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Abstract

This thesis discusses the development of a near infrared spontaneous Raman scatter-
ing spectroscopic system designed to analyze blood chemical composition in human
blood serum. Several analytic methods have been studied and verified for analyzing
the Raman spectrum. Three experiments have been performed with a step by step
approach to isolate and solve problems.

Using this Raman spectroscopic system, we measured the glucose concentration
level in phosphate buffered saline with an average error of 4 mg/dL while the reference
error is 2.5 mg/dL. In single donor serum, the average prediction error is 8 mg/dL
while the reference error is 2.5 mg/dL. In multidonor human blood serum the average
error is 18 mg/dL while the reference error is 8 mg/dL. Other blood analytes such
as albumin, total protein, cholesterol and triglyceride have also been measured.
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Chapter 1

Introduction

1.1 Background

The transcutaneous measurement of blood analytes is a major challenge. A transcu-

taneous measurement would not only simplify the blood analysis process, but also is

badly needed in applications. Diabetes is one example.

"Diabetes is a leading cause of death in the United States, and over 16

million Americans are believed to have this disease. In 1992, health care

costs to diabetics averaged $2,500 for patient materials such as insulin

and needles, plus $11,200 per year treating complications. The total cost

of treating diabetes and its complications in 1995, according to the NIH,

exceeded $137 billion...

There is tremendous interest ... in finding a reliable, cost-effective

method of noninvasive blood glucose measurement. Annual sales of cur-

rent blood glucose meters and strips are estimated at $1.2 to $1.5 billion;

successful non-invasive technology could dramatically expand this already

sizable market."'

1From the description of the problem by the Research Triangle Institute,
http://www.rti.org/technology/nasa-jdf



This is just an example of so many applications for which the transcutaneous

measurement of blood analytes can be used. Elimination of painful needle sticking

would be welcomed by patients.

With its scientific and engineering challenges, as well as its vast market, this prob-

lem has attracted the attention of many researchers in both industry and academia.

Many techniques are currently under research, including infrared absorption spec-

troscopy, electrochemical measurement[20], fluorescence spectroscopy[15], pulsed laser

photoacoustic spectroscopy[13], NMR spectroscopy[5], spectral analysis of the chem-

ical components in vitreous humor[19], polarmetric techniques[7], and radio wave

impedance.

Most of these techniques, however, have practical difficulties due to the many

variables which occur in actual applications, including the presence of other chemical

components, change of temperature, and change of optical parameters.

As a first step in solving this problem, we studied blood serum to determine which

blood analytes we can measure with our technique, and with what accuracy.

1.2 Why glucose in human blood serum

The selection of glucose as our target chemical has several reasons. As mentioned

above, the glucose concentration in blood is a crucial physiological parameter. Only

one form of glucose, a-D-glucose, is dominantly found in humans; it can be easily

stored as a powder, and is convenient for use in experiments.

Hospital analyzers sample human blood serum. In a blood pathology laboratory,

human whole blood is centrifuged to remove blood cells and fibrin before it is analyzed.

It is easier to perform measurements without the blood cells, since the presence of

blood cells not only changes the optical parameters of the sample thereby affecting the

spectrum, but can also allow chemical and biological processes to proceed, therefore

changing the chemical concentrations.



1.3 Raman spectroscopy

We have explored the use of spontaneous Stokes Raman spectroscopy to accomplish

these ends. Raman spectroscopy gives information about molecular vibrations by

measuring the wavelength shift of a photon due to inelastic scattering.

When an incident photon of frequency wi is directed on a sample, in most cases a

photon of the same wavelength wi is emitted.

Figure 1-1: Diagram of inelastic scattering effect

In inelastic scattering, the emitted photon has a frequency w~, which is different

from the frequency wi of the incident photon (Figure 1-1). When the frequency shift

Aw equals the vibrational frequency of the molecule, this is called Raman scattering:
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Figure 1-2: Energy level diagram of electronic states in a molecular system. Levels
(0, 1, 2, 3, ... ) in ground and first excited electronic states are vibrational levels.

Aw = W2 - ws.

In spectroscopy, the energy of the photon is usually measured in wavenumbers.2

Wavenumber has the unit of inverse centimeter (cm- 1 ), and is proportional to the

frequency.3

In terms of resonance, Raman scattering is distinguished by whether the scattering

is resonant or non-resonant. When the frequency of the incident light equals the fre-

quency of the molecular absorption band, the intensity of the emitted light increases

drastically. This is called resonance Raman scattering (RR). Resonance Raman spec-

troscopy is very useful in cases when a resonance frequency, or absorption band, of

the target chemical is known. We, however, do not want any spectrum from one spe-

cific chemical to dominate the whole spectrum, because even though we are trying to

2E = hcd, where E is the energy of photons, h the Planck constant, c the speed of the light, and
v the wavenumber.[6]

30 = 1/A, and v = c/A, where i represents wavenumber, A wavelength, v frequency, and c the
speed of the light.
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measure the concentration level of glucose, we also want this technique to be used for

general applications. For this purpose, concentration of chemicals other than glucose

is measured in chapter 4. We therefore employ non-resonant Raman scattering, i.e.

Raman scattering without resonance, for our studies.

The spontaneous Raman spectrum is a linear combination of the spectrum of

each chemical component. This is important in the quantitative analysis, because

the linearity allows us to use linear multivariate calibration techniques. This will be

discussed in detail in chapter 3.

Raman spectra can be classified according to whether the emitted photon has

less or more energy than the incident photon; they are known as Stokes and anti-

Stokes Raman spectra, respectively (Figure 1-3). Stokes Raman scattering involves

a transition of a photon from the ground vibrational state to an excited vibrational

state. Anti-Stokes Raman scattering involves a transition of a photon from an excited

vibrational state to the ground vibrational state. As the population of excited vibra-



tional states is very much less than the population of the ground state4 , the signal

intensity of anti-Stokes Raman scattering is much weaker than that of Stokes Raman

scattering.

One of the disadvantages of Raman spectroscopy is its weak signal. The intensity

of a typical Raman spectrum is about 10-6 times the intensity of the elastically

scattered light. This weakness of signal strength makes detection difficult, especially

with huge noise and background. Measuring Raman scattering in the anti-Stokes

region can reduce the fluorescence background, because the fluorescence signal is

also weaker in the anti-Stokes region. The actual advantage of using anti-Stokes

Raman scattering over Stokes Raman scattering, however, should be carefully studied,

because it is not guaranteed that the signal-to-noise ratio will improve by using anti-

Stokes Raman. Without this knowledge, it is easier to measure the Stokes lines in

Raman experiments, because the Stokes signal intensity is bigger than the anti-Stokes

signal intensity.

1.4 Excitation wavelength selection

Selecting an optimal excitation wavelength for Raman spectroscopy is very important

in studies of biological systems.

There are four issues in selecting the excitation wavelength.

The first one is fluorescence background generation. The signal we are looking

for is very small compared with the background. Thus, it is critical to reduce the

fluorescence background and its associated shot noise. In biological systems, the

shorter the excitation wavelength, the bigger the fluorescence background gets.

The second is the penetration depth. Penetration depth is important in terms of

transcutaneous measurement, as well as sampling volume. If the penetration depth is

short, the chemical signal we are looking for may be small. We are planning to apply

this technique to a transcutaneous measurement, so the penetration depth should be

4This is due to the Boltzmann distribution. A molecule is less likely to be present in a higher
energy state.[16]



long enough to penetrate the depth of skin. Two major absorbers in the human body

are water and hemoglobin.5 There are some wavelength 'windows' in which the net

of absorption of these absorbers is smaller than in other regions.

The third is the intensity of the Raman signal. The intensity of the Raman signal

drops as increasing excitation wavelength. 6

The fourth is the detector sensitivity. The quantum efficiency of a CCD (charge-

coupled-device) array drops at longer wavelengths. CCD detectors cut off at about

1.l1 m. Thus, as the wavelength of a Raman signal approaches this value, it can be

corrupted by readout noise.

We have chosen 830nm as our excitation wavelength. This near infrared wave-

length does not generate as much fluorescence background as any shorter excitation

wavelength does. 830nm laser light does not resonate with biochemical bonds. There

is an absorption 'window' around this 830nm region, so the light can penetrate rel-

atively deep. The Raman signal intensity and the detector sensitivity at 830nm are

acceptable for biological studies.[11

5Skin pigments also have a high absorption coefficient.
61 OC V4 , where I is the intensity of the Raman scattered light, and v is the frequency of the

incident photon.[6]



1.5 Outline

In chapter 2, the experimental system scheme is described. We discuss its basic

functions, improvements of the system, and analysis of the system. In addition,

suggestions to improve the system in the future are given.

Analytical techniques to extract the chemical concentrations are another main

part of these experiments. We have studied and compared alternative techniques and

tried to choose the best analysis technique for each analyte. Discussion of feasibility of

these techniques and their limits are presented in chapter 3. In addition, reasonable

ways to preprocess the spectra, such as spectral range selection and filtering, are

discussed.

In chapter 4, we describe in detail three experiments that we performed. The

experimental design considerations are given. All the experimental details, includ-

ing experimental protocols, are fully described. Spectra from each experiment are

presented with analysis results.

In chapter 5, the interpretations of the results from the experiments in chapter 4

are given. The same set of spectra has been analyzed by two methods, hybrid linear

analysis (HLA) and partial least square (PLS), to compare their performance. In

addition, future directions of this project are suggested.



Chapter 2

Experimental System

2.1 System scheme

2.1.1 Overview

The following is a schematic outline of the current system (Figure 2-2 and Figure

2-4). A typical laser spectroscopy system consists of a laser source, delivery optics,

collection optics, and a detector. For the laser source, a GaA1As diode laser is operated

at 830nm wavelength in CW mode. The beam is passed through the bandpass filter to

remove wavelengths other than the primary wavelength because the laser is oscillating

in multi-mode (Figure 2-1). This bandpass filter has a polarization sensitivity, so we

checked whether the beam polarization is aligned to the filter axis by comparing the

laser power before and after the bandpass filter. The output beam is reflected by two

mirrors to ease aligning the system. These mirrors are carefully adjusted to keep the

laser beam horizontal. The aligned beam is focused onto the sample by means of a

focusing lens. Due to the collection geometry, a reflecting prism is used to bring the

beam perpendicular to the sample.

The laser beam impinges on the sample, and interacts with it. Optically, this

photon-material interaction produces fluorescence and Raman signals, as well as heat

and back-scattered photons.

The reflected or scattered photons are collected by the reflecting objective. The



." Primary Frequency
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Figure 2-1: Multi-mode operation of the laser. The multi-mode operation of this laser
source results from the interaction of the external cavity mode resonances with the
resonances of the intracavity mode resonances[18].



reflecting objective has a high numerical aperture (NA) to collect more photons.

Light emerging from the reflecting objective is approximately collimated, and passes

through the laser line filter to block the laser wavelength. The filtered light is focused

onto the input end of the fiber bundle which is arranged in a circular pattern, and

transmitted through to the output end. The output end of the fiber bundle is arranged

in a linear array (Figure 2-5) which the f-number matching double plano-convex

lenses image onto the slit of the spectrometer. Within the spectrometer there is a

holographic grating which disperses the light, and the dispersed light is converted to

an electric signal by the charge-coupled-device (CCD) camera.

2.1.2 Optical component specifications

Laser source

A GaA1As diode laser, SDL-8630 made by Spectra Diode Labs, is used as the laser

source. The silicon diode laser has some tunability in its wavelength in the near-

infrared (NIR) region. This allows flexibility in excitation wavelength selection when

combined with appropriate filters and a diffration grating. The power of this laser can

vary from 150mW to 500mW without using filters. However, at 830nm wavelength,

we found that the laser power can only vary from about 200mW to 400mW. This

ability to vary the power output was used for testing the heating of samples, as will

be discussed below. The laser source has the following specifications.

Table 2.1: Specifications of the laser source

Operating mode CW
Operating output power 0.30W
Operating wavelength 830nm
Operating bandwidth 10GHz

Beam Diameter (FWHM) 2mm
Beam Divergence (FWHM) 0.5mrad

Polarization TE

During the experiment, the average power was kept close to 300mW, and we



observed 3mW power fluctuations by using a laser power meter. This laser has an

internal temperature compensating feedback loop to stabilize the laser output against

fluctuations in the ambient temperature. This system has an internal interlock for

safety purposes.

Delivery optics

In this spectroscopy system, the section which delivers the laser light from the laser

source to the sample is called the delivery optics. The delivery optics consists of a

holographic bandpass filter, two reflecting mirrors, a focusing lens, and a reflecting

prism.

M1,M2 BF M4

LS: Laser Source
M l, M2, M3, M4: Mirror

BF: Bandpass filter
Ll: Focusing lens
Pl: Reflecting prism

S: Sample

- : Laser beam

Figure 2-2: Delivery optics



The holographic bandpass filter, Kaiser HLBF-830-1.0, is used in the system to

filter out unwanted fluorescence from the laser source. This bandpass filter has a

holographic volume grating located between two prisms, and when a collimated and

polarized laser beam is directed perpendicular into the cube, some of the unwanted

light just passes through the cube, and the rest of the light is diffracted by the grating.

By spatially filtering the output beam we could narrow its wavelength, but this is

unnecessary because the laser line is narrower than a typical Raman peak from a

biological sample.

Table 2.2: Specifications of the holographic bandpass filter

Throughput > 90%
Wavelength 830nm
Bandwidth < 2nm

Working angle 900
Maximum input power 5W

Two mirrors reflect the output beam from the bandpass filter to simplify the

system alignment. When we consider that the laser beam consists of photons moving

in the 3D space along a given straight path, the beam has 5 degrees of freedom. A

mirror limits 2 of these degrees of freedom, as the mirror changes the angle of the

beam. We can direct the laser beam close to a spot where we want it to fall with an

angle that is desired using two mirrors.

The focusing lens, Melles-Griot 01LDX 167, collects the light reflected by two

mirrors, and focuses the beam to a small spot. The following is the specification of

the focusing lens.

Table 2.3: Specifications of the focusing lens
Diameter 22.4mm

Focal length 100mm
Material BK7

Design wavelength 546.1nm



By combining this information with the information on Table 2.1, we can calculate

the focused beam size. First, we need to change the beam width and divergence at

FWHM (full width at half maximum) to the beam width and divergence at the

1/e 2 point. From the intensity distribution of the beam, the beam waist radius

wo = 1.7mm1 , and the beam divergence d = 0.3mrad2

Let us first assume that the laser beam waist is at the front surface of the laser

source.3 Using the focused beam width equation for a Gaussian beam [12],

,l f
s + (Af/w) 2  (2.1)

100 x 10- 3

1 + [830x10
- 9 .100x10-3 2

= 100 x 10-3(m)

A f /wTwoW =A 7o (2.2)
[1 + (Af /rw 2 )2 ]1 / 2

830 x 10- 9 . 100 x 10-3/(T. 1.7 x 10- 3)

[1 + { 83010-910010
- 3 }2]1/2

= 16 x 10-6(m)

where s" represents the distance from the lens to the focused beam waist, f the focal

length of the lens, A the wavelength of the incident light, wo the 1/e 2 beam width

at its waist before the lens, and w the laser beam width at the focused beam waist

(Figure 2-3).

According to these equations, the beam is focused at the focal distance of the lens,

100mm from the lens, which is what we confirmed by using an infrared viewer. The

diameter of the focused beam is about 32pm in the case of a perfect optics. 4 This is

'From the Gaussian beam intensity profile, WO/WFWHM = 1.7, where wo is the l/e 2 beam width,
and WFWHM is the FWHM beam width.

2From [17], beam divergence a = 2A , where A is the wavelength of the beam, and wo is the l/e 2

beam width.
3 The front surface of the laser source in this case is the output surface of the laser diode chip.
4In reality, a lens has aberrations which blur the focused image.



the smallest spot size we can obtain with this focusing lens. However, by changing

the focusing lens or the delivery optics configuration, we can get the desired beam

width.

Wo w

S S"

Figure 2-3: Gaussian beam notations

The reflection prism reflects the light focused by the focusing lens. The reflected

light is directed onto the sample. The sample absorbs, absorbs and re-emits, or

scatters the light.

Collection optics

The collection optics collect the optical signal scattered and/or reflected by the sample

and transmits the signal to the detector. The collection optics consist of a reflecting

objective, a holographic notch filter, a focusing lens, a fiber bundle, and f-number

matching optics.

The reflecting objective is a microscope component that collects light with a very

wide viewing angle, which is equivalent to a high numerical aperture (NA). A typical

reflecting objective uses two reflecting surfaces. By using two reflecting surfaces, a

reflecting objective has two major advantages over a lens in laser spectroscopy. First,

a reflecting objective does not produce chromatic aberration. A typical lens is made

of transparent material of a certain refractive index such as quartz or BK7. The



L2 NF

FB An K

SL VS
L3, L4

S: Sample
C: Reflecting microscope objective
NF: Notch filter
L2: Focusing lens
FB: Fiber bundle
L3, L4: F number matching optics
VS: Variable slit
SM: Spectrometer
CCD: CCD camera

Figure 2-4: Collection optics



refractive index, however, is a function of the wavelength of the input beam. Thus, a

singlet inherently has some amount of chromatic aberration. This aberration problem

is discussed in detail below. However, the reflection angle does not change with the

wavelength. So there is no chromatic aberration in a reflecting objective. Secondly,

in a lens, when the laser beam passes through the medium the lens itself can generate

Raman or fluorescence signal. This can be a problem because the added signal can

generate additional shot noise. On the other hand, with reflecting surfaces the light

does not pass through a medium other than air, which generates almost no Raman

or fluorescence signal, so we can avoid the unnecessary signal addition.

Table 2.4: specifications of the reflecting objective

Magnification x15
NA 0.5

Focal length 13.41mm
Obscuration 19.5 %

Working distance 23.2mm
Reflectivity > 97% @ 950nm

Coating Gold

The holographic notch filter, Kaiser HNPF-830-2.0, is used in the system to block

the laser line in the collected light. Otherwise, a high power laser beam can saturate

the detector, generate additional shot noise, and damage delicate optical components

such as the diffraction grating and the detector.

Table 2.5: Specifications of the holographic notch filter

Throughput > 80%
Wavelength 830nm

Working angle 00

Spectral bandwidth < 599 wavenumbers
Edgewidth (Red side) 121 wavenumbers
Edgewidth (Blue side) 181 wavenumbers

Laser damage threshold 10J/cm2



The focusing lens focuses the collected light onto the end of the fiber bundle. This

lens is chosen to match the numerical aperture of the optical fibers.

The fiber bundle is made with 177 optical fibers. At the input end one central fiber

which collects most of the light lies in the middle of the bundle. Eighteen fibers form

a ring which surrounds the central fiber. 42 fibers form another ring which surrounds

the the first ring. 116 fibers form the third ring which surrounds the second ring. At

the output end, this fiber bundle transforms the circular beam into a line so that the

light can be efficiently coupled into the entrance slit of the spectrometer.

F-number matching optics match the different F-numbers of two components.

The light coming out of the fiber has a numerical aperture (NA) different from the

numerical aperture of the spectrometer; direct coupling would cause the loss of light.

To modify the solid angle of the light and capture all the light, two large plano-

convex lenses are used. To minimize spherical aberration, the two convex sides face

each other.

Table 2.6: Specifications of the focusing lens
Diameter 100mm

Focal length 120mm @ 546.1nm
Material BK7

Detector

The detector is the part of this system that transforms the collected light to electric

signals. The detector consists of a spectrometer and a CCD camera (Figure 2-4).

The spectrometer disperses the incoming light. This allows us to analyze its wave-

length distribution. The Princeton Instrument spectrometer has three lenses, one

notch filter and one spectrograph. The first lens collimates the input beam. The

notch filter then blocks the laser line. The second lens focuses the beam onto an

internal slit, which increases the resolution and filters out some noise. The third lens

again collimates the filtered light, and the collimated beam is passed through the

grating and dispersed. The dispersed light is collected by the CCD camera. However,
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Figure 2-5: Outline of fiber bundle. The input end of the fiber bundle (AA') is
circular, and the output end of the fiber bundle (BB') is linear. The fiber bundle has
three ringss. Only optical fibers in the center ring are drawn.
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Figure 2-6: Spectrometer and CCD



we did not use the notch filter (NF2) and the slit (S2) in our experiments to improve

the throughput of the system. Instead, we used an external notch filter (NF) and an

external variable slit (VS) (Figure 2-4).

A COD (charge-coupled-device) array camera is used as a detector. A CCD camera

has a higher S/N ratio and lower readout noise than an InGaAs detector [1]. The

CCD is already built into an array, from which we get the multiplex advantage. A

liquid nitrogen cooled CCD, LN CCD-770HR is used in this system. As the beam is

dispersed horizontally by the dispersion grating, the intensity of a specific wavelength

component can be measured by counting the number of photons hitting a specific

horizontal position on the CCD.

Table 2.7: Specifications of the CCD camera

Number of pixels 1152 x 770
Pixel size 22.5pm

The number of the photons counted for a specific horizontal position is transferred

to a controller. The controller stores data in the buffer, and sends it to the computer,

which processes the data. The processed data can be displayed as a spectrum, and

stored for future analysis by various algorithms.

2.2 System improvements

Besides the major optical components mentioned above, some additions have been

devised to solve problems found during preliminary experiments.

2.2.1 Stirring mechanism

During our preliminary studies, we have occasionally observed an abrupt increase of

the spectral intensity, along with the weakening intensity of the Raman signal. Figure



2-7 shows this kind of spectral change. Each line in the figure stands for a frame.5

Because we took 30 spectra of each sample, there are 30 lines in the figure. Each

spectrum was gathered for 10 seconds, and the interval between two adjacent spectra

was approximately 3 seconds. The first 23 frames remain almost constant except

for some cosmic rays.6 In the 24th frame, the background increased slightly. In the

following frames it is obvious that background increased dramatically. Also we find

that due to the increased background the shot noise is corrupting the spectrum, as

can be seen by comparing the first frame with the last.

In addition, we observed a small black spot on the cuvette wall in these cases.

The spot is located at the point where the laser beam is hitting the sample. From

this spot, we concluded that damage to the sample caused by heating is happening

occasionally. The laser power is 300mW and the beam diameter is 32/4m, which gives

an average power density7 of 370MW/m 2. It is conceivable that such high intensities

can damage biological samples.

I have devised several ways to prevent or minimize this heat effect. These concepts

can be largely classified as passive method and active methods.

Passive method

As the heating is due to the high laser power, we can simply reduce the heat effect

by lowering the laser intensity. The advantage of this method is that it is very

simple. The disadvantage is that reducing the laser power reduces the signal from

the sample. As the signal-to-noise ratio (S/N) is a crucial factor with multivariate

prediction techniques [3], we must extend the integration time by a factor of 10 if

the laser power is reduced by a factor of 10. This extended integration time is not

feasible for practical applications.

5Instead of taking one spectrum for 300 seconds, we took 30 spectra for 10 seconds each. Each
10 second spectrum is called a frame.

6In chapter 3, cosmic rays and removal will be discussed in detail.
7 Average power density = powerarFea
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Active methods

Several active methods were considered. These include a flow cell, a moving cell, a

stirring mechanism, and temperature control.

The flow cell generates a flow of the sample inside the cell by gravity and/or

pressure generated by a pump. The flow cell requires an adequate amount of the

sample to circulate. Also, it takes more time to clean and maintain the system after

each sample has been used. Possible splash of the biohazard sample is also a problem.

The moving cell moves in translation, rotation, or both. The sample inside the

cell moves along with the cell, with some inertia. Sealing is important in this method.

The stirring mechanism is a system with an external part that generates a rotating

magnetic field and an internal part, a magnet, that actually spins inside the sample

to create a vortex flow. The advantage of this system is that we can incorporate this

mechanism into a conventional spectroscopic system with ease. However, the activity

of the spinning magnet should be checked to confirm its functioning every time it is

used, because the spinning magnet sometimes stalls due to reasons such as geometry

and interference of the magnetic field.

Temperature control uses thermo-electric components to sense and control the

temperature of the sample in a feedback loop. It is doubtful whether this temperature

control can prevent local heating.

After considering all these concepts, we chose a stirring mechanism, which was an

improved version of an earlier, inadequate stirring mechanism.

2.2.2 Variable stop

Within the system, the optics which matched the fiber bundle to the f-number of

the spectrometer required a compromise. To capture all the light with low f-number

optics we had to use large diameter lenses. However, a well-corrected large diameter

lens is very expensive, and within the budget, a more affordable lens pair was used.

This resulted in some spherical aberration, in addition to chromatic aberration and

higher order aberrations.



The chromatic aberration is due to the index of refraction change of glass as a

function of wavelength. Therefore the focal length of a lens is a function of the index

of refraction8

The index of refraction changes from the s line 9 (852.1nm) to the t line (1014.0nm),

which is approximately the region that we are using. The refractive index of BK7 is

1.51289 at the s line, and 1.50731 at the t line[14]. The change in focal length, Af is

then given by:

Af A(N - 1)
f (2.3)

f N-1
N-1
Nt- 1

1.50981 - 1.50731

1.50731 - 1
0.00250
0.50731

= 0.005,

where f is the focal length of the lens, N the refractive index, N, the refractive index

of BK7 at the s line, and Nt the refractive index of BK7 at the t line.

Thus each lens has a 0.5% change in its longitudinal focal length from the s line

to the t line due to chromatic aberration, which is negligible.

The spherical aberration is due to the spherical shape of the lens surfaces. The

ideal surface for a lens is not a spherical surface but a more complex aspheric shape.

Using the equation for longitudinal spherical aberration [12],

Af = (2.4)
f/#2

8 For a lens in air, 1 = (N - 1)[ + 1 where f is the is the focal length of the lens, N is
the refractive index of the lens material, t is the thickness of the lens, and R1 and R2 are radii of
the curvature of front and back surface of the lens.[17]

'Line refers to a spectral line in a gas, and is commonly used to designate a specific wavelength
in lens design. The s line is the infrared cesium line, and the t line is the infrared mercury line[14].



0.272 - 120 x 10- 3

1.22

- 22.6 x 10-3(m),

where Af is the change of the focal length, k is the shape factor of the lens in a

spherical aberration, f is the focal length of the lens, and f/# is the f-number of the

lens.

The third order spherical aberration in each lens is about 23mm, which cannot be

neglected considering its focal length, 120mm.

This aberration creates a blurred image at the spectrometer, and results in a lower

resolution of the system. To prevent this aberration from degrading resolution, we

built a variable stop. This stop is actually a slit made with two razor blades, each

mounted on a micro-positioning stage. These two stages are on one base. We can

change the slit width from about 50pm to 5000pm with a repeatability of approxi-

mately 1.5pm. This is adequate for our experiments.

This slit allows a higher resolution at the expense of reduced incoming light inten-

sity. A ray tracing simulation done by a computer indicates that we are losing about

half the light due to aberrations with a 150pm slit. Changing these lenses would

improve the efficiency of the system.

2.2.3 Cell holder

As mentioned above, the reflecting objective has a focal point with a short depth of

field, because it has a very high numerical aperture (NA). This results in the collection

efficiency being very sensitive to the position of the cuvette, especially when a turbid

sample is used. Previously, the cuvette was positioned against a machine-cut corner,

which is very imprecise. To improve the reproducibility of positioning, we installed

a cell holder which has a plate spring which always holds the cuvette in the same

position.



Chapter 3

Analytic methods

3.1 Multivariate calibration techniques

A typical spectrum gathered from a biological sample is a mixture of many overlapping

spectra.' Extracting the concentration of one specific chemical component was almost

impossible before multivariate calibration methods were devised[ll].

3.1.1 OLS

The least squares, or ordinary least square method2 (OLS) is available when the spec-

trum of each chemical component is known. The OLS fits the target spectrum with

the already known spectra. In many practical cases, not even the presence of every

chemical component is known, not to mention the spectrum of each chemical compo-

nent. Thus, OLS cannot be used for multivariate calibration in many applications.

3.1.2 PLS

The partial least squares3 (PLS) is an enhanced least square method. PLS requires

a calibration set, or teaching set, of data to build a model. The partial least squares

1Every spectral contribution, including fluorescence, Raman, and infrared absorption/emission,
is additive.

20LS is also called classical least squares (CLS).
30LS and PLS are more explicitly discussed in [8] and [9].



method considers an n data point spectrum as an n dimensional vector. PLS compares

this vector with the given chemical concentration level and finds spectral components

of the given chemical by means of a recursive algorithm. These vectors, or the cal-

ibrated model, can be used for predicting the chemical concentration level, which is

unknown, in the prediction set.

3.1.3 HLA

Hybrid linear analysis (HLA) is a multivariate calibration technique developed by our

group [4]. The motivation for HLA is that PLS uses just the concentration levels and

the spectra to build the calibrated model. In many cases, we know, in addition to

the concentration levels and the spectra of the samples, the spectrum of the chemical

whose concentration level we wish to determine.

We have shown that when both are compared, HLA predicts chemical concentra-

tions with less error than does PLS[4], so we use HLA for analysis whenever HLA

is appropriate (Chapter 4). A comparison of the performance of HLA and PLS is

discussed in Chapter 4.

3.1.4 Validity of cross validation

In most of our analyses, cross-validation has been used for calculating the prediction

error and generating the overall prediction plot. The "leave-one-out" method is a

typical cross validation, which leaves out one data point for calibrating the model

and then uses the model generated to predict the value of that data point. For

example, when one measures N samples, one needs to repeat the calibration N times

to get the prediction, each time taking a different sample as the object to be predicted

and the rest of the spectra for calibration (Figure 3-1).

Internal validation, basically, is not as robust as external validation. Cross valida-

tion, however, can be accepted when done with close attention and inspection of the

calibration model itself. [10, 11] Cross validation maximizes the use of limited data

sets.
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3.1.5 Limits of calibration methods

When one measures some physical value, it is measured in terms of a reference. Un-

avoidably every concentration measurement has some amount of error in it. Thus

every calibration set and prediction set contains measurement error. When the cal-

ibration model is built, all the measurement error in the calibration set is averaged

out. By increasing the size of the calibration set, we can reduce the measurement

error in the calibrated model. There is no way, however, to verify that the calibrated

model is performing better than the reference technique, since the measurement error

in the prediction set remains in the prediction error:4

2 2 + o2
apparent - Oreference - 

actual

where -apparent is the prediction error value from the analysis, Oref erence is the mea-

surement error of the reference technique, and -actual is the prediction error due to

the analysis technique and the system.

The error we measure directly from the analysis is Orapparent, and by knowing

the measurement error of the reference technique we can estimate Oactual, the actual

prediction error due to the calibrated model.[10]

Based on this, we carefully estimated the measurement error of the reference

technique. All the prediction errors presented in this thesis should be kept in mind

along with the measurement error of the reference technique. 5

4 Even if we have a perfect model, the prediction error would be non-zero because of the mea-
surement error in the prediction set.

5 However, values of cactual are not presented in this thesis, because 0apparent is not directly
comparable with are ference. -apparent is an RMSEP (root-mean-squared-error of prediction) value,
while 0apparent is a CV (coefficient of variation) value.



3.2 Preprocessing

3.2.1 Spectral Range Selection

Multivariate calibration methods mathematically try to find the spectral components

that are correlated with the species concentration. With the presence of a strong

signal which varies distinctively from sample to sample, the algorithm may try to

fit this strong signal, neglecting the variance of other regions. In addition, it is not

logical to use a spectral range which does not contain the spectrum of the specific

chemical component. With this reasoning, we chose the spectral range that is to be

analyzed by the multivariate calibration algorithm. No special algorithm was devised

for selecting the optimal spectral range. We iterated, changing the spectral range to

minimize the prediction error by a trial-and-error method.

3.2.2 Filtering

The raw data spectra contains several major sources which can degrade the quality

of the spectra.

Cosmic Rays

The first source of spectral degradation is cosmic rays. A problem with CCD cameras

is that cosmic rays degrade data (Figure 3-4). Cosmic rays hit random pixels of the

CCD array with arbitrary intensity.

Some amount of cosmic ray signal can be tolerated for qualitative analysis. One

technique of dealing with cosmic rays is increasing the integration time to average

cosmic rays out. This method, however, is not feasible for practical applications,

because extended integration time can induce the degradation of samples, and long

integration times make clinical measurements difficult.

'Averaging-out' is not a good way to treat cosmic rays in a quantitative analysis.

The quantitative analysis is sensitive to the intensity of each pixel, and such a huge

signal change affects the whole analysis (Figure 3-5). We cannot extract any useful



information from a pixel affected by a cosmic ray.

Our solution for cosmic rays is to remove the cosmic ray signals with software.

Taking spectral signals frame by frame enables this filtering. As explained in chapter

2, when we wanted 300 second integration time for a spectrum, we collected 30 spectra

of 10 second integration time each. Each spectrum of 10 seconds is called a frame. A

statistical algorithm was used. The main concept of the cosmic ray filtering assumes

the following:

* The spectrum does not change its intensity from frame to frame other than due

to noise.

* A sudden change in the spectrum is due to a cosmic ray.

Then we can mathematically express the intensity of one pixel.

I= S+ +c (3.1)

where I is the intensity read by the detector. S represents the average signal including

laser, Raman signal and fluorescence. rj is the term representing the noise fluctuation,

and c is the signal increase due to a cosmic ray.

Once given a statistically feasible number of frames, we can calculate the mean

and the standard deviation of the set of pixel intensity in frames. The mean is mostly

close to S. The standard deviation is mainly due to the noise r and cosmic rays c.

The coefficient of standard deviation is used for deciding what percentile of the pixels

are 'normal.' We varied the coefficient of the standard deviation, but mostly used

the mean plus three standard deviations as the filtering criterion. Any pixel whose

intensity is larger than this criterion was replaced with the average of the normal

pixels in the other frames.

Cosmic ray filtering has one weakness in its assumption. The variation of the

signal in one pixel gets bigger when there is an intensity change of the spectrum over

the whole frame due to physical or chemical changes in the sample, such as chemical
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Figure 3-4: A set of raw spectra of a biological sample. Spike shaped peaks are due
to cosmic rays.
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moved. Spikes are due to cosmic rays, and Raman signals are the small structure at
the bottom.
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breakdown and temperature change. This increased standard deviation may make it

difficult to detect cosmic rays by increasing the criteria.

Low S/N ratio

The second source of spectral degradation is low signal-to-noise ratio. A typical

Raman spectrum of serum has not only a high fluorescence background, but also a

high level of noise, mostly due to the shot noise of the background. Approximately, the

ratio among the signal, noise and the background is 1:6:800 (Figure 3-7). Our analysis

techniques (PLS and HLA) can overcome a high fluorescence background, but still a

low signal-to-noise ratio is a problem, because the prediction error in these prediction

techniques increases with the noise corruption of the signal[3]. By averaging several

adjacent pixels, we improved the signal-to-noise ratio at the expense of reducing the

uniqueness of the spectrum.

Shifting

The third source of spectral degradation is spectral line shifts. Most optical parame-

ters are functions of temperature. The performance of optical components vary with

temperature. The laser source and the CCD camera have closed-loop feedback control

systems to compensate for temperature changes. However, all the other parts of the

system, including lenses, mirrors, and even the sample can be affected by a tempera-

ture change. Lenses change their focal length, and the grating changes its dispersion.

The experiments are performed in an air-conditioned room. This room, however, was

not designed for temperature sensitive experiments. The effect of the temperature

change can be easily observed with the spectrum. We observed the shifting of the

spectrum by less than one pixel, which is equivalent to 4 wavenumbers. This amount

of shift is acceptable for a qualitative analysis. However, a computerized algorithm

for a quantitative analysis can be highly affected by this shift. By binning, we solved

this problem, again at the expense of reducing the rank of the spectrum.
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Figure 3-7: Comparision of the size of the signal, noise, and the background in a
typical serum sample. 10mg/dL glucose spectrum is used as a signal. Noise is shot
noise of the background. The integration time is 300 seconds.



Chapter 4

Experiments

4.1 Experiment design

Sets of three experiments were designed using a step-by-step approach. First, we

did a phosphate buffered saline experiment to study the feasibility of the Raman

technique and the performance of the system. Then we moved to biological samples

with controlled chemicals. Finally, we measured the chemical concentrations in human

blood serum samples from multiple patients, in which many chemicals vary from

sample to sample.

4.2 Glucose in phosphate buffered saline experi-

ment

We first measured the glucose concentration level in phosphate buffered saline (PBS)

solution. PBS generates low fluorescence background, and has very low turbidity.

The low background level is equivalent to a high signal-to-noise ratio, because a large

background generates large shot noise. The low turbidity results in low absorption,

which creates less heating problem. The goal of this experiment was

1. to see if we can measure the glucose concentration over the expected range in

humans in a very simple solution.
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Figure 4-1: Experimental phases for the serum experiments

2. to evaluate the system performance.

3. to compare the performance of PLS and HLA.

4.2.1 Experimental procedures

The samples were prepared in the following way (Figure 4-2). First, a batch of

phosphate buffered saline was prepared. This solution was divided into two parts,

one of which was doped with glucose to make the concentration 20mM. This glucose

doped saline was mixed with saline without glucose at different ratios to generate 21

samples of different glucose concentration levels from OmM to 20mM in 1mM step

(Table 4.1).
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Table 4.1: Sample preparation recipes in concentration controlled experiments

Estimated
Glucose concentration 20mM glucose batch OmM glucose batch concentration error

(mM) (1) (l) (1)%)

0 0 2000 0.00
1 100 1900 1.17
2 200 1800 1.00
3 300 1700 1.17
4 400 1600 0.99
5 500 1500 0.87
6 600 1400 1.00
7 700 1300 1.17
8 800 1200 0.99
9 900 1100 1.17
10 1000 1000 0.34
11 1100 900 1.17
12 1200 800 0.99
13 1300 700 1.17
14 1400 600 1.00
15 1500 500 0.87
16 1600 400 0.99
17 1700 300 1.17
18 1800 200 1.00
19 1900 100 1.17
20 2000 0 0



The concentration error in these samples was mostly due to the pipetting error.

The concentration errors in Table 4.1 were calculated using the error of the pipette

given by the manufacturer. Concentration error was approximately 1% in each sam-

ple, and this will be presented as the reference error in the future.

Each sample was contained in a quartz cuvette, and brought to the system for

measurement. Once the cuvette was held in place by the holder, the stirring magnet

mechanism was turned on. After the spinning of the magnet was checked, the laser

beam irradiated the sample, and the spectrum was taken for 200 seconds (20 frames

of 10 second integration time). The laser power in this experiment was 300mW.
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Figure 4-3: Spectra of 21 phosphate buffered saline (PBS) samples

These spectra (Figure 4-3) almost overlap one another. The variation of the peak

1200



intensity in the left side is due to power fluctuation in the reflected and scattered laser

light, because of minor changes in geometry from sample to sample. This is not due

to any chemical component. The dashed line indicates the region used for analysis.

No significant Raman signal from glucose can be observed by eye on this scale.

4.2.2 Measurement of Glucose

As glucose is a simple chemical, we can easily obtain its Raman spectrum. With this

spectrum known, we used HLA for predicting the glucose concentration.

Figure 4-4 is the prediction plot of glucose concentration in phosphate buffered

saline. The x-axis represents the concentration measured by 'the reference technique',

and the y-axis represents the concentration predicted by the HLA algorithm.

The reference error in the experiment is 2.5mg/dL 1, whereas our prediction error

(root-mean-square-error-of-prediction, or RMSEP) is 4mg/dL. The correlation coef-

ficient r is 0.999. We conclude that most of our prediction error came from the error

of the sample preparation technique, pipetting, and that the accuracy might actually

be higher than the reference technique.

This result is very promising. We conclude that the Raman technique is feasible,

and the system works without any major problems.

4.3 Single Donor Blood Serum Experiment

We next measured the glucose concentration level in single donor blood serum, which

is whole blood with the blood cells and fibrin removed. Blood serum is what a hospital

uses for blood analysis, and thus is of interest. Serum generates a high fluorescence

background, and has low turbidity. The low turbidity results in low absorption,

which generates less heat. The high fluorescence background, which is one of the

differences from the PBS experiment, generates more shot noise. This noise affects

1There are two units of concentration used in this thesis, molarity and density. The molar unit M

is more conventional in chemistry, while density units such as mg/dL or g/dL are more conventional
in medicine. For glucose 1mM = 18mg/dL



the measurement by reducing the signal-to-noise ratio. The goal of this experiment

was to check whether our Raman technique can work with biological samples even

with these difficulties.

4.3.1 Experimental procedures

Blood serum from about 40 patients was gathered at the Beth Israel Deaconess Med-

ical Center. After collection all samples were kept at 40 Celsius in a sterile air-capped

environment until processing. All the serum was mixed to produce a single batch of

serum so that the mixed serum has the general composition of human blood serum

and homogeneity, but does not have any specific characteristics of a single donor.

This batch of blood serum is equivalent to a single donor serum whose chemical

concentrations have average values.

The samples were prepared as follows (Figure 4-5). First, a batch of human

blood serum was prepared. This batch was divided into two, one of which was doped

with glucose to a concentration of 20mM. This glucose-doped serum was mixed with

serum without glucose in different ratios to generate 21 samples with different glucose

concentration levels from OmM to 20mM with 1mM step (Table 4.1). The reference

error in this experiment was due to pipetting error, which is the same as in the PBS

experiment.

The laser was operated at the same power as in the PBS experiment, 300mW.

All the experimental procedures were identical to the experimental procedures of

the PBS experiment except the following:

* We followed biohazard experimental handling procedures in this experiment.

* The total integration time for each spectrum was 300 seconds.

These spectra (Figure 4-6) somewhat overlap one another, but have more variabil-

ity than the PBS spectra (Figure 4-3). Sample degradation can be a cause to change

this spectral variation. Also, when we prepared samples from a batch of human blood

serum, inhomogeneity of the serum from sample to sample could have occurred.



4.3.2 Measurement of Glucose

Figure 4-7 is the prediction plot of glucose concentration in single donor serum. The

x-axis represents the concentration measured by 'the reference technique', and the

y-axis represents the concentration predicted by the HLA algorithm.

The reference error is 2.5mg/dL, whereas our prediction error (RMSEP) is 8mg/dL.

The correlation coefficient r is 0.997. This prediction error is less than the acceptable

error set by our clinical pathologist.

4.4 Multipatient Blood Serum Experiment

We next measured the blood analyte concentrations, including the glucose concen-

tration level in multipatient blood serum. Again, blood serum generates high fluores-

cence background and has low turbidity. The difference between this experiment and

the single donor blood serum experiment is that there are other chemical components

that vary arbitrarily from sample to sample. These variations make the analysis more

difficult, because a change in the spectrum may or may not be due to a specific chemi-

cal component that we are measuring. The goal of this experiment is to check whether

our Raman technique can work with biological samples even with these difficulties.

4.4.1 Experimental procedures

Blood serum samples from 29 patients were gathered at the Beth Israel Deaconess

Medical Center. All the serum samples were analyzed with a Hitachi blood analyzer

at the BID Medical Center in advance. Each sample drawn from the human body

was stored at 40C in a sterile air-capped environment until it was processed. Sodium

fluoride and heparin were used to prevent coagulation and glucose break-down due

to the red cells. Every sample was kept at room temperature for approximately the

same time to prevent condensation on the cuvette surface and keep each sample at

the same temperature. Each spectrum was integrated for 300 seconds at the laser

power, 300mW.



These spectra (Figure 4-8) shows more variation than the single donor blood serum

spectra (Figure 4-6). This can be mainly due to different chemical concentrations in

samples from different patients. One might also guess that it is partly due to the

temperature change effect. Even though each sample was kept at room temperature

for about the same time, the actual length of time was not always the same. However,

we could not keep samples at room temperature for extended time period to make

sure that the temperature of samples is same as room temperature, because not only

sample degradation but also chemical changes can occur at room temperature. Differ-

ences of the sample temperature might produce differences in the optical parameters

of the sample such as the absorption coefficient(Pa) and the scattering coefficient(j).

These changes in optical parameters possibly change the shape of the background.

The reference error in this experiment is the measurement error of the hospital

blood analyzer.

4.4.2 Measurement of Glucose

Figure 4-9 is the prediction plot of glucose concentration in multipatient serum. The

x-axis represents the concentration measured by 'the reference technique', and the

y-axis represents the concentration predicted by the HLA algorithm.

The reference error in the experiment is 8mg/dL, whereas our prediction error

(RMSEP) is 18mg/dL. The correlation coefficient r is 0.87. This prediction error is

about that which a clinical pathologist would require.

4.4.3 Measurement of other blood analytes

Using the same set of data, we measured the concentration levels of blood analytes

other than glucose.

Figure 4-10 is the prediction plot of albumin concentration in multipatient serum.

The x-axis represents the concentration measured by 'the reference technique', and

the y-axis represents the concentration predicted by the PLS algorithm.

The reference error in this experiment is 0.12g/dL, whereas our prediction error



is 0.16g/dL.

Figure 4-11 is the prediction plot of total protein concentration in multipatient

serum. The x-axis represents the concentration measured by 'the reference technique',

and the y-axis represents the concentration predicted by the PLS algorithm.

The reference error in this experiment is 0.17g/dL, whereas our prediction error

is 0.22g/dL.

For total protein and albumin, we are limited by the error of the reference tech-

nique, and we may have exceeded the accuracy of the reference technique.

Figure 4-12 is the prediction plot of cholesterol concentration in multipatient

serum. The x-axis represents the concentration measured by 'the reference technique',

and the y-axis represents the concentration predicted by the PLS algorithm.

The reference error in this experiment is 5mg/dL, whereas our prediction error is

16mg/dL.

Figure 4-13 is the prediction plot of triglyceride concentration in multipatient

serum. The x-axis represents the concentration measured by 'the reference technique',

and the y-axis represents the concentration predicted by the PLS algorithm.

The reference error in this experiment is 4mg/dL, whereas our prediction error is

37mg/dL.

4.5 HLA vs PLS

In order to establish that HLA generates lower root-mean-square-error-prediction

(RMSEP) than PLS, sets of spectra gathered in PBS, single donor serum, and mul-

tipatient serum experiment were analyzed using both HLA and PLS, and the results

compared.

Figure 4-14 indicates that lower RMSEP's have been achieved using HLA than

PLS, and also implies that when the set of spectra has less variability and high signal-

to-noise ratio, there is not much room for HLA to improve the prediction.

The improvement made by using HLA over PLS is bigger when there is more

fluctuation and noise (multipatient serum experiment) than when the spectra contain



less noise and fluctuation (phosphate buffered saline experiment).

We can also qualitatively compare the results of both HLA and PLS analysis in

all three experiments by looking at the prediction plots.

4.6 Time evolution study

We have measured glucose, cholesterol, triglyceride, total protein, and albumin in

human blood serum with an uncertainty that is acceptable by clinical standards. In

the case of albumin and total protein, the prediction error is almost limited by the

reference error, and the predictions could be made with shorter integration times.

A spectral data set of full integration time, 300 seconds was used to calibrate a

model. Long integration times make experimental data collection difficult, because

a spectrum of a sample may change over a long time due to sample degradations,

as mentioned in chapter 3. However, long integration times are preferable for a

prediction set, because we need a set of low noise spectra for a high quality model.

On the other hand, short integration times are preferred in clinical applications.

In addition to the problem of sample degradation discussed above, long integration

times may exceed patients' tolerance.

Figure 4-18 shows how the prediction error changes with integration time in pre-

diction of albumin and total protein concentration. The prediction error drops only

slightly although the signal-to-noise ratio increases with the integration time.2 For

albumin, changes in the prediction error are insignificant (Figure 4-18(a)). Even with

the increase of the integration time by a factor of 30 from 10 seconds to 300 seconds,

the prediction error decreased only by 20%. For total protein, there is no significant

change in the prediction error at all (Figure 4-18(b) ). Both 10 second data set and

300 second data set have almost the same prediction error, 0.26g/dL.

This study shows that once we have a high quality model, we can drastically

reduce integration time for some blood analytes.

2The signal-to-noise ratio of a spectrum is proportional to the square root of the integration time.
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Figure 4-6: Spectra of 16 single-donor human blood serum samples
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Figure 4-8: Spectra of 24 multi-patient blood serum samples
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Chapter 5

Conclusion and future directions

5.1 Conclusion

A Raman technique to measure blood chemical concentrations in human blood serum

was developed. An experimental system was designed. Analysis methods and data

processing techniques were studied. A set of experiments was performed.

We measured blood analytes including glucose, albumin, total protein, cholesterol

and triglyceride in human blood serum.

5.2 Future directions

5.2.1 Measurement of blood analytes in human whole blood

Human whole blood differs from human serum in that it contains red blood cells

and fibrin. By measuring blood analyte concentrations in whole blood directly, one

can save time for centrifuging blood samples, because most of the blood analysis in

hospital is done with blood serum. We have begun the study of human whole blood.

Human blood serum has relatively low absorption and scattering coefficients, so

most of the incident light passes through the blood serum. Human whole blood, as

well as other human tissues, has higher scattering coefficients, and the photon mi-

gration in human whole blood is very different from that in human blood serum.



The collection optics in our system, which were designed for general Raman spec-

tral measurements, may not be optimal for collecting Raman signal from the whole

blood. To optimize the collection optics for a human whole blood experiment, further

understanding of the light scattering phenomenon is required.

5.2.2 Indwelling catheter

After measuring blood analytes in human whole blood, this technique can be used

with indwelling catheters. By putting an optical probe into a catheter inserted into

a vessel, blood analytes can be measured in vivo. By reducing the measurement

time, continuous measurements are possible, which enables monitoring vital chemical

concentrations in operations or bedsides in real-time.

5.2.3 Transcutaneous measurement

One of the great achievements in this research would be the ability to perform tran-

scutaneous measurements.

In a transcutaneous measurement, part of the incident photons come out, and

only a small fraction of these photons contain Raman signals from the whole blood.

Figure 5-1 shows the photon migration process schematically. This brings into the

following problems:

1. Photons may not penetrate deep enough to reach the blood.

2. Signals other than Raman signals from the blood, such as Raman signals from

tissue, and fluorescence signals from the blood and tissue co-exist, and have

strong intensities.

Transcutaneous measurements require the understanding of four issues including

fundamental study of light scattering in blood-tissue matrix, improvements in collec-

tion and delivery optics, and improvements in analytical methods.
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Figure 5-1: Photon migration process in blood-tissue matrix

Fundamental study of light scattering in blood-tissue matrix

As mentioned above, photon migration is more complicated in the human body than

in whole blood measurements, in which most of the photons interact only with the

whole blood. It is fundamental to understand how light scatters in this complicated

medium for designing optimal optics, which are discussed below.

A mathematical model of blood-tissue matrix can be built, and used for the fol-

lowing studies:

* Study of photon migration behavior for different optical parameters, scattering

coefficients /Y and absorption coefficients ipa of tissue and blood, and tissue

thickness

* Study of photon migration process in inhomogeneous layered media

* Study of the geometric distribution of outcoming Raman signals with different

incident beam patterns



Improvements in optics

As shown in Figure 5-1, much of the incident light would be scattered and absorbed

in the human body. This results in much weaker Raman signals. Thus, we need to

build instruments with higher sensitivity and efficiency. To improve the system the

following are required:

" A design for optimized delivery and collection optics is needed to maximize

Raman signals from the whole blood. This design can be based on the study

of light scattering model mentioned above. Delivery optics should be designed

to deliver the light optimally so that most Raman signals from the blood can

be generated without damaging tissue. Collection optics should be designed to

collect most of Raman signals from the whole blood, and block signals generated

by media other than the whole blood. A concept of a confocal microscopic

system might be used.

* A different photon detection technique might be used. For example, a Fourier

transform spectrometer is known to have higher throughput than a conventional

spectrometer. [2] A new detector with higher quantum efficiency in near-infrared

wavelengths might be developed soon. Also, a different excitation wavelength

can be selected for a possible S/N gain with this new detector.
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