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O. INTRODUCTION AND SUMMARY

The purpose of this paper is to bring some siirplicity

and crenerality to the investigation of equilibriuir existence

in certain "simple" dynamic games .

""

The way we deal with

these objects is, essentially, by reducing them to what we

term "simple economies", these latter being, from the view-

point of equilibrium existence results, at once more general

and less cumbersome. In §1, we exhibit some topological facts

about a certain rather general class of simple economies, in-

cludinc, the fact (1.7, Main Theorem) that they each possess

a non-empty and compact set of eauilibria. Then, in §2, we

define the simple dynamic games of interest, immediately re-

ducing them (2.5, Reduction Lemma) to the simple economies

studied. In §3, we show (3.0) that the simple dynamic games

in question have non-empty and compact sets of equilibria,

using the fact (1.7) that the simple economies to which they

reduce have such sets of equilibria. We then illustrate by

example (3.3) that a general class of discrete-time, deter-

ministic games with convex performance criteria is covered

by the equilibrium existence results just described. This

class includes dynamic games for which certain non-linearities

in the next-state map are allowed, and for which controls

are restricted to compact reaions, these regions themselves

varying as a function of state. Of course, we do not intend

1
)

An excellent bibliography of previous work on dynamic games

can be compiled throucrh th- references cited within

[Kuhn and Szego, 1971^ and from^the survey paper, [Ho, 197oJ.





that results particularized to this quite special example

be understood as the main thrust of this paper.

Historically, the study of the existence of (competitive)

general equilibrium in economies exhibits quite a long-standing

and extensive literature. A crucial turning point in that

literature is afforded by the Arrow & Debreu fl954j study,

benefiting from Debreu' s [1952] earlier investigation and

using a FPT (fixed point theorem) of Eilenberg & Montgomery

[1946[. This work is generalized in [Sertel, 1971] by use

of the more powerful FPT ' s of [Prakash & Sertel, 1971].

Essentially, our present results can easily be demonstrated

as corollaries to this last mentioned, but owing to the re-

lative inaccessibility of both this work and the fixed point

theory it employs, we restrict ourselves here to what can be

done by using the relatively well-known FPT of Fan [1952]

which [Prakash & Sertel, 1970] generalizes. Even with these

handicaps, our main theorem generalizes the Arrow & Debreu

[1954 1 equilibrium existence result.

We work in locally convex spaces. Such spaces include

normed spaces and the conjugate space of the Banach space

of all real-valued continuous functions on a given compact

space. This conjugate space, in turn, is the natural habitat

of probability measures under the weak (or w*) topology

(see Parthasarathy [1967|). Our working in locally convex

spaces is motivated by the hope and conjecture that equili-

brium existence results for stochastic dynamic games may also

be obtained by reducing them to the simple economies intro-

duced here.





0.0. Notation and Conventions : For the set of natural numbers

we denote ^ = {1,2,...}. We fix n e W and denote

N = {1,2, ,n}, N^ = N \J {O}. Given any set Z and any

m e W, we consider the family {"'"Z = Z
|

i - 1,... ,m} and

denote the Cartesian product TI ^Z = """Z x...x "^z , bv
i=l

j^Z , generic elements being in lower case; "^z e ^Z

„z e Z. When a given z = ( z , . . . ,^z) is understood,

we denote projections and components according to

V , V^ = k^ ^""^ N'^Z) U^) = ^z, k = ^ m.

Every Cartesian product of topological spaces is

understood to carry the product topology.

Let Z be a set. Then [z] denotes the set of

non-empty subsets of Z. When Z is equipped with a

topology, C(Z) denotes the set of non-empty closed sub-

sets of Z. When Z lies in a real vector space, Q.(Z)

denotes the set of non-empty convex subsets of Z. We

abbreviate C{Z)r\ 0,(2) to C{^(Z) .

Finally, P denotes the set of reals; whenever

considered as a topological space, R carries the usual

topology.





SIMPLE ECONOMIES AND THETR EQUILIBRIA

The main task of this section is to introduce the

notion of a simple economy, define equilibria of such,

and then establish some fundamental results includ-

ing our main theorem giving sufficient conditions under

which simple economies possess non-empty and compact sets

of equilibria. Apart from the interest of these notions

and results in their own right, altogether they provide

the main framework and the tools for our analysis of the

equilibrium existence question for the dynamic games for-

mulated in the next section.

1.0. Definition : A simple economy is an ordered quadruplet

1 .0.0. S = < W, U, T, A > ,

where

1.0.1. W = {X^ ?^
I

a e A} i^

is a non-empty family of non-empty sets X with

generic elements x g X , from which we define

X = nx , X° = n X„, denoting x e X and x'

A " A\{a} ^

for generic elements (a e A);

1.0.2. U = {u : X -t- Rjcx E A}

is an associated family of real-valued functions

u on X

;





1.0.3. T = (t^ : X -*
r^^J'"^ ^ ^^

is an associated family of maps t^ assignino a

non-empty subset t (x) cT X to each x e X;

1.0.4. 7^ = {a : X° -^
&a- '

° ^ ^^

is a self-indexed family of maps defined, at each

x" e X", by

oi(x") = {x e t (x°)|u (X , x°) > ^Sup u (., x") }

where t : x" -> Px 1 is defined by

t(x°') = {z e X iz e t (z , x")}.
a o a a a

1.1. Pemark ; It is evident that in a simple economy wherein

the maps t are each independent of x , we have pre-

cisely t (x , x") = t (x") for all x e X and

x° e x", i.e., t = t OTT^a (a e ^). The "economies"
a a X

treated by Arrow & Debreu Il954| are all of this sort.

For a discussion of some major deficiencies of such a

notion of an economy, most of which are present also in

that of a "simple economy" — hence, the oualifier

•simple'!— we refer the reader to [Sertel, 1971; pp. 18-22]





1.2. Remark : To check that 1 .O is not a self-contradiction,

i.e., that simple economies are well-defined, we need

only indicate that an object S satisfyina 1.0.0. - 1.0.3,

will permit 1.0.4. so long as, for each index a e A,

the maps t(.,x):X -*-[x| have fixed points

ich

u (., x") attains a supremum on each such set of fixed
a

points. All this will obtain, e.a., when W consist of

compact spaces, each u (., x ) is upper semi-continuous,

t = t oifyCt, and t (X) consists of compact spaces

(x" e X", a E A)

.

To aid in verbalizing thoughts, we borrow the follow-

ing nomenclature of [Sertel, 197f].

1.3. Nomenclature: Let S be as in 1.0.

1.3.1. X is called the behavior space of «, x being
a * a

called a behavior of a iff x e X ;
a ot

1.3.2. x" is called the g-exclusive behavior space (of S),

x'^ being called an a-exclusive behavior (of S) iff

x" e X";





1.3.3. X is called the collactive behavior space (of S)

X being called a collective behavior (of S) iff

X e X;

1.3.4. u is called the utility function of a;

1.3.5. t (resp., t ) is called the feasibility transfor -

mation (resp. , effective feasibility trans forr^ation )

of a, t^(X) = {t^(x)|x e X} being called the feasi -

bility space of a, and d being called a feasibility

of ct iff d e t (X);
a a

1.3.6. A is called the personnel (of S) , a beina called a

behavor (of S) iff a e A.

Regarding the following useful tool dealing with con-

tinuity properties of set-valued mappings, the definitions

and facts in the appendix may be consulted.

1.4. Theorem : Let u : P x Q -> p be a continuous function on

a non-empty compact Hausdorff space P x fi, let

s: O -»• C(P) be continuous, and define a map a on by





a(q) = {p e s(q)|u(p, q) > Sup u(., q) } (q e 0).
s(q)

Then a maps Q upper semi-continuously into C(P).

Proof ; Given any q - 0, s(q) is compact, being

closed in the compact P ; hence, s{q) x {q} is com-

pact, so that the continuous u attains a supremum on

it. This shows that a{q) ^ for each q e Q. To

establish the upper semi-continuity of a, we will re-

peatedly use the closed graph theorem A. 2 and show that

the graph r = { (q , p)|q e Q, p e a(q)} of a is

>* P, it will follow that r^ is compact, so that,

for each q e Q, a(q) = Trp(({q} x P) H r^| is compact,

hence, closed in P.

^({q} X P) n ^^

We now show that r C ^^ >< P is closed. As s

is continuous, it is upper semi-continuous, so that,

by A. 2, its graph r^ = {(q, p)|q e O, p e s (q) } C. >* P

is closed. As u is continuous on the compact P x 0,

u(P X Q) ^ R is compact and, of course, Hausdorff.

By A. 4, the function v: -^ P defined, at each

q e 0, by v(q) = Sup u is continuous, so that its
s(q)x{q}

graph r^ = { (q , r) |q e 0, r = v(q) } CZ Q ^ v(0)

C X u(P X Q) is closed. Hence, r^ x p ig closed.

By continuity of u, so is the graph r = {(p, q, r)

|

(p, q) e P X Q, r = u(p, q)}ClP>' x u (P x Q) of u





closed. Thus, (r^ >« P) r^ is closed, hence compact

Therefore, its projection G into P x Q is compact,

hence closed. Now r is nothing but G O^g' which,

clearly, is closed. This completes the proof.

*

1.5. Corollary : In the last theorem, assume also that P is

convex in a real vector space, that u is quasi-concave

on P X {q} for each q e Q, and that s(0)C C(2(P).

Then a maps O upper semi- con tinuously int^ C(2.(P) .

Proof : Let q e Q. All we need to show is that a (q)

is convex. Now a (q) is nothing but the intersection

of s(q) with {p e P]u(p, q) > v(q)}, the former of

which is convex by assumption, and the latter of which

is convex by quasi-concavity of u on P x {a}. This

shows that a(q) is convex, completing the proof.

#

1.6. Definition : The evolution of a simple economy

S = <W, U, T, A> is a map E : X -* [xj defined, at

each x E X, by

E (x) = n a (tt (x) ) = n a (x") .

A X*^ A

A point X e X is called an equilibrium or contract

of S iff X e E(x). The set C of contracts of S

is called the contractual set of S.

This section culminates with the following:
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1.7. Main Theorem : Let S = <W, U, T, A> be an ordered

quadruplet such that, using the notation of 1.0.,

1.7.1. W is as in 1.0.1. with each X compact and con-
a

vex in a locally convex Hausdorff topological vector

space;

1.7.2. r is as in 1.0.2. and, for each a e P, u is
a

continuous on X and quasi-concave on X x {x°J
a

1.7.3. T is as in 1.0.3. and, for each o e A, the graph

T = { (x , x", x')|(x , x") e X, x' e t (x , x°)}
a a a ' a a a ot

d X

T (x") = {(x , x') e X X X Ix' c t (x , x°)} of
a aa a o'a aa

t (., x") : X -*- [X 1 convex for each x" e x"; and

1.7.4. A is a self-indexed family of maps a such that

(x") = {x e t (x")|u (x , x") > ^Sup u (., x")},

where t is as in 1.0.4.

Then

(a) for each a e A, t maps X upper semi-

continuously into C(liX ) ;
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(b) for each a e ^ , a maps X into C{^(X ); and

(c) S is a simple economy.

If, furthermore,

1.7.5. for each a e /^ , t is lower semi-continuous,
a

then also

(d) for each a e P, a is upper semi-continuous; and

(e) the contractual set C of S is non-empty and

compact.

T (x ) of the restriction t (., x ) of t to
a a a

X X {x"} is convex by assumption and it is closed since

T is closed. Thus, t ( . , x° ) is into CQ^iX ); by A. 2,
a a a

it is also upper semi-continuous. Hence, by Fan's FPT

(;v.5), its graph T (x") intersects the diagonal A
a o

of X X X . Furthermore, this intersection is one of
a a

two closed and convex sets, and so is closed and convex.

Being closed in the compact X X , it is compact,

Moreover, its projection into X is nothing but t (x )

,

showina that t(x°) e CO(X ). Now the graph of t is
a a

^^^Ply
\«.X ^""-^^^^cx'

^"'
^a^

e X^ X x° X Xjx^ = y^}).
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which is compact, hence closed. Thus, t is upper

semi-continuous. So much proves (a).

hence compact, so that the continuous restriction of u

to X X (x"} attains a supremum on a (non-empty) closed

subset of t (x ) . Clearly, this subset is nothing but

a{x°'), and it is convex by quasi-concavity of u^ on

X X {x"}, since t (x°) , by (a), is convex. This
a a

proves (b)

.

(ad (c)): As [x ]OC(l(X ), from (b) we see that

a(X°')C [x ] , i.e., that S is a simple economy (Cf. 1.2)

proving (c)

.

For (d) and (e) , now assume 1.7.5.

( ad (d)): Being upper semi-continuous by (a) and

lower semi-continuous by 1.7.5, t is now continuous.

Applying 1.4., (d) is proved.

(ad (e) ) : From (b) and (d) , for each a e A, a

maps x" upper semi-continuously into Q.^{y. ). Thus, the

evolution E of S maps X upper semi-continuously into

CCIKY.) , so that, by Fan's FPT [1952], E has a fixed

point. In other words, S has an eauilibrium and C ?^ 0.

Actually, since E is upper semi-continuous, its graph
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r = { (x, x' ) e X X x|x' e E{x)} is closed, hence com-

pact in the compact space X x x. As C = tt (Fp O A),

where h is the diagonal of X x x, C is actually

compact. This completes the proof.
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SIMPLE DYNAMIC GAMES

The purpose of this section is to define simple dynamic

games and their equilibria. The existence of these equilibria

will be studied in the next section by reference to simple

economies derived from simple dynamic qames . The present sec-

tion gives a constructive procedure for obtaining a unique

derived simple economy from any given simple dynamic aame.

2.O. Definition : A simple dynamic game ( s .d.g. ) is an ordered

octuple.

2.0.0. S = < W, Y, Y, 6, 0), U, T, A >

where

2.0.1. W = {X. j^
I

d e A} 3^ is a non-empty family of

non-empty sets X. with generic elements x. e X.

,

a a a

from which we define X = nX. and x" = n X.,
A " A\{a} 6

denoting x e x and x e x for aeneric elements

(a e A);

2.0.2. Y is a non-empty set;

2.0.3. Ye [y] ;
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2.0.4. 6:XxY-*-Y is a function, from which vre inductively

define the derived functions ^i : ^X x Y -> Y and

^6{^x, i) = 6(^x, ^ ^5(^x, i))

and 7 < Z e Y,

Mj^x, Y.)
= ( <5(^x, y;) '• ••/ 6 („x,

Y_))J
Ik e N,

where

<5 : j^X X Y -* Y is a map defined by

°6(^x, i) = i (^x e j^X,
i; e Y);

2.0.5. ti) = {d). : Y -- [x.]|a e A} is a family of maps;

2.0.6. U = {u. : XxYx Y-vPliEA} isa family ofan n '

real-valued utility functions.

2.0.7. T = {t. : X X Y ->- [x.]
|
i e A} is a family of maps

whence, for each a e A, we inductively define the

derived maps ^t . : X x y -^ [x.] and

. t. : „X X Y -»- Hx.] as follows:
K a n — '-K a-'

(footnote 2) see next page)
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""^^(n^' y) = t,('^x,^-lj(^x, y))

and

k-1
t.(^x,

Y.)
= n ^t.(^x, i)

where

^a '• n^ "" 1 ^ I^^J i-s a map defined by

°t^(„x, i) = i^(^) (^x e ^X, i e Y);

2.0.8. A is a self-indexed family of mans a : x" x y -^ L x J

such that, for any ( x", y) e X* x y

n^5<n^ ' ^>

2) (footnote of page 15) The reader may find it convenient

to assume on first reading that t.(x°',y) = x. for all

(x ,y) e x" X Y. This assumption implies, in particular,

^^^^ k^i^n^'i) = k^i for all (^x,i) e ^X X Y, which,

as will become clear below, corresponds to the case where

the feasible control region is fixed.
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where

n*^a • n^ '^ X "^ [n^^J is defined for each a e A

and (^x°, ^) G ^x"x Y by

In order to facilitate discussion we introduce the

follov/inrr terminology.

2.1. Terminology; From here on, whenever we speak of a "dynamic

game", we will always mean a s.d.g.. Let S be as in

2.0. The elements of S will be referred to as follows.

2.1.0, n will be called the planning horizon .

2.1.1. x^ (^x^) will be called the g-control space

(a-plan space), and x^ (^x^) will be called an

d-control ( g-plan ) iff x. e X. ( x. e X )
'

^
' a anana

X (^X") will be called the g-exclusive control space

(g-exclusive plan space). and x" (^x") will be called

^^ a-exclu5ive control ( a-exclusive plan ) iff

x'' t X" (^x" E J"). X (^X) will be called the control

scace (Ulan space ), and x (^x) will be called a control

(plan ) iff X e X ( X e X)

.





2.1.2. Y V7ill be called the state space , and y will be called

a state iff y e Y.

2.1.3. Y will he called the space of initial states , and
y.

will be called an initial state iff Y ^ X*

k •

2.1.4. 6 will be called the next-state map . 6 will be called

the k-extended next state map . ,6 will be called the

k-string next-state map .

2.1.5. u) will be called the initial control feasibility speci -

fication , u). will be called the initial a-control
a •

feasibility specification , and d. e [x.^ will be

called an initial a-control feasibility for

i e Y iff d. = <;.(i).

2.1.6, u. will be called the utility function of d
a ^

2.1.7. T will be called the control feasibility specification .

t. will be called the d-control feasibility specification

_t. („t.) will be called the o-plan (effective) feasi-
11 a n ct

' —

bility specification and ^d. (j^d.) will be called an





19

a-r>lan (effective ) feasihllity for a plan x (an

o-exclusive plan ^x"") and an initial state ^ iff

d. = t.
n a n a

(^x, y) (^d. = t. ( x"*, y) ) .n i- n a n a n •'^

2,1.8. h will be called the personnel of S , while each a e ^

will be called a player .

The connotation of the above denotation will becoire

clear as we proceed; however, a few points can be irade at

this tir^e. The key to understandina the above formulation of

dynamic names is 2.0.8, v;hich v;e now elucidate briefly.

Given any initial state y. ^^'^ ^^Y a-exclusive plan

^x , each player a is assumed to develop an a-plan obeying

2.0.8. In doing so, player a takes the given ( x°', y^) and

computes the set ^(^x", y;) of solutions to the following

optimal control problem:

Maximize u. ( x. , x", y, y)ana n *- n-"

„X X { x"", y} X Y
n a n *- n

subject to:

k. ; /k. k. o k-1 . . , x, o.
y = 6(x.,ic, y), keN, y=Y,

X. E t. ( X. , x", y;) / k + 1 e N
n a n a n ^

where
n^ = ^n^^a' n'^"^ = <^^ "^^ ^'^'^ J = ^^

^

"v^
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are the sequences of controls and states over the planning

horizon, left superscript beinq the "time" index. Note

that, by 2.0.7, x. e °t.(^x, ^) = (I).(y), a qiven

a-initial control feasibility, while, for k = 1 , . . . ,n - 1,

we have x. e t.( x. , x" , y) , so that the feasible

k •

control recrion for x. is determined by the initial state

and the controls precedino the k

We postpone a discussion of the conditions under

which a s.d.q. S is well-defined until we have demon-

strated that any s.d.q. may be reduced to a simple econofny.

Sufficient conditions for the existence of S will then

be clear from similar conditions already stated (1.2. and

1.7(c)) for simple economies.

2.2. Pemark and Notation : Let S be a s.d.g. specified as

in 2.0, and suppose Yl^Y' ^ 0. Then clearly

S' =<W, Y. Y', 6, u, r, T, A > is also a dynamic game.

When S and S' are related in this fashion, we say

that S' is a restriction of S. When Y' = (i) C X' S'

will be called the restriction of S to the initial state

y. When S is understood, v;e denote S' in this case by

S(Y).

2.3. Definition : The evolution of a simple dynamic game

S = < W, Y, Y, 5, w, r, T, h > is a map

E : XxY-v rXxYl defined, at each
n — Ln -J
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(„x, i) E ^X X i, by^

TV

A point
(f,^' ^^ vrill be called an equillbriuin of S

iff (^x, y) e ^^n^' ^^ • "^^^ ^^^ °^ equilibria of S i;

called the contractual set of S.

2.4. Remark : It may be verified that the contractual set of

which, for each a e A, satisfy

^' '^a^n^a'n^ 'n« ^n^& 'n^" '^^^ ^

Sup u. ( X. ,„x°,y . y)
a n a n '-^ n-'

„X. X r x",y} X Y
n ct n -i n

k. ; /k. ktot k-1.. , ., Y = Yr
y = 6( x. , X , y) , k E N, ^ ^'

a

^''^'^x. £ ^t. ( X. , k^ ,y) , k+1 E N.
a a n a n '^ '

3) Note that F is actually a inap into "[n^a^'^'XlC l^^"!'
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We now show that every simple dynamic qame can be

reduced to a simple economy whose evolution and, hence,

whose contractual set are identical to those of the given

simple dynamic game.

2.5. reduction Lemma: Let S = < W, Y,y , 6 ,aj ,n,T, A > be a s.d.a..

(a) there is a simple economy S = < W,i\T,7^ >,

uniquelv derivable from S, with X = X x Y,i - n —

and for which:

(b) E(x) = E(x) (x X y) ; and

(c) the contractual sets for S and S coincide.

Proof : (ad (a)): Let a s.d.g. .<^ and an object a ^ A

be aiven. Denote by ^ the set ^^(a). Consider the

follov7ing sequence of definitions which specify the ele-

ments of the simple economy S to be derived from S.

2.5.1

U Xt (a e PJ ;

A \{a} ^ ""
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2.5.2. Define the family of functions {u. : X -> P
]
a e A^} by

u.(x) = u,(.^.(i), ^Mx))|

u. (x) = /2, J

X e X;

2.5.3. Define the family of functions (t. : X -<- rx.'Ma e A.)

by

t. (x) = t. (x) , i e A
n a

X e X;

t. (X) = ir^ (x)

2.5.4. Define the family of maps {a : x''' -» [x.!|o e A_|_}

by

afx") = (x. e t. (x") |u. (x. ,x ) = Sup u.{.,x")},
a a a a .a

t,(x'»)

where t. : x" -• fx.! is defined by

t. (x") = {z. e X. iz. e t. (z., x") .

We now denote A = yJ^ (a) and, for a e A, we denote
aeA_|_

X = X. , u = u. , t = t.. These identifications yield
a a a a a a
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(from 1.0.1 - 1.0.4 .-\nd 2.5.1 - 2.5.4) a unique economy

S = < W,U,T,A >.

( ad (b) and (c) ) Clearly, if the evolutions of S

and S are identical, their contractual sets will coincide

(see 1.6 and 2.3). This leaves only (b) to be shown, and

that is direct from definitions (compare 1.0.4 (2.^.8) and

1.6 (2.3) with 2.5.4)

.

2.6. Definition : Let S be a s.d.n. The simple economy S

derived from S via the procedure niven in the proof of

2.5 (a) will be called the derived (simple) economy of F.
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^- Equilibrium Existence
.
Results for Dynaniic GamPs

This section applies the equilibrium existence results
obtained in section 1 for economies to the case of dynamic
names. Given the reduction procedure of 2.5, the only con-
cern is to demonstrate conditions on the elements of a given
dynamic name S under which the elements of the derived
economy of S satisfy the hypotheses of Theorem 1.7. This
we now do.

3.0. Proposition: Let S = < W,Y,Y,«,:,tT,T,^ > be specified as
in 2.0, where

3.0.1. X. 5^ is a compact and convex subset of a locally

convex Hausdorff topological vector space (a e h
[so that the product X, too, is compact and convex
in a locally convex Hausdorff topoloaical vector space]

3.0.2. Y 7^ is closed and convex subset of a locally

Hausdorff topolooical vector space;

3.O.3. Y e [y] is compact and convex;

3.0.4. 6 : X X Y -^ Y is continuous and, for each x° t x'

linear on X. x {x°'} x Y;
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3.0.5. For each a e ^, w. : Y -v [x.] is a continuous man
a — ' a '

with 0). (y) convex for each y. ^ X.'

3.0.6. For each a z l" , u. : yxyx Y-»-P is continuousan — n

and, for each ( x", v) e X*^ x y quasi-concave on
n •'- n — ^

3.n.7. For each a e A, t. : X x y -+ |x I is a continuous

map for v;hich the section r.(x°) = { (x. ,x° ,y ,xl )

ct a a

e X. X {x"} X D X x Ixl e t . (x. ,
x" ,y ) } is convex for

a a ' a a a

each x" e x" and each k e N, where "D.ID Y is the

closed convex hull of the set

^D = {y e y| for some (n^'i^ ^ n^ 1/ Y = ~^i(^>^>y)

Then

(a) S is a siirple dynamic aame;

(b) for each a e /, a maps ^^x" x y upper semi-

continuously into CQ.(j^X^) ;
and

(c) the contractual set of S - in fact, of everv re-

striction of S to a compact, convex Y ' C Y -

is non-empty and compact.

Proof : (ad (a) and (b) ) : By Proposition 2.5, S will

be a well-defined s.d.g. and a e A will have the

asserted continuity and convexity properties if the





27

derived economy of S fulfills the hvpotheses (1.7.1-1.7.5)

of Theorem 1.7. Let S = <W,U,T,A> be the derived eco-

nomy of S. We verify each of the hypothesis 1.7.1-5 sepa-

rately.

(ad 1.7.1): 1.7.1 is fulfilled in view of 3.0.1 and 3.O.3.

(ad 1.7.2): 1.7.2 follows for a e A\{a} from 3.0.6. , con-

tinuity of 6, and linearitv of 6 on X. »
'^n^"-^

^ —

for each x" c x" , which, in turn, follows from tne con-
n n

tinuity and linearity properties of 6 (3.0.4). For

a = a, 1.7.

map (2.5.2) .

(ad 1.7.3): For a = a, 1.7.3 follows trivially from 3.O.3.

For a £ A\{a}, 1.7,3 reauires for each a e A that the

graph

T. = {( X., „x^, y, „xJ)|( X,, x", y) e „X ^ y,
n a nan -^ n a n a ' n ' i' n —

kl e ^t. ( X., „x", y)}d„X x Y x „X.na nana'n-^ n — na

of t« be closed and that the graph T* ( x , v) =

{(„x., xJ) e X. X x.l xl t t. ( X., ^x", v) } be convexnana n a n a'n a n a n a' n —

for each (^x^, y.) e ^^^ "" ^"

Let a e A be given and note that, by comoactness of

Y and X» , T« is closed iff t» is upper semi-

if each of its components t« is so, k + 1 e N. In fact,
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since t. is a composition (see 2.0.7) of t. {contin-

uous by 3.0.7), projection tt and ^~'^i (continuous

by 2.0.4, 3.0.4), t- is continuous, hence upper semi-

continuous, k E N. Also, °t. is continuous by 2.0.7 and

3.0.5. Thus, „t

closed.

t. is upper semi-continuous and T. isii u n a

We turn now to the convexity of the sections

n^S (n^"' i^- Fix (^x\
Y_) e ^^" x y. We first verify

that the sections ""t. (^i", ^) are convex (k + 1 e N) ,

Where T, (^x\ i) = ((^^,, ^^ , y, xl) . ^X- ^ f^'x^ v}

^ ^al^J ^ % (n^-, „x", v)}<r:^X X ^ X X.. That

^5 ^n^ ' i^ is convex is direct from the definition (2.0.7)

of t. and 3.0.5. So, let k e {l n - 1}. Using

2.0.4 and 3.0.4. , it is straightforward to verify that
k-1 •

]<•_

5, which is into 'Cy, is linear on X. x { ^^} y yu n a ^n

Now the convexity of kp (^.^^ ^^^^ 3.0.7) allows the

reader to compute that ^T. (^:^^ ^) is convex, roting,

of course, that projection (in oarUcular, tt, ) is
^X

linear and recalling the definition (in 2.0.7) of '^ t.
a

lb see that ^T. (^x^, ^) is convex, observe that

(,x., /\ ^} X V '^t. (^x., y, i)

^n^'a' n^"' i.^ ^ nH ^i^J ' n^"" ' I^ ^"^ "^^^ the fact that

"^a ^n^ ' ^^ is convex for each k + 1 e N.

(ad 1.7.4): 1.7.4 follows directly from 2.5.4





29

(ad 1.7.5) : The map t^, belncr a constant map (see I.0.4,

2.5.3), is certainly lov.'er semi-continuous. Now, fix

a e A\{a}. To establish the lower sem.i-continulty of t
^ a

we first note that by 2.5.3, t = t.. Now let
n n a

^' "
k^N ^^"^a ^^ ^"^ basic open set in the product topo-

logy of ^x^. It suffices to show that

is open. This beinq trivially so when V = 0, we assume

henceforth that V j^ 0. it is useful to define = X^ x y
n —

and, using the definition (2.0.8) of l., to rewrite r asn a

V = {a t o| for some ^i. e V, k e N => 4^ t ^'""t^f x.,g)}.

We now proceed to show that V contains a nbd of each

of its points. Toward that, suppose n e U. We will con-

struct a set U and complete our proof by showing that V

is a nbd of a contained in V.

^^"^ n^a ^ n^k' ^""^ define °P = {^L} and, for

each keN, '^P = x. , writina'^ °r x ""px...:^'

k_ k. --
k>' ^ k^

aeneric elements "p ^ "P and ^P e .P (k e N ) . Fo]

each k + 1 e N, define the function ^y : y.^ x ^ X bvn a k a n a -^

'^ ^'1^ « - ^k^a' ^i ^«)' (n^i'k^i^ ^ n^a "
k^i'

and the map ^x : j^P x p -v
[^"^""p] by

4) The reader will, please, excuse our momentary departure, in

defining j^P, from our usual notational convention as

announced in 0.0.
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^T(^p,q) = ''tj(''x(,^r),q) (^p,a) c ^P X 0.

Froir 2.0,7 we see that, for any k + 1 e N , and for any

H,(^x,,a) = ^(^p,q)

From this we are able once more to rewrite U as

U = {nEO| for soire ( n,..., p)e^^,keN => p e T(i,_^Pr"))

Since q e r
, 3 ( p, . . . , 6) c V v;ith p e ^ (i._-iP/f5

)

for every k g N. ;^lso, for each k + 1 e N, x is con-

k •

tinuous, since t. is so (as seen in the verification ad
a —

]^

1.7.3, above) and since x is obviously so. Thus, for

each k + 1 e N, t is certainly lov/er seir.i-continuous

.

* k k
To construct 0, set V = V (k e N) , and, for

n

each k + 1 e N (following the order k = n-1, n-2,...,0),

k iinductively define open sets W, -^V, ( j e { 1 , . . . ,k } ) , and

n, obeying:

'"•W = nV ^Prn)\ ( n ''"'^V.) n ''T(,p,q) Ji 0}
j=k+1 J

with

k

(^P,...,''p,q) e ( n ^v.) X ^nc'^w, ^v,Cr ^P, ''uCo.
j=l

^ *"

Fto check that this is possible, we use the followina facts

inductively (in the order k = n-1, n-2,...,0) : (i) x is
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lov/er Kerri-continuous and A V. i.'=; open, so W
-i=k+1 -"'

is open; (ii) ''^V r n ''^^',
, and '"''V e ''iC-f,^), so

j=k+1 -
'^

(""p,
. . . ,'^f ,'^) G Nv; (iii) usina (i) and (ii) ,

n ^Y X rC w is chosen as a basic open set in the product
1 = 1

1 ktopolocry of PX...X P X 0.

Set U = A U. Fror^ its construction, it is clear that V
k=o

is open and that q c V. It remains to show only that

V Cr. For this, we take any q e I'' and show a e i^ by

constructinq a point ( p,...,"f>) e V such that p e T(.p,q)

for every k + 1 e N. Since q e rC vCZ°\<l, we have

n -
^

(0 V.) n t( p,q) f^ 0. Choose f> as any point of this
j = 1 ^

intersection. Now assume that, for k + 1 e N,

k- " k k-1 - ~

p G ( r) V
• ) n T (i^_^P»<l) is chosen for every k e ( 1 , . . . ,k}

j=k ^

Then, ^p e A V. (k e { 1 , . . . ,k } ) and o e U C ^' being
j=k ^

k . - ~

clear, it follows that ( ^n, . . . ,'^n,q) e( n ^V ) x '^ncz'^W.
j = 1

^

Now ^W ^ f, so that ( f)
^"'^r.) (\ ''\(rP,n) is non-emnty

j=k+1 ^

k + 1 -
and affords an element p. This shows that the desired

( Pf---/"p) exists, so that V^V, establishina that S

satisfies 1.7.5, and completina the verification of the

hypotheses of theorem 1.7.
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( ad c) That S has a non-empty and compact contractual

set equilibrium is now a direct consequence of theorem 1.7

and proposition 2.5 (b) . That any restriction of S to a

(non-empty) compact and convex set X'CI X ^^^ ^ non-empty

and compact contractual set follows from 2.2 and a simple

check that the restriction S' of S so obtained satisfies

3. O.I - 3.0.7 (where only 3.0.3 is involved). This completes

the proof.

3.1. Remark : If, in 3.0, one takes the restriction of S to the

initial state i e Y, then 3.0 (c) im.plies that S (y.) has

an equilibrium for all ^ e Y, i.e., for each Z ^ X.' there

exists X E X satisfying 2.4.1 with
Y.

~
Y.- Thus, under

the hypotheses of the last proposition, there is an equilibrium

plan for each feasible initial state. Proposition 3.0 also

shows that there exist well-defined simple dynamic games, so

that 2.0 is not a self-contradiction. Of course, this V7ell-

definedness holds under much weaker conditions than 3.0.1-7.

Clearly, ^t* will be a continuous map of ^x"' x y into

^'^n^a^ """^ ^a' ^a' ^"^ ^ ^^^ only assumed continuous without

any additional convexity or linearitv assumptions. Piven this,

and recalling 1.2 and 2.5, the derived economy S of S (and,

hence, S itself) will be well-defined if 3.0.1-3 hold, if *

is continuous, and if, for each a e A, w., t*, and u. are
a a a

continuous

.
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3.2. Pemark : In the sinple dynainic qaires we have considered so

far, the feasible control rerrion to vrhich the a-control

k+1 •

X. is constrained to belonn depends on the previous
a

k

•

k-1 •

control X and state y. (See the discussion iinmediately

preceding 2.2). The reader will note, however, that the case

k •

where the control region in question also depends on y falls

naturally under the case that v/e consider generally. Pelow we

illustrate this by considerina a dependence of these reaions on

k • k •

on y, and, while this dependence is on y alone, the

reader will easily be able to extend the siinple idea involved

k • k-1 •

to the general case where the dependence on x and y

k •

is not through y alone.

Suppose S = < W,Y,Y,(5,w,t\T,A > satisfies 3.0.1-4

0.6 and that, for each

v/here ^F . : Y -> [x.] satisfies

and 3.0.6 and that, for each a e A, u. = "f. and t . = >f . o 6
a a a a

3.2.1. y^ is a continuous map for v/hich 'V . (y) e CO(X.) for all

y E Y, with '^r{y.) = {(x.,y) e X. x ^dIx. e I*, (y) } con-
a a ' a a a

vex (k E N) , where '^D is as in 3.0.7.

k + 1 •

The fashion in which the a-controls x. are con-
a

strained in S to their respective control reaions is,

hence, as follows:

'^'''i. £ >f •('^y) , k + 1 E N, a e /.
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Moreover, it is straiahtforward to check that S satis-

fies 3.0.5 and 3.0.7; so that the conclusions of Proposition

3.0 are valid.

The followina exanple illustrates the application of 3.0

to a salient class of deterministic dynamic games.

3.3. Example : Let A be a finite set, and let {m. e N|a e A),

{I. t N|a e A} and m e N be niven. We specify the elements

of a s.d.cr. S = < W,Y,Y, 6 ,(!> ,U,T,A > as follows:

3.3.2. Y = R;
m

3.3.3. Ye [y] is compact and convex;

3.3.4. 6 satisfies 3.0.4;

3.3.5. w. : Y -> |X.] is defined by w. C^) = "^ ^^^^ ' ^ ^ ^'

where 4- . : Y -» C (X. ) is defined by 4'.(y) =
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{x^ e X^l^li^ik^rY) < O) , in which \li ^
*

^i
** "^ "*

ji

^

a
is a given continuous function, (a e A);

3.3.6. t^:XxY-> |_x.] is defined for each i e A by

t.(x,y) = H'.(6(x,y)), (x,y) e X X Y;

(^x,y,^y) e ^X X Y X ^^ by u(^x,i,^y) =

"f. ("y) + E ^f.i^-'^'^k, ^y) , where °y e Y, and where
" k=o "

{'^f. : X X Y -> P|k + 1 e N, a E p) and {"f. : Y -> P|a e M

are each a family of continuous and concave functions;

3.3.8. a satisfies 2.0.8 (a e P)

.

Suppose, in addition, that the follov;ina condition holds.

3.3.9. For all a e A, 4'. satisfies 3.2.1. [Note that these

conditions on "¥. v/ill be satisfied if \h . is linear or
a ^a

if ip . satisfies: (i) ij;. : X. x Y -» P is continuous;
a a a f.

a
(ii) for each y e Y, \p . is convex on X. x {y};
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(iii) for all y e Y, there exists x. e X. v;ith
ct a

^P^(k^,Y) < O; and (iv) ij/^ is convex on X. x '^D, k e N.

See, e.n. Hogan [1971^, Theoreins 10,12.3

It is easily verified that S, as specified above, satis-

fies 3. o. 1-3.0.7, Therefore, by 3.0, and recallino 2.4 and

3.1, for each y e Y, there exists an x e X satisfyina,
•^ — n n ' '

for all a e A, u. ( x,y, 5( x,y)) =
a n "^ n n

Maxii^un. ("f.("y) + "^ ^f. i^^^k.,^^^k\^y))

n ft n

Subiect to

k- ;/k- k*a k-1-. o- • , .,
y = 6 ( X. , X , y) , y = X' k e N;

ijj.c'^x., ^ ""y) < O, ^x. ex., k e N,
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4 . Llirltations and Extensions

Our main results are the eauilibriuri existence result

for siirple econoiries (1.7), the lemira (2.5) reducinc sirrnle

dynamic qames to simple economies, and the eauilibrium

existence result (3.0) for simple dynamic cames

.

The reader may have been struck by our somewhat curious

obstinacy in always referrina to the objects we treat as

"simple". Here we try to indicate the deficiencies in the

above formulation which gave rise to this standing oualifi^

cation.

For simple economies, these deficiencies amount to our

havinn irinored the followina:

1. informational and/or perceptional imperfections

on the part of behavors;

2. the usefulness of specifying "effective" preferences

(utility functions) as dependent upon a desian pa-

rameter which may be called an "incentive scheme";

3. the fact that, in practice, the feasibility trans-

formations depend not only on the behavior chosen

from a given feasibility, but also on the aiven

feasibility itself - the resources one has tomorrow

depend not only on what one does today, but also on

the resources available today.
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From the viewpoint of eauilibrium existence, these

oininissions turn out not to be crucial, since it can be shdwn,

under fairly weak assumptions, that generalized economies

(called "social systems" in [Sertel, 1971^), including the

above features, retain the property of having non-empty, com-

pact sets of equilibria (see [[Sertel, 197l]]). Nonetheless,

from the viewpoint of social system design {e.q., selecting

an appropriate incentive scheme) , these characteristics are

clearly essential elements of the problem.

T^nother element of simplicity in our work and the pre-

vious literature is the assumption that the collective feasi-

bility is box-shaped, i.e., that what is currently feasible for

a. is independent of the current a-exclusive behavior. One

would, of course, like to remove this restriction, as many

of the problems of central planning (and control theory) are

not completely decomposable on the constraint side, even by

"dual" m.ethods (incentive schemes) .

Turning now to dynamic games, those treated here suffer

from the same restrictions discussed above for simple econo-

mies. Moreover, there appear to be sionificant difficulties

in interpreting the informational and behavioral connotations

implied by the evolutions (and their equilibria) of these

simple dynamic games. In fact, in the current formulation,

each nlayer a e A computes his a-plan given an a-exclusive

plan. This can be likened to the situation in an auction hall,

where each player calls out his projected plan, and recomputes
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his plan based on the projected (i.e. called out) plans of

all other players. The equilibrium existence question posed,

then, is sirply whether there exists a plan which is repeatable

in the sense of beino called out twice in succession. We find

it difficult, however, to interpret the equilibrium of this

"auction" process, unless n = 1, in the case where plans

are exhibited only as thev are enacted; i.e., where

equilibria are to be interpreted as repeatable in the sense

of enactable twice in a row.

Finally, as may be seen from 2.4, the equilibria whose

existence is established here correspond to open loop equi-

libria of dynamic names as they are usually defined (see, e.a.,

|Ho, 1970|). However, the existence of closed loop equilibria

can also be studied by similar methods. Essentially, one starts

with a oiven simple dynamic name S and derives from it a

k •

dynamic name S' by replacina the d-control spaces Y.

of S by the function space of stratecry maps (or control

laws) from the observed state and control history (until

tine k) to X.. The (non-trivial) issue to be resolved is
a

the determination of conditions under which the dynamic qame

S' resultina from this transformation will inherit from P

the convexity, linearity, continuity, and compactness assump-

tions required by Proposition 3.0 - or, more aenerally.

5) For a discussion of some aspects of the meaninrrfulness of

prrviilibrium in dynamic oames , see IPtarr & Ho, 1969a, 1969bl
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throuah an appropriate reduction, the assumptions required

by Theorem 1.7. In nrincirle, the same apt-roach links the

above results to stochastic dynamic names, thouoh clearly

much work remains to be done in specifying the transfor-

mations reauired for reducina these to the simple economies

and dynamic frames introduced here.
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^ • Appendi x

In the interest of accessibility, here we collect a

minirral amount of topoloaical information concerning certain

maps whose values or arcruments are non-empty sets. In what

follov/s, P and are topolocrical spaces. Our first de-

finition is extracted from [[Michael, 1951^, of course.

(N.B . For Isf, usf and finite topolorries on a hyperspace,

see [Michael, 195lQ.)

A.I. Definition : Let F : P -> [o] be a map. We say that F

is lov;er semi-continuous (Isc) [[resp., upper semi-contin uous

(use) J iff it is continuous when [o] is aiven the lower

semi

-

finite (Isf) [[resp. , upper semi-finite (usf)^] topolooy,

[Equivalently , we say that F is Isc (resp., use) iff the

set

{p c P
I

F (p) n V}

is open (resp. , closed) in P whenever VC is open

(resp., closed) .3 We say that F is continuous iff it is

continuous when [o] is qiven the finite topology. [Equi-

valently, V7e say that F is continuous iff it is both

Isc and use.

J

The proof of the following "closed araph theorem" may

be obtained, for example, by combining propositions 3.2 and

3.3 in [Prakash & Sertel, 1970], where 3.3 is also I.emma 2

of [Fan, 19 52] :
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P. 2. Proposition : Assume that P and O are both compact

Hausdorff, and let f : P -> 0, F : P -* C (0) be two maf s

.

Denote the oraphs of f and F by a and G, respec-

tively:

q = { {p,Ci)
1
p c P, q = f (p) },

<^ = ( (P/q) 1 P e P, q E F(p) }.

It is iff q (resp., G) C P x is closed that f is

continuous (resp., F is use).

The followinq fact, which is a part of corollary 3.1.4.3

in [sertel, 1971^, turns out to be a useful tool basic to

optimization.

A. 3. Proposition : Let P x n be non-emptv and compact Hausdorff,

and let u:Pxq->r be a continuous real-valued function.

Define w : C(P) x O - P by

w(d,q) = Sup u(p,q) (deC(P), QcQ)

.

ped

Equip C(P) with the finite topoloqy. Then w is continuous

We have the followinn obvious

A. 4. Corollary : Let all be as in A. 3, and let s : -> C(P) be

continuous. Defining v : O - P by

v(q) = w(s (rr)
, q) (a e O)

,

v is then continuous.
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A. 5. Fixed Point Theorem Theorem 1; Fan IS 52 : Given a

locally convex Hausdorff topoloqical vector space L,

if X^ L is compact and convex and if F : X -^ CQ^iX)

is an use transformation, then there exists a (fixed)

point x e X such that x e F(x) .
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