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Abstract

We study a class of continuous time entry-exit games in the extensive form, where the

stochastically changuig environment is modelled by a Brownian motion. There may be multiple

subgame perfect equilibria. The equilibrium strategies which represent the bounds of all pos-

sible strategies in a subgame perfect equilibrium are explicitly characterized. A necessary and

sufficient condition for the uniqueness of a subgame perfect equilibrium is also given.
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1 Introduction

One of the most important economic decisions faced by industrial firms is the decision to enter or to

exit from an industry. This decision is of particular interest and importance since it determines the

mode of competition and the economic life span of an industry. There is a vast economic literature

on the entry and exit decisions of a firm, for which Wilson (1990) is a good recent survey. Some

of the authors focus on the strategies firms can employ to gain or protect monopoly power; see,

for example, Fudenberg and Tirole (1986), Fudenberg, Gilbert, Stiglitz, and Tirole (1983), and

Milgrom and Roberts (1982a. b). The others focus on the effect of the market environment on the

entry-exit decisions; see, for example, Fine and Li (1989), Ghemawat and Nalebuff (1985), and

Londregan (1990).

Much of the literature in entry-exit decisions of a firm, however, uses discrete-time models. The

notable exceptions are Fudenberg and Tirole (1986) and Ghemawat and Nalebuff ( 1985). Fudenberg

and Tirole considered a model under certainty when there there exists asymmetry of information

between the firms, and Ghemawat and Nalebuff focused on a model under certainty with complete

information.

As the game theoretical extension of the optimal stopping theory, the literature of continuous

time stopping games focuses almost exclusively on the normal form games (see. for example. Huang

and Li (1990) and the references therein). There is now an emerging literature on continuous time

extensive form games; see for example, Simon (1987) and Simon and Stinchcombe (1988). In these

papers, however, continuous time games are analyzed by taking limits of the outcomes of discrete

time games and there is no exogenous uncertainty.

The purpose of our paper is twofold. First, we extend some of the existing analyses of enm

exit games done either in continuous time under certainty or in discrete time under uncertainty

to continuous time under uncertainty. Second, in so doing, we also contribute to the continuous

time game theory by directly working with continuous time without taking limits of discrete time

outcomes.

The rest of this paper is organized as follows. Section 2 formulates the entry-exit problem in

continuous time for a single firm facing a stochastically changing demands modelled by a Brownian

motion. The unique optimal entry-exit decisions are characterized as barrier policies: enters when

the demand rises above a critical level and exits when the demand decreases to another critical

level. Our analysis in this section overlaps somewhat with Dixit (1989). We assume that once a

firm costly exits, it is prohibitively costly to reenter; while Dixit allows a firm to reenter with a

finite cost after a costly exit. In addition, we allow the profit rate of a firm to be any bounded
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increasing function of the Brownian motion, while Dixit assumes that this function is exponential.

Section 3 analyzes an exit game of a duopoly. The two firms in the industry, one strong and

one weak in a sense to be formalized, are seeking the best time to exit. One subgame perfect

equilibrium is the one in which the strong firm does not exit unless the demand is such that it

cannot sustain even as a monopoly and as a result the weak firm always exits before the strong

firm does. We call this equilibrium the ^natural equilibrium" for future reference.

We also identify other candidates for a subgame perfect equilibria by characterizing the exact

upper bound and lower bound on each firm's subgame perfect equilibrium strategies. Some inter-

esting phenomena occur in these equilibria. For example, either firm may exit when the demand

has been on the average increasing. This happens for the strong firm, for example, because the

weak firm plays tough and would not exits until the demand falls significantly. The strong firm

then trades off the potential of becoming a monopolist after the weak firm exits against the current

duopoly losses. An increasing demand increases the expected waiting time for the strong firm to

become a monopolist and is a bad news. Thus it exits when the demand reaches a critical level

from below.

Finally we give a set of necessary and sufficient conditions for a unique subgame perf- ct equi-

librium. In such case, the unique equilibrium is the ^natural equilibrium'' discussed above.

We continue in Section 4 to consider a game of an incumbent versus a potential entrant. We

exhibit a subgame perfect equilibrium. In this equilibrium, as expected, the existence of a potential

entrant makes the life span of the incumbent shorter than that when it is a monopoly even though

the incumbent may indeed remain as a monopoly throughout its lifetime. When the demand is low,

the possibility of future duopoly competition limits the potential future monopoly profits. As a

consequence the incumbent is less tolerant to the current monopoly losses than a monopoly facing

no potential entrant and thus it exits earlier than a monopoly will even before the entrant enters.

In addition, the entrant may not enter the industry even though the demand is above the level

re both firms can be profitable as a duopoly. This is so because by waiting longer, the entrant

may be able to enter after the incumbent exits. And the benefit from being a monopoly in the

future outweighs the losses in the current duopoly profit.

Section 5 contains some concluding remarks and all the proofs are in the appendix.

2 Single Firm Problems

We consider a single firm's entry and exit decisions in this section. To begin, imagine that there

;• i firm in an industry facing a stochastic element, e.g., demand, that is subject to small and

erratic random shocks. Forrnallv we model the uncertain demand by taking the state space fi to
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expected discounted future profits conditional on A'o = x:

rl

sup Ex
reT

/ e-
Ttx(Xt )dt

Jo
(1)

where T denotes the collection of all optional times and r > is the riskless interest rate. Note

that, by the strong Markov property of X, the objective function of the firm can be written as

r7

Ex f e-
Tt x(Xt )dt

Jo
= /(i) - Ex [e~

rl
/(At)],

where we understand that

Ex

and where

[e-
rTf(XT)]= ( e-rTMf(X(u,T(u))Px (du>),

J{T«x>\

/(*) -*lf e-
rt
ir(X

t )dt (2)

and Ex [-] is the expectation under Px
. By the fact that tt is increasing and X is a Brownian motion.

f(x) is continuous and increasing.

Given the discussion above. (1) is equivalent to

Putting

mf
T
£x[e-rT/(Xr)].

v(x) = f(x)-M
£
Ex[e-rTf(XT)],

(3)

(4)

provided that a solution exists for (3). the second problem the firm faces is to find the optimal time

to enter the industry knowing that it will behave optimally afterwards:

sup Ex [e
r5

v(A's)],

seT
(5)

where we again used the strong Markov property of X.

We now show below that these two problems have unique solutions: There are two barriers y"

and y
e

. The unique optimal exit time is the first time that the demand X is lower than y" and the

unique entry time is the first time that the demand is higher than y
e

.

The next theorem shows the existence of a solution to (3) and this solution is a barrier policy.

Theorem 2.1 There exists a y' < y° so that

T' = inf{f > : v(X t ) = 0} = inf{f > : Xt
< y'}

is a solution to (3) for all x £ J?.

(6)
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The next theorem shows that the barrier policy characterized in Theorem 2.1 is the unique

optimal exit time.

Theorem 2.2 The T~ defined in (6) is the unique solution to (3J.
3

Using identical arguments, one can show that (5) has a unique solution, which is also charac-

terized by a barrier: enter the industry if the demand X
t
is greater than a given level y

c
. It is clear

that y
e > y° as otherwise the firm will be better off staying outside. We leave the proofs to the

reader and record this result in the following theorem:

Theorem 2.3 There exists a unique solution to (5). This unique solution is

r = mi{t > : D| .V;
I

= v(X
t )} = mi{t > : Xt >y e

).

for some y
e > y°. where

v(x) = sup Ex {e~
rT

v{Xt)].
reT

Combining Theorem 2.1 and 2.2. the optimal entry time and exit time for the firm given that

the firm is currently outside the industry are recorded below:

Theorem 2.4 Suppose that the firm is currently outside the industry. Then the unique optimal

entry time for the firm is T e
defined in (7) and the unique optimal exit time for the firm is

Ttx = inf{r > r : X t < y'}.

Besides the qualitative results reported above, the optimal barriers y
c and y' and the associated

expected discounted future profits can be calculated explicitly using Harrison (1985, chapter 3).

These are recorded in the following proposition.

Proposition 2.1 y" is the unique number satisfying

h(y')=
l°°

e-a
'2w(z)dz = 0, (9)

-V

and t/
e

is the unique number satisfying

h{ye)= - ^ e
a ' z*(z)dz = 0, (10)

We used a different argument in an earlier version to prove this theorem. The current proof is suggested to us

bv an anonymous referee.
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where

a. = a- 2

[^ 2 + 2<j2r + p], (11)

a* = a- 2

[^2 + 2a*r - /,]. (12)

Moreover, y
e > y° > y*

. In addition,

-i \ j?\-rT')f Y M / v{ye )0{x,y e
)

ifx<t/e
,

v(x) = Ex [e MA Te)] =
j

v(x) iix>f .
(13)

w(i) = f(x)- Ex [e-
TT
'f(XT-)}= I ,, , „° fl ,

,x

1

^

I - 2/

? (14)
v ; J

'
l J

1 f(x)- f(y')d(x,y') ifx>y m
;

where

^'^-i exp[-a*(2/-x)] if y > x;
(lb}

Now we have completely solved the optimal entry and exit problem of a firm. The optimal

policies are very simple. The firm should enter the industry if the demand rises above y
e and

should exit afterwards when the demands falls below y" . Note that since y" < y°, once in the

industry, the firm will not exit the first time its instantaneous profit rat>- becomes negative. This is

because there is a strictly positive probability that the demand will in the future be strictly higher

than y°. Thus the firm chooses to remain in the industry in anticipation of the rise in demand.

Similarly, the firm does not enter the industry the first time its instantaneous profit rate becomes

positive as there is a strictly positive probability that the demand will soon decline to make the

profit negative. So the firm waits until the demand is sufficient high to enter.

The explicit expressions for y' and y
e also allow us to derive the following comparative statics

through direct computation:

Proposition 2.2 Let ni > 7r2 and let j/j and y^ be the corresponding optimal exit barriers for

these two profit functions, respectively. Then y\ < y%. Moreover, y" is decreasing in p. and a and

increasing in r and y
e

is increasing in o and decreasing in r.

A firm with a uniformly higher profit rate for all levels of demand than another firm will exit

later. However, the optimal entry time for the firm with a uniformly higher profit rate may enter

later as it anticipates that it will in the future be suffering from losses longer. Also, the higher

the expected increase in the demand, the later a firm will exit; while the higher the interest rate,

the higher the exit barrier and the earlier the firm will exit. The former is obvious and the latter

follows since the firm does not exit immediately after the instantaneous profit becomes negative

in the anticipation of future profits and an increase in the interest rate makes future profits less
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valuable. In addition, the larger the volatility of the demand, the lower the exit barrier. This is so

since the exit option of the firm limits the downside risk of the uncertain demands and thus the

added upside potential by an increase in a makes the firm more willing to suffer current losses.

The comparative statics for the optimal entry time are less intuitive because a change of the

parameters also affects the optimal exit time on which the optimal entry time depends. An increase

in a has two effects: the increase makes it more likely that the firm will suffer loss in the near future

and in the meantime it depresses the exit barrier and thus increases the time span over which the

firm will be making a negative instantaneous profits. In anticipation of the latter and because of

the former, the firm increases its entry barrier and enters the industry later. So an increase in

the volatility of the demands, may or may not increase the life span of the firm. An increase in

the riskless interest rate also has two effects. First, it makes waiting to enter more costly for the

firm. Second, it increases the exit barrier and thus makes the time span over which the firm will

suffer losses shorter. The latter makes the firm afford to enter earlier and the former gives the firm

incentive to enter earlier. The combined effects are that the optimal entry time is earlier. But since

the optimal exit time is also earlier, it is unclear whether the total life span of the firm will be

longer. There is no clear direction of change in the optimal entry time when [i increases. On the

one hand, it makes waiting more costly. On the other hand, it increases the time span over wliich

the firm will suffer losses by decreasing the exit barrier and thus creates an incentive for the firm

not to enter until the demand is sufficiently high. These are two opposing effects.

We conclude the section by looking at the following simple example.

Example 2.1 Lei

T ,,> _ J «. ify> y°\
*(y) -\-6, ify<y°,

he an increasing step function with a,b > and d = a/6. Solving equations (9) and (10), we have

y' = y°-^ln(l + rf), (16)

y
e = y° + — ln{l + i[l - (1 + d)—/-*]}. (17)

a. a

Suppose for i = 1,2.

a.- ify>y°-
*i(y) = i

where a\ > a? > 0,6o > &i > 0, and y® < y®. Then tt\ > n2 , d\ > d2 , ami hence y[ < y% since y
e

is increasing in y° and decreasing in d. In this example, y
e

is decreasing in n, i.e., the firm with

higher profit rate enters the market earlier.
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3 The Exit Game

Now we investigate the situation in which there are two firms in the industry. Denote by n tJ (Xt )

the profit rate for firm i if there are j firms in the market and the demand is Xt , where i — 1,2

and j = 1,2. These profit functions have the same characteristics as that in the single firm context

of Section 2, that is, they are bounded, increasing, and nonconstant. And, there exist j/°- so that

n,j(y) > for y > yf. and xtJ {y) < for y < yf.. Assume that the demand for the industry as a

whole at time t is Xt . The profit for a firm in an duopoly situation is naturally less than that in a

monopoly situation. Thus we assume that tt,i(j/) > Xi2(y) for all y. It then follows that y^ > y®
2

-

As the profit rate of a firm depends on whether it is a monopoly or a duopoly, its exit decision

will certainly depend on the exit decisions made by the other firm. As a result, a gaming situation

occurs. In this exit game, we will focus our attention on subgame perfect Nash equilibria in pure

strategies. Thus we need an extensive form specification of the game. We will assume that once a

firm exits from the industry, it is prohibitively costly to reenter. It follows that at any time t, one

just has to specify the strategies employed by a firm depending on whether its opponent is in the

industry. Note that since a firm becomes a monopoly once its opponent exits, its optimal strategy

afterwards should simply be its unique optimal exit time established in Section 2 in a single firm

context. Therefore, the game will be completely specified if we designate at any time t and in any

state w, the strategy a firm follows given that its opponent is still in the industry.

Formally, let T, : ft x 9?+ i-» K+ be the strategy of firm i, where T,(-,r) : ft —> 5?+ is an optional

time with T,-(u>, t) > t Px
-a.s. We also impose the regularity conditions:

1. the set

A = {(w,s) e ft x ft+ : T(u,s) = s, 5 e 3?+} (18)

is progressively measurable; 4

2. Ti(u,t) is right-continuous in t.

For brevity of notation, we will often use T,(5) to denote T,-(w,5(w)) as a random variable for

an optional time S. Our interpretation of T, is as follows: At any optional time 5, if firm i and its

opponent are both in the industry and its opponent will continue to be in the industry, firm i will

not exit immediately in the states where T,(S) > S and will exit immediately in the states where

4 A process Y is progressively measurable if, as a mapping from Q x 5R+ to 5?, its restriction to the time set [0, t] is

measurable with respect to the product sigma-field generated by T% and the Borel sigma-field of [0, t}. The progressive

sigma-field is the sigma-field on Q x 5?+ generated by all the progressively measurable processes. A subset of fi x 9?+

is progressively measurable if it is an element of the progressive sigma-field. A good reference for these is Dellacherie

and Meyer (1978).
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T,(5) = S. The purpose of the two regularity conditions will become clear later. Roughly, both are

about how T,(<) changes over time. Denote by T the space of all the mappings T : ft x Ji + >— 3?+

that satisfy these above conditions.

Given T G T and an optional time 5, we put

f(S) = ini{t> S :T(w, t) = t}. (19)

In words, f(S) is the first time after 5 that the strategy T instructs the firm to exit prior to the

exit time of its opponent.

To make our interpretation of T(S) and T{S) precisely correct, however, we need to show that

one is able to tell at each time t whether one should continue or exit according to T(S) and T(S).

That is, we need to show T(S) and T(S) are optional times. This is among the subjects of the

following proposition.

Proposition 3.1 Suppose that T G T and S is an optional time. Then T(S) is an optional time

with T(S) > S a.s., and if we define T according to (19), T(S) is an optional time. Moreover,

T(f{S)) = f(S) a.s.

Note that the last assertion of the above proposition follows from the hypothesis that T G T

is right-continuous in t. In words, it says that a firm will indeed exit at T(T(S)) if it still remains

at S. This is related to the kind of intertemporal consistency discussed by Perry and Reny (1990)

and Simon and Stinchcombe (1988). To understand the necessity of this, it suffices to consider the

following example. Let T(t) = 1 for all / G [0.1/2] and T(t) = t for all / > 1/2. That is. one

should remain in the industry from time to time 1/2 but exit immediately after time 1/2. This

specification implies that T - 1/2, but T(T) = 1 / T . At time 1/2, one is not sure what to do.

His strategy at that time, T(l/2) = 1, instructs him to remain in the industry while his strategies

after time 1/2 tell him, however, to exit immediately! The right-continuity of T(t) in t eliminates

this possibility.

We will use T_, to denote firm i's opponent's strategy. Given T_,, firm i solves the following

program:

sup Ex

UT

rTAT_,

/ e-
r
'7rt2(Xt )<ft + l

{f>f_ i}
e"

r:r

-^i(^f_
i

)

•J u
(20)

r
TAT.

/0

where vt: is defined as in (14) with 7r replaced by 7r,j.

A Nash equilibrium of the extensive form exit game is a pair of strategies (jTi,T2 ) G T x T so

that given T_,-, Ti solves (20) for i = 1,2, for all i £ S.
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Note that the action taken by firm i, or the exit time of firm i, in a Nash equilibrium {Ti,T2 ) is

an optional time filrf^f^ + ^'l^f^f.,}- Tnat is
'
on tlie set iT' ^ T-i)^ where firm t" exits first,

it exits at T,; while on the set {f, > T-,}, where firm -i exits first, firm i behaves like a monopoly.

A Nash equilibrium (Ti,T2 ) is a subgame perfect equilibrium if for any optional time S, Ti(S)

solves, for all x £ 3?,

sup Ex

TeT

r
T(S)AT_,(S)

/
e-^- s^ l2 (X t

)dt + l {ns)>t. l(s)f~
T{ '[))MXtJS))\Ts

J o
(21)

where f^H-^s] denotes the expectation under Px conditional on Ts-

A subgame perfect equilibrium (Ti,T2 ) is said to be unique if for any other subgame perfect

equilibrium (T{,T2 ), we have

7
1

i(£
,

)l{f
1 (S)<t_ l

(S)} - 7,

,(5')l{7-
|

'(s)<r ,(S)}
P1 - a.s.

for all x and for all optional time S

.

This definition of uniqueness seems rather weak. But it gives the right sense of uniqueness. The

significance of T
t
(t) lies in the implied exit action taken by firm i in equilibrium. There can be two

strategies T, and T[ which differ on a set of (u>,t) whose projection onto ft is of a strictly positive

probability. But they can imply the same exit times of the two firms in the subgame starting from

an optional time S as long as T,(5)lrj.
f
5> <j (S )-\ = T{(S)l,f, ,§*<,£, , s^ with probability one.

The optimizations of (20) and (21) look formidable as they are looking for a complicated map-

ping T G T. The following proposition shows that (20) is equivalent to a much simpler optimization.

Proposition 3.2 For every r £ T, there exists a T £ T so that r = T a.s. Thus, (20) is equivalent

to

sup Ex

reT
/ e-

rt
irt2(Xt )dt + l{r>f_ i

}e-rT-i;ti(Xf_.) (22)

We note that the optimization of (22) is performed by searching for an optional time r directly

rather than by indirectly looking for a T £ T.

The question of whether (21) can similarly be simplified is a more difficult one and is not

addressed here. What is important for our purpose, however, is the fact that T(S) is an optional

time for S £ T and T £ T as reported in Proposition 3.1.

Before we turn our attention to the existence of a Nash equilibrium and a subgame perfect

equilibrium, some notation is in order. Let y"
:
be the unique optimal exit barrier in the single firm

problem when the profit function is 7r,
:

. Then y'
}

is the optimal exit barrier for firm i when there

are always j firms in the industry during its life span. For example, y22 is the optimal exit barrier
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for firm 2 when it has no chance to be a monopoly. Given the ordering on 7r tl and tt, 2 assumed

earlier, Proposition 2.2 shows that j/'j < y'
l2

. We assume further that y'n < y21 ai'd Vn < J/22-

That is. firm 1 is a stronger firm than firm 2. Note that these last assumptions are insured by

the hypothesis that ^ > ir2j . But this is not necessary. Figure 1 depicts one possible relative

positions of y*,'s. For convenience, we use T
t
*(5) to denote inf{< > S : X t < J/,*,} f°r an >' optional

time 5. Also, let /,_, and h
tJ

be the functions defined in (2) and (9), respectively, with n replaced

by 7rtJ . And let

9 IJ
(x,y) = f, J

(x)-0(x,y)ftJ (y). (23)

The following proposition shows that a subgame perfect equilibrium exists for the exit game by

construction.

Proposition 3.3 (T\,T2 ) = {T\{t),T2 (t);t £ J?+) is a subgame perfect Nash equilibrium, where

Ti(t) = 7\-,(0.

r2 (t) = T22 (t).

The expected discounted future profits in the equilibrium for the two firms, or equilibrium payoffs,

are, respectively.

v
e*(

x ) _ J 9l2(x,V22) +Hx,yh)9u(yh,yu) 'f2r>^22-
/24 \

1

\ vn{x) ifK y'
22 -

v\
x
{x) = i-22 (x), (25)

where vtJ
is defined in (J,) with x replaced by n

tJ
.

In this equilibrium, the '"stronger" firm (firm 1) acts like a monopoly throughout its life time

and the "weaker" firm (firm 2) behaves like a duopoly throughout. Also, the "strong" firm always

has a longer life time than the "weaker" firm. This equilibrium is a "stationary equilibrium" in

that the strategies for the two firms at any time t is a "copy" of their strategies at time 0. In this

case, one easily verifies that T,(S) - T,(5) with probability one.

One of the important results of this paper is a set of necessary and sufficient conditions for

the equilibrium identified in Proposition 3.3 to be the unique subgame perfect equilibrium in the

exit game. We will go about accomplishing this by first identifying candidates of other subgame

perfect equilibria. The readers will find these candidate equilibria rather interesting. Then sufficient

conditions for there not to exist candidates other than the one in Proposition 3.3 will then be given.

The following proposition records a useful restriction on all subgame perfect equilibrium exit

times of the two firms. The exit time of firm i cannot be later than its monopoly exit time and
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cannot be earlier than its exit time when it is certain to remain a duopology throughout its life

span.

Proposition 3.4 Let (T\,T2 ) € T X T be a subgame perfect equilibrium. Then for all optional

time S

,

T;2 (S) < t,(5)l
{ti(5) <t_ i(5)}

+^(5)l
{ti(5)>t_ i(S)}

< T&(S) Px - a.s.Vx e ».

The corollary below gives a trivial sufficient condition for {Ti(t) = Txl {t),T2 (t) = T22 (t), t £ 3ft+ )

to be the unique subgame perfect equilibrium.

Corollary 3.1 Suppose that y'
l2 < y21 . Then (Tx (0 = T^(t),T2(t) = T22 (t),t G 3?+) is the unique

subgame perfect equilibrium.

When y\ 2 < J/21' tne level of demand below which firm 2 cannot survive as a monopolist is even

higher than that at which firm 1 cannot survive as a duopolist. So naturally, firm 2 exits always

earlier than firm 1 in any subgame as firm 2 is much too much weaker than firm 1 and thus we

have a unique subgame perfect equilibrium.

For the rest of the analysis, we therefore assume that 2/21 < 2/i2- I11 this case, when demand is

between y2x and y\ 2 , neither firm can survive as a duopolist and both can survive as a monopolist.

Thus there may be more than one equilibrium.

The following proposition is instrumental for the main theorem of this section. It explicitly

characterizes the unique optimal exit time of firm 1 when firm 2 does not exit until the demand is

lower than y2] in every subgame.

Proposition 3.5 Let T2 (t) = T
2
\(t) VI £ $+ . Then

Ti(t) = r(t)l {x^)eAl} + T^t)l{Xr(t)eAoMl) (26)

is a solution to (21) given T2 , where

Tit) = inf{s > t : Xs e A\ U A%},

M = [»},»}] U(-oo,yJJ, (27)

A°
2

= (-oo.i&J, (28)

y\ = y'n

1 _ f inf{y > y'21 : ™i(jm6i) ^ °) > y'n- if inf{y > 2/21 : m i(2/' 2/21) < °) > 2/21 < vh\
1

I 00, otherwise,

m
t
(x,y) = J\

a - z(l-e^ a
' +a-^-y^7r t2(z)dz

+
J% a'\l-e-^' +a-^-y^7rtl (z)dz, (29)
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and where a. and a" are defined in (11) and (12), respectively. Moreover, if T[ G T is another

solution to (21), then

Ti(S)l{f{(S)<f
2 (S))

- ^1^) 1 {f1 (S)>T2 (S)}
pI

a - s
-
Vl G R.

Firm l's behavior depicted in the above proposition can be described in words as follows. At

any optional time r, if firm 2 is still present, firm 1 will exit when A' ( enters the set [y\,

y

u ] cither

from above or from below before it reaches (-00,3/21]- Otherwise, A'< will reach the set ( — 00,1/21]

first and firm 2 will exit and firm 1 becomes a monopoly and will follows its unique optimal strategy

thereafter.

When firm 1 finds itself playing a duopoly game at r with a demand A' T G (j^l'^i)' ' l knows

that firm 2 will not exit until the demand falls below y^v So staying in the industry, firm 1 will

incur losses as the current demand is lower than y\2 . But, remaining in the industry gives firm 1

the opportunity to become a monopolist if the demand falls to reach y2X an ^ firm 2 exits. So firm

1 trades off this potential future gains with the current losses. Falling demand turns out to be a

good news for firm 1 as it may become a monopolist sooner. On the other hand, a rising demand

means firm 1 will suffer losses longer and is a bad news. On balance, when the demand rises to

reach y\, the prospect of the potential future monopoly profit becomes so dismal and firm 1 exits.

Similarly, ifXT > y\ 2 , firm 1 exits when the demand falls below y'n . Continuing on, firm 1 will

suffer too much loss to be balanced out by the prospect of becoming a monopoly in the future.

The proposition below records firm 2*s exit time as the unique best response to (26), whose

proof is very similar to that for Proposition 3.5 and is omitted.

Proposition 3.6 Suppose that y\ < oc. Then

W)= ^)l
{ A'r(oe^ }

+ T2l (t)l {Xrit) ,AiMl) (30)

is a solution to (21) given T\ of (26), where A\ is defined in Proposition 3.5,

r{t) = inf{s > t : X, g A\ U,4 2 }.

-1 _ ( inf{</ > y'n m2(y, y'n) < 0}, if inf {y > y'
12

: ™2(y, y'n) < 0} < y22 \

2
I 00, otherwise;

y\ = inf{y G [y~
2X -y\] n 2 {y\,y) < 0},

n,-(a!,y) = - (' e-*'*(\- t -l*'
+*-**-* ))x l2 ( z )dz+ [* e~

a ' 2
{\ - e-la

'+a'Hx-z
))nn(z)d431)

Jy Jy'„
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where m 2 is defined in (29), and a. and a' are defined in (11) and (12), respectively. Moreover, if

T2
(t) be another solution to (21) given T\ of (26), then

T2(S) l {f{{S)>T2 (S)} -
2n
2(^') 1 {fi(S)>f2(S)}

Px - a.s. Vi 6 ».

In response to (26), firm 2 plays a stationary two-barrier policy at an optional time r as a

duopoly: exits when demand reaches A\ before it reaches A\; otherwise, exits when the demand

falls below y2l . The interpretation of this two-barrier policy is similar to that for (26). When the

demand is below y22 and firm 2 is a duopoly, it always trades off the potential of being a monopoly

in the future against the current duopoly losses in its exit decision.

Note here that the exit game we are considering satisfies the monotone property studied in

Huang and Li (1990a) in the sense that the longer its opponent stay in the industry, the earlier

a firm will exit as the best response. From Proposition 3.4, we know that T21 (S) is the upper

bound of firm 2's exit time in any subgame perfect equilibrium starting at an optional time r.

As a consequence, the best response of firm 1 characterized in Proposition 3.5 is a lower bound

on its subgame perfect equilibrium exit times. This lower bound is always tighter than Ti 2(S) as

y\ > ?/2i-
Moreover, if y\ = oo, tuen firm l's exit time at any subgame starting from r must be

greater than T^(S). This together with Proposition 3.4 implies that firm 2's equilibrium exit time

must be T22(S) and we have a unique subgame perfect equilibrium.

Corollary 3.2 Let {T\,T2 ) € T x T be a subgame perfect equilibrium and suppose that y\ of

Proposition 3.5 is equal to oo, then (Ti(t) — T{
x {fy,T2 (t) = T22(t);t £ 9R+) is the unique subgame

perfect equilibrium.

To search for the necessary and sufficient conditions for uniqueness, we first explicitly identify

a subgame perfect equilibrium whose equilibrium exit time for firm 1 is the largest lower bound

and that for firm 2 is the least upper bound of all subgame perfect equilibrium exit times. This

result together with Proposition 3.4 gives a set of two exit times for each of the two firms, between

which subgame perfect equilibrium exit times must lie. Finally, conditions for these two sets to be

singleton sets are given. From Proposition 3.3, since (T(t) = T1
*
1
(t),T2(t) = T22 \ t E R+ ) is always

a subgame perfect equilibrium, it is then the unique subgame perfect equilibrium.

Our arguments for deriving the tighter bounds on the subgame perfect equilibrium exit times

go as follows. Suppose that y\ of Proposition 3.5 is not equal to infinity. Since (26) is a lower

bound of firm l's subgame perfect equilibrium exit times at any subgame, by the monotone prop-

erty described in Huang and Li (1990), (30) becomes a new upper bound of its subgame perfect

equilibrium exit times. We repeat this procedure to generate tighter and tighter upper bounds on
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firm 2's and tighter and tighter lower bounds on firm l's subgame perfect equilibrium exit times.

If this procedure has a fixed point other than the equilibrium of Proposition 3.3, this fixed point

is itself a subgame perfect equilibrium and provides the exact largest lower bound and the exact

least upper bound, respectively, for firm l's and firm 2's subgame perfect equilibrium exit times.

Theorem 3.1 Suppose that there exist y\, y2 , Vi and 2/2 with y^ < y2 < 2/i < 2/i < y\ 2 < 2/2 such

that mi(yi,y2 ) = 0. ri 2 (2/i,2/2) = 0, ni(y2 ,yi) = 0, and w(yu y2 ,y2 ) < 0, where

{ inf{?/ > yi : m2 (y, 2/1) < 0}, if inf{j/ > fa : m2(y,yi) < 0} < y22 \

00, otherwise
,

and where m, and n, are defined in (29) and (31). respectively, and w(yi,y2 ,y2 )
is the expected

profit for firm 1 as a duopoly at an optional time S with Xs — 2/1 when it exits at Tj*j(5) and firm 2

exits at (30) with
j/ji

replaced by y2 and y\ replaced by y2 . Then

Ti(t) = r(t)l {XrU)eAi] + T^(t)l {Xrit)eAAAl} , t € »+ ,

T2 (t) =T
2
\(t)l {Xr{t)eAl} + T(t)l {XT(t)eAAAi} . tex+,

(32)

is a subgame perfect equilibrium, where

r(t) = mf{s>t:X s eAi[JA 2 }.

M = [yuyi}\J(-°o,y"u },

m = [2/2,
y'
22 \ U(_00

' y^-

Moreover, if (T[,T2 ) is another subgame perfect equilibrium, then

Ti(t) < M(0l{Tj'(0<f
2
'(t)} + ^ri(0 1 {f

1
'(()>T

2
'(()} - ^1*1^)

and

T22(t) < ?2(0 1
{X|(t)<T

1
'(t)} + J2l(0 1{f

:

|(t)>f
1
'(t)} ^ ^(O

PT
-a.s. for all x £ ft.

The equilibrium of Theorem 3.1 is a "stationary equilibrium" in the sense that every 7",(r) is a

"copy" of T,(0). We can thus describe the equilibrium by looking at 7',(0). We take cases. First, if

A'o > j/22' firm ^ exits when the demand decreases to y\ 2
and firm 1 continues to y'n as a monopoly.

Second, if A'o G [2/2.2/22]- firm 2 exits immediately and firm 1 is a monopoly throughout. Third,

if A'o € (2/1,2/2)- firm 2 and firm 1 both stay on with the former making a negative profit. If the

demand rises to reach y2 , it is a bad news for firm 2 as firm 1 will be in the industry for a long time.

Thus firm 2 exits and firm 1 becomes a monopoly. On the other hand, if the demand drops to reach
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j/i, which is lower than 3/j 2 , firm 1 knows that firm 2 will not exit until either the demand reaches

y2 from below or reaches y2l from above, so firm 1 exits as the prospect of being a monopoly in the

future is gloomy and firm 2 becomes a monopoly. Fourth, if Xq G [3/1,3/1], as firm 2 will continue

until the demand decrease to yjj, nrm 1 exits immediately. Fifth, if X e (3/2,1/1), hrm 1 exits when

the demand increases to reach y\ before it decreases to y2 as the prospect of being a monopoly is

gloomy. Otherwise, firm 2 exits when the demand reaches y2 and firm 1 continues as a monopoly.

Finally, if A'o < 2/2, firm 2 exits immediately and firm 1 plays its monopoly strategy henceforth.

The relative positions of the barriers are depicted in Figure 1.

There are two interesting features of this equilibrium. First, either firm may exit when the

demand has been increasing. This happens in two occasions. When demand is between 3/1 and y2 ,

the weak firm (firm 2) exits as the demand drifts up to reach y2 before it reaches down to y\\ or

when the demand is between j/2 and y\, the strong firm (firm 1) may exit as the demand goes up

to reach y\ before it decreases to reach 3/2- Second, the strong firm exits before the weak firm does

when the demand has been declining. This happens when the demand is between 3/1 and y2 .

The equations that determine 3/1, 3/2, Vi, and £2 are from the first order conditions for the

two firms' optimization p Dblems of (21). The existence of a solution to these equations with the

desired order implies the existence of a stationary subgame perfect equilibrium in addition to the

one in Proposition 3.3. Otherwise, A\ becomes (
— 00,3/^) and A? becomes (

— 00,3/22). Then one

concludes that the lower bound on firm l's subgame perfect equilibrium exit time at any subgame

starting from an optional time S is T^(S) and the upper bound for firm 2's exit time is T22 (S).

As a consequence, there exists a unique subgame perfect equilibrium. This fact is recorded in the

corollary below:

Corollary 3.3 (T\(t) = T1

*
1
(i),T2(2) = T22 (t);t G 3R+) is the unique subgame perfect equilibrium,

if and only if there do not exist 3/1, 3/2, 3/1, and 3/2 that satisfy the conditions of Theorem 3.1.

We now demonstrate the possibility of a unique or multiple subgame perfect equilibria in the

following example.

Example 3.1 Let

*» iy) -{ -bih ify<4,

be increasing step functions with a,i > a l2 > 0, 6,2 > 6,1 > 0, and 3/^ < yf2 for i,j = 1,2. Also

assume that [i < 0.

We choose the parameters, a tJ , 6,_, and 3/°, through the following steps:

1. Choose y"n ,

y'
2l ,

y'u , and 3/°, so that 3/^ < y'
2l < y'

12 , y2l < 3/^, and y'
12
- 3/^ < y*

2l
- y\ x

.
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2. Let

It can be shown that

k(x)= —ea
' I + —e- a ' 1

.

a" a.

"<•>-<--«-{< i*:<o, (33 »

and for \i < (or a' > a.).

£«*>-«-*)>{ :It <* <
34

>

T/ius, /or € > sufficiently small, the following will hold,

*(»5i - 2/n + <) > *(-(»ia - 2/2i - 20). (35)

and
fc(y; 2 -y2i -0-*( Q) fe(y?2- 3/2*1 )-fc(Q) ,

36)
fc(y*2 - 2/2i

- 20 - fc(0) k(-(y'u - 2/2-j)) - fc(0)'

since fc(j/"i —
i/ii ) > ^(j/i2

~~
2/21 ) > ^'(

_
(2/i2

~" J/21)) ^2/ f^^ anc' (^.A a '50 noticing that

V\2 ~
2/21 < 2/"i

—
J/11 as determined in step 1.

Choose e that satisfies (35), (36) and < c < (y[ 2
- J/2i)/2- r/ten, set b,

:
so that

b 12 *(2/21 ~
2/ll + - ^(0)

tn ^(-(yT 2 - 2/21 - 20) - ^(0)'

622 fc(y*
2 - 2/21 -0 - ^(Q)

&21 A-(t/'
2 -^ 1

-2e)-fc(0)'

Aroie //;a/ 6 12 > &n £>y ("55^ ana" 6 2 2 > ^21 &y 6?<?/ Furthermore,

(37)

(38)

^22 ^-(yr 2 - i/21) - fc(°)
nq)

621 *(-(vI2 -v5i))-*(0)
[

'

by (36).

3. Let 1/22 = 2/12 + $> where f > is so chosen that

h2 *(yr2 -y2i)-*(Q) um
621 ^(-(2/2*2-2/2

-
i))-fc(0)'

77ie existence 0} such a S follows from (39) since lim^oy^ =
J/*2-

^. Finally, we choose a
tJ

and y®- to satisfy

2/u
= 2/" -^ln(l+di; )

where d,j = a tJ /b x:i . for i.j = 1,2.
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Let J/2 = 2/21 + e and 2/i
= yh ~ £ Then

m 1 (y1 ,y2 ) = -hi T e
a"(l - e

-^'+a^z-^)dz - 6n f° e°'*(l - e
-^+a'^-^)dz

Jy? Jyu*

= e
a,y2(-MM-Ui " 2/2)) - *(0)j + bn (k(y2 - y'u )

- fc(0))) =

by (31) and

n2 (yi,2/2 ) = 622 I"'
e- a

'
z{l-e-^ +a^-^)dz-b2l T e~

a
'*(l - e

-^'+a'^-'))dz
Jy2 Jyii*

= e~
a 'y> (b22(k( yi -y2 )- fc(0)) - bn (k( yi -y'

21 )- k(0))) =

6y (,?<?,). -4/so, for all y G (jfo, y22 ],

m 2 (y. y'
l2 ) > e

a'*(-b22(k(-(y'22 - y'
2l )) - fc(0)) + M%?2 " »5i) - *(0))) > 0.

by (40). Therefore, y2 = oc and yi = y\2 . So, (Ti,T2 ) in (32) with above j/t and y, is an equilibrium.

It is much easier to construct the case in which there is a unique equilibrium. In the above

example, after completion of step 1, we simply set

1 < hi <
fc(y2i - yn) -fe(Q)

611 ^(-(2/12 - 2/21)) - ^(0)

This is doable since k(y21 - y{i) > k(-(y[
2
- y21 )). Then, for any y £ [y2 i,yl 2 ]

mi(j, tfi) > mxCyJa, y21 )
= e

B-*«(-612(*(-(tfa - &)) - *(0)) + &u(*(»5i - y'u )
- fc(O))) > 0,

and y?rm i u»7i noi exi7 before firm 2's longest possible exit time T2 \. The uniqueness of the

equilibrium follows from Corollary 3.2.

4 Game of an Incumbent Versus a Potential Entrant

In this section, we investigate the situation where firm 1 is initially in the market and has a single

option to exit, while firm 2 is not in the market at the beginning and has options to enter and then

exit. This is thus a game of an incumbent versus a potential entrant, henceforth abbreviated as

simply the entry game. Unlike in the previous section, our focus here is not to provide sufficient

conditions for the uniqueness of a subgame perfect equilibrium, but to demonstrate that one such

equilibrium exists. Using the ideas similar to those of Section 3, one can identify sufficient conditions

for this equilibrium to be the unique subgame perfect equilibrium. This procedure, however, being

tedious and highly computational, will not be repeated here and is left for the interested reader.

Before we proceed formally, we note the following. First, in any subgame perfect equilibrium,

once the two firms are in the industry in the same time, therehence, they must be playing a subgame
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perfect equilibrium in the exit game discussed in Section 3. Second, if firm 1 exits before firm 2

enters, then afterwards, firm 2 must follow its unique optimal single firm entry and exit decisions

characterized in Section 2. For simplicity, we assume that there exists a unique subgame perfect

equilibrium for the exit game. By the analysis of Section 3. this unique equilibrium is the one

in Proposition 3.3. Given this hypothesis and the two observations noted above, in analyzing the

entry game with a focus on subgame perfect equilibria, we can restrict our attention on firm l's

exit decision before firm 2 enters and on firm 2's entry decision before firm 1 exits.

Let !{" : f! x R+ >— 3i + be firm l's strategy before firm 2 enters, where Tf(t) is an optional time

with T[(t) > t Px
-a.s. for all x € 9?. In words, if at time t firm 2 has not entered and firm 1 has

not exited, firm 1 will exit immediately if and only if Tf(t) = t. Similarly, let T\ : fi x Jt+ <— 9?+

be firm 2's strategy before firm 1 exits, where T
2
e
(0 is an optional time with T£{t) > t Px

-a.s. for

all x £ §?. If at time t, firm 1 has not exited and firm 2 has not entered, firm 2 enters immediately

if and only if T2 (0 = t. We assume that Tf and T2
e

are right-continuous in t and satisfy the

measurability condition stipulated for T, in Section 3. Denote by Ti and T 2 the space of all the

possible Tf and T
2 , respectively.

Define

fx
(S) = inf{* > 5 : Tf(t) = t}

and

f2

e
(S) = inf{f > S :T2

e
(0 = r}

for all Tf e Tj and T2

e
e T2 . By Proposition 3.1, f{(S) and f{(S) are optional times.

A subgame perfect equilibrium of the entry game is composed of (rr .T2 ) 6 Ti X T2 so that

Tf(S) solves, for all optional time 5,

rf(S)ATf(S)

sup Ex

TeT js
e-^- s^u (X,)ds + e-^^- SKr(Xn{S) n {n(S)<ns)} \^S

where v\
x

is defined in (24). and r2 (5) solves

sup ET [e-
r{t{S) - Sh^(X

f{S) )l {ns)<fiZ{S)} + e
- r(^ (S) - 5,

r21 (A>, (S)
)l

{tiI(S) ,f(S)}
|7-s

]
,

where v\
x

is defined in (25) and t'21 is defined in (4) with tt replaced by -
:i .

The following proposition reports a stationary subgame perfect equilibrium for the entry game.

The proof of this proposition, being similar to that of Theorem 3.1, is omitted. In this equilibrium

firm 2 sets a critical level y\ such that it enters the market the first time demand is above j/2 before

firm 1 exits and then plays the unique subgame perfect equilibrium of the exit game thereafter;

otherwise it behaves optimally as a monopolist after firm 1 exits. The value y\ is determined so
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as to balance the marginal benefit of being a duopoly presently and the marginal benefit of being

a future monopoly. Firm 1 sets a critical level yf such that it exits if demand is below yf before

firm 2's entry; otherwise, it plays the unique subgame perfect equilibrium of the exit game after

firm 2 enters.

We will use j/ji
an(^ IJ22 to denote the entry barrier for firm 2 as a monopoly and as a duopoly,

respectively, as described in Theorem 2.3. In addition, put

T^{t) = inf{s > t : X, > y|J.

Proposition 4.1 (Tf,T2
e

) is a subgame perfect equilibrium for the entry game, where

!?(*) = r(t)l{Xr(t)€Al} + T^(T(t))l{XTlt)€A2} , (41)

Ti(t) = It1(T(t))l{Xrtt)eM} + r(t)l{Xr{t)€A2} , (42)

r(t) = mf{s > t:Xs G At U A 2 }

with Ai - (-00,3/j
7

]
and A 2 = [y^+oc), and where y\ £ (l/iujfo) an^ V\ £ (2/221 + 00 ) are ^e

unique solution to

^2(2/1,2/2) = 0,

"1(2/1,2/2) = 0,

with

e
w[

1 . e-(..4«')(»-»i)]TaW(b _ e(..+.)» / e
-° ,2

7r21 (z)(fz, (43)
-2*2 JV21

ni(yi,y2 ) = T e-
* 2

7rn(z)[I - e-^+Ote-*)]^ +
e"° "

[gii(»a,y5a) - Jia(lft,»Sa)], (44)
An VM + 2a2 r

w/iere p,-j is defined in (23).

Three interesting observations can be made. First, in the equilibrium, y^ > t/jj. Thus the

existence of a potential entrant may force the incumbent to exit earlier than when there is no

potential entrant and hence the incumbent has a shorter economic life time. This occurs when

demand decreases to reach y* before it increases to reach y\- The potential of becoming a duopolist

at higher demand levels in the future, makes firm 1 less tolerant to the incurrence of current losses.

Second, the entrant sets its entry level y
e

2 before firm 1 exits higher than its duopoly entry level

3/22- This is due to the opportunity of its becoming a monopolist if it waits long enough for firm 1

to exit. Therefore the entrant sacrifices its current duopoly profits in exchange of the potential

monopoly profit in the future.
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Finally, there are two possible results of the incumbent versus entrant game: "peace" or "war".

By "peace", we mean that the entrant enters after the incumbent exits and both firms share the

market by different time segment. If the entrant enters before the incumbent exits, then they battle

as a duopoly in the market.

5 Concluding Remarks

We have studied a class of entry-exit timing games in continuous time where the stochastically

changing environment is modelled by a Brownian motion. In doing so, we work directly in continu-

ous time with the extensive forms of the class of continuous-time entry-exit games. Given that the

stochastically changing environment is stationary, we have identified some subgame perfect equi-

libria without too much difficulty. These equilibria are all stationary equilibria in that the strategy

played by a firm at any time / is a copy of the strategy played at time t = 0. It will be interesting

to investigate the existence a subgame perfect equilibrium in a general stochastic environment like

the one of Huang and Li (1990).

There are many other economic applications of the continuous-time stochastic timing games

besides the entry and exit decisions of firms analyzed in this paper. These include product and

process technology choices, multiproduct and multimarket competition, and multiplant global com-

petition. Indeed, any situation in which all players make dichotomous choices over time, and the

players' well-beings are affected by time, by some stochastically changing elements, and by the

choices made by other players can be formulated as a stopping game. Then the methods and

technologies developed in the paper may apply.
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Appendix

A Proofs

Proof of Theorem 2.1:
5

Proof. From the hypothesis that w is bounded, / is bounded. Theorem 1 of Huang and Li

(1990) shows that there exists a solution to (3) and this solution is characterized by the first time

that e~ Ttf(X t ) is equal to the largest regular submartingale dominated by it.
6 We claim that this

largest submartingale is e~ Tt 4>{X t )
= e~ Tt(f(Xt ) - v(X t )).

We gratefully acknowledge that a referee suggested the current proofs for Theorems 2.1 and 2.2 to us.
6A regular submartingale {Yt ;t £ 5R+ } is an optional process so that for any bounded optional time T, E[Yf] < oo

and for all optional times S > T, .E^V'sI^t] < Yt a.s., where an optional process is a process measurable with respect

to the sigma-field on fi x [0,oo) generated by all the processes adapted to F having right-continuous paths.
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First we show that e
_r

'<j!>(A() is a regular submartingale dominated by e
_rt

/(A<). It is easy

to see that v{x) > for all x. Thus e~
rt
4>{X t ) < e~rt

f(Xt) a.s. Note that for any optional times

S>T,

Ex [e-
Tb

ct>(Xs)\TT )
= Ex e-^\niEXs[e-^-^f(XT )\TT }r>S

> e~
rT

inj: £x [e-(
T -T

)/(A-T )|^T ]

= e~
T

4>(Xt), a.s.

where we have used the strong Markov property of X . Thus e~ rt
4>(Xt ) is a regular submartingale

dominated by e~ Tt f(X t ).

Second we want to show that e~ rt
4>(X t ) is the largest regular submartingale dominated by

e~ Ttf{X t ). Suppose otherwise and let Y be a regular supermartingale dominated by e~ Tt f(X t )

and Y(u,t) > e~Tt
<f>{X{u,t)) on a set of (u;,r) whose projection on to Q is of a strictly positive

probability. Define

Sn = inf{/ > : Y(t) > c"
r(

(/)(A' ( ) + -}.
n

It is easily verified that Sn is an optional time and by the hypothesis there exists an n > so that

PT {Sn < *oc} > 0. Since that e- Tt f(X t ) > Y(t), we have

e-^iXsJ^^i^A^nXr^sJ >
Tei%_Sn

£:[y(T)\rSn )

= Y(Sn ) a.s.

However, V(5„) > e~ rS"Q(Xsr,) + ^ with a strictly positive probability. Thus e~ rS"<p(Xsn ) >

e
_r5n

cf)(A'sn ) with a strictly positive probability, which is a contradiction.

Finally, we want to show that

T* = inf{r > : /(A,) - <f>{Xt ) < 0}

is a barrier policy, that is, T' is the first time that A' ( is less than a level y*. First we observe

that f(x) — 4>(x) = v(x) and it is obvious that v(x) is increasing by the fact that A is spatial

homogeneous and that ir is increasing and nontrivial. Thus there must exist a y' so that

T' = inf{f > : A, < y'}.

The fact that y' < y° follows from the observation that when X t > y°, it is better to stay in the

industry as strictly positive profits are being generated. I

Proof of Theorem 2.2:

Proof. Proposition 2 of Huang and Li (1990) shows that if 5 is another optimal exit time, then

S > T' a.s. Assume therefore PX {S > T") > 0.

Put

Tn =mf{t>0:Xt
< y' - -}.

It is well-known that Tn J T" a.s. (Only the case A'o = y' is nontrivial. If T° = limn^ocTn ^ 0,

the zero-one law implies that T° > a.s. and thus Xt
> A'o for < t < T° a.s.. Since Aj-o = y',

starting again from T° by using the strong Markov property and repeating the above arguments.
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we conclude that T° = limn_oo Tn < T° a.s. if T° = oc. Thus it must be that T° = oo a.s.

This implies that Xt
> y" for all ( £ Sf+ . For a nontrivial a, this is clearly impossible.) Thus

{5 > X""} = \Jn {S > ^"}- ^ we can show that, for every n, a.s. on {S > Tn } we have

Ex[e-
rS

4>{Xs)\TTn ) > e-
rT
"«A(AVJ,

then we are done as this will imply

Ex [e-
rS
4>{Xs)\TT'] > e-

rT>(XT.),

hence

Ex [e-
rSf(Xs )} > Ex[e-

TS
4>(Xs )} > Ex[e~rT'

<f>(XT.)] = Ex [e-
rT '

/(A»] = *(*),

and 5 is suboptimal.

Now let t = in{{t > Tn : Xt = y") and set So = Tn , S2 = S \JTn , and S\ = S2 A 7"- Then for
?' = 1,2.

e-
TS

'4>(XsJ < Ex[e-rS-^<t>(Xsi+1 )\?Si ), (45)

since
<f>

is a submartingale. Inequality (45) for i = is strict on {Si > So} = {S > Tn } since only

negative profits are made between So and S\. To see this, we note that

e- TSo 4>(XSo )
- Ex[e-TSl <j>(XSl )\Fso]

= e-
rS
°f(XSo )

- Ex[e-^f(XSl )\TSo ]

roc roo

= Ex [
e-

Tt *(Xt )dt\TSa]-Ex [
e-

Tt
Tr(X

t )dt\fs )

Js JSi

= Ex[[
'

e-
rt
ir(X

t )dt\fSo }<0,

where the first equality follows since on <j>(Xs,) = f(Xs,) for i = 0,1, and the inequality follows

since because 7r(A'( ) < for t G [5o,5i). The two inequalities in (45) (i = and i = 1) imply that

on {S > Tn ],

Ex [e-
rS

4>(Xs )\TTn } = Ex[e-^d>(Xs,)\TSo }

= Ex[Ex [e-
rS^(Xs2 )\TSl }\Ts }

> Ex [e-'
s
><t>(XSl )\Fs }

> e-rT»4>{XTn ),

which was to be proved. I

Proof of Proposition 3.1:

Proof. To prove that T(S) is an optional time it suffices to prove that T(S)At is ^-measurable,
or T(S)At e Tu for all * e 9?+; see Dellacherie and Meyer (1978, IV.49.3). First note that S At £ 7t

as S is an optional time. By the right-continuity of T{u>,t) in t, we know T(t) is Borel measurable
in t. By the composition of two mappings, it follows that T(u,S(u) A t) A t 6 Tt . Next note that

T(u,S(u))At = [T(w,5(w)A0]l{S(u,)<t}(w) + [T(«,5(«)A0]l{s<w)>t}(w)

= [T(u>,S(u)At)]l {S{ul)< t
)(u)+tl {S(uj)>t] (L;) a.s.
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By the fact that {5(w) > t) G Tt as S is an optional time, we know T(S) A t G Tx as T(5) is an

optional time. The assertion that T(S) > S a.s. is obvious.

Next we want to show that T(S) is an optional time. Observe that

f(S(^)) = inf{/ > : (u,t) G A n [S(w)oo)},

where ,4 is defined in (18). By the hypothesis that A is a progressive set, and the fact that the

stochastic interval [S, oo) is also a progressive set, then Dellacherie and Meyer (1982, IV.50) shows

that T(S) is an optional time.

Finally, the last assertion follows from the hypotheses that T(t) is right-continuous in t.

Proof of Proposition 3.2:

Proof. Let r G T. Define

T(u,t) = l
[0 ,

T
(
t(
;)](w,0r (

W) + fl(T(W),oo)(^,0-

Then
A = {(w,t) £flx»+ :T(w,0 = t, f G £+} = [r(w),oo).

It is known that the stochastic interval [r(w),oo) is progressively measurable. Thus T £ T. It is

also easily verified that T = S P r
-a.s. for all x. I

Proof of Proposition 3.3:

Proof. First, we want to show that T, G T. By the definition of T,(t), we know that

A = {(«,*) : T,(w,5) = 5, 5 G £+} = {(«,«) : X(w,«) < y£}.

The (//,<j)-Brownian motion is a progressively measurable process. Thus A is a progressively

measurable subset and T, 6 T.

Second, we want show that (T\,T2 ) is a Nash equilibrium. It is obvious that (T\,T2 ) G T x T.

Next, by definition, f, = T~ for i = 1,2. Thus it suffices to show that T"
t
solves, for all x G S,

rAT"

sup ^
tGT I

" e~
Tt

iri2(Xt)dt + l{r>Tj'}e
TT"vxi (Xr;j

whejre i ^ i_and i,? = 1,2.
"n the above program, take j - 1 and let r be a solution to the above program

want to show that r = T"-> a.s. It is obvious that t > T" . We first claim that r < T
xl

. Suppose
Fix x G H. In the above program, take j = 1 and let r be a solution to the above program. We

22 c1 ' . AL la uuvjuua uiai / ^_ J 22

otherwise. Then the expected discounted future profits for firm 2 is

Ex

< ET

= Ex

= ET

f
' "

e-
Tt

7r22(X t
)dt+ [ e-

Tt*21(X
Jo Jt.'.^t

t)dt

rr;,A7

I

k

e-
Tt

ir22(Xt )dt +£r [e-'
T
'u.21 (A T.)l (:>r.)]

rTn AT
r 1

j
t-

Tt
i: 22(X t

)dt +Ex [e-
TT
»V2i(yu)l {r>T;1 }\

rT^Ar

/
e-rt

ir22(Xt )dt
Jo



A PROOFS 26

where the strict inequality follows since at T^, Xt- < 2/n < 2/21 >
aim tne unique optimal exit time

time for firm 2 in the monopoly case calls for exiting immediately. But Px {t > T^} > 0. Thus

t < Tj'j a.s.

Given that r < T^ a.s., throughout firm 2's life span, it is a duopoly. Thus the unique optimal

exit time for it is T22 and r = T22 .

Similar arguments establish that T{
x

also solves the above program when j = 2. Since x is

arbitrary, (T\,T2 ) is a Nash equilibrium.

Third, we want to show that (Ti,T2 ) is subgame perfect. Let S be any optional time. It is

easily seen that fi(5) = T^(S) and f2(S) = T;
2 (S). It suffices to show, given fi(S), f2(S) solves,

for all i£jf,

sup Ez

reT

rTAT,(S)

f
' e-^-sK t2(Xt )dt + l {T>fl(5)}

^r(tl(S) - 5)
^i(A'ti(S) )|^s

and vice versa. By the strong Markov property of X and the fact that, conditional on Xs, Tj^S)
is independent of the values of X before 5, the above program is equivalent to

sup Ex

T>S
f

'

e-
rt

Tr t2 (X t )dt + l {T>T .

i(
s )}

e-
rTn( 5 )t,tl (A'T].i(S) )|A'(5)

where £r [-|^"s] is the expectation conditional on A's under PT
. Then arguments identical to those

used in showing that {T\,T2 ) is a Nash equilibrium show that T22(S) is a solution to the above

program. The proof for T^S) is identical.

Given that (T\,T2 ) is Nash equilibrium, the rest of the assertion can be verified by direct

computation. I

Proof of Proposition 3.4:

Proof. It is clear that at S, firm t's strategy from then on must imply that it will stay on at

least until it can not sustain as a duopoly when its opponent stays on forever. Similarly, firm z's

strategy from 5 on must not stay longer than it can sustain as a monopoly. I

Proof of Corollary 3.1:

Proof. Let (T\,T2 ) be a subgame perfect equilibrium. Given y*
12 < y2l , it follows from Proposi-

tion 3.4 that for any optional time 5, T2(S) < T^(S) < T{
2{S) < 7\(S) Px

-a.s. for all x. So firm

1 will always stay longer than firm 2 in any subgame. It then follows that T,(S) - T'
t
(S) Px

-a.s.

for all x. I

Proof of Proposition 3.5:

Proof. We first record in the following lemma the explicit expressions of some functional that
will be useful.

Lemma A.l Suppose z < x < y,x,y,z £ U, and T = inf{« > : X t G {y,z}}- Define

N
_ 6(x,y)-6(x,z)9(z,y)

«'«'*)-
l-0(z,y)e(y,z)

(46)
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Then

Furthermore.

Ex [e~
TT :XT = y) = v(x,y.z). and Ex[e-

Tl ;XT = z] = v(x.z.y).

-nx.y.r)

d_

dy

d_

dz

a

dz

-=.y)

V[x.:.y\

v(x.y.z)

a
m + a.6(z,y)6(y.z)

\-9(z.y)6(y,z)

(a. + a')d(y,z)

v(j.y.z).

l-B{z,y)9(y,z)
v(x.y.z).

a. + a'6(y.z)9(z,y)~
i u w —v[i.z.yK
1 -6(y,z)0{z,y)

(a. + a')6(z,y)

\-9(y.z)6(z,y)
ij>(x,z,y),

Proof. For the proof of the first part see Harrison (19S5). and the partial derivatives obtain from

direct computation. I

We proceed to prove Proposition 3.5.

First we restrict our attention to finding the solution to

sup Ex
reT
T>S

rrAT
2
\(S)

Js
e-

r^-sKi2(Xt)dt + l
{
r > T:

1
(S) }

e-
T{T^ S) - S]

v, l (XT .

i{S) )\Ts (47

so that t is a barrier policy. Then arguments similar to those of Theorem 2.2 will show that

any other solution to (47) will be equal to this barrier policy. This barrier policy is T\(S) in the

assertion. Then one easily verifies that (26) is an element of T using similar arguments used in

Proposition 3.3.

We begin with A'5 = x € ( i/21 - ^12] * Given that firm 2 plays ^(5), firm l's payoff by playing

(26) for some y is

Ui(x,y,y2i) = /j2(x) - v(x.y,y
m

2l )fn (y) - 0(x, y£x , y)fn(y'21) + v(x, yjv y)t'n(j/3i).

by (21) and Lemma A.l. Differentiate u^ with respect to y gives:

dui(x,y,y2i) (a' + a.)v(x. y. y'.\ )

(48)

<<,
(fi2(y) - 0(y.y2i)fu{y2i))

y))hi 2{y) +

n»i(y,J/2i)>

i-*(y,^i)%2i.y)

-0 - 0{y-y'2i)8{y2i-y)) n i2(y) + e(y>y'2i) vn(y'2i))

Ae- a'y^(x,y.y-21 )

1 -Oiy-yliWiyli-y)

where A is strictly positive constant. Observe that the sign of the partial derivative depends upon
the sign of mi. Direct computation yields:

drnijy-yh)

dy
= e-X12 (y)(l- C-K+O.)(^,)

)
{>0

;

>^.>^
<y?2i

where we recall that t/°2
is such that "12(2/12) = 0.

Note that mi(i/2i • J/21 '
= r i i( I/21 ) > and that mi is continuous in y. If m^yf,. J/21 ) - 0> tnen

y = 00 is the upper barrier independent of the initial state. Suppose otherwise. mi(y°2 -J'2i ' < 0-
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By the continuity of mi there exists a unique y £ {y^vVn) sucn tnat m i(2/,2/2i)
= 0- Now, either

y = y or y = +00 maximizes u\. Note that

0( 1,3/21) = ip(x,y2i,y) + *l>(x,y,y2i)0(y,y2i),

or

Thus,

Ui(l,00,J/2l) - Ul(z»y>02l)

= V>(^,j/,J/2l)/l2(y)-(^(a;,2/2l) -^(^,J/21 1 J/))/l2(y2l) + (^( I >I'2l) ~ V>(«, 2/21. 2/))Ull(»21

)

= v>(x, 2/> V2i)/u(y)
- *(& y3iW(*i j/, !& )/i2(»5i) + *(y, ySiM*, y, 2/21)^11(2/21

)

= ^(x,2/,t/2i)(/i2(j/) - *(»»»ai)/w(»3i).+ ^(2/,2/2i)un(2/2i))

Then, y is the optimal upper barrier if y < y*
2 , otherwise, the infinity is. Suppose y < y{2 -

For x < j/i, firm 1 exits when 3/1 is reached before firm 2 exits. For x 6 (2/1,2/12]' nrm 1 quits

immediately. To summarize, firm l's exit time is the entry time of A' in [3/1, t/j2 ] before 2's exit and

is the entry time of A' in (
— 00,3/^] after the exit of firm 2. I

Proof of Theorem 3.1:

Proof. Using arguments similar to those of Proposition 3.5, firm l's exit time as the unique

best response to (30) is a two-barrier policy characterized by y\ and y\. Like in Proposition 3.5,

if y\ = 00, (Xi(<) = T,*(/);z = 1,2, / 6 !ft+ ) is the unique subgame perfect equilibrium. Otherwise,

we have y\ < y\ < t/*
2

: firm 1 exits as a duopoly when the demand enters the set [2/1,2/1]- Then
firm 2's exit time as the unique best response is also characterized by a two-barrier policy like (30)

with y\ and y\ replaced by y\ and y\ with y^ < y\ < y\- Let 3/" and 3/™ be the optimal barriers

for firm i in the n-th iteration. Repeat the iteration as long as 3/™ < 00. By the monotonicity

of the game, 3/™ and y^ are increasing in n and £™ and y2
are decreasing in n. Therefore, they

have a limit point. By the hypothesis of the theorem, this limit point is a fixed point of the above
iterative procedure and is a Nash equilibrium at any optional time r. The equilibrium strategies

are stationary strategies and thus thus are subgame perfect.
The second assertion follows from the fact that the fixed point has been reached by starting

from an upper bound of all of firm 2's subgame perfect equilibrium exit times and the monotonicity
of the game. I

Proof Corollary 3.3:

Proof.
We take cases. Case 1: suppose that there do not exist 3/1 and 3/2 that satisfy mi (3/1,3/2) =

and "2(3/1, 3/2) = with the desired order of the 3/, 's. This implies that a lower bound of firm l's

subgame perfect equilibrium exit times is T^t) for all t. Proposition 3.4 then implies that the

unique subgame perfect equilibrium must be the one in Proposition 3.3.

Case 2: Suppose that there are 3/,'s and j/, 's satisfy the desired conditions except that 1^(3/1,3/2,3/2) >
0. Then again, a lower bound on firm l's perfect equilibrium exit times is T^(t) for all t. So we
have a unique subgame perfect equilibrium.
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Case 3: Suppose that there exist j/,'s and y,'s so that 7711(2/1,2/2) = 0, 712(2/1,2/2) = 0, and

u '(y\-> ?V2»!/2) < 0, with t/21 < 2/2 < 2/1 < j/i2-
Then the violation of the hypothesis of Theorem 3.1

must come from the y,'s. Suppose first that j/2 = 00 • Then it is easily seen that 2/1 = 2/12 an^

rai(oc,2/*2 ) = 0. Hence the conditions of Theorem 3.1 are satisfied. Therefore, it must be that

There are several possibilities:

1- "1(2/2,1/1) = and y x < ^j. Then a lower bound of firm l's subgame perfect equilibrium exit

times is T^(t) for al t and Proposition 3.4 implies that there exists a unique subgame perfect

equilibrium.

2. n\ (2/2, 2/1) = ar, d i/i
= 2/2- Then at the subgame starting at the optional time S wit

Xs = J/i, both fir

cannot be the case
A'5 = j/j, both firms exit immediately, which clearly is not a Nash equilibrium. So this

be tl

3. There do not exist t/i and 1/2 so that "1(2/2,2/1) = 0. Then a lower bound of firm l's subgame
perfect equilibrium exit times is T^(t) for all t. Then by Proposition 3.4, there is a unique

subgame perfect equilibrium.

The proof for necessity part uses similar arguments.



Figure 1: Relative Positions of the Barriers
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