analysis differed from SLS-1 in that first order model fits

were performed on individual runs using a method identical to ground testing,

and both per- and post-rotatory in-flight data was analyzed. On SLS-2, this

permitted assessment of inter subject differences and the statistical significance

of the changes seen.
Had data from Subjects Y and T on FD10 been available, it would have

been possible to test for in-flight adaptive trends in all four subjects. Data was

available for Subjects V and X (Fig. 5.5) on both flight days. From the limited

available data, no clear adaptive trends in the per-rotatory or head erect time

Page 76

constant data could be discerned. Therefore, data from FD4 and FD10 were

considered together for subsequent analysis.
Had it been possible to test the subjects immediately after reaching orbit,

presumably data similar to that recorded in parabolic flight would have been

obtained.
As compared to preflight control data, after 4-10 days in orbit, subjects V

and Y did not show a significant decrease in their head-erect and per-rotatory

time constants (Fig. 5.2; Sections 4.5.2 and 4.5.3) In fact, Subject Y's per-

rotatory and head erect VOR time constant actually increased somewhat in

flight, and so apparently did Subject Y's subjective sensation. Subject Y

commented during (Flight Day 4) testing that "comparing to 1-G..it felt like I was

turning longer. The time constants seem longer up here in space." Subject V's

head erect time constant was 13.7 sec on the ground, and 13.5 sec. in orbit.

Subject Y's head erect time constant was 18.1 sec. on the ground, and 22.2

sec. in orbit. These results differed from 0-G parabolic flight, where these same

two subjects showed a significant decrease in head-erect time constant (51%,

32% respectively). These two subjects thus showed a mean response similar to

three of the four subjects in Oman and Balkwill's (1993) SLS-1 study.

Subjects T and X responded differently than the other two subjects in

orbit. Their mean head erect and per-rotatory time constants decreased in-

flight. For example, Subject Ts head erect time constant was 58% of the

preflight value (28.7 sec on the ground and 16.6 in orbit). Subject X's time

constant was 72% of the preflight value (20.3 sec. on the ground and 14.6 sec.

in orbit). Subject T's per-rotatory and head erect time constant decreases were

statistically significant while subject X's were not, perhaps due to the small

number of in-flight runs and large number of dropouts. (Sections 4.5.2 and

4.5.3).
As shown in Figs. 5.3 and 5.4, only Subjects T and X showed noticeable

decreases in gain in orbit. However, when interpreted against the background

normal variation in gain parameters, these changes were not statistically

significant (Table 4.10-11). As shown in Figs. 4.9-4.12, the initial peak of the

ensemble average SPV envelopes appear almost identical for all 4 subjects,

suggesting that the VOR gain was unchanged. This result is similar to that

found by Oman and Balkwill (1993) on SLS-1.

In contrast, on IML-1, Oman and Calkins (1993) found that the in-flight

VOR gain had increased, at least when the 4 subjects were considered as a

Page 77

group. They reported a rank correlation between in-flight SMS intensity, gain

increase, and time constant decrease (Oman and Calkins, 1993) in-flight.

However, all 4 IML-1 subjects had experienced some symptoms of space

motion sickness while in orbit. Liefeld (1993) noted a trend toward increased

post-flight VOR gain and decreased time constant among those who had been

sick in flight. The SLS-2 crew reported virtually no in-flight symptoms of SMS,

so their in-flight sickness intensity could not be ranked. The change in head

erect time constant of our SLS-2 subjects showed an approximate rank

correlation with change in gain. Ranked in terms of time constant change, the

order of the subjects was T, X, V, Y, and in terms of gain change, the order was

T, X, Y, V. Subject V and Y's gain scores were within 4% of each other, and had

the rank order been reversed, the rank correlation would have been statistically

significant. If there is a causal relationship between in-flight gain increase and

space motion sickness, and our SLS-2 subjects had little or no gain increase, it

would be surprising that they experienced little space sickness.

As noted in Section 4.2, the percentage of run segments rejected due to

dropouts and outlier parameter values (T:19%, V:15%, X:13%, Y:O%) was lower

in flight than in preflight testing. Perhaps this was the result of a generally

higher level of attentiveness associated with performing the experiment in flight

after two years of training.
The SPV response asymmetry in mean post-rotatory time constants

observed in Subject T preflight (Sect. 4.4) was also present in flight, but the

corresponding asymmetry was not seen in per-rotatory responses. Since the

number of runs was relatively small, the effect could not be reliably observed in-

flight. It is interesting that Subject T was the one subject who showed only a

small mean time constant decrease in parabolic flight, but did show a larger

decrease when tested in orbit.
The principal conclusion, then, is that both per-rotatory and head erect

time constants increased so they were equal to or larger than pre-flight values

in half the subjects (V and Y) studied. A reason (Oman and Balkwill, 1993) why

velocity storage might return is that as the CNS adapts to weightlessness, the

otolith cue during rotation becomes familiar and sensory conflict disappears.

Presumably vestibular conflict remained in Subjects T and X, making their

apparent time constants shorter than preflight values.

Page 78

5.4: "How did the head erect SPV response change post-flight ?"

Post-flight changes in the VOR may be difficult to measure

experimentally, since it appears that most of the re-adaptation occurs within

several hours after landing, prior to the time post-flight VOR testing becomes

possible. Residual post-flight changes may be small, and difficult to

demonstrate statistically against the normal background variability in VOR

parameters. To see changes, results from several test sessions were averaged

together. On SLS-2, R+0 VOR testing did not begin until at least 12 hours after

landing in California, since the crew had to return by air to Houston.

Some changes can be demonstrated in the pooled "early post-flight" data

(R+0, 1 and 2). Subjects T and X's early post-flight per-rotatory time constants

were significantly shorter (Figure 5.1 and Table 4.13). Subject T's mean time

constant was 67% of the preflight value, and Subject X's time constant was 79%

of preflight. Subject T and X's early post-flight mean head erect time constants

were also shortened (81% and 40% respectively) from preflight values, though

the changes were not significant. Both subject's' ensemble average SPV

profiles lay below their pre-flight profiles (Table 4.12, 4.13, Fig. 4.17, 4.20, and

Fig. 4.22), though the changes were not demonstrably significant with KS tests.

Subjects V and Y's early post-flight per-rotatory and head erect (Fig. 5.2)

time constants were apparently unchanged from their pre-flight values and their

SPV profiles did not so consistently lie below their pre-flight profiles. (Tables

4.12, 4.13, and Figures 4.18, 4.19, 4.21, and 4.23).

By late post-flight, the subjects per-rotatory and head erect responses

returned to values statistically indistinguishable with pre-flight. (Figures 5.1 -

5.4). Late per-rotatory mean time constants were 79%, 87%, and 101% of

preflight values for Subjects T, Y, and V respectively. Similarly, late head erect

mean time constants were 104%, 91%, and 88% of preflight values.

The outlier detection and removal algorithm removed 36% of the original

early post-flight SPV data (T:39%, V:26%, X:55%; Y:24%). We had expected

that post-mission "let down" might increase the frequency of occurrence of

dropouts, but if this happened, the effect was no greater than preflight As in

preflight testing, Subject V and Y had the most consistent VOR as compared to

T and X. The percentage of early post-flight runs rejected were T:47% ; V:13%;

X:84%; Y:33%. Thus, no consistent change was seen in the run rejection rate

comparing preflight and post-flight results.

Page 79

The original SL-1 (Oman and Kulbaski, 1988), and the D-1 analysis

(Oman and Weigl, 1989) showed that the post-flight head-erect responses were

reduced. In the in the SL-1 and D-1 analysis, the automated outlier detection

algorithm was not used. There was some concern that if dropouts occurred with

greater frequency post-flight, and had been missed, it might have caused the

post-flight envelope to fall below pre-flight. Subsequent SLS-1 and SL-1

analysis with automated outlier detection (Balkwill, 1992; Liefield, 1993),

showed that some subjects had reduced post-flight responses, while some

subjects did not, which is consistent with the present SLS-2 experiment results.

Since the dropout and run rejection rates on SLS-2 were similar both pre and

post-flight, one can infer that at least a portion of SPV changes seen were not a

fatigue artifact.
If the preflight, parabolic flight, in-flight, and early post-flight results are

considered together, the combined data suggest the interpretation that subjects

V and Y are "rapid adapters", since they showed some loss of velocity storage

in parabolic flight, but a return of velocity storage when tested in orbit, and a

return of velocity storage when tested during the first three days post-flight. In

contrast, Subjects X and T are "slow adapters" since they continued to show

loss of velocity storage after several days in orbit, and also in early post-flight

testing.

5.5: "Was the pre-flight dumping response consistent with previous studies ?"

During the pre-flight, subjects T, V, and Y showed that the post-rotatory

dumping time constant was significantly shorter than the post-rotatory head

erect time constant. (Section 4.5.6) The fourth subject, subject X, showed a

trend towards shortening, but this was not significant. The ratios of the

dumping to head erect time constants were T: 51 %; V:57 %, X:72 %; and

Y:62 %, and averaged 61 %. By comparison, Benson and Bodin (1966a)

found the ratio of dumping to head erect time constants was 41 % for a

population of 8 subjects tested with 60 deg/sec rotational stimuli. When

subjects are rotated about an earth horizontal axis, the time constant is 48% of

the head erect value (Benson and Bodin, 1966b). Thus, the time constant

changes seen were qualitatively similar but on average quantitatively

somewhat smaller than those reported by Benson and Bodin. The quantitative

difference might be due to the different rotational speed used, the different SPV

Page 80

analysis method employed, and the fact that the whole body rather than just the

head was tilted in the Benson and Bodin studies. As noted earlier (Section 1.1),

the shortening of the apparent time constant has been attributed to sensory

conflict and loss of velocity storage. With the head horizontal, the otoliths signal

that the head is stationary, but pitched forward 90 deg, whereas the post-

rotatory semicircular canal SSC cue indicates continuous rotation about an off

vertical axis.

5.6: "How did the dumping SPV response change in prolonged

weightlessness ?"

The dumping time constants of Subjects V and Y were significantly larger

in orbit than on the ground (Table 4.16 and Fig. 5.2). The data from Subjects X

and T showed an opposite trend (Table 4.16 and Fig. 5.1). Comparing the in -

flight head erect and dumping time constants, however, it was not possible to

show statistically significant differences (Table 4.15). Nonetheless, the data

showed interesting trends: The mean dumping time constants of Subjects T and

X were shorter than their head erect time constants by 4.5 sec and 3.6 sec,

respectively. The in-flight head erect and dumping time constants of the other

two subjects were essentially similar.

If one hypothesizes that Subjects V and Y were fast adapters, and that

they no longer expected static otolith cues to change in the presence of

semicircular canal cues, then one would expect that their flight dumping and

head erect time constants would be identical, and that their head erect time

constants preflight and in flight would also be the same. Taken together with

the result that their preflight head erect time constant was greater than their

preflight dumping time constant, one would expect that their in-flight dumping

time constant would be greater than their preflight dumping time constant. This

was in fact observed (Table 4.16, and Figure 4.33 and 4.35).

Since it was thought that subjects T and X were slow adapters, one

would expect that velocity storage was already lost in 0-G due to the unfamiliar

otolith cues when the head was in the erect position, and that in-flight dumping

time would cause no further reduction in time constant. However, if these

subjects were attending to tactile cues when making a dumping head

movement, it might explain the trend towards a shorter dumping time constant

as was actually observed in flight. For these subjects, the dumping observed in

Page 81

flight was greater than that produced on the ground (Table 4.16 and Figures

4.32, 4.34), perhaps due to the combined tactile and otolith sensory conflict.

When tested on FD4, Subject T remarked that subjective rotation

sensation disappeared quickly. On FD10, post dumping sensations were more

persistent, but VOR data from this session was not recorded. On FD4 Subject Y

reported that sensation did not disappear immediately after head movement,

and Subject V noted that post-rotatory dumping sensation continued, about an

axis that moved with the head. Subject X felt quite disoriented by the dumping

head movement. These comments are qualitatively consistent with the VOR

results obtained, but apparently differ in some respects from SLS-1 reports.

The four SLS-1 subjects described the duration of dumping sensation as much

shorter than on the ground. In most cases, rotation sensation disappeared

virtually instantaneously, even though VOR responses were prolonged. The

SLS-2 subjective reports suggest that dumping is not always instantaneous,

and may more closely relate to SPV.

5.7: "How did the dumping SPV response change post-flight ?"

During the early post-flight testing, subjects T, V, and Y showed that their

early post-flight dumping time constant was significantly shorter than the early

post-flight head-erect time-constant (section 4.5.9), meaning that the dumping

response had returned. The early and late post-flight dumping time constants

were statistically indistinguishable from pre-flight values. (section 4.5.10 and

Figures 5.1 and 5.2). Early dumping mean gains showed a slight but

insignificant increase early post-flight.

5.8 "Did near-real time SPV analysis facilitate decision making during testing ?"

Yes, near-real time analysis proved very helpful in maintaining data

quality control. Science decision making was enhanced preflight, in-flight, and

post-flight on the occasions described in section 4.3. The completion of a near-

real time data analysis software pipeline, begun by Balkwill (1992) and Liefeld

(1993), and finished by the present author, provided virtually completely

automatic analysis of an entire session's worth of data in 4-7 hours. This

proved to be a major advance over previous missions.

Page 82

5.9 "Are there any recommendations for future analysis and future studies ?"

Yes, there are:

1) Automate the EOG calibration process, in order to make the analysis

pipeline from EOG collection to model fitting totally automated.
2) Instead of exporting the data to Excel or Systat, see if the new version

of Matlab (5.0), can perform the same functions, like calculation of histograms, t-

tests, and Kolmogorov-Smirnov tests.
3) Improve on the statistical tests on the ensemble data. Perform a

monte-carlo simulation, like the one performed before (Pouliot, 1991), except it

would include all the relevant Matlab scripts like AATM and decimation.
4) Perform a giant ANOVA with replications on all the parametric data at

once, with subject, run condition, and gravity conditions as factors.
5) Study to see if there is an effect of using the anti-motion sickness

drug, scop-dex, on the frequency of dropouts. If there is an effect, scop-dex

could be given to subjects for ground testing.

Page 83

50

3002* * S040

3 020 00

a

Pre KC OG Flight
He He He

Early Late Pre
He He Dmp

Categories

Figure 5.1: Summary of the post-rotatory first order model fit time constant

parameters for subjects T and X

Page 84

* Subjec T
o Subject X

Flight Early
Dmp Dmp

Late
Dmp

30

Co

0

Co 20

10

Pre
He

e

* 9 9

0 0

o
0 i

g 0
0 0

KC OG Flight Early Late Pre Flight Early Late
He He He He Dmp Dmp Dmp Dmp

Categories

Figure 5.2: Summary of the post-rotatory first order model fit time constant
parameters for subjects V and Y.

Page 85

O Subject V
* Subject Y

KC1G KCOG
-E IE

o subject T
* subject X

FD4 FD10 Early Late
HE -E I-E I-E

Categories

Figure 5.3 Summary of the post-rotatory first order model fit gain parameters for
subjects T and X

Page 86

0

0

0 00 0 0

2 80

0 0oo o 00 0 o

0
0

01

Pre-Flight
I-E

I

KC1G KCOG
FE FE

Period

o Subject V
* Subject Y

FD4 FD10 Early Late
FE FE FE FE

Figure 5.4 Summary of the post-rotatory first order model fit gain parameters for

subjects V and Y.

Page 87

o 0* o

86 0 0a 000 o o o

0 0 0
4 0 0

8

I I
Pre-Flight

FE

0 "I I " I " I I I

FD4 FD10
DMP DMP

Categories

FD4 FD10
PER PER

Figure 5.5 Summary of in-flight first order model time constant parameters for

Subject V and X.

Page 88

o 8
o 0

o o

0e0 0

0 S

o Subject V
* Subject X

FD4
IE

FD10
I-E

Biblioaraphy

Balkwill, M., 1992, "Changes in Human Horizontal Angular VOR after the
Spacelab SLS-1 Mission," S.M. Thesis, Massachusetts Institute of Technology,
Department of Aeronautics and Astronautics, Cambridge, MA.

Benson, A., Bodin, M., 1966a, "Comparison of the Effect of the Direction of
Gravitational Acceleration on Post-Rotational Responses in Yaw, Pitch, and
Roll," Aerospace Medicine, 37:889-897.

Benson, A., Bodin, M., 1966b, "Effect of Orientation to the Gravitational
Vertical on Nystagmous Following Rotation About a Horizontal Axis," Acta
Otolarvnaologica, 61:517-526.

Clement, G., Vieville, T., Lestienne, F., Berthoz, A., 1985, Preliminary
results of "Equilibrium and Vertigo Experiment Performed During STS 51-G
Shuttle Flight," 2nd International Conference on Space Physioloavy, Toulouse,
France.

Collins, W., 1962, "Effects of Mental Set Upon Vestibular Nystagmus,"
Journal of Experimental Psychology, 63:191.

DiZio, P., Lackner, J., 1988, "The Effects of Gravitoinertial Force Level and
Head Movements on Post-Rotational Nystagmous and Illusory After-Rotation,"
Experimental Brain Research, 70:485-495.

Engelken, E., Stevens, K., 1990, "A New Approach to the Analysis of
Nystagmous: an Applacation for Order Statistic Filters," Aviation. Space. and
Environmental Medicine," 61(9):859-864.

Fernandez, C., Goldberg, J., 1976, "Physiology of Peripheral Neurons
Innervating Otolith Organs of the Squirrel Monkey. I. Response to Static Tilts
and to Long Duration Centrifugal Force," Journal of Neurophysiology. 39:970-
984.

Groen, J., 1962, "Inhibitory Mechanism of the Vestibular System in Man in
Comparison with Hearing," J. Acoust. Soc. Am. 34(9):1497-1503

Jackson, M., Sears, C., 1965, "The Effect of Weightlessness Upon the
Normal Nystagmus Reaction," Aerospace Medicine,37:719-721.

Kass, J.R., Bruzek, W., Probst, T, Thumler, R., Vieville, T, Vogel H.,
1986, "European vestibular experiments on the Spacelab-1 mission: 2.
Experimental equipment and methods," Experimental Brain Research, 64:247-
254.

Kornilova, L, Grigorova, V, Bodo, G., 1993, "Vestibular Function and
Sensory Interaction in Space Flight," Journal of Vestibular Research, 3:219-
230.

Page 89

Kulbaski, M., 1983, "Effects of Weightlessness on the Vestibulo-Ocular
Reflex in the Crew of the Spacelab 1," S.B. Thesis. Massachusetts Institute of
Technology, Department of Aeronautics and Astronautics, Cambridge, MA.

Liefleld, T., 1993, "Changes in Human Horizontal Angular VOR after the
Spacelab SL-1 Mission," S.M. Thesis. Massachusetts Institute of Technology,
Department of Aeronautics and Astronautics, Cambridge, MA.

Massoumnla, M., 1983, "Detection of Fast Phase of Nystagmous using
Digital Filtering," S.M. Thesis. Massachusetts Institute of Technology,
Department of Aeronautics and Astronautics, Cambridge, MA.

Oman, C., Balkwill, M., 1993, "Horizontal Angular VOR, Nystagmous
Dumping, and Sensation Duration in Spacelab SLS-1 Crewmembers," Journal
of Vestibular Research.

Oman, C., Calkins, D., 1993, "Effect of Orbital Flight on the Human
Horizontal Vestibular Vestibulo-Ocular Reflex Response to 120 deg/sec Step
Stimuli," Final Report. Microgravity Vestibular Investigations, pp. 33-54.

Oman, C., Kulbaski, M., 1988, "Spaceflight Affects the 1-g Post-rotatory
Vestibulo-Ocular Reflex," Advanced Oto-Rhino-Laryng, 42:5-8.

Oman, C., Weigl, H., 1989, "Post-flight Vestibulo-Ocular Reflex Changes in
Space Shuttle/Spacelab D-1 Crew," abstract 21, Aerospace Medical
Association 60th Annual Scientific Meeting, Washington, D.C., May 7-11.

Pouliot, C., 1991, "Summary of the Sigma T-squared Simulation",
Massachusetts Institute of Technology Man Vehicle Laboratory Internal Report.

Raphan, T., Matsuo, V., Cohen, B., 1979, "Velocity Storage in the
Vestibulo-Ocular Reflex Arc (VOR)," Experimental Brain Research, 35:229-248.

Siegel, S., 1956, "Non-parametric Statistics for the Behavioral Sciences,"
McGraw Hill Book Company, New York.

Thornton, W., Uri, J., Moore, T., Pool, S., 1989, "Studies of the
Horizontal Vestibulo-Ocular Reflex in Spaceflight," Arch Otolaryngol. Head and
Neck Surgery, 115(8):943-949.

Vesterhauge, S., Mansson, A., Johansen, T., 1984, "Vestibular and
oculomotor function during Gz variations,"Motion sickness: mechanisms.
prediction. prevention. and treatment in Williamsburg. VA, NATO AGARD CP-
372, 24.1-24.4.

Watt, D, Money, K., Bondar, R., Thirsk, R., Garneau, M., Scully-
Power, P., 1985, "Canadian Medical Experiments on Shuttle Flight 41-G,"
Canadian Aeronautics and Space Journal. 31:215-226.

Page 90

Appendix A: Ground data analysis Matlab scripts.

Batchanalyse
Cal_factorgen
Cal from file
Calibrate
Calibration_calc
CODES

*** Collect
*** Combine
*** Declow
*** Dec_mean
*** Dec_mean_report
*** Dec_report

Delta_tach
Dec30

*** Graph
Ind_model_fitexp
Lin_fit
Logoutlier
Mag_outlier
Mean_sep_exp_fit
Model_err exp
Multiple_AATM
New_tsq
Pack_true

*** Parse
Pick_regions
Searchb
Stat
Statprep_batch

*** Tachan_batch
Three_point
Tsq_pvalues
T_square

*** indicates that the present author has written or has made major
modifications to these scripts.

Page 91

% Batch_analyse

% written by T. Liefeld throughout spring 93
% given a folder of runs from a BDC, this functions as a
% superscript that will prompt the user for all analysis
% from data collection through to model fitting.

% slight organizational organizational modifacations by C. Pouliot 10/94

clear
hold off

hard disk = 'SLS_HD';

data_path=input('Enter Data Path >> ','s');
subcode =input('Enter Subject Code >>','s');
number = input('Enter Number of Runs >> ');

convert = input('Do you want to convert the data to MatLab format? >> ','s');
if ((convert == 'y') I (convert == '))

code = [datapath,subcode];
mexchair_convert(code,number);

end

ql = input('Do you want to do a calibration? >> ','s');
if ((ql=='y') I (ql==Y'))

q = input('Calibration factors from file or new? (f/n) >> ','s');
if ((q == ') I (q == 'F'))

cal from file
end
if ((q == 'n') I (q == 'N'))

cal_factor_gen
end

end;

q2 = input('Do you want to perform AATM? >> ','s');
if ((q2 == 'y') I (q2 == Y'))

multiple_AATM;
end

% create the run_code matrix, codes
CODES
number = number-n_cals;

q3 = input('Do you want to perform Tachan >> ','s');

if ((q3 == 'y') I (q3 == Y'))
for i = 1:number

run_code = codes(i,:);
fprintf(['\nRun code = ',run_code,'\n');
tachan_batch;

end
end

q4 = input('Do you want to perform stat prep >> ','s');

if ((q4 == y) I (q4 == Y'))

Page 92

for i = 1:number
run_code = codes(i,:);
fprinff(['\nRun code = ',run_code,n']);
stat-prep_batch;

end
end

q5 = input('Do you want to fit a Model? >>,'s');
if ((q5=='y') I (q5==Y')),

for i = 1:number,
run_code = codes(i,:);
ind_modelfitexp;

end
end

Page 93

% Cal_factor_gen

% calls calibrate for a number of runs and generates the cal factors
% for the PRN and dumping runs

% by T. Liefield

run = ones(1,number);
n_cals - input('How many cals >> ');
dim = 1;

if (ncals >= 0)
fprintf(\n Enter the run number for the cals in order)
fprintf('\n from lowest to highest')
for i=1:n_cals

calnum(i) = input('cal # >>');
run(calnum(i)) = 0;
if (calnum(i) < 10)

n = num2str(calnum(i));
cal_code = [data_path,subcode,'O',n]
calibrate
hcal(i) = scalel;
g(i) = input('Was this cal good enough to use >> ','s');

else
if (calnum(i)>=10)

n = num2str((calnum(i)));
cal_code = [data_path,sub_code,n]
calibrate
hcal(i) = scalel;
g(i) = input('Was this cal good enough to use >> ','s');

end
end

end
end

% calculate calibration factors for the runs
% based only on the good calibrations
j= 1;
for i = 1:ncals
if ((g(i)== y) I (g(i) == Y)) % g = chr array good or bad

gcal(j) = calnum(i); % calnum all run# which are cals
calh(j) = hcal(i);
j = j +1;
end

end

hcal= calh;
calibration_calc

q = input('Would you like to save measured cal values? >>','s');
if ((q == Y) I (q == Y'))

save_name = input('Save File Name :','s');
savename = [data_path,save_name];
eval(['save ',save_name,' sub_code number dim g_cal hcal run n_cals horcal'])

end

Page 94

% Cal_from_file

% written by T. Liefeld, 4/93

% Takes previously generated calibrations from a file
% specified by the user and generates the vector of
% calibration factors for use with mexAATM4

filename = input(' Enter the filename containing the calibration factors >> ','s');

eval(['load ', data_path filename]);
calibration_calc;
clear filename;

Page 95

% Calibrate

% This script allows the user to obtain a calibration factor
% in degrees/unit. It assumes a three point calibration in
% each direction, although the zero is optional. For each axis,
% the user must specify the angular deviations and select the
% "flat" regions of the trace which correspond to fixations on
% the targets.

% D. Balkwill 11/90

sample = 120;
colour = 'y';

code = calcode;

fprintf(\nCalibrating Axis#1 ...\n');
eval(['load ',calcode,'.eogh']);
pos = eogh;
clear eogh
t = (([1:length(pos)] - 1)/sample)';

[scale1 ,noisel ,offsetl] = threepoint(t,pos,colour);
fprintf(nAxis#1 scale factor = %6.4f deg/unit\n',scalel);

Page 96

% Calibration_calc

% written by T. Liefeld, 22/4/93
% interpolates or extrapolates as necessary to generate the
% calibration factors for runs, given the number of runs,
% the position of the calibration runs in the series, and the
% calibration factors

if (length(g_cal) == 0)
fprintf(' No good cals?')

elseif (length(gcal) == 1)
for i = 1:number

horcal(i) = hcal(1);
end

elseif (length(g_cal) >1)
for i = 1:number

for j = 1 :(length(gcal)-1)
if (i<g_cal(1)) % runs before first cal, extrapolate

delta = gcal(1) - i;
del2 = g_cal(2) - g_cal(1);
hor_cal(i) = hcal(1)-(hcal(2)-hcal(1))*delta/del2;

end
if (i == g_cal(1)) % first cal run

hor_cal(i) = hcal(1);
end
if ((g_cal(j)<i) & (i<g_cal(j+l))) % interpolate between

delta = i -gcal(j);
del2 = g_cal(j+l) - gcal(j);
hor_cal(i) = hcal(j)+(hcal(j+l)-hcal(j))*delta/del2;

end
if (i == g_cal(j))

hor_cal(i) = hcal(j);
end
if (i == g_cal(j+1))

hor_cal(i) = hcal(j+l);
end
if (i> g_cal(j+l))

delta = i -g_cal(j+1);
del2 = g_cal(j+l) -gcal(j);
hor_cal(i) = hcal(j+l)+(hcal(j+1)-hcal(j))*delta/del2;

end
end

end
end

Page 97

% CODES

% written by T. Liefeld, 21/4/93
% creates a matrix, called codes, containing all the run codes
% of non-calibration runs

for i = 1:number
if (run(i) == 1)

stln = length([data_path,sub_code])+2;
if (i < 10)

n = [num2str(0),num2str(i)];
else

n = num2str(i);
end
codes(i-j,1:stln) = [data_path,sub_code,n];

elseif (run(i) == 0)
j = j+l;

end
end

Page 98

% Collect
% written by Christopher Pouliot on 8/4/93
% to collect all relevent parmeters for a subject and write them
% to an external file so that they can be exported to Excel

ret = In';

datapath - input('Enter data path: ','s');
subLcode - input('Enter subject code :', 's');
cal_file - [subLcode ' cal'];
path = [TR1:', subLcode, '_all_parms'];

runs = ['02';'03';'04';'05'];

L = length(runs);
for i = 1:L,

run_code = [subLcode, runs(i,:)];
parse;

eval (['load ',data_path,cal_file])
clear dim gcal hcal n_cals number run sub_code
if run_num == '02',

index = 2;
elseif run_num == '03',

index = 3;
elseif run_num == '04',

index = 4;
elseif run_num == '05',

index = 5;
elseif run_num == '06',

index = 6;
elseif run_num == '07',

index = 7;
elseif run_num == '08',

index = 8;
elseif run_num == '09',

index = 9;
elseif run_num == '10',

index = 10;
elseif run_num == '11',

index = 11;
end

cal = num2str(horcal(index));
clear index hor_cal

eval (['load ',data_path,run_code, '.parms'])
clear taul tau2 gain1 gain2

delayl = delay*4;
spinll = spinl*4;

eval (['load ',data_path, run_code, '.dec_good'])
perc_goodl = 100*mean(dec_good(delayl :(delayl+100)));
perc_good2 = 1 00*mean(dec_good((delayl +spinll):(delayl +spintl +100)));
perc_goodl = num2str(perc_goodl);
perc_good2 = num2str(percgood2);
clear dec_good

Page 99

eval (['load ',data_path, run_code, '.eperfit'])
K1 = num2str(model_parms(1));
T1 = num2str(model parms(2));
MSE1 = num2str(options(8));
clear model parms options

eval (['load ',data-path, run_code, '.epostfit'])
K2 = num2str(model_parms(1));
T2 = num2str(model_parms(2));
MSE2 = num2str(options(8));
clear model_parms options run_code

delay = num2str(delay);
runlen = num2str(runlen);
spinl = num2str(spinl);
spiny = num2str(spinv);

all_parms = [subject'
' rtype'
'perc_goodl ' K1 '
" ' T2' "

' session' ' runnum'
'delay' ' runlen '
" ' T1 ' " 'MSE1
'MSE2' ' ret];

testtype ' 'direction'
spinl' 'spinv' 'cal'

' perc_good2 ' 'K2'

fprintf (path, all_parms);

clear subject session run_num testtype direction rtype delay
clear runlen spini spiny cal perc_good K1 MSE1 K2 MSE2

end

Page 100

% Combine

% Program which averages the mean BDC responses.
% by Chris Pouliot

clear

disk = 'SLS_HD:T:';
sub = ['T2';'T3';'T4';'T5'];
cond = '.dmp';

data_pathl = [disk,sub(1 ,:),cond];
eval(['load ', data_pathl])
mean_spvl - mean_spv;
totall = total;
var_spvl = var_spv;
clear mean_spv total var_spv

if -(length(sub(:,2)) == 1),
for i = 2:length(sub(:,2)),

datapath2 = [disk,sub(i,:),cond];
eval(['load ', data_path2])
mean_spv2 = mean_spv;
total2 = total;
varspv2 = varspv;
clear mean_spv total var_spv
the_total = totall + total2;
mean_spvl = (totall .* mean_spvl + total2 .* mean_spv2) J the_total;
mean_spvl (pack_true(isnan(mean_spvl))) = zeros(1 :sum(isnan(mean_spvl)));
mean_spvl (pack_true(-finite(mean_spvl))) =

zeros(1 :sum(-finite(mean_spvl)));
var_spvl = (((totall-1) .* var_spvl)+((total2-1) .* var_spv2)) ./ (the_total-2);
var_spvl (pack_true(isnan(var_spvl))) = zeros(1 :sum(isnan(var_spvl)));
varspvl (pack_true(-finite(var_spvl))) = zeros(1 :sum(-finite(varspvl)));
totall = theotal;

end
end

mean_spv = mean_spvl;
var_spv=var_spvl;
total= totall;
eval(['save SLS_HD:',sub(1,1),'results',cond,' mean_spv var_spv total'])
graph

Page 101

% Declow

% Function which decimates the 4 Hz data down to 2/3 Hz
% by Chris Pouliot

function [tmean, tvar, tnum] = declow(sub,cond,period)

n= 6;
eval(['chdir TR1:'])
eval(['load ',sub,'results.',cond])

mean_var = mean(varspv);
std_var = std(varspv);
mm2s = mean_var-2*std_var;
mmls = mean_var-l1*std_var;
mpls = mean_var+1 *std_var;
mp2s = mean_var+2*std_var;

for i = 1:length(var_spv),
bool2m = (var spv(i) < mm2s);
booll m = (varspv(i) < mmls);
boollp = (varspv(i) < mpls);
bool2p = (var_spv(i) < mp2s);

if bool2m,
nvar(i) = mm2s;

elseif (booll m & (-bool2m)),
nvar(i) = mmls;

elseif (boollp & (-boollm)),
nvar(i) = mean_var;

elseif (bool2p & (-boollp)),
nvar(i) = mpls;

elseif (-bool2p),
nvar(i) = mp2s;

end
end
weight = total ./ nvar;

new_length = length(mean_spv)/n;
for i = 1 :new length,

start = 1 + (i-1)*n;
finish = n*i;
x = [start:finish];
y = mean_spv(startfinish);
sqweight = weight(startfinish);
smweight = sum(sqweight);
xbar = sum(sqweight .* x) / smweight;
ybar = sum(sqweight .* y) / smweight;
ssqx2 = sum(sqweight .* (x - xbar).^2);
ssqy2 = sum(sqweight .* (y - ybar).^2);
ssqxy = sum(sqweight .* (x - xbar) .* (y - ybar));
r2 = ssqxyA2/(ssqx2*ssqy2);
s2 = (1-r2)*ssqy2/(smweight);
b = ssqxy/ssqx2;
a = ybar - b*xbar;
tnum(i) = sum(total(start finish))/n;
tvar(i) = s2;
tmean(i) = ybar;

Page 102

end
tmean = tmean';
name = [sub cond period];
eval(['save SLS_HD:T:',name,' tmean /tabs /ascii'])
tmean = tmean';

Page 103

% Dec_mean

% Program which averages runs together to net a mean repsponse
% by Chris Pouliot

clear

disk = 'TRI';
sub = 'Al';
data_path = [disk,':',sub,':'];

stat_code = ['TR1:', sub, '.he'];
runs = ['02';'03'];
[mean_spv, varspv, total] = stat(sub,data_path,runs,241,480);
graph
eval(['save ',stat_code,' mean_spv var_spv total runs']);
clear mean_spv var_spv total runs stat_code

stat_code = ['TR1:', sub, '.dmp'];
runs = ['04';'05'];
[mean_spv, var_spv, total] = stat(sub,datapath,runs,241,480);
graph
eval(['save ',stat_code,' mean_spv var_spv total runs']);
clear mean_spv var_spv total runs stat_code

Page 104

% Dec_mean_report

% Program which produces a run report for the mean responses
% by Chris Pouliot

clear

datapath = input('Enter Data Path :','s');
stat_code - input('Enter Stats Code: ', 's');

eval(['load ',datapath, statcode,'.stats'])
eval(['load ',data_path,stat_code,'.perexpfit'])

K(1) = model_parms(1);
T(1) = modelparms(2);
clear model_parms

eval(['load ',data_path,statcode,'.postexpfit'])

K(2) = model_parms(1);
T(2) = model_parms(2);
clear model_parms

sample = 4;
minute_size = 60 * sample;
t = [1 :(2*minute_size)] / sample;

hold off
clg

subplot (211);

text (.05,.90,'SLS-2 E072 ROTATING CHAIR RUN SUMMARY', 'sc');

subplot (212);
axis([0 120 -150 150]);
xlabel('Time since chair start (sec)');
ylabel('Slow Phase Velocity (deg/sec)');
plot(t,mean_spv,'.');
hold on

x=-1 20*K(1)*exp(-l1 *t/T(1));
plot(t(1 :240),x(1:240));

y= 120*K(2)*exp(-1*t/T(2));
plot(t(241:480),y(1:240));

prtsc
hold off
subplot (111)

Page 105

% Decreport
% Program which produces run reports for the individual runs
% By Christopher Pouliot

data-path = input('Enter Data Path: ','s');
run_code - input('Enter Run Code: ', 's');
parse;

eval(['load ',data_path, run_code,'.dec_spv']);
eval(['load ',datapath,run_code,'.dec_good']);
eval(['load ',datapath,run_code,'.parms']);

eval(['load ',datapath,run_code,'.eperfit']);
K(1) = model_parms(1);
T(1) = model_parms(2);
E(1) = options(8);
clear model_parms options

eval(['load ',data_path,run_code,'.epostfit']);
K(2) = model_parms(1);
T(2) = modelparms(2);
E(2) = options(8);
clear model parms options

percent1 = 100*mean(dec_good(1:100));
percent2 = 100*mean(dec_good(241:340));

A(1) = 120;
A(2) = -120;
if sum(dec_spv(1:240)) < 0,

A(1) = -120;
A(2) = 120;

end

sample = 4;
minute_size = 60 * sample;
t = [1 :(2*minute_size)] / sample;

hold off
clg

subplot (211);

text (.05,.98,'SLS-2 E072 ROTATING CHAIR RUN SUMMARY', 'sc');

text (.1,.93,'subject', 'sc');
text (.5,.93, subject, 'sc');

text (.1,.90,'session', 'sc');
text (.5,.90, session, 'sc');

text (.1,.87,'run', 'sc');
text (.5,.87,run_num, 'sc');

text (.1,.84,lest type', 'sc');
text (.5,.84,test_type, 'sc');

text (.1,.79,'spin length', 'sc');

Page 106

text (.5,.79, num2str(spinl), 'sc');

text (.1,.76,'run length', 'sc');
text (.5,.76, num2str(runlen), 'sc');

text (.1,.73,'spin velocity', 'sc');
text (.5,.73, num2str(spinv), 'sc');

text (. 1,.68,'per-rotatory gain', 'sc');
text (.5,.68, num2str(K(1)), 'sc');
if K(1)< .1,

text (.8,.68, "**', 'sc');
end

text (.1 ,.65,'per-rotatory time constant', 'sc');
text (.5,.65, num2str(T(1)), 'sc');
if T(1) < 1,

text(.8,.65, '***', 'sc');
end

text (.1,.62,'per-rotatory percent good data', 'sc');
text (.5,.62, num2str(percentl), 'sc');

text (.1,.59,'per-rotatory MSE', 'sc');
text (.5,.59, num2str(E(1)), 'sc');

text (.1,.54,'post-rotatory gain', 'sc');
text (.5,.54, num2str(K(2)), 'sc');
if K(2) < .1,

text (.8,.54, ***', 'sc');
end

text (.1,.51 ,'post-rotatory time constant', 'sc');
text (.5,.51, num2str(T(2)), 'sc');
if T(2) < 1,

text(.8,.51, '*', 'sc');
end

text (.1 ,.48,'post-rotatory percent good data', 'sc');
text (.5,.48, num2str(percent2), 'sc');

text (.1 ,.45,'post-rotatory MSE', 'sc');
text (.5,.45,num2str(E(2)), 'sc');

subplot (212);
axis([0 120 -150 150]);
xlabel('Time since chair start (sec)');
ylabel('Slow Phase Velocity (deg/sec)');
plot(t(dec_good) ,decspv(dec_good),'.');
hold on

x=A(1)*K(1)*exp(-l *t/T(1));
plot(t(1 :240),x(1:240));

y=A(2)*K(2)*exp(-l*t/T(2));
plot(t(241:480),y(1:240));

Page 107

% Delta_tach

% Function which looks for large changes in the tach signal
% by D. Balkwil

function n - delta_tach(tach,init)

x = abs(tach);

false = 0;
true = 1;

final = init + 100;

themean = mean(x(initfinal));
thestd = 4*std(x(initfinal));

thresholdup = themean + thestd;
thresholddown = themean - thestd;

i = init;
condition = false;
while (condition == false)

if i == (length(x) - 5)
condition = true;

end
if (x(i) >= thresholdup)

if ((x(i+l) >= thresholdup) & (x(i+2) >= thresholdup))
condition = true;

end
elseif (x(i) <= thresholddown)

if ((x(i+l) <= thresholddown) & (x(i+2) <= thresholddown))
condition = true;

end
end
i=i+l;

end

n=i-2;
if n == (length(x) - 6)

n = NaN;
end

Page 108

% Dec30

% Program which decimates the data from 120 Hz down to 4 Hz.
% By T. Liefield

% set bad data to zero for summation purposes
norm_spv - norm_spvy .* good_data;

I = length(good_data);

newI = (I - 1)/30; %new sampling frequency

y = zeros(30,new_);
g = zeros(30,new _);
n = zeros(l,new_l);
d = zeros(1:new_l);
x = zeros(1,new_l);
z = 1:1:30;

for t=1:(new_l-1)
for i = 1:30

y(i,t) = norm_spv(30*t+i);
g(i,t) = good_data(30*t+i);

end;
x = sum(y);
n = sum(g);
[a] = polyfit(z,y(:,t)',1); %linear least squares fit to each bin
for i = 1:30 % calc variance about the linear fit

d(t) = d(t) +((y(i,t) - (a(2)+a(1)*i)).*g(i,t)).A2;
end;

end;

dec_good = (n>O); % good data flag

% Decimated SPV is box-car average across row, with n=number of
% good samples. Correction in denominator to prevent division
% by zero for an entire bin of bad data; dec_spv=0 in this case.
dec_spv = x J (n + (-dec_good));

% Variance within trace is variance of each bin around a linear
% polynomial fit to each bin. A correction in case of
% good samples in bin is <= 1; variance within=0 in this case.
within = d ./ (n -1 + 2*(n<=1));

% remove outliers in the variance, replace with means of each
% of three equal sized regions
[y,i] = sort(within);
mean1 = mean(y(1:160));
mean2 = mean(y(161:320));
mean3 = mean(y(321:480));
var(i(1:160)) = meanl*ones(1,160);
var(i(161:320)) = mean2*ones(1,160);
var(i(321:480)) = mean3*ones(1,160);
within = var;

% calculate weights as the number of samples divided by the variance of each
% sample.

Page 109

decweight n ./ within;
bad weight = pack_true(isnan(decweight));
dec_weight(bad_weight) = zeros(1 ,max(size(bad_weight)));
zero_var = pack_true((within<=l e-7));
dec_weight(zerovar) = zeros(1 ,max(size(zero_var)));

%save data, having departed from tile_specs' by now
eval(['save ',run_code,'.dec_spv dec_spv']);
eval(['save ',run_code,'.dec_weight dec_weight'J);
eval(['save ',run_code,'.within within']);
eval(['save ',runcode,'.dec_good dec_good']);
%clear dec_good dec_spv i I newI within x out_weight zero_var dec_weight

Page 110

% Graph

% Program to graph the SPV data
% by Chris Pouliot

cig
hold off
axis([O 240 -50 130])
plot(mean_spv);
xlabel('Sample Number');
ylabel('SPV (deg/sec)');
hold on
std_spv = sqrt(var_spv);
plot(mean _spv-std_spv)
plot(mean_spv+std_spv)
hold off

Page 111

% Ind_model fitexp
% Program to fit a first order exponential model fit to the SPV data
% by T. Liefield

% load data

eval(['chdir ',data_path]);
eval(['load ',ru n_code,'.dec_spv']);
eval(['load ',run_code,'.dec_good']);
eval(['load ',run_code,'.parmsl);

save_good = dec_good;
good_indices = pack_true(dec_good);
if (spinv < 0)

dec_spv = -dec_spv;
end

% Initialize time vector, assuming 4 Hz decimated frequency

I = length(dec_spv);
t ([1:1] - 0.5) / 4;
t = t';

% shape tach signal with exponential (0.17 sec time constant)
% ramp to a steady state level at 'spinv'

Tv = 0.17;
if (rem(1,2) == 1)

u = [ones(1,((l+1)/2)) zeros(1,((I-1)/2))];
else

u = [ones(1,1/2) zeros(1,V2)];
end
u = u';

% overall control input (tach)

u = Isim(spinv/Tv, [1, 1/Tv], u, t);

% Nominal model parameters. The parameters to be fitted are the
% non-dimensional ratios of the physical parameters to the
% nominal model parameters here. This places equal emphasis
% on each model parameter, even though they may be orders of
% magnitude apart.

K = .6; % gain constant
T = 15; % time constant
A = -120; % alpha_m amplitude of step input -- fixed
norm_parms = [K;T ; A];

options = [0 ; 0.001 ; 0.001]; %error tolerances -- see "help foptions"
vlb = [.1; .01; 1]; %lower bounds
vub = [10; 10; 1]; %upper bounds

Page 112

plot(t(goodindices),dec_spv(good_indices))

% Fit the per-rotatory portion first

fprintf(["n\n\nFitting ',run_code,' per-rotatory\n']);
dec_good = save_good;
dec_good(1:12) = zeros(1,12); % do not fit first 3 seconds of data
dec_good(241:480) = zeros(1,240); % do not fit post-rotatory data

if (sum(dec_good) < 10)
fprintf('Not enough data points to determine a curve fit.\n');
return;

end

good_indices = pack_true(dec_good);

model_parms = [1; 1; 1];
[model_parms, options] = constr('model_err exp', model_parms, options, vlb, vub, [], t, u,
dec_spv, good_indices, norm_parms);

model_parms = model_parms .* norm_parms;
eval(['save ',run_code,'.eperfit model_parms options'])

fprintf('*** Model fit: initial model parameters = 1.0\n');
fprintf('Number of iterations = %/o5.0f\n',options(10));
fprintf('Mean square error = %7.4f\n',options(8));

fprintf('K = %f\n',model_parms(1));
fprintf('T = %f\n',model_parms(2));
fprintf('A = %f\n',model_parms(3));

% Fit the post-rotatory portion now

fprintf([n\n\nFitting ',run_code,' post-rotatory\n']);

dec_good = save_good(241:480);
dec_good(1:12) = zeros(1,12); % do not fit first 3 seconds of data

if (sum(dec_good) < 10)
fprintf('Not enough data points to determine a curve fit.\n');
return;

end
t=t(1:240);
dec_spv_p = dec_spv(241:480);
good_indices = pack_true(dec_good);
norm_parms = [K ; T ; -l1*A];
model_parms = [1; 1; 1];
[model_parms, options] = constr('model err_exp', model_parms, options, vlb, vub, [], t, u,
dec_spv_p, good_indices,norm_parms);

model_parms = model_parms .* norm_parms;
eval(['save ',run_code,'.epostfit modelparms options'])

Page 113

fprintf('*** Second fit: initial model parameters = 1.0\n');
fprintf('Number of iterations = %/5.0f\n',options(l O));
fprintf('Mean square error = %7.4f\n',options(8));

fprintf('K = %f\n',model_parms(1));
fprintf(T = %f\n',modelparms(2));
fprintf('A %/f\n',model_parms(3));

Page 114

% Lin_fit

% D. Balkwill 5/21/91
% Program which determines a linear curve fit, y = mt + b, to a segment, x

function [m,b] = lin_fit(t,x)

[nl,n2] - size(t);
[n3,n4] = size(x);

if (nl -~= n3)
t = t';
[nl,n2] = size(t);

end
11 = n1 * n2;
12 = n3 * n4;
if (11 >= 12)

I = 12; % sum{ 1)
t =t(1:l);

else
I = 11; % sum{ 1 }
x =x(1:1);

end

A = sum(t .*t); % sum(t^2 }
B = sum(t); % sum{t }
C = sum(x); % sum{x)
D = sum(x .* t); % sum{ xt}

m = (D * I-B* C)/(A*I- B* B);
b=(A*C- D * B)/(A * I- B * B);

return;

Page 115

% Log_outlier

function [diff,underflow,overflow,m,b] = log_outlier(t,x)

% Function to perform outlier detection based upon the natural
% logarithm of the SPV data. The data is log-transformed, an
% optimal linear fit is calculated, and the RMS of the data
% about this line calculated. Any difference exceeding 6 RMS
% values is flagged as bad data (outlying artifact). Any
% difference exceeding 3 RMS values, at a point where the
% data point is less than 2 log units (7.4 deg/s^2) is flagged
% as bad data (dropout). This only works on data which is
% greater than 8 deg/secA2. Any point within half a second of
% a bad data point is marked as bad, to account for transient
% behaviour.

% A new linear fit is calculated for the good data, new RMS
% calculated, and bad data flagging is repeated. This process
% reiterates until RMS converges to within 20% on subsequent
% iterations.

% The log-transformed data is displayed, along with each linear
% fit, and the 3 RMS error bar lines.

% D. Balkwill 8/8/91

sample = 100;
filt_length = 1 + (sample/2);

[ml,m2] = size(x);
if (ml > 1)

x = x';
end
I= max(ml,m2); /get number of samples

s = sign(mean(x)); % predominant direction of SPV
bool = ((s * x) > 0); % 1 iff SPV is in predominant direction
filler = le-10 * ones(1,l);

% x is log(SPV) if x in predominant direction, or le-10 otherwise
x = log((s * bool .* x) + ((-bool) .* filler));

/,do a first pass on the outlier detection
pass = 1;
[m,b] = lin_fit(t,x);
y= m*t+b;
d = abs(y- x);
RMS = sqrt(mean(d .* d));
fprintf('Pass %2.0f: slope = %7.4f, ',pass,m);
fprintf('intercept = %6.3f, RMS = %6.3f\n',b,RMS);

hold off
clg
axis([t(1) t(Il) -5 5]);
plot(t,x)
hold on
plot(t,y,'g')
plot(t,y+(3* RMS),'b')

Page 116

plot(t,y-(3*RMS),'b')

bool - ((d > min(10,(3 * RMS))) & (x < 2)) 1 (d > (6* RMS));
diff - filtfilt(ones(1,fit length),1 ,bool);
diff = (diff > 0); % diff is 1 iff there is an outlier

oldRMS - 1 e50; /odummy assignment
while (abs((oldRMS - RMS)/RMS) > 0.2)

oldRMS = RMS;
pass = pass + 1;

good = pack_true(-diff);

% next curve fit on good data only

[m,b] = lin_fit(t(good),x(good));

clear y
y=m *t+ b;
RMS = sqrt(mean(d(good) .* d(good)));
fprintf ('Pass %2.0f: slope = %7.4f, ',pass,m);
fprintf('intercept = %6.3f, RMS = %6.3f\n',b,RMS);

plot(t,y,'g')
plot(t,y+(3*RMS),'b')
plot(t,y-(3*RMS),'b')

% remark bad data points based on new values
% Note: all points, even previously good ones, are checked
clear d bool diff
d = abs(y - x);
bool = ((d > min(10,(3 * RMS))) & (x < 2)) 1 (d > (6 * RMS));
diff = filtfilt(ones(1 ,filt length), 1,bool);
diff = (diff > 0); % diff is 1 iff there is an outlier

end
hold off

% look for outlier in previous half second of data
for i = 1 filt_length

if (bool(i) > 0)
break;

end
end
% number of extra outlying data points before this section of data
underflow = filt_length - i;

% look for outlier in last half second of data
for i = 1 lilt_length

if (bool(I-i+l) > 0)
break;

end
end
% number of extra outlying data points after this section of data
overflow = fit_length- i;

return;

Page 117

% Magoutlier

function [diff,underflow,overflow] = magoutlier(t,x,thresh)

% Function to perform outlier detection based upon a specified
% magnitude threshold. Any data point exceeding this threshold
% is marked as bad data (artifact). Any point within half a
% second of a bad data point is marked as bad, to account for
% transient behaviour.

% D. Balkwill 8/8/91

sample= round(1 /(t(2) -t(1)));
filt_length = 1 + (sample/2);

[ml,m2] = size(x);
if (ml > 1)

x = x';
end
I= max(ml,m2);

x = abs(x);
bool = (x > thresh);
diff = filtfilt(ones(1 ,filtjength),1 ,bool);
diff = (diff > 0);

for i = 1 filt_length
if (bool(i) > 0)

break;
end

end
underflow = filt_length - i;

for i = 1 filt_length
if (bool(I-i+l) > 0)

break;
end

end
overflow = filt_length - i;

return;

Page 118

% Meansep_exp_fit
% Program to fit a first order exponential model to the mean data.
% by T. Liefield

data_path - input('Enter data_path: ','s');
stat_code = input('Enter stats code: ','s');

%load data
eval(['chdir ',data_path]);
eval(['load ',statcode]);

% time vector
I = length(mean_spv);
t = ([1:1] - 0.5) / 4;
t = t';

% shaped tach signal, with steady state level at 'spinv'
Tv = 0.17;
u = [ones(1,480/2) zeros(1,V2)];
U = U';
spinv = 120;
u = Isim(spinv/Tv, [1, 1/Tv], u, t);

%initialize model parameters
K = 0.4;
T= 8;
A= 120;
normparms = [K;T;A];
model_parms = [1;1;1];

options = [0 ; 0.001 ; 0.001]; %error tolerances -- see "help foptions"
vlb = [.1;.01;1]; %lower bounds
vub = [10;10;1]; %upper bounds

dec_good = (total > 0);
dec_good(1:12) = zeros(1,12);
good_indices = packtrue(dec_good);

plot(t(good_indices),mean_spv(good_indices))
[model_parms, options] = constr('model_err_exp', model_parms, options, vlb, vub, [], t, u,
mean_spv, good_indices, normparms);

model_parms = model_parms .* norm_parms;
eval(['save ',stat_code,'.expfit model_parms options'])

fprintf(['nStats code = ',stat_code,\n']);
fprintf('Exponential fit:\n');
fprintf('Number of iterations = O/o5.0f\n',options(10));
fprintf('K = %f\n',model_parms(1));
fprintf('Tau = %f\n',model_parms(2));
fprintf('Mean square error = %7.4f\n',options(8));

clear dec_good good indices
xlabel('Time (seconds)')
ylabel('Magnitude of SPV (deg/sec)')

Page 119

% Model_err_exp

% Error function for model fitting. Constrained optimization
% minimizes the output of this function, which is currently set
% as the mean square error between the SPV data and the model
% SPV data
% by T. Liefield

function [f,g] = model_err_exp(model_parms,t,u,dec_spv,good_indices, normparms)

model_parms - model_parms .* normparms;
K = model_parms(l);
T = model_parms(2);
A = model_parms(3);

y=A*K*exp(-l*t/T);

[m2,n2] = size(dec_spv);
[ml,nl] = size(y);
if (ml > nl)

if (m2 < n2)
y = y';

end
else

if (m2 > n2)
S= ';

end
end

d = y(goodindices) - dec_spv(good_indices);
f = sum(d.*d)/Iength(d);

plot(t(good_indices),dec_spv(good_indices))
hold on
plot(t(good_indices),y(good_indices), 'g');
hold off

g = -1;

return;

Page 120

% Multiple_AATM

% written by T. Liefeld, 21/4/93
% prepares a batch file for AATM processing using the
% appropriate calibration factors and names, and a
% predefined batch file name, batch_factors, for use
% with mexAATM4.

% create file of ones for the vertical calibration if no vertical
% calibrations were performed

ver_cal = ones(1,number);

% remove earlier files
eval(['chdir ',hard_disk,':users:Chris:Matlab/Chair:'])
delete batch_factors

for i = 1:number
if ((i < 10) & (run(i) > 0)),

n = num2str(i);
run_code = [data_path,sub_code,'O',n];
batch_save(run_code,horcal(i),ver_cal(i));

else
if (i >=10 & (run(i) > 0)),

n = num2str(i);
run_code = [data_path,sub_code,n];
batch_save(run_code,hor_cal(i),ver_cal(i));

end
end

end
% send the EOF marker that mexAATM4 looks for
batch_save('&',0,0);

mexAATM4;

Page 121

% New_tsq

% This routine performs a Monte Carlo simulation to determine
% the sum-of-t-squares distribution. The simulation is done for
% a grid of values for N1 ranging from 2 to 20 in increments of
% 2, and integer N2 ranging from 1 to 10. The number of degrees
% of freedom is 100, and it is repeated for 5000 iterations.
% Note: The time required on a Mac II for this simulation is
% approximately 8 seconds per iteration.

% C. Pouliot and D. Balkwill 12/6/91

N1 = 10;
N2 = 10;

n1 = 2 * [1:N1]';
n2 = [1:N2];
Mnl = ni * ones(1,N2);
Mn2 = ones(N1,1) * n2;

for i=1:N1
for j=1:N2

eval(['dist',int2str(nl (i)),'_',int2str(n2(j)),' = zeros(1000,1);']);
end

end
rand('normal');

epsl = zeros(N1,1);
epslsq = zeros(N1,1);
ssql = zeros(N1,1);
eps2 = zeros(1,N2);
eps2sq = zeros(1,N2);
ssq2 = zeros(1,N2);

for total = 1:5000

time = fix(clock);
fprintf('%2.0f:',time(4));
fprintf('%2.0f:',time(5));
fprintf('%2.0f ',time(6));
fprintf('total = /o5.0f\n',total);

tsq_sum = zeros(N1,N2);

for number = 1:40

rl = rand(2 * N1);
for i=1:N1

rand1 = r1(2*i,(1:(2*i)));
randlsq = rand1 .* randl;
epsl(i) = sum(randl);
epslsq(i) = sum(randlsq);

end

r2 = rand(N2);
for j=l:N2

rand2 = r2(1 :j,j);
rand2sq = rand2 .* rand2;

Page 122

eps2(j) = sum(rand2);
eps2sq(j) = sum(rand2sq);

end

mnl = epsl J nl;
mn2 = eps2 J n2;
ssql = epslsq - (epsl .* mnl);
ssq2 = eps2sq - (eps2 .* mn2);

Mmnl = mnl * ones(1,N2);
Mssql = ssql * ones(1,N2);

Mmn2 = ones(N1,1) * mn2;
Mssq2 = ones(N1,1) * ssq2;

vardif = ((Mssql + Mssq2) J (Mnl + Mn2 - 2)) .*
((ones(N1,N2)./Mnl)+(ones(N1 ,N2)./Mn2));

tsq = (((Mmnl) - (Mmn2)) .^ 2) J vardif;

end
tsq_sum = tsq_sum + tsq;

val = round(tsq_sum);
bool = (val > 1000);
val = (val .* (-bool)) + (bool * 1000);

for i=1:N1
for j=1 :N2

eval(['dist',int2str(nl (i)),' ',int2str(n2(j)),'(val(i,j)) =
dist',int2str(nl (i)),'_',int2str(n2(j)),'(val(i,j)) + 1;']);

end
end

end

eval(['save tsq_dist']);

Page 123

% Pack_true

function indices = packjrue(bool)

% returns vector of indices corresponding to samples which are
% true (1), given a boolean time series, bool.

% D. Balkwill 8/8/91

I = length(bool);

i = searchb(bool,0,1); %find start of first false section
if (i == 1)

indices = [];
elseif (i == NaN)

indices = [1:1];
else

indices = [1:i-1];
end

while (i ~= NaN)
i = searchb(bool,1,i); %look for beginning of true section
if (i ~= NaN)

beg = i;
i = searchb(bool,0,i); %look for beginning of false section
if (i -= NaN)

indices = [indices, (beg:i-1)]; %add true section
else

indices = [indices, (beg:l)]; %add true section
end

end
end

return;

Page 124

% Parse
% written on 7/7/93 by Chris Pouliot
% to parse the run code used by the rotating chair experiment performed
% on SLS-2

if run_code(2) == 'P'
if length(run_code) == 5,

subject = run_code(1);
session(1) = '0';
session(2) = run_code(3);
run_num = run_code(4:5);

else
subject = run_code(1);
session = run_code(3:4);
run_num = run_code(5:6);

end
test_type = 'parabolic';

elseif run_code(2) -= 'F'
if length(run_code) == 5,

subject = run_code(1);
session(1) = '0';
session(2) = run_code(3);
run_num = run_code(4:5);

else
subject = run_code(1);
session = run_code(3:4);
run_num = run_code(5:6);

end
testtype = 'light';

else
if length(run_code) == 4,

subject = run_code(1);
session(1) = '0';
session(2) = run_code(2);
run_num = run_code(3:4);

else
subject = run_code(1);
session = run_code(2:3);
run_num = run_code(4:5);

end
test_type = 'BDC';

end

% is it taken in parabolic flight ??
% session < 10

% session > 10

% is it taken in-flight ??
% session < 10

% session > 10

% if not parabolic and flight then
% it must be a BDC, session < 10

% session > 10

if ((run_num == '03') I (run_num == '05') I (run_num == '07') 1 (run_num == '9') I (run_num == '11')),
direction = 'CW';

else
direction = 'CCW';

end

if ((run_num == '03') I (run_num == '04') I (run_num == '07') I (run_num == '08')),
rtype = 'HE';

else
rtype = 'DMP';

end

Page 125

% Pick_regions

function regions = pick_regions(t,pos,colour)

% This is the main algorithm for the manual picking of
% calibration regions
% t = time coordinate, equally spaced at sampling period
% pos = eye position vector
% colour = flag for colour monitor

% A region is selected by picking its beginning and end with
% the mouse. A selected region is highlighted by picking within
% that region. A highlighted region is un-highlighted by
% picking again withing that region. A selected region is
% de-selected by highlighting it, and then pressing the delete
% key.

% The user has complete control over pan and zoom features, as
% well as selection and de-selection of regions. The plotting
% makes use of different colours and line types, as available.

% D. Balkwill 11/27/90

I = length(pos);
sample = round(1/(t(2) - t(1)));

key = 0;
FINISHED = 27;
PAN_LEFT = 28;
PAN_RIGHT = 29;
SCROLL_LEFT = 11;
SCROLL_RIGHT = 12;
DELETE_1 = 8;
DELETE_2 = 127;
ZOOM_IN = 30;
ZOOM_OUT = 31;
FAST_ZOOM_IN = 46;
FAST_ZOOM_OUT = 48;
COMPLETE_PLOT_1 = 97;
COMPLETE_PLOT_2 = 65;

num_pick = 0;
num_regions = 0;
num_highs = 0;
os = 1;
w=l-1;
redraw = 1;
mf = 1;

% assumes t is periodic

% escape
% left arrow
% right arrow
% page down
% page up
% backspace
% delete
% up arrow
% down arrow
% decimal
% zero
% 'a' key
% 'A' key
% note: 1, 2, and 3 are reserved for mouse button(s)

% number of points picked
% number of regions picked
% number of regions highlighted
% offset of start of current trace, in samples
% width of trace, in samples
% flag for plotting
% magnification factor

while (key ~= FINISHED)

if (redraw == 1)
df = floor(w/2000);
if (df < 1)

df = 1;
end

Page 126

tr = t(os:df:os+w);
pr = pos(os:df:os+w);

% leave some blank space above and below trace for aesthetics
mx = max(pr);
if (mx < 0)

mx = mx* 0.9;
else

mx = mx* 1.1;
end
mn = min(pr);
if (mn < 0)

mn = mn* 1.1;
else

mn = mn * 0.9;
end

hold off
axis([tr(1) tr(length(tr)) mn mx]);
if (colour == 'y')

% plot eye position signal in black, solid
plot(tr,pr,'w')

% plot picked regions in blue, dash-dotted
hold on
for i=1:numregions

t3 = (regions(i,1) - 1)/sample;
plot([t3,t3],[mn,mx],'b-.')
t4 = (regions(i,2) - 1)/sample;
plot([t4,t4],[mn,mx],'b-.')
plot([t3,t4],[mn,mx],'b-.')

end
% plot currently picked point in blue, dotted
if (num_pick == 1)

plot([tl,tl],[mn,mx],'b:')
end

% plot highlighted regions in green, solid
for i=1:num_highs

t3 = (highs(i,1) - 1)/sample;
plot([t3,t3],[mn,mx],'g')
t4 = (highs(i,2) - 1)/sample;
plot([t4,t4],[mn,mx],'g')
plot([t3,t4],[mn,mx],'g')

end

else

% plot eye position signal in solid
plot(tr,pr,'-')

% plot picked regions in dash-dotted
hold on
for i=1:numregions

t3 = (regions(i,1) - 1)/sample;
plot([t3,t3],[mn,mx],'-.')
t4 = (regions(i,2) - 1)/sample;

Page 127

plot([t4,t4],[mn,mx],'-.')
plot([t3,t4],[mn,mx],'-.')

end
% plot currently picked point in dotted
if (numpick == 1)

plot([tl,tl],[mn,mx],':')
end

% plot highlighted regions in dashed
for i=1 :num_highs

t3 = (highs(i,1) - 1)/sample;
plot([t3,t3],[mn,mx],'--')
t4 = (highs(i,2) - 1)/sample;
plot([t4,t4],[mn,mx],'--')
plot([t3,t4],[mn,mx],'--')

end
end

text(.7,.93,['magnification = ',int2str(round(mf)),' X'],'sc')
redraw = 0;

end

[x,y,key] = ginput(1);

if (key==ZOOM_IN) % increase magnification factor

old=mf;
mf=min(old*2,max(old,floor(I/1 00)));
if mf==old % maximum magnification of 100OX

redraw=0;
else

redraw=1;
w=floor(V/mf);

end

elseif (key == FAST_ZOOM_IN) % fast two-point zoom

% first point of region to zoom into
[t3,y,key] = ginput(1);
if ((key ~= DELETE_1) & (key ~= DELETE_2))

% bounds check on first point of region
if (t3 < tr(1))

t3 = tr(1);
elseif (t3 > tr(length(tr)))

t3 = tr(length(tr));
end
x3 = 1 + round(t3 * sample);
t3 = (x3 - 1)/sample;

% display first point
hold on
if (colour == 'y')

plot([t3,t3],[mn,mx],'r:');
else

plot([t3,t3],[mn,mx],':');
end

Page 128

hold off
redraw = 1;

% second point of region to zoom into
[t4,y,key] = ginput(1);

% allow user to abort zoom via delete key
if ((key ~= DELETE_1) & (key -~= DELETE_2))

% bounds check on second point of region
if (t4 < tr(1))

t4 = tr(1);
elseif (t4 > tr(length(tr)))

t4 = tr(length(tr));
end
x4 = 1 + round(t4 * sample);
t4 = (x4 - 1)/sample;

% display second point
hold on
if (colour == 'y')

plot([t4,t4],[mn,mx],'r:');
else

plot([t4,t4],[mn,mx],':');
end
hold off

% swap order of points if needed
if (x4 < x3)

old = x4;
x4 = x3;
x3 = old;

end

% calculate new magnification parameters
if (x3 ~= x4)

os = x3;
w = x4 - x3;
mf = VIw;

end
end

end

elseif (key==ZOOM_OUT) % decrease magnification

if (mf == 1) % already completely zoomed out
redraw = 0;

else
redraw=1;
old=mf;
mf=max(floor(old/2), 1);
w=f loor(V/mf);
if (w >= I)

w=l-1;
end
if ((os+w)>l)

os=floor(max(1 ,I-w));
end

Page 129

end

elseif ((key == COMPLETE_PLOT_1) 1 (key == COMPLETE_PLOT_2) (key ==
FAST_ZOOMOUT)) % display entire plot

os - 1;
mf = 1;
w=l-1;
redraw = 1;

elseif (key==PAN_RIGHT) % increase offset by quarter-screen

old=os;
os=floor(max(1,min(I-w,os+0.25*w)));
if old==os % already panned to end

redraw=0;
else

redraw=1;
end

elseif (key==PAN_LEFT) % decrease offset by quarter-screen

old=os;
os=floor(max(1 ,os-0.25*w));
if os==old % already panned to beginning

redraw=0;
else

redraw=1;
end

elseif (key==SCROLL_RIGHT) % jump display one screenful right

old=os;
os=floor(max(1,min(os+w,l-w)));
if os==old % already panned to end

redraw=0;
else

redraw=1;
end

elseif (key==SCROLL_LEFT) % jump display one screenful left

old=os;
os=floor(max(1,os-w));
if old==os % already panned to beginning

redraw=0;
else

redraw=1;
end

elseif ((key==DELETEI) I (key==DELETE_2))

if (num_pick > 0) % wipe out currently picked point
num_pick = 0;
redraw = 1;

elseif (num_highs > 0) % wipe out highlit regions
for i=1 :num_highs

index = InList(highs(i,1),regions);

Page 130

regions = Delete Row(index,regions);
end
numregions = num_regions - num_highs;
numhighs = 0;
clear highs
redraw = 1;

end

elseif (key==1) I (key==2) I (key==3) % up to three-button mouse input

if (num_pick == 0) % this is the first picked point

% bounds check on picked point
if (x < tr(1))

x = tr(1);
elseif (x > tr(length(tr)))

x = tr(length(tr));
end

% convert time value to sample number
xl = 1 + round(x * sample);

% see if point is in a selected region
index1 = InList(xl,regions);
if (index1 > 0)

index2 = InList(xl,highs);
if (index2 > 0) % de-highlight region

num_highs = num_highs - 1;
highs = DeleteRow(index2,highs);
redraw = 1;

else % highlight region for future deletion
xl = regions(indexl,1);
x2 = regions(indexl,2);
tl = (xl - 1)/sample;
t2 = (x2 - 1)/sample;
num_highs = numhighs + 1;
highs(numhighs,:) = [xl x2];
if (colour == 'y')

hold on
plot([tl,tl],[mn,mx],'g');
plot([t2,t2],[mn,mx],'g');
plot([tl ,t2],[mn,mx],'g');

else
hold on
plot([tl ,tl],[mn,mx],'-');
plot([t2,t2],[mn,mx],'-');
plot([tl ,t2],[mn,mx],'-');

end
end

else % point is not already in a selected region
% display as first point of region being selected
tl = (xl - 1)/sample;
num_pick = 1;
hold on
if (colour == 'y')

plot([tl,tl],[mn,mx],'b:');
else

plot([tl,tl],[mn,mx],':');

Page 131

end
hold off

end
elseif (num_pick == 1) % second picked point

% bounds check on picked point
if (x < tr(1))

x=tr(1);
elseif (x > tr(length(tr)))

x = tr(length(tr));
end

% convert time value to sample number
x2 = 1 + round(x * sample);
t2 = (x2 - 1)/sample;

if (x2 - xl) % cannot have interval of zero width
num_pick = 0;
redraw = 1;

else
hold on
if (colour == 'y')

plot([t2,t2],[mn,mx],'b:');
else

plot([t2,t2],[mn,mx],':');
end
if (x2 < xl) % order picked points

old = xl;
xl = x2;
x2 = old;
old = tl;
tl = t2;
t2 = old;

end
num_pick = 0;
if (colour == 'y')

plot([tl,t2],[mn,mx],'b:');
else

plot([t2,t2],[mn,mx],':');
end

% add picked region to list
num_regions = num_regions + 1;
regions(num_regions,:) = [xl x2];
hold off

end
end

end
end

clear i index index1 index2 tl t2 xl x2 x y mn mx mnv sample
clear highs num_highs num_regions old num_pick
clear key redraw os w mf I df pr tr
return;

Page 132

% Searchb

function index = search(vec,val,start)

% Searches a vector (vec) for a value (val), starting at a given
% index (start), and returns the index at which the value was
% found. The value NaN is returned if the value was not found.

% D. Balkwill 8/8/91

I = length(vec);
cont = 1;
index = start;
while (cont)

if (vec(index) == val)
cont = 0;

elseif (index == I)
cont = 0;
index = NaN;

else
index = index + 1;

end
end
return;

Page 133

% Stat

% Function which calculates the mean and variance of a selected number of
% individual SPV responses

% by Chris Pouliot

function [mean_spv, var_spv, total] = stat(sub,data_path,runs,s,e)

sample = 4;
minute_size = 60 * sample;
sum_spv - zeros(1,2*minute_size);
sum_square = zeros(1,2*minute_size);
total = zeros(1,2*minute_size);

if s 1,
kind = '.eperfit';

elseif s == 241,
kind = '.epostfit';

end

for j = 1:length(runs(:,2))
run_code = [data_path,sub,runs(j,:)];
eval(['load ',run_code,'.dec_spv'])
eval(['load ',run_code,'.dec_good'])
eval(['load ',runcode,'.parms'])
eval(['load ',runcode,kind])
perc_good = 100*mean(dec_good(s:(e-140)));
fprintf('Run ');
fprintf(runs(j,:));
fprintf(' percent good %g\n',perc_good);
fprintf(' gain %O/g\n',model_parms(1));
fprintf(' time constant O/og\n',model_parms(2));
fprintf(' MSE %g\n',options(8));
fprintf(' spiny %g\n\n',spinv);
sum_spv = sum_spv + ((spinv/abs(spinv)) .* dec_spv .* dec_good);
sum_square = sum_square + (decspy .* dec_spv .*dec_good);
total = total + dec_good;
clear dec_spv dec_good spinv

end

mean_spv = sum_spv ./ total;
mean_spv(pack_true(isnan(mean_spv))) = zeros(1 :sum(isnan(meanspv)));
var_spv = sum_square - (sum_spv .* mean_spv);
var_spv = var_spv ./ (total - 1);
var_spv(pack_true(isnan(var_spv))) = zeros(1 :sum(isnan(var_spv)));
clear sum_spv sum_square

mean_spv = mean_spv(s:e);
var_spv = var_spv(s:e);
total = total(s:e);

Page 134

%stat_prep_batch

% Prepares an SPV profile for statistical analysis. The first
% step is time-shifting and stripping out extra data to leave
% one minute per-rotatory and one minute post-rotatory. The
% second step is outlier detection. The third step is decimation
% by a factor of 30 down to 4 Hz.

% D. Balkwill 8/8/91

% Modified by T Liefeld, 12/17/92 to use a longer per-
% rotatory period consistent with the later use of actual
% tach signals as the stimulus for per-rotatory model
% fitting scripts.
% Modified again for use with batch analysis scripts

sample = 120;
minute_size = 60 * sample;

%load data
eval(['load ',run_code,'.aspvh']);
eval(['load ',run_code,'.parms']);

x = aspvh;
clear aspvh

% Normalize SPV profile to one-minute per and post-rotatory
% On the longer per_rotatory file, perform outlier detection
% only upon the normslized one minute section due to the
% difficulty in dealing with a different exponential on the
% initial rise. Make all extended per-rot files 65 seconds
% long, truncating extra data or padding as before

y = zeros(1,2 * minute_size + 1); %initialize to two minutes

delay = delay'sample;
spinl = spinl*sample;

if (spinl >= minute_size) %extract first minute of per-rotatory
y(1:minute_size) = x(delay:(delay+minute_size-1));

else %pad per-rotatory out to one minute
y(1:spinl) = x(delay:(delay+spinl-1));
y(spinl+l :minute_size) = zeros(1 ,minute_size-spinl);

end

%post-rotatory data

if ((max(size(x))-delay-spinl) >= minute_size) %extract first minute of post-rotatory
y(minute_size+1:2*minute_size+l) = x((delay+spinl):(delay+spinl+minutesize));

else %pad post-rotatory out to one minute
y((minute_size+1):(minute_size+max(size(x))-delay-spinl)) =

x((delay+spinl+1):(max(size(x))));
y((minute_size+1 +max(size(x))-delay-round(spinl)):2*minute_size+1) =
zeros(1 ,minute_size-max(size(x))+1 +delay+round(spinl)) * median(x((max(size(x))-

5):(max(size(x))-1)));
end

Page 135

% Determine sections to be excluded from statistical analysis
% (dropouts and outliers).

t [1 :(2*minute_size+1)] / sample;
good_data =- ones(1,2*minute_size+l);

%find valid range for log outlier detection in per-rotatory section

fprintf('Per-rotatory:\n');
i = sample + 1; O/oone second after start
j = i + 20 * sample; O/oinsist upon 20 seconds, minimum
while (abs(mean(y(j:j+5*sample))) > 10) O/look for mean spy under 10 deg/sec

j= j+2* sample;
end
tl = t(i:j);
yl = y(i:j);

[Ilogoutl ,under,over,m,b] = log_outlier(tl,yl);

%take care of under- or over-flow
good_data(i:j) = -logoutl;
if (under > 0)

good_data(i-under:i-1) = zeros(1,under);
end
if (over > 0)

good_data(j+1 :j+over) = zeros(1,over);
end

%save final fit in parms file as first-order "model fit"
taul =-l/m;
gaini = exp(b)/120;
fprintf('Time length of outliers from log fit is ');
fprintf('%5.2f seconds.\n',(sum(logoutl)+under+over)/sample);

% do magnitude outlier detection on remainder of per-rotatory SPV

i = j + over + 1;
[magoutl,under,over] = mag_outlier(t(i:minute_size),y(i:minute_size),30);
good_data(i:minute_size) = -magoutl;
if (under > 0)

good_data(i-under:i-1) = zeros(1,under);
end
fprintf('Time length of outliers from magnitude threshold is');
fprintf(' /o5.2f seconds.\n',(sum(magoutl)+under)/sample);
% don't fill in any overflow, because this would be post-rotatory

delay = delay / sample;
spinl = spinl / sample;

%find valid range for outlier detection in post-rotatory section

fprintf ('Post-rotatory :\n');

Page 136

i = minute_size + sample + 1; %/oone second after stop
j = i + 20 * sample; %insist upon 20 seconds, minimum
while (abs(mean(y(j:j+5*sample))) > 10)

j = j + 2* sample;
end
t2 = t(i:j);
y2 = y(i:j);

[logout2,under,over,m,b] = log_outlier(t2,y2);

O/otake care of under- or over-flow
good_data(i:j) = ~ Ilogout2;
if (under > 0)

good_data(i-under:i-1) = zeros(1,under);
end
if (over > 0)

good_data(j+1 :j+over) = zeros(1,over);
end

%save final fit in parms file as first-order "model fit"
tau2 = -1/m;
gain2 = exp(b + 60 * m)/120;
fprintf('Time length of outliers from log fit is ');
fprintf('%5.2f seconds.\n',(sum(logout2)+under+over)/sample);

% do magnitude outlier detection on remainder of per-rotatory SPV

i= j + over + 1;
[magout2,under,over] = mag-outlier(t(i:2*minute_size),y(i:2*minute_size),30);
good_data(i:2*minute_size) = -magout2;
if (under > 0)

good_data(i-under:i-1) = zeros(1,under);
end
fprintf('Time length of outliers from magnitude threshold');
fprintf(' is %5.2f seconds.\n',(sum(magout2)+under)/sample);
% don't fill in any overflow, because this would be past two minutes

fprintf('Overall percentage of good data is %6.2f\n',100*mean(good_data));

%plot data and outlying regions
hold off
plot(tl ,log(abs(yl)))
hold on
plot(t 1,log(abs(mean(y1))) * logoutl,'b--')
grid
xlabel(Time (sec)')
ylabel('ln(SPV)')
title([run_code,' -- SPV and log outlier indicator'])

hold off
plot(t2,log(abs(y2)))
hold on
plot(t2,log(abs(mean(y2))) * logout2,'b--')
grid
xlabel(Time (sec)')
ylabel('ln(SPV)')
title([run_code,' -- SPV and log outlier indicator'])

Page 137

hold off
plot(t,y)
hold on
plot(t,50*(~good_data),'b--')
plot(t,-50*(-good_data),'b--')
grid
xlabel(Time (sec)')
ylabel('SPV (deg/sec)')
title([run_code,' -- SPV and overall outlier indicator])

hold off
plot(t(good_data),y(good_data),'.')
grid
xlabel(Time (sec)')
ylabel('SPV (deg/sec)')
title([run_code,' -- good SPV (outliers removed)']);

hold off

eval(['save ',run_code,'.parms delay spini spiny runlen taul gain1 tau2 gain2 T1 T2']);

clear t tl t2 yl y2 i j logoutl logout2 minute_size sample
clear delay spinl spiny T1 T2 runlen under over magoutl magout2
clear m b taul gain1 tau2 gain2

norm_spv = y;

clear y

% save normalized data, having departed from Iile_specs' at this point

eval(['save ',run_code,'.good good_data']);
eval(['save ',run_code,'.norm norm_spv']);

%decimate data to 4 Hz, and save decimated information
dec30

clear good_data norm_spv
clear t taul tau2 run_len spinl spinv

Page 138

% Tachan_batch

% Program which analyzes the tach signal to determine a set number of parameters
% by D. Balkwill and C. Pouliot 12/91

%load tach data into standardized variable

eval(['load ',run_code,'.tach']);
TACH = tach;
clear tach;

%convert to deg/sec
TACH - TACH / 204.8; % 10 V == 2048 units
TACH = TACH * 120 / 2.08; % 120 deg/sec = 2.08 V

sample = 120;

I = length(TACH);
t = [0:1-1] / sample;

steady_vel = 120; %ideal chair spin rate
but_thresh = 40; %threshold above which a button push must be

%look for events (large changes) until start of motion is found
event = delta_tach(TACH,1);
while (abs(TACH(event + sample)) < steady_veV2)

%if start, then chair must be up to speed one second later
event = delta_tach(TACH,event+l);

end
start = event;

% look for next event, and calculate average velocity as
% mean value between (start + 3 seconds) and this event
event = delta_tach(TACH,start + 3 * sample); %T1 > 3 sec
avg = mean(TACH(start + 3 * sample:event - 5));
level = mean(TACH(event + 10:event + 20));

% if level too low for button push, keep scanning
while (abs(level - avg) < but_thresh) % noise artifact

event = delta_tach(TACH,event+l);
level = mean(TACH(event + 10:event + 20));

end

if ((mean(TACH(event+3:event+8)) - avg) < butthresh) %not a button push
stop = event;
but1 = NaN;

else
but1 = event;
level = but_thresh + avg; %threshold level

% look for end of button push
event = event + 10;
while (mean(TACH(event:event+2)) > level)

event = event + 10;
end

% look for chair stop, skipping button pushes if needed

Page 139

event = delta_tach(TACH,event+10);
while (abs(TACH(event + sample)) > but_thresh) % button push or noise

event = event + 10;
while (TACH(event) > level) % skip to end of button push

event = event + 10;
end
event = delta_tach(TACH,event);

end
stop = event;

end

% assume button push is at least 1.5 seconds after stop
flag - 1;
event = delta_tach(TACH,stop + 1.5 * sample);
if (event == NaN) % no button push

flag = 0;
elseif (TACH(event + 5) > but_thresh) % noise artifact

flag = 0;
end
while (flag)

event = delta_tach(TACH,event+l);
if (event == NaN) % no button push

flag = 0;
elseif (TACH(event + 5) > but_thresh) % noise artifact

flag = 0;
end

end
but2 = event;

spiny = avg;
delay = (start - 1) / sample;
Tl = (but1 - start) / sample;
T2 = (but2 - stop) / sample;
spinl = (stop - start) / sample;
runlen = t(I);

fprintf('Delay = %6.2f seconds.\n',delay);
fprintf('Spin length = %6.2f seconds.\n',spinl);
fprintf('Spin velocity = %6.2f deg/sec.\n',spinv);
fprintf('Per-rot button = %6.2f seconds.\n',T1);
fprintf('Post-rot button = %6.2f seconds.\n',T2);
fprintf('Run length = %6.2f seconds.\n',runlen);

clear event start stop but1 but2 sample avg but_thresh steady_vel flag level

eval(['save ',run_code,'.parms spiny delay T1 T2 spinl runlen']);

hold off
plot(t,TACH)
hold on
plot([delay,delay],[-500,500],'')
plot([T1 +delay,T1 +delay],[-500,500],'b')
plot([spinl+delay,spinl+delay],[-500,500],'w')
plot([T2+spinl+delay,T2+spinl+delay],[-500,500],'b')
plot([delay,delay+spinl],[spinv,spinv],'g')
hold off

Page 140

% Three_point

function [scale,noise,offset] = three_point(t,pos,colour)

% This script inputs the angular deviations from the user, and
% calls the 'pick_regions' script so that the fixation regions
% can be selected. For each deviation, the average value over
% all of the regions is calculated. The calibration factor for
% each axis is calculated as the angular difference between the
% positive and negative deviations (in degrees), divided by the
% difference between mean positive and negative deviations (in
% arbitrary units). The calculated mean values are displayed
% to the user graphically as dotted lines, for inspection.

% If a zero fixation point is specified, it is used to
% determine the offset value.

% The noise is estimated by taking the root-mean-square value of
% the fluctuations about all selected regions.

% D. Balkwill 11/27/90

if isempty(pos_deg)
pos_deg = 11.7;

end

if isempty(neg_deg)
neg_deg = -11.7;

end

if (pos_deg == neg_deg)
disp('Calibration range cannot be zero, Symmetrical calibration assumed.');
neg-deg = -1 * pos_deg;

end

% select positive trace deflection regions
disp(");
disp('Use mouse to select flat-top regions of positive trace deflection.');
pos_regions = pick_regions(t,pos,colour);
[mp,np] = size(pos_regions);
if (mp == 0)

error('No positive trace deflection flat-top regions, Cannot calibrate.');
end
for i=1:mp

xpos = [xpos ; pos(pos_regions(i,1):pos_regions(i,2))];
end
mpos = mean(xpos);
hold on
plot([t(1),t(length(t))],[mpos,mpos],'r:');
hold off

% select negative trace deflection regions
disp('Now select flat-top regions of negative trace deflection.');
neg_regions = pick_regions(t,pos,colour);
[mn,nn] = size(negregions);
if (mn == 0)

error('Cannot calibrate, no negative trace deflections selected.');
end

Page 141

m = min([mp mn]);
if (mp<mn)

fprintf('Fewer positive regions chosen, fitting all paired regions.');
end
if (mn<mp)

fprintf('Fewer negative regions chosen, fitting all paired regions.');
end
for i=1:mn

xneg - [xneg ; pos(neg_regions(i,1):neg_regions(i,2))];
end
mneg = mean(xneg);
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[mneg,mneg],'r:');
else

plot([t(1),t(length(t))],[mneg,mneg],':');
end
hold off

% calculate scale factor in deg/unit
scale = (pos.deg - negdeg) ./ (mpos - mneg);

% select optional zero trace deflection regions
if isempty(y)

y='n';
end
xzero = 0;
if y=='y' I y=='Y'

disp('Select regions in which subject fixated on zero reference.');
zero_regions = pick_regions(t,pos,colour);
[m,n] = size(zero_regions);
if (m == 0)

offset = 0;
else

for i=1:m
xzero = [xzero ; pos(zero_regions(i,1):zero_regions(i,2))];

end
offset = mean(xzero);
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[offset,offset],'r:');
else

plot([t(1),t(length(t))],[offset,offset],':');
end
hold off

end
else

offset = 0;
end

% display positive and negative mean values
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[mneg,mneg],'r:');
plot([t(1),t(length(t))],[mpos,mpos],'r:');

else
plot([t(l),t(length(t))],[mneg,mneg],':');
plot([t(1) ,t(length(t))],[mpos,mpos],':');

Page 142

end
hold off

% estimate noise, in rms degrees
xpos = xpos - mean(xpos);
xneg = xneg - mean(xneg);
if (isempty(xzero) == 0)

xzero = xzero - mean(xzero);
end
x = [xpos ; xneg ; xzero];
noise = scale * sqrt(mean(x.*x))

clear pos_regions neg_regions zero_regions xpos xneg xzero x
clear i m n y negdeg pos_deg
return;

Page 143

% Tsq_pvalues

% This routine loads in the distributions which were simulated
% by "new_tsq", and calculates the precentiles for each (N1,N2)
% combination corresponding to p = 0.5, 0.975, 0.99, 0.995, and
% 0.999. These percentiles are saved on the disk for future
% use and interpolation by "spv_stats".

% D. Balkwill 12/6/91

load SLS_HD:users:Chris.tsq_dist

L = length(dist8_4);
N = sum(dist8_4);

N1 = 10;
N2 = 10;

nl = 2 * [1:N1]';
n2 = [1:N2];
Mnl = nl * ones(1,N2);
Mn2 = ones(N1,1) * n2;

p50 = L * ones(N1,N2);
p05 = L * ones(N1,N2);
p025 = L * ones(N1,N2);
p01 = L * ones(N1,N2);
p005 = L * ones(N1,N2);
p001 = L * ones(N1,N2);

thresh50 = .50 * N;
thresh05 = .95 * N;
thresh025 = .975 * N;
thresh01 = .99 * N;
thresh005 = .995 * N;
thresh001 = .999 * N;

for i=1 :N1
fprintf('\n%/o2.0f:',nl (i));
for j=1:N2

fprintf(' %2.0f',n2(j));
eval(['dist = dist',int2str(nl (i)),'',int2str(n2(j)),';']);
plot(dist)
total = 0;
for k50=1:L

total = total + dist(k50);
if (total > thresh50)

p50(i,j) = k50;
break;

end
end
for k05=(k50+1):L

total = total + dist(k05);
if (total > thresh05)

p05(i,j) = k05;
break;

end
end

Page 144

for k025=(k05+1):L
total = total + dist(k025);
if (total > thresh025)

p025(i,j) = k025;
break;

end
end
for k01 =(kO25+1):L

total = total + dist(k01l);
if (total > thresh0l)

p0l(i,j) = k01;
break;

end
end
for k005=(kOl+1):L

total = total + dist(k005);
if (total > thresh005)

p005(i,j) = k005;
break;

end
end
for kOO1=(k005+1):L

total = total + dist(kO01);
if (total > threshO01)

p001(i,j) = k001;
break;

end
end

end
end

Page 145

% T_square

% Program which calculates the sum of T square statistic

[meanA, varA, nA] = declow(subA, condA,periodA);
[meanB, varB, nB] = declow(subB, condB,periodB);

if length(meanA) > length(meanB),
tlength = length(meanB);
meanA = meanA(1:tlength);
varA = varA(1:tlength);
nA = nA(1 Ilength);

elseif length(meanB) > length(meanA),
tlength = length(meanA);
meanB = meanB(1:tlength);

varB = varB(1 :tlength);
nB = nB(1 .length);

else
tlength = length(meanA);

end

wons = ones(1,tlength);
den = varA + varB;
t2 = ((meanA-meanB).^2)./den;
t2(pack_true(isnan(t2))) = zeros(1 :sum(isnan(t2)));
sumt2 = sum(t2);
n_sumt2 = length(t2);
meannA = mean(nA);
meannB = mean(nB);
fprintf(\nSubject ');
fprintf(subA);
fprintf(' (');
fprintf(periodA);
fprintf ('-flight ');
fprintf(condA);
fprintf(') versus (');
fprintf(periodB);
fprintf ('-flight ');
fprintf(condB);
fprintf(')\n\n');
fprintf('# dof = /og\n',n_sumt2);
fprintf('N1 = %g\n',meannA);
fprintf('N2 = %/og\n',meannB);
fprintf('Sum of t2 = /og\n\n',sumt2);

I= length(meanA);
t = ([0:1-1])*1.5;
t = t';

hold off
axis([0 60 -20 100])
xlabel('Time (seconds)')
ylabel('Magnitude of SPV (deg/sec)')
plot(t,meanA)
hold on
plot(t,meanB,'--')
hold off
%pause

Page 146

%prtsc

Page 147

Appendix B: In-flight specific data analysis Matlab scripts.

Some scripts were modified to account for the differences between the methods
of the in-flight and gound testing. (Section 2.4).

The scripts that were modifed by the present author were:

In-Fliaht name

Flight_analyse
Flight_cal_gen
Flight_calibrate
Flight_dec25
Flig htexp_fit
Flight_mean
Flig ht_report
Flight_stat_per
Flightstatpost
Flig ht_stat_prep
Flight_three point

Equivalent ground name

Batch_analyse
Cal_factorgen
Calibrate
Dec30
Ind model fitexp
Dec_mean
Dec_report
Stat
Stat
Stat_prep_batch
Threepoint

Page 148

% Flight_analyse

% written by T. Liefeld throughout spring 93
% given a folder of runs from a BDC, this functions as a
% superscript that will prompt the user for all analysis
% from data collection through to model fitting.

% Modified to flow through the in-flight analysis pipeline
% by Christopher Pouliot

clear
hold off

hard_disk = 'backup';

data_path=input('Enter Data Path >> ','s');
subcode =input('Enter Subject Code >> ','s');
number = input('Enter Number of Runs >> ');

ql = input('Do you want to do a calibration? >> ','s');
if ((ql=='y') I (q=='Y'))

q = input('Calibration factors from file or new? (f/n) >> ','s');
if ((q == ') I (q == 'F'))

calfromfile
end
if ((q == 'n') I (q == 'N'))

flight_cal_gen
end

end;

% create the run_code matrix, codes
CODES
number = number-n_cals;

q2 = input('Do you want to perform stat prep >> ','s');

if ((q2 == 'y') I (q2 == Y'))
for i = 1:number

run_code = codes(i,:);
fprintf(['\nRun code = ',run_code,n']);
flight_stat_prep;

end
end

q3 = input('Do you want to decimate the data >> ','s');

if ((q3 == 'y') I (q3 == Y'))
for i = 1 :number

run_code = codes(i,:);
fprintf(['\nRun code = ',run_code,n']);
flight dec25;

end
end

q4 = input('Do you want to fit a Model? >>','s');
if ((q4=='y') I (q4=='Y'))

for i = 1:number
run_code = codes(i,:);

Page 149

flighLexp_fit2;
end

end;

Page 150

% Flightcal_gen

% calls calibrate for a number of runs and generates the cal factors
% for the PRN and dumping runs
% Ground version by T. Liefield
% Modified for in-flight analysis by C. Pouliot

run = ones(1,number);
n_cals = input('How many cals >> ');
dim = 1;

if (ncals >= 0)
fprintf('\n Enter the run number for the cals in order')
fprintf('n from lowest to highest')
for i=1:n_cals

calnum(i) = input('cal # >>');
run(calnum(i)) = 0;
if (calnum(i) < 10)

n = num2str(calnum(i));
cal_code = [data_path,subcode,'O',n]
flight_calibrate
hcal(i) = scalel;
g(i) = input('Was this cal good enough to use >> ','s');

else
if (calnum(i)>=10)

n = num2str((calnum(i)));
cal_code = [data_path,subcode,n]
flight_calibrate
hcal(i) = scalel;
g(i) = input('Was this cal good enough to use >> ','s');

end
end

end
end

% calculate calibration factors for the runs
% based only on the good calibrations
j= 1;
for i= 1:n cals

if ((g(i)== 'y') I (g(i) == 'Y)) % g = chr array good or bad
g_cal(j) = calnum(i); % calnum all run# which are cals
calh(j) = hcal(i);
j = j + 1;

end
end

hcal = calh;
calibration_calc

q = input('Would you like to save measured cal values? >>','s');
if ((q == y) I (q == Y'))

save_name = input('Save File Name : ','s');
save name = [datapath,save_name];
eval(['save ',save_name,' subcode number dim g_cal hcal run n_cals hor_cal'])

end

Page 151

% FlighLcalibrate

% This script allows the user to obtain a calibration factor
% in degrees/unit. It assumes a three point calibration in
% each direction, although the zero is optional. For each axis,
% the user must specify the angular deviations and select the
% "flat" regions of the trace which correspond to fixations on
% the targets.

% Ground version by D. Balkwill 11/27/90
% Modified for in-flight analysis by C. Pouliot

sample = 100;
code = cal_code;
colour = 'y';

fprintf('\nCalibrating Axis#1 ...\n');
eval(['load ',calcode,'.eogh']);
pos = eogh;
clear eogh
t = (([1:length(pos)] - 1)/sample)';

[scale1 ,noisel ,offsetl] = flight_three_point(t,pos,colour);
fprintf('nAxis#1 scale factor = %6.4f deg/unit\n',scalel);

Page 152

% Flight_dec25
% Originally written to decimate ground data from 120 Hz down to 4 Hz by T. Liefield
% modified by C. Pouliot to decimate from 100 Hz down to 4 Hz.

eval(['load ',run_code,'.good']);
eval(['load ',run_code,'.norm']);

% set bad data to zero for summation purposes
normspv - norm_spv';
norm_spv = norm_spv .* good_data;

I = length(good_data);

new_l = (I - 1)/25; %new sampling frequency

y = zeros(25,new_);
g = zeros(25,newI);
n = zeros(1,new_l);
d = zeros(1,newI);
x = zeros(1,new_l);
var = zeros(1,new_l);
z = 1:1:25;

for t=1:(new_l-1)
for i = 1:25

y(i,t) = norm_spv(25*t+i);
g(i,t) = good_data(25*t+i);

end;
x = sum(y);
n = sum(g);
[a] = polyfit(z,y(:,t)',1); %linear least squares fit to each bin
for i = 1:25 % calc variance about the linear fit

d(t) = d(t) +((y(i,t) - (a(2)+a(1)*i)).*g(i,t)).A2;
end;

end

dec_good = (n>0); % good data flag

% Decimated SPV is box-car average across row, with n=number of
% good samples. Correction in denominator to prevent division
% by zero for an entire bin of bad data; dec_spv=0 in this case.
dec_spv = x J (n + (-dec_good));

% Variance within trace is variance of each bin around a linear
% polynomial fit to each bin. A correction in case of
% good samples in bin is <= 1; variance within=0 in this case.
within = d J (n -1 + 2*(n<=1));

% remove outliers in the variance, replace with means of each
% of three equal sized regions
[y,i] = sort(within);
len3 = (length(y)/3) - rem(length(y)/3,1);
meani = mean(y(1:len3));
mean2 = mean(y((1 +len3):(2*len3)));
mean3 = mean(y((1 +2*len3):(3*len3)));
var(i(1:len3)) = meanl*ones(1,len3);
var(i((1 +len3):(2*len3))) = mean2*ones(1,len3);

Page 153

var(i((1 +2*len3):(3*len3))) = mean3*ones(1 ,len3);
within - var;

% calculate weights as the number of samples divided by the variance of each
% sample.
dec_weight = n ./ within;
bad_weight = pack true(isnan(dec_weight));
dec_weight(bad_weight) = zeros(1,max(size(badweight)));
zero_var - packtrue((within<=1 e-7));
dec_weight(zero_var) = zeros(1 ,max(size(zero_var)));

eval(['save ',run_code,'.dec_spv dec_spv']);
eval(['save ',run_code,'.dec_weight dec_weight']);
eval(['save ',run_code,'.within within']);
eval(['save ',run_code,'.dec_good decgood']);

Page 154

% FlighLt_exp_fit
% Ground version by T. Liefeld 06/12/92
% to fit an exponential model to data

% modified C. Pouliot
% to fit in-flight data

% load data

eval(['load ',ru n_code,'.dec_spv']);
eval(['load ',run_code,'.dec_good']);
eval(['load ',run_code,'.parms']);

delay = delay * 4 - rem(delay*4,1);
spinl - spinl * 4 - rem(spinl*4,1);
runlen - runlen * 4 - rem(runlen*4,1);

save_good = dec_good;
good_indices = pack_true(dec_good);
if (spinv < 0)

dec_spv = -dec_spv;
end

% Initialize time vector, assuming 4 Hz decimated frequency

I = runlen;
t = ([1:1] - 0.5) / 4;
t = t';

% shape tach signal with exponential (0.17 sec time constant)
% ramp to a steady state level at 'spinv'

Tv = 0.17;
u = [zeros(1,delay) ones(1,spinl) zeros(1 ,runlen-spinl-delay)];
u = u';

% overall control input (tach)

u = lsim(spinv/Tv, [1, 1/Tv], u, t);

% Nominal model parameters. The parameters to be fitted are the
% non-dimensional ratios of the physical parameters to the
% nominal model parameters here. This places equal emphasis
% on each model parameter, even though they may be orders of
% magnitude apart.

K = .6; % gain constant
T = 15; % time constant
A = -120; % alpha_m amplitude of step input -- fixed
norm_parms = [K ;T; A];

options = [0 ; 0.001 ; 0.001]; %error tolerances -- see "help foptions"

Page 155

vlb = [.1; .01; 1]; %lower bounds
vub = [10; 10; 1]; %/oupper bounds

plot(t(goodindices),dec_spv(good_indices))

% Fit the per-rotatory portion first

fprintf(['n\n\nFitting ',run_code,' per-rotatory\n']);

dec_good = save_good(delay:(spinl+delay));
dec_good(1:delay) = zeros(1,delay); % do not fit the delay
dec_good((delay+spini + 1):runlen) = zeros(1,(runlen - delay - spinl));

if (sum(dec_good) < 10)
fprintf('Not enough data points to determine a curve fit.\n');
return;

end

good_indices = pack_true(dec_good);

model_parms = [1; 1; 1];
[model_parms, options] = constr('model err_exp', model_parms, options, vib, vub, [], t, u,
dec_spv, good_indices, norm_parms);

model_parms = model_parms .* normparms;
eval(['save ',run_code,'.eperfit model_parms options'])

fprintf('*** Model fit: initial model parameters = 1.0\n');
fprintf('Number of iterations = 0/5.0f\n',options(10));
fprintf('Mean square error = %7.4f\n',options(8));

fprintf('K = %f\n',model_parms(1));
fprintf('T = %f\n',model_parms(2));
fprintf('A = %f\n',model_parms(3));

% Fit the post-rotatory portion now

fprintf([\n\n\nFitting ',run_code,' post-rotatory\n']);

clear dec_good
the_end = spinl + delay + 240;
if the_end > runlen,

the_end = runlen;
end

dec_good = save_good((spinl + delay + 1):the_end);

if (sum(dec_good) < 10)
fprintf('Not enough data points to determine a curve fit.\n');
return;

end
t=t(1 :(the_end - spinl - delay));
dec_spv_p = dec_spv((spinl + delay + 1):the_end);
good_indices = pack_true(dec_good);

Page 156

norm_parms = [K ; T; -l*A];
model_parms = [1; 1; 1];
[modelparms, options] - constr('model err_exp', modelparms, options, vlb, vub, J, t, u,
dec_spv_p, good_indices,normparms);

model-parms - modelparms .* normparms;
eval(['save ',run_code,'.newpost model_parms options'])

fprintf('*** Second fit: initial model parameters = 1.0\n');
fprintf('Number of iterations = O/o5.0f\n',options(1 0));
fprintf('Mean square error = %7.4f\n',options(8));

fprintf('K = %f\n',modelparms(1));
fprintf('T = /of\n',model_parms(2));
fprintf('A = %/of\n',model_parms(3));

Page 157

% Flight_mean
% Program which averages runs together to net a mean response.
% by Chris Pouliot

clear

disk = 'backup:FLIGHT_DATA:';
sub = 'FT4';
data_path - [disk,sub,':'];

stat_code - ['SLS_HD:T:', sub, '.per'];
runs = ['10';'04';'08'];
[mean_spv, var_spv, total] = flight_stat_per(sub,data_path,runs,1,250);
graph
eval(['save ',stat_code,' mean_spv var_spv total runs]);
clear mean_spv var_spv total runs stat_code

stat code = ['SLS_HD:', sub, '.he'];
runs = ['04';'08'];
[mean_spv, var_spv, total] = flight_statJost(sub,datapJath,runs,1,250);
graph
eval(['save ',stat_code,' mean_spv var_spv total runs']);
clear mean_spv varspv total runs stat_code

Page 158

% Flight_report
% written by C. Pouliot
% to print in-flight decimated data

parse;

eval(['load ',data_path, run_code,'.dec_spv']);
eval(['load ',datapath,run_code,'.dec_good']);
eval(['load ',data_path,run_code,'.parms']);

eval(['load ',datapath,run_code,'.eperfit']);
K(1) = model_parms(1);
T(1) = model_parms(2);
E(1) = options(8);
clear model_parms options

eval(['load ',data_path,runcode,'.newpost']);
K(2) = modelparms(1);
T(2) = model_parms(2);
E(2) = options(8);
clear model_parms options

percent1 = 100*mean(dec_good(delay:(delay+100)));
percent2 = 100*mean(dec_good((delay+spinl):(delay+spinl+100)));

A(1) = -120;
A(2) = +120;

if spiny == -120,
A(1) = 120;
A(2) = -120;

end

t = linspace(1 ,round(runlen),(round(runlen*4)));

hold off
clg
subplot (211);

text (.05,.98,'SLS-2 E072 ROTATING CHAIR RUN SUMMARY', 'sc');

text (.1,.93,'subject', 'sc');
text (.5,.93, subject, 'sc');

text (.1,.91,'session', 'sc');
text (.5,.91, session, 'sc');

text (.1,.89,'run', 'sc');
text (.5,.89,run_num, 'sc');

text (.1,.87,'est type', 'sc');
text (.5,.87,test_type, 'sc');

text (.1,.84,'spin length', 'sc');
text (.5,.84, num2str(spinl), 'sc');

text (.1,.82,'run length', 'sc');
text (.5,.82, num2str(runlen), 'sc');

Page 159

text (.1,.80,'spin velocity', 'sc');
text (.5,.80, num2str(spinv), 'sc');

spini = spinl * 4;
delay = delay * 4;
runlen - runlen * 4;
percent1 = 100*mean(dec_good(delay:(delay+100)));
percent2 = 100*mean(dec_good((delay+spinl):(delay+spinl+100)));

text (.1 ,.77,'per-rotatory gain', 'sc');
text (.5,.77, num2str(K(1)), 'sc');

text (.1 ,.75,'per-rotatory time constant', 'sc');
text (.5,.75, num2str(T(1)), 'sc');

text (.1,.73,'per-rotatory percent good data', 'sc');
text (.5,.73, num2str(percentl), 'sc');

text (.1,.71 ,'per-rotatory MSE', 'sc');
text (.5,.71, num2str(E(1)), 'sc');

text (.1,.68,'post-rotatory gain', 'sc');
text (.5,.68, num2str(K(2)), 'sc');

text (.1 ,.66,'post-rotatory time constant', 'sc');
text (.5,.66, num2str(T(2)), 'sc');

text (.1 ,.64,'post-rotatory percent good data', 'sc');
text (.5,.64, num2str(percent2), 'sc');

text (.1 ,.62,'post-rotatory MSE', 'sc');
text (.5,.62,num2str(E(2)), 'sc');

subplot (212);
time = runlen/4;
axis([0 time -150 150]);
% eval (['title ('", run_code, "')'D);
xlabel('Time since start of run (sec)');
ylabel('Slow Phase Velocity (deg/sec)');
plot(t(dec_good),decspv(dec_good),'--');
hold on

x=A(1)*K(1)*exp(-l*t/T(1));
plot(t((delay+1):(delay+spinl)),x(1 :spinl));

y=A(2)*K(2)*exp(-l1 *t/T(2));
plot(t((spinl+delay+1):runlen),y(1 :(runlen-spinl-delay)));
prtsc

hold off
subplot (111)
axis('normar)

Page 160

% Flight_stat_per
% Function which calculates the mean and variance of a selected number of
% individual in-flight per-rotatory SPV responses
% by Chris Pouliot

function [mean_spv, var_spv, total] = flightstat_per(sub,data_path,runs,s,e)

sample = 4;

minute_size = 60 * sample;
sumspv - zeros(1,500);
sum_square - zeros(1,500);
total = zeros(1,500);

for j = 1 :Iength(runs(:,2))
run_code = [data_path,sub,runs(j,:)];
eval(['load ',runcode,'.dec_spv'])
eval(['load ',run_code,'.dec_good'])
eval(['load ',runcode,'.parms'])
eval(['load ',run_code,'.eperfit'])

delay = round(delay*4);
spinl = round(spinl*4);
runlen = round(runlen*4);
dec_spvl = zeros(1,500);
dec_goodl = zeros(1,500);
dec_spvy1 (1 :(spinl-delay)) = dec_spv((delay+1) :spinl);
dec_goodl (1 :(spinl-delay)) = dec_good((delay+1):spinl);
dec_spv = dec_spvl;
dec_good = dec_goodl;

perc_good = 100*mean(dec_good(1 :(spinl-delay)));
fprintf('Run ');
fprintf(runs(j,:));
fprintf(' percent good %g\n',perc_good);
fprintf(' gain O/og\n',model_parms(1));
fprintf(' time constant %/og\n',model_parms(2));
fprintf(' MSE %g\n',options(8));
fprintf(' spiny %g\n\n',spinv);

sum_spy = sumspv + ((spinv/abs(spinv)) .* dec_spv .* dec_good);
sum_square = sumsquare + (dec_spv .* dec_spv .*dec_good);
total = total + decgood;
clear dec_spv dec_good spinv

end

meanspv = sum_spv ./ total;
meanspv(pack_.true(isnan(mean_spv))) = zeros(1 :sum(isnan(mean_spv)));
var_spv = sum_square - (sum_spv .* mean_spv);
var_spv = var_spv J (total - 1);
var_spv(pack_true(isnan(var_spv))) = zeros(1 :sum(isnan(varspv)));
clear sum_spv sum_square

mean_spv = -mean_spv(s:e);
var_spy = varspv(s:e);
total = total(s:e);
plot(mean_spv)

Page 161

% flightstat_post
% Function which calculates the mean and variance of a selected number of
% individual in-flight post-rotatory SPV responses
% by Chris Pouliot

function [mean_spv, var_spv, total] = kc_stat(sub,data_path,runs,s,e)

sample = 4;

minute_size = 60 * sample;
sum_spv = zeros(1,2200);
sum_square = zeros(1,2200);
total = zeros(1,2200);

for j = 1:length(runs(:,2))
run_code = [data_path,sub,runs(j,:)];
eval(['load ',run_code,'.dec_spv'])
eval(['load ',run_code,'.dec_good'])
eval(['load ',run_code,'.parms'])
eval(['load ',run_code,'.newpost'])

delay = round(delay*4);
spinl = round(spinl*4);
runlen = round(runlen*4);
dec_spvl1 = zeros(1,2200);
dec_goodl = zeros(1,2200);
dec_spvl(1 :(runlen-delay-spinl)) = dec_spv((delay+spinl+l):runlen);
dec_goodl (1:(runlen-delay-spinl)) = dec_good((delay+spinl+1):runlen);
dec_spv = dec_spvl;
dec_good = dec_goodl;

perc_good = 100*mean(dec_good(1 :(runlen-delay-spinl)));
fprintf('Run ');
fprintf(runs(j,:));
fprintf(' percent good %og\n',perc_good);
fprintf(' gain %/og\n',model_parms(1));
fprintf(' time constant %O/g\n',modelparms(2));
fprintf('MSE %g\n',options(8));
fprintf('spinv %g\n\n',spinv);

sum_spy = sum_spv + ((spinv/abs(spinv)) .* dec_spv .* dec_good);
sum_square = sum_square + (dec_spv .* dec_spv .*dec_good);
total = total + dec_good;
clear dec_spv dec_good spiny

end

meanspv = sumspv ./ total;
mean_spv(pack_true(isnan(mean_spv))) = zeros(1 :sum(isnan(meanspv)));
var_spv = sum_square - (sum_sp .* meanspv);
var_spy = var_spv J (total - 1);
var_spv(pack_true(isnan(var_spv))) = zeros(1 :sum(isnan(var_spv)));
clear sum_spv sum_square

meanspv = mean_spv(s:e);
var_spv = var_spv(s:e);
total = total(s:e);
plot(meanspv).

Page 162

% Flight_stat.prep
% Ground version by D. Balkwill 8/91
% Modified by Chris Pouliot to handle the inflight 100 Hz sampling rate.

sample = 100;

eval(['load ',run_code,'.aspvh']);
eval(['load ',run_code,'.parms']);

y = aspvh;
clear aspvh

runlen = runlen*sample;
delay = delay*sample ;
spinl = spinl*sample;

t = ([1:runlen] J sample);
good_data = ones(1,runlen);

%find valid range for log outlier detection in per-rotatory section

fprinff('Per-rotatory:\n');
i = delay;
j = i + 5*sample;
condition = 1;
while ((abs(mean(y(j:j+5*sample))) > 10) & (condition == 1))

if ((j+7*sample) > (delay+spinl)),
condition = 0;

else
j = j + 2 * sample;

end
end
if condition == 0,

j= j+2* sample;
end
tl = t(i:j);
yl =y(i:j);

[logoutl ,under,over,m,b] = log_outlier(tl,yl);

O/otake care of under- or over-flow
good_data(i:j) = -logoutl;
if (under > 0)

good_data(i-under:i-1) = zeros(1,under);
end
if (over > 0)

good_data(j+1 :j+over) = zeros(1,over);
end

%save final fit in parms file as first-order "model fit"
taul = -l/m;
gaini = exp(b)/120;
fprintf('Time length of outliers from log fit is ');
fprintf('/o5.2f seconds.\n',(sum(logoutl)+under+over)/sample);

% do magnitude outlier detection on remainder of per-rotatory SPV

Page 163

i= j + over + 1;
[magouti ,under,over] = magoutlier(t((i:spinl+delay)),y(i:(spinl+delay)),30);
good_data(i:(spinl+delay)) = -magoutl;
if (under > 0)

good_data(i-under:i-1) = zeros(1,under);
end
fprintf('Time length of outliers from magnitude threshold is');
fprintf(' 0/5.2f seconds.\n',(sum(magoutl)+under)/sample);

fprintf('Post-rotatory:\n');
i = delay + spinl + sample + 1; %/oone second after stop
j = i+ 5*sample;
condition = 1;
while ((abs(mean(y(j:j+5*sample))) > 10) & (condition == 1))

if ((j+7*sample) > runlen),
condition = 0;

else
j= j+2* sample;

end
end
if condition == 0,

j= j + 2* sample;
end
t2 = t(i:j);
y2 = y(i:j);

[logout2,under,over,m,b] = log_outlier(t2,y2);

%take care of under- or over-flow
good_data(i:j) = -logout2;
if (under > 0)

good_data(i-under:i-1) = zeros(1,under);
end
if (over > 0)

good_data(j+1 :j+over) = zeros(1,over);
end

%save final fit in parms file as first-order "model fit"
tau2 = -1/m;
gain2 = exp(b + 60 * m)/120;
fprintf('Time length of outliers from log fit is ');
fprintf('%5.2f seconds.\n',(sum(logout2)+under+over)/sample);

% do magnitude outlier detection on remainder of per-rotatory SPV

i= j + over + 1;
[magout2,under,over] = mag_outlier(t(i:runlen),y(i:runlen),30);
good_data(i:runlen) = -magout2;
if (under > 0)

good_data(i-under:i-1) = zeros(1,under);
end
fprintf('Time length of outliers from magnitude threshold');
fprintf(' is %5.2f seconds.\n',(sum(magout2)+under)/sample);
% don't fill in any overflow, because this would be past two minutes

fprintf('Overall percentage of good data is %6.2f\n', 100*mean(good_data));

Page 164

%plot data and outlying regions
hold off
plot(t 1,Iog(abs(yl)))
hold on
plot(tl ,log(abs(mean(yl))) * logout1,'b--')
grid
xlabel('Time (sec)')
ylabel('ln(SPV)')
title([run_code,' -- SPV and log outlier indicator'])

hold off
plot(t2,log(abs(y2)))
hold on
plot(t2,log(abs(mean(y2))) * logout2,'b--')
grid
xlabel(Time (sec)')
ylabel('ln(SPV)')
title([run_code,' -- SPV and log outlier indicator'])

hold off
plot(t,y)
hold on
plot(t,50*(~good_data),'b--')
plot(t,-50*(-good_data),'b--')
grid
xlabel(Time (sec)')
ylabel('SPV (deg/sec)')
title([run_code,' -- SPV and overall outlier indicator'])

hold off
plot(t(good_data),y(gooddata),'.')
grid
xlabel('Time (sec)')
ylabel('SPV (deg/sec)')
title([run_code,' -- good SPV (outliers removed)']);

hold off

clear t ti t2 yl y2 i j logoutl logout2 minute_size sample
clear delay spinl spinv T1 T2 runlen under over magoutl magout2
clear m b taul gain1 tau2 gain2

norm_spv = y;

clear y

% save normalized data, having departed from lile_specs' at this point

eval(['save ',run_code,'.good good_data']);
eval(['save ',run_code,'.norm norm_spv']);

clear good_data norm_spv
clear t taul tau2 run_len spinl spinv

Page 165

% Flightthreepoint

function [scale,noise,offset] = three_point(t,pos,colour)

% This script inputs the angular deviations from the user, and
% calls the 'pickregions' script so that the fixation regions
% can be selected. For each deviation, the average value over
% all of the regions is calculated. The calibration factor for
% each axis is calculated as the angular difference between the
% positive and negative deviations (in degrees), divided by the
% difference between mean positive and negative deviations (in
% arbitrary units). The calculated mean values are displayed
% to the user graphically as dotted lines, for inspection.

% If a zero fixation point is specified, it is used to
% determine the offset value.

% The noise is estimated by taking the root-mean-square value of
% the fluctuations about all selected regions.

% Ground version by D. Balkwill 11/27/90
% Modified by Chris Pouliot to analyze in-flight data

if isempty(pos_deg)
posdeg = 9;

end

if isempty(neg_deg)
negdeg = -9;

end

if (pos_deg == neg_deg)
disp('Calibration range cannot be zero, Symmetrical calibration assumed.');
neg_deg = -1 * pos_deg;

end

% select positive trace deflection regions
disp(");
disp('Use mouse to select flat-top regions of positive trace deflection.');
pos_regions = pick_regions(t,pos,colour);
[mp,np] = size(pos_regions);
if (mp == 0)

error('No positive trace deflection flat-top regions, Cannot calibrate.');
end
for i=1:mp

xpos = [xpos ; pos(pos_regions(i,1):pos_regions(i,2))];
end
mpos = mean(xpos);
hold on
plot([t(1),t(length(t))],[mpos,mpos],'r:');
hold off

% select negative trace deflection regions
disp('Now select flat-top regions of negative trace deflection.');
neg_regions = pick_regions(t,pos,colour);
[mn,nn] = size(negregions);
if (mn == 0)

error('Cannot calibrate, no negative trace deflections selected.');

Page 166

end
m - min([mp mn]);
if (mp<mn)

fprintf('Fewer positive regions chosen, fitting all paired regions.');
end
if (mn<mp)

fprintf('Fewer negative regions chosen, fitting all paired regions.');
end
for i=1:mn

xneg = [xneg ; pos(negregions(i,1):neg_regions(i,2))];
end
mneg = mean(xneg);
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[mneg,mneg],'r:');
else

plot([t(1),t(length(t))],[mneg,mneg],':');
end
hold off

% calculate scale factor in deg/unit
scale = (pos_deg - negdeg) ./J (mpos - mneg);

% select optional zero trace deflection regions
if isempty(y)

y='n';
end
xzero = [];
if y=='y' I y=='Y'

disp('Select regions in which subject fixated on zero reference.');
zero_regions = pick_regions(t,pos,colour);
[m,n] = size(zeroregions);
if (m == 0)

offset = 0;
else

for i=1:m
xzero = [xzero ; pos(zero_regions(i,1):zero_regions(i,2))];

end
offset = mean(xzero);
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[offset,offset],'r:');
else

plot([t(1),t(length(t))],[offset,offset],':');
end
hold off

end
else

offset = 0;
end

% display positive and negative mean values
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[mneg,mneg],'r:');
plot([t(1),t(length(t))],[mpos,mpos],'r:');

else
plot([t(1),t(length(t))],[mneg,mneg],':');

Page 167

plot([t(1),t(length(t))],[mpos,mpos],':');
end
hold off

% estimate noise, in rms degrees
xpos = xpos - mean(xpos);
xneg = xneg - mean(xneg);
if (isempty(xzero) == 0)

xzero = xzero - mean(xzero);
end
x = [xpos ; xneg ; xzero];
noise = scale * sqrt(mean(x.*x))

clear pos_regions neg_regions zero_regions xpos xneg xzero x
clear i m n y negdeg pos_deg
return;

Page 168

Appendix C: Parabolic specific data analysis Matlab scripts

Some scripts were modified to account for the differences between the methods
of the KC-135 parabolic flight and ground testing. (Section 2.4).

The scripts that were modified by the present author were:

Parabolic-Flight name Equivalent ground name

Delta_g
End_zero_g
KC_analyse Batch_analyse
KC_calibrate Calibrate
KC_cal_gen Cal_factorgen
KC_dec30 Dec30
KC_exp_fit Ind_modelfitexp
KC_mean Dec_mean
KC_report Dec_report
KC_stat Stat
KC_statprep Stat_prep_batch
KC_tachan Tachan_batch
KC_threepoint Threepoint

Page 169

% Delta_g
% Function, based on the Delta_tach algorythm (Balkwill, 1992), which finds large
% jumps in the z-accelerometer data.
% by Chris Pouliot

function n = delta_g(z,init)

x = z;

false = 0;
true = 1;

final = init + 1000;

themean - mean(x(initf.inal));
thestd = 5*std(x(init.final));

thresholdup = themean + thestd;
thresholddown = themean - thestd;

i = init;
condition = false;
while (condition == false)

if i == (length(x) - 5)
condition = true;

end
if (x(i) >= thresholdup)

if ((x(i+l) >= thresholdup) & (x(i+2) >= thresholdup))
condition = true;

end
elseif (x(i) <= thresholddown)

if ((x(i+l) <= thresholddown) & (x(i+2) <= thresholddown))
condition = true;

end
end

end

n=i-2;
if n == (length(x) - 6)

n = NaN;
end

Page 170

%End_zero_g
% Program which finds the period of zero-gravity by looking at the z-accelerometer data.
% by Chris Pouliot

clear
chdir KC&T:KC135:
other_path = 'KC&T:TP1:';

run_code = input('Enter run code: ','s');
eval (['load ', run_code])

z = AData(:,7);

condition = 0;
while condition == 0

hold off
clg

plot(z)
hold on

start = input('Enter starting point: ');
stop = delta_g(z,start);
plot([stop, stop], [-20000, 20000], 'b')

quest = input('ls this the right ending point?? ', 's');
if (quest(1) == 'Y') I (quest(1) == 'y')

condition = 1;
end

end

tach = AData(1:stop, 6);
eogh = AData(1:stop, 2);
eogv = AData(1:stop, 1);

sub_code = input('Enter subject code: ','s');
eval(['save ', other_path, sub_code, '.tach tach'])
eval(['save', otherpath, sub_code, '.eogh eogh'])
eval(['save ', other_path, sub_code, '.eogv eogv'])

Page 171

% KC_analyse

% written by T. Liefeld throughout spring 93
% given a folder of runs from a BDC, this functions as a
% superscript that will prompt the user for all analysis
% from data collection through to model fitting.

% Modified to flow through the KC-135 parabolic flight pipeline
% by Christopher Pouliot

clear
hold off

hard_disk - 'harddisk';

data_path=input('Enter Data Path >>','s');
sub_code =input('Enter Subject Code >> ','s');
number = input('Enter Number of Runs >> ');

ql = input('Do you want to do a calibration? >> ','s');
if ((ql=='y') I (ql==Y'))

q = input('Calibration factors from file or new? (f/n) >> ','s');
if ((q == I') I (q == 'F'))

calfrom file
end
if ((q == 'n') I (q == 'N'))

kc_cal_gen
end

end;

q2 = input('Do you want to perform AATM? >> ','s');
if ((q2 == 'y') I (q2 == Y))

multiple_AATM;
end;

% create the run_code matrix, codes
CODES
number = number-n_cals;

q3 = input('Do you want to perform Tachan >> ','s');

if ((q3 == 'y') I (q3 == Y'))
for i = 1:number

run_code = codes(i,:);
fprintf(['\nRun code = ',run_code,\n']);

kc_tachan;
end

end

q4 = input('Do you want to perform stat prep >> ','s');

if ((q4 == 'y') I (q4 == Y'))
for i = 1:number

run_code = codes(i,:);
fprintf(['\nRun code = ',run_code,\n']);
kc_stat_prep;

end
end

Page 172

q5 - input('Do you want to fit a Model? >>','s');
if ((q5=='y') I (q5=='Y'))

for i = 1:number
run_code = codes(i,:);
kc_expfit;

end
end;

Page 173

% KC_calibrate

% This script allows the user to obtain a calibration factor
% in degrees/unit. It assumes a three point calibration in
% each direction, although the zero is optional. For each axis,
% the user must specify the angular deviations and select the
% "flat" regions of the trace which correspond to fixations on
% the targets.

% Ground version by D. Balkwill
% Modified by Chris Pouliot to analyze KC-135 data

eval(['load veLfilter.mat']);
eval(['load dim']);
eval(['load colour']);

code = calcode;

fprintf('nCalibrating Axis#1 ...\n');
eval(['load ',caLcode,'.eogh']);
pos = eogh;
clear eogh
t = (([1:length(pos)] - 1)/sample)';

[scale l,noisel,offsetl] = kc_three_point(t,pos,colour);
fprintf(\nAxis#1 scale factor = %6.4f deg/unit\n',scalel);

Page 174

% KC_cal_gen

% calls calibrate for a number of runs and generates the cal factors
% for the PRN and dumping runs
% Ground analysis version by T. Liefield
% Modified for KC-135 analysis by Chris Pouliot

run = ones(1,number);
n_cals - input('How many cals >> ');
dim = 1;

if (n_cals >= 0)
fprintf('n Enter the run number for the cals in order')
fprintf('\n from lowest to highest')
for i=1:n_cals

calnum(i) = input('cal # >>');
run(calnum(i)) = 0;
if (calnum(i) < 10)

n = num2str(calnum(i));
cal_code = [data_path,sub_code,'0',n]
kc_calibrate;
hcal(i) = scalel;
g(i) = input('Was this cal good enough to use >> ','s');

else
if (calnum(i)>=10)

n = num2str((calnum(i)));
cal_code = [data_path,sub_code,n]
kc_calibrate
hcal(i) = scalel;
g(i) = input('Was this cal good enough to use >> ','s');

end
end

end
end

% calculate calibration factors for the runs
% based only on the good calibrations
j=1;
for i = 1:n_cals

if ((g(i)== y) I (g(i) == 'Y)) % g = chr array good or bad
g_cal(j) = calnum(i); % calnum all run# which are cals
calh(j) = hcal(i);
j = j +1;

end
end

hcal= calh;
calibration_calc

q = input('Would you like to save measured cal values? >>','s');
if ((q == Y) I (q == Y))

save_name = input('Save File Name :','s');
save_name = [data_path,savename];
eval(['save ',save_name,' sub_code number dim gcal hcal run n_cals horcal'])

end

Page 175

% KC dec30
% Origanlly written to decimate ground data from 120 Hz down to 4 Hz by T. Liefield
% Modified for use in the KC-135 analysis by Chris Pouliot

% set bad data to zero for summation purposes
norm_spv = norm_spv';
norm_spv - normspv .* good_data;

I - length(good_data);

newI = (I - 1)/30; %new sampling frequency

y - zeros(30,new_l);
g = zeros(30,new_l);
n = zeros(1,new_l);
d = zeros(1,new_l);
x = zeros(1,new_l);
var = zeros(1,newl);
z = 1:1:30;

for t=1:(newl-1)
for i = 1:30

y(i,t) = norm_spv(30*t+i);
g(i,t) = gooddata(30*t+i);

end;
x = sum(y);
n = sum(g);
[a] = polyfit(z,y(:,t)',1); %linear least squares fit to each bin
for i = 1:30 % calc variance about the linear fit

d(t) = d(t) +((y(i,t) - (a(2)+a(1)*i)).*g(i,t)).A2;
end;

end;

dec_good = (n>0); % good data flag

% Decimated SPV is box-car average across row, with n=number of
% good samples. Correction in denominator to prevent division
% by zero for an entire bin of bad data; decspv=0 in this case.
dec_spv = x J (n + (-dec_good));

% Variance within trace is variance of each bin around a linear
% polynomial fit to each bin. A correction in case of
% good samples in bin is <= 1; variance within=0 in this case.
within = d ./ (n -1 + 2*(n<=1));

% remove outliers in the variance, replace with means of each
% of three equal sized regions
[y,i] = sort(within);
len3 = (length(y)/3) - rem(length(y)/3,1);
mean1 = mean(y(1:len3));
mean2 = mean(y((1+len3):(2*len3)));
mean3 = mean(y((1 +2*len3):(3*len3)));
var(i(1:len3)) = meanl*ones(1,len3);
var(i((1 +len3):(2*len3))) = mean2*ones(1,len3);
var(i((1 +2*len3):(3*len3))) = mean3*ones(1 ,len3);
within = var;

Page 176

% calculate weights as the number of samples divided by the variance of each
% sample.
dec_weight - n ./ within;
bad_weight = pack_true(isnan(dec_weight));
dec_weight(bad_weight) = zeros(1 ,max(size(bad_weight)));
zero_var - pack_true((within<1 e-7));
dec_weight(zero_var) = zeros(1 ,max(size(zero_var)));

%/osave data, having departed from 'ile_specs' by now
eval(['save ',run_code,'.dec_spv dec_spv']);
eval(['save ',run_code,'.dec_weight dec_weight']);
eval(['save ',run_code,'.within within']);
eval(['save ',run_code,'.dec_good dec_good']);
/oclear dec_good dec_spv i I new_lI within x out weight zero_var dec_weight

Page 177

% KC_expfit
% modified T. Liefeld 06/12/92
% to fit an exponential model to data

% modified C. Pouliot 08/11/93
% to fit post-rotatory KC-135 data over a 22 second period

% load data

data_path = 'KC&T:TP2:';
run_code = input('Enter run code >> ','s');

eval(['chdir ',data_path]);
eval(['load ',run_code,'.dec_spv']);
eval(['load ',run_code,'.dec_good']);
eval(['load ',ru n_code,'.parms']);

delay = delay * 4 - rem(delay*4,1);
spinl = spinl * 4 - rem(spinl*4,1);
runlen = runlen * 4 - rem(runlen*4,1);

savegood = dec_good;
good_indices = pack_true(dec_good);
if (spinv < 0)

decspv = -dec_spv;
end

% Initialize time vector, assuming 4 Hz decimated frequency

I = runlen;
t = ([1:I] - 0.5) / 4;
t = t';

% shape tach signal with exponential (0.17 sec time constant)
% ramp to a steady state level at 'spinv'

Tv = 0.17;
u = [zeros(1,delay) ones(1,spinl) zeros(1 ,runlen-spinl-delay)];
u = u';

% overall control input (tach)

u = lsim(spinv/Tv, [1, 1/Tv], u, t);

% Nominal model parameters. The parameters to be fitted are the
% non-dimensional ratios of the physical parameters to the
% nominal model parameters here. This places equal emphasis
% on each model parameter, even though they may be orders of
% magnitude apart.

K = .4; % gain constant
T = 10; % time constant
A = -120; % alpha_m amplitude of step input -- fixed

Page 178

norm_parms = [K ;T ; A];

options = [0 ; 0.001 ; 0.001];
vib = [.1; .01; 1]; %lower bounds
vub = [10; 10; 1]; %upper bounds

plot(t(good_indices),decspv(good_indices))

% Fit the post-rotatory portion now

fprintf(['n\n\nFitting ',run_code,' post-rotatory\n']);

clear dec_good
the_end - spini + delay + 88;
if the_end > runlen,

the_end = runlen;
end

dec_good = save_good((spinl + delay + 1):the_end);
dec_good(1:12) = zeros(1,12); % do not fit first 3 seconds of data

if (sum(dec_good) < 10)
fprintf('Not enough data points to determine a curve fit.\n');
return;

end
t=t(1 :(the_end - spini - delay));
dec_spv_p = dec_spv((spinl + delay + 1):the_end);
good_indices = pack_true(dec_good);
normparms = [K;T ; -l1*A];
model_parms = [1; 1; 1];
[modelparms, options] = constr('model_err_exp', model_parms, options, vlb, vub, [], t, u,
dec_spv_p, good_indices,normparms);

modelparms = modelparms .* norm_parms;
eval(['save ',run_code,'.newpost model_parms options'])

fprintf('*** Second fit: initial model parameters = 1.0\n');
fprintf('Number of iterations = %5.0f\n',options(10));
fprintf('Mean square error = %7.4f\n',options(8));

fprintf('K = %f\n',model_parms(1));
fprintf('T = %f\n',model_parms(2));
fprintf('A = %f\n',model_parms(3));

Page 179

% KC_mean
% Program which averages runs together to net a net mean response.
% by Chris Pouliot

clear

disk= 'KC&T:';
sub = 'TP2';
data_path = [disk,sub,':1;

stat_code = ['KC&T:', sub, '.kclccw'];
runs = ['02';'04'];
[mean_spv, var_spv, total] = kc_stat(sub,datapath,runs,1,250);
eval(['save ',stat_code,' mean_spv var_spv total runs']);

Page 180

% KC_report
% written by C. Pouliot
% to print KC-135 decimated data

clear

data_path = 'KC&T:TP1:';
run_code = input('Enter Run Code: ', 's');
parse;

eval(['load ',datajpath, run_code,'.dec_spv);
eval(['load ',datapath,runcode,'.dec_good']);
eval(['load ',data_path,run_code,'.parms']);

eval(['load ',datapath,run_code,'.newpost']);
K(1) = model_parms(1);
T(1) = model_parms(2);
E(1) = options(8);
clear model_parms options

A(1) = -120;
if sum(dec_spv(20:120)) < 0,

A(1) = 120;
end

len = length(dec_spv);
t = ([1:len] - 0.5) / 4;
t t';
len_120 = (len/4)*120;

hold off
clg

text (.05,.98,'SLS-2 E072 ROTATING CHAIR RUN SUMMARY', 'sc');

text (.1,.93,'subject', 'sc');
text (.5,.93, subject, 'sc');

text (.1,.90,'session', 'sc');
text (.5,.90, session, 'sc');

text (.1,.87,'run', 'sc');
text (.5,.87,run num, 'sc');

text (.1,.84,'test type', 'sc');
text (.5,.84,test_type, 'sc');

text (.1,.79,'spin length', 'sc');
text (.5,.79, num2str(spinl), 'sc');

text (.1,.76,'run length', 'sc');
text (.5,.76, num2str(runlen), 'sc');

text (.1,.73,'spin velocity', 'sc');
text (.5,.73, num2str(spinv), 'sc');

text (.1,.68,'post-rotatory gain', 'sc');
text (.5,.68, num2str(K(1)), 'sc');

Page 181

if (K(1) == 0.18) 1 (K(1) == 1.2)
text (.8,.68, '**', 'sc');

end

text (.1,.65,'post-rotatory time constant', 'sc');
text (.5,.65, num2str(T(1)), 'sc');
if (T(1) == 4.5) 1 (T(1) == 30)

text(.8,.65, ***', 'sc');
end

text (.1 ,.62,'post-rotatory MSE', 'sc');
text (.5,.62, num2str(E(1)), 'sc');

spinl = spinl * 120;
delay = delay * 120;
runlen = runlen * 120;

eval(['load ',data_path,run_code,'.good']);
percent = 100*mean(good_data((delay+spinl):(runlen)));
clear good_data

text (.1,.57,'percent good data', 'sc');
text (.5,.57, num2str(percent), 'sc');
pause
cig

spinl = (spinl/120) * 4;
delay = (delay/120) * 4;
runlen = (runlen/120) * 4;

subplot (211);
axis([0 120 -100 100]);
eval ([title ("', run_code, "')']);
xlabel('Time since start of run (sec)');
ylabel('Slow Phase Velocity (deg/sec)');
plot(t(decgood) ,dec_spv(dec_good) ,'.');
hold on

y=A(1)*K(1)*exp(-l*t/T(1));
plot(t((spinl+delay+1):runlen),y(1 :(runlen-spinl-delay)));

hold off
eval(['load ', data_path, run_code, '.z'])
I = length(z);
t = ([1:1] - 0.5) / 120;
t = t';
subplot(212)
axis ([0 120 -2 1])
z = (z+4811)/7480;
if len_120 > length(z),

len_120 = length(z);
end
plot (t(1:len_120), z(1:len_120))
xlabel('Time since start of run (sec)');

hold off
subplot (111)
axis('normal')

Page 182

% KC_stat

% Function which calculates the mean and variance of a selected number of
% individual KC-135 SPV responses.

% by Chris Pouliot

function [mean_spv, var_spv, total] = kc_stat(sub,data_path,runs,s,e)

sample = 4;

minute_size = 60 * sample;
sum_spv = zeros(1,500);
sum_square = zeros(1,500);
total = zeros(1,500);

for j = 1:length(runs(:,2))
run_code = [datapath,sub,runs(j,:)];
eval(['load ',run_code,'.dec_spv'])
eval(['load ',run_code,'.dec_good'])

eval(['load ',run_code,'.parms'])
eval(['load ',run_code,'.newpost'])

delay = round(delay*4);
spinl = round(spinl*4);
runlen = round(runlen*4);
dec_spv1 = zeros(1,500);
dec_goodl = zeros(1,500);
dec_spvl(1 :(runlen-delay-spinl)) = dec_spv((delay+spinl+l):runlen);
dec_goodl(1 :(runlen-delay-spinl)) = dec_good((delay+spinl+l):runlen);
dec_spv = dec_spvl;
dec_good = dec_goodl;

perc_good = 100*mean(dec_good(1 :(runlen-delay-spinl)));
fprintf('Run ');
fprintf(runs(j,:));
fprintf(' percent good %g\n',perc_good);
fprintf(' gain %/og\n',modelparms(1));
fprintf(' time constant %/og\n',model_parms(2));
fprintf(' MSE %g\n',options(8));
fprintf(' spiny %g\n\n',spinv);

a = ((spinv/abs(spinv)) .* dec_spv(1) .* dec_good(1))
sum_spv = sum_spv + ((spinv/abs(spinv)) .* dec_spv .* dec_good);
sum_square = sum_square + (dec_spv .* dec_spv .*dec_good);
total = total + dec_good;
clear dec_spv dec_good spiny

end

mean_spv = sum_spv ./ total;
mean_spv(pack_true(isnan(mean_spv))) = zeros(1 :sum(isnan(mean_spv)));
var_spv = sum_square - (sum_spv .* mean_spv);
var_spv = var_spv J (total - 1);
var_spv(pack_true(isnan(var_spv))) = zeros(1 :sum(isnan(var_spv)));
clear sum_spv sum_square

mean_spv = meanspv(s:e);
var_spv = var_spv(s:e);

Page 183

total = total(s:e);
plot(mean_spv)

Page 184

% KC_statprep

% Prepares an SPV profile for statistical analysis. The first
% step is time-shifting and stripping out extra data to leave
% one minute per-rotatory and one minute post-rotatory. The
% second step is outlier detection. The third step is decimation
% by a factor of 30 down to 4 Hz.

% Ground version by D. Balkwill
% Modified for analyzing the KC-135 data by Chris Pouliot

sample = 120;

eval(['load ',run_code,'.aspvh']);
eval(['load ',run_code,'.parms']);
eval(['load ',run_code,'.tach']);

tachom = tach;
clear tach;

tachom = tachom * 0.03;

y = aspvh;
clear aspvh

runlen = runlen*sample;
delay = delay*sample;
spinl = spinl*sample;

t = ([1:(runlen+l)] J sample);
good_data = ones(1,runlen+l);

%find valid range for log outlier detection in per-rotatory section

fprintf('Per-rotatory:\n');
i = delay;
j= i+ 1*sample;
condition = 1;
while ((abs(mean(y(j:j+5*sample))) > 10) & (condition == 1))

if ((j+7*sample) > (delay+spinl)),
condition = 0;

else
j = j + 2 * sample;

end
end
if condition == 0,

j = j+2* sample;
end
tl = t(i:j);
yl = y(i:j);

[logouti ,under,over,m,b] = log_outlier(tl,yl);

%take care of under- or over-flow
good_data(i:j) = -logoutl;
if (under > 0)

Page 185

good_data(i-under:i-1) = zeros(1,under);
end
if (over > 0)

good_data(j+1 :j+over) = zeros(1,over);
end

%save final fit in parms file as first-order "model fit"
taul =-l/m;
gain1 = exp(b)/120;
fprintf('Time length of outliers from log fit is ');
fprintf('%5.2f seconds.\n',(sum(logoutl)+under+over)/sample);

% do magnitude outlier detection on remainder of per-rotatory SPV

i = j + over + 1;
[magoutl ,under,over] = magoutlier(t((i:spinl+delay)),y(i:(spinl+delay)),30);
good_data(i:(spinl+delay)) = -magoutl;
if (under > 0)

good_data(i-under:i-1) = zeros(1,under);
end
fprintf('Time length of outliers from magnitude threshold is');
fprintf(' %5.2f seconds.\n',(sum(magoutl)+under)/sample);

fprintf('Post-rotatory :\n');
i = delay + spinl + sample + 1; O/oone second after stop
j= i+ 1*sample;
condition = 1;
while ((abs(mean(y(j:j+5*sample))) > 10) & (condition == 1))

if ((j+7*sample) > runlen),
condition = 0;

else
j= j+2* sample;

end
end
if condition == 0,

j = j + 2 * sample;
end
t2 = t(i:j);
y2 = y(i:j);

[logout2,under,over,m,b] = log_outlier(t2,y2);

%take care of under- or over-flow
good_data(i:j) = -logout2;
if (under > 0)

good_data(i-under:i-1) = zeros(1,under);
end
if (over > 0)

good_data(j+1 :j+over) = zeros(1,over);
end

%save final fit in parms file as first-order "model fit"
tau2 = -1/m;
gain2 = exp(b + 60 * m)/120;
fprintf('Time length of outliers from log fit is ');
fprintf('%5.2f seconds.\n',(sum(logout2)+under+over)/sample);

% do magnitude outlier detection on remainder of per-rotatory SPV

Page 186

i= j + over + 1;
[magout2,under,over] = magoutlier(t(i:runlen),y(i:runlen),30);
good_data(i:runlen) = ~magout2;
if (under > 0)

good_data(i-under:i-1) = zeros(l,under);
end
fprintf('Time length of outliers from magnitude threshold');
fprintf(' is %5.2f seconds.\n',(sum(magout2)+under)/sample);
% don't fill in any overflow, because this would be past two minutes

fprintf('Overall percentage of good data is %6.2f\n',1 00*mean(good_data));

%plot data and outlying regions
hold off
plot(t1 ,log(abs(yl)))
hold on
plot(t1 ,log(abs(mean(yl))) * logoutl,'b--')
grid
xlabel(Time (sec)')
ylabel('ln(SPV)')
title([run_code,' -- SPV and log outlier indicator'])

hold off
plot(t2,log(abs(y2)))
hold on
plot(t2,log(abs(mean(y2))) * logout2,'b--')
grid
xlabel(Time (sec)')
ylabel('ln(SPV)')
title([run_code,' -- SPV and log outlier indicator'])

hold off
plot(t,y)
hold on
plot(t,50*(-good_data),'b--')
plot(t,-50*(~good_data),'b--')
grid
xlabel(Time (sec)')
ylabel('SPV (deg/sec)')
title([run_code,' -- SPV and overall outlier indicator'])

hold off
plot(t(good_data),y(good_data),'.')
grid
xlabel(Time (sec)')
ylabel('SPV (deg/sec)')
title([run_code,' -- good SPV (outliers removed)']);

hold off

clear t tl t2 yl y2 i j logoutl logout2 minute_size sample
clear delay spinl spinv T1 T2 runlen under over magoutl magout2
clear m b taul gain1 tau2 gain2

norm_spv = y;

clear y

Page 187

% save normalized data, having departed from file_specs' at this point

eval(['save ',run_code,'.good good_data']);
eval(['save ',run_code,'.norm norm_spv']);

%0/decimate data to 4 Hz, and save decimated information
kc_dec30

clear good_data norm_spv
clear t taul tau2 run_len spini spinv

Page 188

%KC_tachan
% Program which analyzes the tach signal to determine a set number of parameters
% Ground version by D. Balkwill and C. Pouliot
% Modifed by C. Pouliot to analyze KC-135 data

%load tach data into standardized variable

eval(['load ',run_code,'.tach']);
TACH = tach;
clear tach;

TACH = TACH * .03;

sample = 120;
steady_vel = 120;

I = length(TACH);
t = [0:1-1] / sample;

event = delta_tach(TACH,1);
while (abs(TACH(event+120)) < steady_veV2)

event = delta_tach(TACH,event+1);
end
start = event;

event = delta_tach(TACH,start + 500);
while (abs(TACH(event+120)) > steady_veV2)

event = delta_tach(TACH,event+10);
end
stop = event;
avg = mean(TACH(start + 3 * sample:stop - 5));

spiny = avg;
delay = (start - 1) / sample;
spinl = (stop - start) / sample;
runlen = t(I);

fprintf('Delay = %6.2f seconds.\n',delay);
fprintf('Spin length = %6.2f seconds.\n',spinl);
fprintf('Spin velocity = %6.2f deg/sec.\n',spinv);
fprintf('Run length = %6.2f seconds.\n',runlen);

clear event start stopsample avg steadyvel flag level TACH

eval(['save ',run_code,'.parms spiny delay spinl runlen']);

hold off
plot(t,TACH)
hold on
plot([delay,delay],[-1 500,1500],'w')
plot([spinl+delay,spinl+delay],[-1 500,1500],'w')
plot([delay,delay+spinl],[spinv,spinv],'g')
hold off

Page 189

% KC_three_point

function [scale,noise,offset] = KC_three_point(t,pos,colour)

% This script inputs the angular deviations from the user, and
% calls the 'pick_regions' script so that the fixation regions
% can be selected. For each deviation, the average value over
% all of the regions is calculated. The calibration factor for
% each axis is calculated as the angular difference between the
% positive and negative deviations (in degrees), divided by the
% difference between mean positive and negative deviations (in
% arbitrary units). The calculated mean values are displayed
% to the user graphically as dotted lines, for inspection.

% If a zero fixation point is specified, it is used to
% determine the offset value.

% The noise is estimated by taking the root-mean-square value of
% the fluctuations about all selected regions.

% Ground version by D. Balkwill 11/27/90
% Modified by Chris Pouliot to analyze KC-135 data

if isempty(posdeg)
pos_deg = 10;

end

if isempty(neg_deg)
neg_deg = -10;

end

if (pos_deg == neg_deg)
disp('Calibration range cannot be zero, Symmetrical calibration assumed.');
neg_deg = -1 * pos_deg;

end

% select positive trace deflection regions
disp(");
disp('Use mouse to select flat-top regions of positive trace deflection.');
pos_regions = pick_regions(t,pos,colour);
[mp,np] = size(posregions);
if (mp == 0)

error('No positive trace deflection flat-top regions, Cannot calibrate.');
end
for i=1:mp

xpos = [xpos ; pos(pos_regions(i,1):posregions(i,2))];
end
mpos = mean(xpos);
hold on
plot([t(1),t(length(t))],[mpos,mpos],'r:');
hold off

% select negative trace deflection regions
disp('Now select flat-top regions of negative trace deflection.');
neg_regions = pick_regions(t,pos,colour);
[mn,nn] = size(negregions);
if (mn == 0)

error('Cannot calibrate, no negative trace deflections selected.');

Page 190

end
m = min([mp mn]);
if (mp<mn)

fprintf('Fewer positive regions chosen, fitting all paired regions.');
end
if (mn<mp)

fprintf('Fewer negative regions chosen, fitting all paired regions.');
end
for i=1 :mn

xneg = [xneg ; pos(neg_regions(i,1):neg_regions(i,2))];
end
mneg = mean(xneg);
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[mneg,mneg],'r:');
else

plot([t(1),t(length(t))],[mneg,mneg],':');
end
hold off

% calculate scale factor in deg/unit
scale = (pos_deg - negdeg) ./ (mpos - mneg);

% select optional zero trace deflection regions
if isempty(y)

y='n';
end
xzero = 0;
if y=='y' I y=='Y'

disp('Select regions in which subject fixated on zero reference.');
zero_regions = pick_regions(t,pos,colour);
[m,n] = size(zero_regions);
if (m == 0)

offset = 0;
else

for i=1:m
xzero = [xzero ; pos(zero_regions(i,1):zero_regions(i,2))];

end
offset = mean(xzero);
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[offset,offset],'r:');
else

plot([t(1),t(length(t))],[offset,offset],':');
end
hold off

end
else

offset = 0;
end

% display positive and negative mean values
hold on
if (colour == 'y')

plot([t(1),t(length(t))],[mneg,mneg],'r:');
plot([t(1),t(length(t))],[mpos,mpos],'r:');

else
plot([t(1),t(length(t))],[mneg, mneg],':');

Page 191

plot([t(1),t(length(t))],[mpos,mpos],':');
end
hold off

% estimate noise, in rms degrees
xpos - xpos - mean(xpos);
xneg = xneg - mean(xneg);
if (isempty(xzero) == 0)

xzero = xzero - mean(xzero);
end
x = [xpos ; xneg ; xzero];
noise = scale * sqrt(mean(x.*x))

clear pos_regions neg_regions zeroregions xpos xneg xzero x
clear i m n y neg-deg pos_deg
return;

Page 192

