

.4

X

fHJUL 26 1990
)

SJ».

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

THE ELUSIVE SILVER LINING:

HOW WE FAIL TO LEARN FROM FAILURE

IN SOFTWARE DEVELOPMENT

Tarek K. Abdel-Hamid Stuart E. Madnlck

Sloan School of Management WP # 3180-90-MS

May 31. 1990

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

THE ELUSIVE SILVER LINING:

HOW WE FAIL TO LEARN FROM FAILURE

IN SOFTWARE DEVELOPMENT

Tarek K. Abdel-Hamid Stuart E. Madnick

Sloan School of Management WP # 3180-90-MS

May 31. 1990

^ ^^
^^'^'
-̂rs

THE ELUSIVE SILVER LINING:

HOW WE FAIL TO LEARN FROM FAILURE IN SOFTWARE DEVELOPMENT

Tarek K. Abdel-Hamid
Department of Administrative Sciences

Naval Postgraduate School

Monterey, CA 93943

Stuart E. Madnick
Center for Information Systems Research

Sloan School of Management
Massachusetts Institute of Technology

Cambridge, MA 02139

May 31, 1990

Accepted for publication to the Sloan Management Review

THE ELUSIVE SILVER LINING:

HOW WE FAIL TO LEARN FROM FAILURE IN SOFTWARE DEVELOPMENT

ABSTRACT

As modem organizations struggle with increasing complexity and

difficult challenges, we argue that every experience — win, lose, or draw --

- is a valuable organizational asset that must be fully exploited. First, this

requires an organization willing to view failures as opportunities to learn

something rather than as embarrassing moments to be quickly forgotten.

Second, and often missing, organizations need a formal postmortem
diagnostic tool that can reliably discern what worked on a project and what

did not. Without such a tool, it is possible that the wrong lessons will be

learned.

We describe our development of and experiences with a system

dynamics based tool for postmortem project diagnosis. In this paper we
focus our attention on software development projects since they have

become critical to the successful operation and strategy of many
organizations, yet have experienced serious problems. As an example,

when applied to a NASA software development project, three types of

insights were gained. First, we show how intuition alone may not be

sufficient to handle the complex and dynamic interactions characterizing the

software project environment, and may indeed mislead us in deriving the

wrong lesson regarding staffing policy. Second, we show how the

experimentation capability of the model may be utilized to derive additional

learning "dividends" from what continues to be a seriously under-exploited

software project lesson regarding undersizing. Third, the model uncovers a

well-disguised lesson, a case where too much of a good thing, such as

quality assurance, was bad.

INTRODUCTION

There is a silver lining to every failure. For it is only through costly experience and

errors that managers can develop effective intuitive judgement. "Good judgement is usually

the result of experience. And experience is frequently the result of bad judgement"

(Neustadt and May, 1986). And, not unlike sticking one's hand into the fire, what we leam

from our mistakes is often more indeUble.

Why do we fail to leam from project failures? There are at least two reasons. First,

we rarely try. Generally, mistakes are hidden rather than reported and evaluated. Second,

and often missed, the important lessons to be learned are rarely conveniently packaged for

easy picking, rather they often need to be dug out from deep within the project experience.

A primary objective of this article is to show how and why the silver lining often eludes us.

To illustrate this we will focus on the information technology field and use a case study of a

real software project

Software technology is playing an ever larger role in formulating business strategy,

in determining how an organization operates, how it creates its products, and indeed in

reshaping the product itself [(Porter and Millar, 1985) and (Bales, 1988)]. Yet, to the

dismay of not only system professionals but business executives as well, this formidable

dependance on software technology has not been matched by a corresponding maturity in

the capability to manage it. We continue to produce too many project failures, marked by

cost overruns, late deliveries, poor reliability, and users' dissatisfaction (Newport, 1986).

Failure to learn from mistakes has been a major obstacle to improving software

project management:

We talk about software engineering but reject one of the most basic engineering

practices: identifying and learning from our mistakes. Errors made while

building one system appear in the next one. What we need to remember is the

attention given to failures in the more established branches of engineering

(Boddie, 1987).

We will demonstrate the utility of a system dynamics based tool for conducting a

postmortem diagnostic analysis of what worked on a software project and what did not.

THE CHALLENGE OF SOFTWARE DEVELOPMENT

One measure of the impact of software is on the pocketbook. It has been estimated

that U.S. expenditures for software development and maintenance wUl grow to more than

$225 billion by 1995 in the U.S. and more than $450 biUion worldwide (Boehm, 1987).

This growth in demand for software has not, however, been painless. The record

shows that the software industry has been marked by cost overruns, late deliveries, poor

reliability, and users' dissatisfaction, collectively referred to as the "software crisis".

As early as November 9, 1979, a report to Congress by the Comptroller General

cited the dimensions of the "software crisis" within the federal government. The report's

tide summarizes the issue: "Contracting for Computer Software Development— Serious

Problems Require Management Attention to Avoid Wasting Additional Millions." The

report concludes, "The government got for its money less than 2 percent of the total value

of the contracts."

More than a decade later, the problems persisted . An article in the December 18,

1989 issue oi Defense News described the software problems with the Peace Shield project

which was then four years behind schedule and estimated to be up to $300 million over

budget (Baker and Silverberg, 1989).

Big as the direct costs of the"software crisis" are, the indirect costs can be even

bigger, because software is often on the critical path in overall system development. That

is, any slippages in the software schedule translate directly into slippages in the overall

delivery schedule of the system (e.g. a new approach to customer order entry or

manufacturing scheduling).

Although many of the largest'and most completely documented examples are found

in military projects, the "software crisis" is by no means confined to projects developed by

or for the federal government. It is similarly prevalent within private sector organizations

(Zmud, 1980). For example, DeMarco noted:

• Fifteen percent of all software projects never deliver anything; that is, they

fail utterly to achieve their established goals.

• Overruns of one hundred to two hundred percent are common in software

projects.

So many software projects fail in some major way that we have had to redefine

"Success" to keep everyone from becoming despondent. Software projects are

sometimes considered successful when the overruns are held to thirty percent or

when the user only junks a quarter of the result. Software people are often willing

to call such efforts successes, but members of our user community are less

forgiving. They know failure when they see it (DeMarco, 1987).

Personal computer software development is not immune to these problems either.

The headline in the May 11, 1990 issue of The Wall Street Journal says it explicitly:

"Creating New Software was Agonizing Task for Mitch Kapor Firm" (Carroll, 1990). The

article was sub-tided: "Despite Expert's Experience Job Repeatedly Overran Time and Cost

Forecasts." The issues cited in that article (e.g., "... programmers spend 90% of their time

on the first 80% of a project and 90% of their time on the final 20%") have been repeated

for decades in both public and private organizations, large and small companies (Kapor's

company had less than 30 people), and computers firom mainframes to PC's.

Due to the embarrassment and bad publicity associated with such problems, it is

likely that only a small portion are ever publicly reported. Mitch Kapor, the founder of

Lotus Development Corporation, agreed to describe the experiences in his new company

ON Technology Inc. "because he believes that software design must be improved and the

development process better understood." (Carroll, 1990) That nicely sums up a goal of this

paper. Disclosing the failure is only the first step, learning from the failure is the critical

next step.

ACASE-STIJDY

Consider the case of NASA's DE-A software project. The project was conducted at

the Systems Development Section of the Goddard Space Flight Center (GSFC) in

Greenbelt, Maryland to design, implement, and test a software system for processing

telemetry data and providing attitude determination and control for the DE-A satellite. In

planning and managing this project, approximately 85% of the total project cost was

allocated to development (design and coding) and the remaining 15% to testing.

Furthermore, a relatively large portion (30%) of the development effort was allocated to

quality assurance (QA), a level that is significantly higher than the industry norm (Boehm,

1981).

Initially, the project was estimated to be 16,000 delivered source instructions (DSI)

in size, and its cost and schedule were estimated to be 1,100 man-days and 320 working

days, respectively. Figure 1 depicts the values of these and other DE-A project variables

over the duration of the project. Because NASA's launch of the DE-A satellite was tied to

the completion of the DE-A software, serious schedule slippages could not be tolerated.

Specifically, all software was required to be accepted and frozen three months before

launch. As the project slipped and this date approached, management reacted by adding

new people to the project to meet the strict launch deadline ... as evidenced by the rising

workforce pattern curve in the final stages of the project seen in Figure 1. The actual final

results were: 24,400 DSI, 2,200 man-days, and 380 days.

Compared with its original estimates, obviously the DE-A project is not a total

success. The project overshot its schedule by 20% and its cost by 100%. On the positive

side, the end product was reported to be of high quality i.e., was reliable, stable, and easy

to maintain (NASA, 1983).

Relying upon "conventional wisdom", what lessons might NASA have learned

from the DE-A project?

Staffing . Obviously, the DE-A staffing policy of continuing to add people late into

the project is not cost effective. Indeed, Brooks (1975) suggests that by adding new people

to the late DE-A project, management actually delayed it funher! Thus, in the future they

should limit hiring to the early phases only.

Undersizing . Another obvious culprit is the initial 35% underestimation of the

product's size. Schedule estimation models are garbage in-garbage out devices: when poor

sizing data is input in one side, poor schedule estimates come out the other side. On the

DE-A project, an initial 35% underestimation of project size led to an underestimate of the

project's man-day and time requirements. Thus, in the future if faced with a similar project.

• • • • •
ttttt
3 9 3 3 9
U W b w u

« o —

O O O a^ •'<

O f^ O «« '^
»^ o

o o o o 2O r« O — '^O ro o

e O O an f^
O — O c«.— o

o o o e o

100 200 300

CO0D*C PIUSE

3S0
(DAYS)

•TTrriNG H

FIOJRE 1

TOE BEHAVIOR OVER TIME OF KEY CE-A PRQJECI VARIABLES

the budgeted project size, man-days, and time requirements should be all increased to

match the actual results of this project.

Quality Assurance . We also want to learn from success as well as from failure.

The high level of quality assurance activity appears to have been a favorable policy and

should be continued in the future.

Evaluation of "Conventional Wisdom". The reader of this paper may or may not

have suggested the three specific lessons listed above. The point is rather that

professionals in the field and other published articles advocate such views. In the

remainder of this paper we will elaborate upon the normal logic behind these views, a new

systematic way to study these issues, and the deficiencies in relying upon traditional, and

simplistic, "conventional wisdom".

ARGUMENTS FOR A FORMAL DIAGNOSTIC TOOL

Did in fact DE-A's aggressive staffing policy contribute to the project's schedule

delays? To most students of the DE-A project, the answer is: "Yes ... obviously." Brooks'

law, which states that adding manpower to a late software project makes it later, is

intuitively quite palatable since we know that new hires are not immediately productive and,

furthermore, consume considerable time of the experienced people to gain training and

familiarity with the project. Since its publication. Brooks' law has been widely endorsed in

the literature for all kinds of project environments e.g., systems programming-type projects

as well as applications-type projects, both large and small (Pressman, 1982). This, in spite

the fact that it has not been formally tested.

In (Abdel-Hamid, 1989a) we tested the applicability of Brooks law to the specific

DE-A project Our results indicate that while adding people late in the lifecycle did cause the

project to become more costly it did not, however, cause it to be completed later. A result

that proved unsettling to many.

A closer look, however, reveals that our result is not necessarily as counter-intuitive

as it might first appear. In fact. Brooks (1975) made no claim to the universality of Brooks'

law. On the contrary. Brooks was quite explicit in specifying the domain of applicability of

his insights, namely, to what he called "jumbo systems programming projects." Such

projects are significandy more complex to develop and manage than are smaller application-

type projects (like the DE-A project).

The cost increases that projects (such as DE-A) often incur when staff size is

increased is a result of the decrease in the team's average productivity and which in turn is a

result of the increase in the training and communication overheads on the project.

However, for a project's schedule to also suffer from a staff increase the drop in

productivity must be large enough to render each additional person's ngi cumulative

contribution to, in effect, be a ne gative contribution. We need to calculate the n£l

contribution because an additional person's contribution to useful project work must be

balanced against the losses incurred as a result of diverting experienced staff members from

direct project work to the training of and communicating with the new staff member(s).

And we need to calculate the cumulative contribution because while a new hiree's net

contribution might be negative initially, as training takes place and the new hiree's

productivity increases, the net contribution becomes less and less negative, and eventually

(given enough experience on the project) the new person starts contributing positively to

the project. Only when the net cumulative impact is a negative one will the addition of the

new staff member(s) translate into a longer project completion time.

Obviously, the earlier in the lifecycle that people are added and/or the shorter the

training period needed the more likely that the net cumulative contribution will turn

positive. Both such conditions did apply in the DE-A project Notice from Figure 1 that the

steep rise in the workforce level really commenced early in the coding phase. Also, the

training and assimilation period needed to bring new hirees up to speed was relatively low

on the DE-A project. There are two reasons for this. First, the software developed was

8

similar to the telemetry software developed by the GSFC organization for previous NASA

satellites. The second reason can be attributed to a task order arrangement that NASA had

with the Computer Sciences Corporation (CSC), through which a pool of CSC software

professionals was made available for recurrent work assignments on NASA's projects.

This tapped pool of software professionals has, over the years, gained a lot of experience

with the NASA project environment, and as a result, when recruited on a new project, they

are brought up to speed relatively quickly.

The above observations, then, demonstrate the real dangers of over-generalizing in

software project management Specifically, the danger here is in deriving the wrong lesson

from a DE-A postmortem analysis of staffing policy i.e., in concluding that DE-A's

particularly aggressive staffing policy did contribute to the project's schedule delays (when

it did not). But, more generally, our results suggest that the impact of adding staff to a late

software project will depend on the particular characteristics of the project, the staff, and

when in the lifecycle the staff additions are made. Because these project characteristics do

dynamically interact in a complex non-linear fashion (Abdel-Hamid, 1989a), relying on

intuition alone to do all the necessary bookkeeping can be perilous. The human mind,

studies have shown, is simply not adapted to reliably trace through time the implications of

such a complex set of interacting factors (Richardson and Pugh, 1981).

Engineers turn to laboratory experiments to understand the behavior of complex

engineering systems. Why, then, do we not use the same approach of making models of

social systems and conducting laboratory experiments on those models? Controlled

laboratory experiments on managerial systems are indeed possible with computers that can

simulate social systems:

Model experimentation is now possible to fill the gap where our judgement and
knowledge are weakest — by showing the way in which the known separate

system parts can interact to produce unexpected and troublesome overall system
results... The manager, like the engineer, can now have a laboratory in which
he can learn quickly and at low cost the answers that would seldom be
obtainable from trials on real organizations... Circumstances can be studied that

might seem risky to try with an actual company can be investigated (Forrester,

1961).

Like the microscope and the telescope did in a previous age, the computer is

opening up a new window on reality (Pagels, 1988). In the next section a system dynamics

based model of the software development process is described, and later used as a

laboratory vehicle for analyzing the DE-A software project experience.

A SYSTEM DYNAMCS MODEL OF SOFTWARE PROJECT MANAGEMENT

A comprehensive system dynamics simulation model of software development has

been developed as part of a wide-ranging study of the software development process

(Abdel-Hamid, 1984). The model integrates the multiple functions of the software

development process, including both the management-type functions (e.g., planning,

controlling, and staffing) as well as the software production-type activities (e.g.,

designing, coding, reviewing, and testing). Figure 2 depicts a highly aggregated view of

the model's four subsystems, namely: (1) Human Resource Management; (2) Software

Production; (3) Control; and (4) Planning. The figure also illustrates some of the

interrelations between the four subsystems.

The Human Resource Management Subsystem captures the hiring, training,

assimilation, and transfer of the project's human resource. Such actions are not carried out

in vacuum, but, as Figure 2 suggests, they are affected by the other subsystems. For

example, the project's hiring rate is a function of the workforce level needed to complete

the project on a certain planned completion date. Similarly, what workforce is available has

direct bearing on the allocation of manpower among the different software production

activities in the Software Production Subsystem.

The four primary activities in the Software Production Subsystem are:

development, quality assurance, rework, and testing. The development activity comprises

both the design and coding of the software. As the software is developed, it is also

reviewed, e.g., using structured walkthroughs, to detect any errors. Errors detected

10

fe

through such quality assurance activities are then reworked. Not all errors get detected and

reworked at this phase, however. Some "escape" detection until the end of development

e.g., until the system testing phase.

As progress is made on the software production activities, it is reported. A

comparison of where the project is versus where it should be according to plan is a control-

type activity captured within the Control Subsystem. Once an assessment of the project's

status is made using available information, it becomes an important input to the planning

function.

In the Planning Subsystem, initial project estimates are made at the initiation of the

project, and then these estimates are revised, when necessary, throughout the project's life.

For example, to handle a project that is perceived to be behind schedule, plans can be

revised to (among other things) hire more people, extend the schedule, or do a littie of

both.

A full discussion of the model's structure, its mathematical formulation, and its

validation is available in other reports [(Abdel-Hamid, 1984), (Abdel-Hamid, 1989a), and

(Abdel-Hamid and Madnick, 1990)]. The DE-A project case-study, which was conducted

at NASA after the model was completely developed, constituted an important element in

validating model behavior. In Figure 3, actual DE-A project results are compared with the

model's simulation output.

PROJECT UNDERESTIMATION REVISITED: AN OVER-USED BUT UNDER-

EXPLOITED LESSON

While undersizing is obviously a serious problem in software development,

identifying it as ihs culprit may not be very helpful to the practicing software manager, and

indeed it may even be harmful. First, it is a problem that the software manager might not be

able to avoid. Second, there is a strong temptation to embrace undersizing as a convenient

scapegoat for all the project's difficulties. Such rationalization can only "numb"

1 1

3 3 3
U U U
o o eo o •

»r O t/l

o >/)O >/1 (M

© -^

O C 1/1

C lt, r*.

o c o
o o o

(1)

ESTIMMLD Sa lUXJLE IN

n.ws

_^3^b

C2)
ESTIMATED PROJECT COST

IN MAN- DAYS

— -^- -i;^

i

«- Q..-

=^--
\^

r:^

^

(J)

WORK FORCE
(PEOPLE)

.Q.--
.-''

100 200

DroICN' ?\'.^S\ CODING P'l\5E

J
300 38C

TIME (DAYS)

.TESTING
I

O DE-A's actual ESTIMATED SCHEDULE IN DAYS

© DE-A's actual ESTIMATED PROJECT COST IN MAN-DAYS

Q DE-A's actual WORK FORCE (Full-time equivalent people)

FIGURE 3

ACTOAL VERSUS SDULATED PROJECT VAUJES

organizational curiosity, depriving management of the opportunity to appreciate the

multitude of project factors that can and do contribute to cost/budget overruns. In the next

section, we will see how other (not so obvious) factors did in fact contribute to DE-A's

cost and schedule overrun problems.

While the industry's predisposition to exaggerate the sins of undersizing may not be

a shocking revelation, that organizations consistendy under-exploit the undersizing lesson

should be. Recall that DE-A's final results were as follows:

- project size: 24,400 DSI

- development cost: 2,200 man-days

- completion time: 380 working days

The standard procedure in the industry (as well as at NASA) is to directly

incorporate project results such as the above into a database of historical project statistics to

support the development, calibration, and fine-tuning of software estimation tools as

depicted in Figure 4a. The underlying assumption here is that such project results constitute

the most preferred and reliable benchmark for future estimation purposes ... after all they

are actual values.

However, from our earlier discussion of the DE-A project history we must suspect

that its final cost of 2,200 man-days may noi be a desirable benchmark for future estimates.

The reason being that such a value reflects the inefficiencies incurred in the staffing of the

project, and which in turn were a result of its initial undersizing. Thus, if a new project

comes along that happens to be exactiy similar to DE-A, and if we assume that its size will

be properly estimated at the start (as we assume when estimating for any new project), then

a more effective staffing plan would be devised that avoids DE-A's last-minute staff

explosion. As a result the new project should require less than 2,200 man-days to

accomplish.

Notice, we used die word should and not would. For, if DE-A's (inflated) 2,200

man-days value were in fact adopted as the benchmark for estimating the new 24,400 DSI

12

RAW HISTORICAL
RESUKIS

CALIBRATION/
ESTIMATK^

(a) Current Practice

RAW HISTORICAL
RESULTS

"N0R>1ALIZATI0N
ENGINE"

NOFMALIZED
VALUES

,CALIBRAnc^/
ESnMATIC^

(b) Prcposed Normalization Strategy

FTCTJRE 4

project, savings due to better staffing may indeed not be realized. The reason: the self-

fulfilling prophecy of Parkinson's law. Work on a software project can expand in many

different forms to fill the available time. For example, work expansion could take the form

of goldplating (e.g., adding features to the software product which make the job bigger and

more expensive, but which provide little utility to the user or maintainer when put into

practice), or it could be in the form of an increase in people's slack time activities (Boehm,

1981).

What is needed is a strategy that allows us to fully capitalize on DE-A's learning

experience by "wringing" out those man-day excesses caused due to undersizing, to derive

an ex-post set of normalized cost and schedule estimation benchmarks (see Figure 4b). The

system dynamics model developed for this study provides a viable tool for such a task. In

addition to permitting less costly and less time-consuming experimentation, it makes

"perfecUy" controlled experimentation possible where "... all conditions but one can be be

held constant and a particular time-history repeated to see the effect of the one condition that

was changed" (Forrester, 1961).

Specifically, the strategy involves the re-simulation of the DE-A project with t\q_

undersizing. In order to determine the extent of the man-day excesses not one but several

simulation runs were conducted. In all runs the initial schedule estimate was held constant

at 380 days, while the man-day estimate was gradually decreased to lower values. The

results of such an experiment are shown in Figure 5. The X-axis depicts the different initial

man-day estimates, while the Y-axis depicts the project's final (simulated) cost in man-

days.

The results indicate that using DE-A's raw value of 2,200 man-days is indeed

wasteful. As the initial man-day estimate for the project is gradually lowered, savings are

achieved as wasteful project practices such as goldplating, unproductive slack time

activities, are gradually shrunk. This continues until the 1,900 man-day level is reached.

Lowering the project's initial man-day estimate below this point, however, becomes

13

>
<
9
z
<

2200

2100 -

2000 -

1900 -

1800

1400 16C0 1800 2000 2200

ESTIMATED MAN-DAYS

2400

FIGURE 5

IMPC3kT OF INITIAL ESTD'IATES ON FRCJECT OST

counter-productive, as the project not only sheds all its excess, but becomes in effect an

underestimated project Initial underestimation is costly (whether it is is due to initial

undersizing or not), as it leads to an initial understaffing, followed by a costiy staff buildup

later in the lifecycle.

The above results clearly indicate that the widely-held notion that raw historical

project results constitute the most preferred benchmark for future estimation is not only

flawed, but can be costly as well. In the particular case of NASA's DE-A project, a 1,900

man-day value is clearly a more preferred benchmark for inclusion in the normalized

database of historical project results over DE-A's raw 2,200 value, as it would save NASA

234 man-days — a 10.6% saving in cost. And in view of the pervasiveness of the

undersizing problem in the software industry, we can only suspect that the potential for

such savings is not only realizable, but indeed abounds in the software industry.

A SENSE OF FALSE SECURITY?

In the previous sections our focus has been on problems, their causes, and the

lessons we derive from them. Our focus here, on the other hand, is on "success" and the

lessons we can gain "in spite of it". Such a quest is rarely, if ever, undenaken. "March and

Simon (1958) designated dissatisfaction as the major trigger of organizational problem

solving. Organizations begin to search when problems are discovered or when gaps

between performance and expectations become large enough" (Hedberg, 1981). When, on

the other hand, goals are accomplished the system often deludes us into a sense of false

security which may not always be justifiable or wise. For it may breed complacency and

possibly even reinforce dysfunctional behavior.

As was mentioned above, DE-A's end product was reported to be of high quality.

TTiis was attained through an aggressive quality assurance (QA) policy in which as much as

30% of the development effort was allocated to QA activities. Was such a high level of QA

effort cost-effective?

14

Such a question is difficult to answer. In principle, we could conduct a real life

experiment in which the DE-A project is repeated many times under varied QA expenditure

levels. Such an experimental approach, however, is too costly and time consuming to be

practical. Furthermore, even when affordable, the isolation of the effect (cost) and the

evaluation of the impact of any given practice (QA) within a large, complex, and dynamic

social system such as a software project environment can be exceedingly difficult (Glass,

1982). Simulation modeling, on the other hand, does provide a viable alternative for such a

task.

In (Abdel-Hamid, 1988b) our model was used to investigate the impact of different

QA expenditure levels on the DE-A project Figure 6a plots the impact ofQA expenditures

(defined as a percentage of total man-days) on the project's total cost At low values of QA,

the increase in total project cost results from the high cost of the testing phase. On the other

hand, at high values of QA expenditures, the excessive QA effort is itself the culprit. The

reason: as QA expenditures increase beyond the 15-20% level, "diminishing returns" are

experienced as shown in Figure 6b. Such behavior is not atypical. "In any sizable program,

it is impossible to remove all errors (during development) ... some errors manifest

themselves, and can be exhibited only after system integration" (Shooman, 1983).

It is quite clear from Figure 6a that the QA expenditure level has a significant

influence on the total cost of the project. Specifically, DE-A's cost ranged from a low of

1,648 man-days to a high of 5,650 man-days over the range ofQA policies tested. It is also

obvious that DE-A's actual 30% QA allocation level is sub-optimal, yielding a total project

cost of 2,200 man-days that is 35% higher than the optimal of 1,648 man-days. Notice that

the latter could have been achieved with only a 15% QA allocation. (It is important to note

here that under the different QA policies tested, the quality of the software end product was

controlled to remain the same through increased testing phase activities.)

The significance of the above result is not in deriving the particular optimal QA

allocation level, since this cannot be generalized beyond the specific DE-A software project,

15

Project Cost in Man-Days

5,000

4,000

3,000

2,000

1,000

10

I

20 30

I

40

QA Effort as *

of Developaer.c Effcr:

(a) IMPACT OF DIFFE3?E2/r QA EXPElTOnURE LEVELS CN FKXJECT COST

" of Errors Deteccec

100

80

60

40

20

i

(b) IMPACT OF DIFFERD7T QA EXPENDITURE LEVELS Oti h OF ERRCRS CETECTED

FIGURE 6

but rather it is in the process of deriving it using the system dynamics simulation modeling

approach. Beyond controlled experimentation (which would be too costly and time-

consuming to be practical), as far as the authors know, this model provides the first

capability to quantitatively analyze the economics ofQA policy. In this case it allowed us to

discern a problem of over-spending which would have otherwise been effectively disguised

under the consuming sense of self-congratulation in having achieved the project's quality

goals. When such inefficiencies are not detected and quickly corrected they tend, overtime,

to be institutionalized into organizational "fat" that is then very difficult and often painful to

shed.

CONCLUSIONS

In this article we proposed a system dynamics based tool for increasing the

effectiveness of postmortem software project diagnosis. When applied to a NASA project,

the exercise produced three types of insights. First, we showed how intuition alone may

not be sufficient to handle the complex and dynamic interactions characterizing the software

project environment, and may indeed mislead us in deriving the wrong lesson (Brooks'

law). Second, we showed how the experimentation capability of the model may be utilized

to derive additional learning "dividends" from what continues to be a seriously under-

exploited software project lesson (undersizing). And third, the model uncovered a

disguised lesson, a case where too much of a good thing was bad (QA).

In general, without an effective postmortem diagnostic exercise to identify problems

and their causes, project deficiencies will not receive special scrutiny and may be repeated

on futiu-e projects. Errors made in one system will appear in the next one. On the other

hand, the payoff from an effective postmortem is a smarter organization that truly learns

from its failures.

16

RTRI.TOGRAPHY

1. Abdcl-Hamid, T.K. "The Dynamics of Software Development Project
Management: An Integrative System Dynamics Perspective." Unpublished Ph.D.
dissertation, Sloan School of Management, MIT, January, 1984.

2. Abdel-Hamid, T.K. "Understanding the '90% Syndrome' in Software Project

Management: A Simulation-Based Case Study." Journal of Systems & Software.

September, 1988a.

3. Abdel-Hamid, T.K. "The Economics of Software Quality Assurance: A Simulation-

Based Case Study." MIS Ouarterlv. September, 1988b.

4. Abdel-Hamid, T.K. "The Dynamics of Software Project Staffing: A System
Dynamics Based Simulation Approach." IEEE Transactions on Software
Engineering, February, 1989a.

5. Abdel-Hamid, T.K. "Investigating the Cost-Schedule Tradeoff in Software
Development" IEEE Software , forthcoming, 1989b.

6. Abdel-Hamid, T.K. and Madnick, S.E. "Software Productivity: Potential Actual,

and Perceived." Svstem Dynamics Review. Vol. 5, No. 2, Summer 1989.

7. Abdel-Hamid, T.K. and Madnick, S.E. The Dynamics of Software Development.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., forthcoming, 1990.

8. Baber, R.L. Software Reflected. New York: North Holland Publishing Company,
1982.

9. Baker, C. and Silverberg, D., Defense News . Vol. 4, No. 51, December 18, 1989.

10. Bales, C.F. "The Myths and Realities of Competitive Advantage." Datamation.
October 1, 1988.

11. Boddie, J. "The Project Postmortem." Computerworld . December 7, 1987.

12. Boehm, B.W. Software Engineering Economics. Englewood Cliffs, New
Jersey:Prentice-Hall, Inc., 1981.

13. Boehm, B.W., "Improving Software Productivity." Computer. September, 1987.

14. Brooks, P.P. The Mythical Man Month. Reading, Mass: Addison-Wesley
Publishing Co., 1975.

15. Carroll, P.B., "Creating New Software Was Agonizing Task for Mitch Kapor
Firm." The Wall Street Journal. Vol. CCXV, No. 93, May 11, 1990.

16. Cleland, D.I. and King, W.R. Systems Analysis and Project Management. New
York: McGraw-Hill, 1975.

17. DeMarco, T. Controlling Software Projects. New York: Yourdon Press, Inc.,

1982.

18. Forrester, J.W. Industrial Dynamics, Cambridge, Mass: The MIT Press, 1961.

17

19. Forrester, J.W. "Counterintuitive Behavior of Social Systems." Technology
Review. Vol. 73, No. 3, January, 1971.

20. Glass, R.L. The Universal Elixir and other Computing Projects which Failed.

Seattle. Washington: R.L. Glass, 1977.

21. Hedberg, B. "How Organizations learn and Unlearn." In Handbook of
Organizational Design. Volume I, edited by P. C. Nystrom and W.H. Starbuck.

Oxford, England: Oxford University Press, 1981.

22. McGowan, C.L. and McHenry, R.C. "Software Management." In Research
Directions in Software Tech nolo g v. by P. Wegner (ed.). Cambridge,
Massachusetts: The MIT Press, 1980.

23. Mills, H.D. Software Productivitv. Canada: Little, Brown & Co., 1983.

24. NASA. "Software Development history for Dynamic Explorer (DE) Attitude Group
Support System." NASA/GSFC CODE 580, June, 1983.

25. Neustadt, R.E. and May, E.R. Thinking in Time. New York: The Free Press,

1986.

26. Newport, John P. Jr. "A Growing Gap in Software." Fortune. April 28, 1986,
132-142.

27. Pagels, H. The Computer and the Rise of the Sciences of Complexity. New York:
Simon and Schuster, 1988.

28. Porter, M.E. and Miller, V. "How Information gives you Competitive Advantage."
Harvard Business Review. July/August. 1985.

29. Pressman, R.S. Software Engineering: A Practitioner's Approach. New York:
McGraw-Hill, Inc., 1982.

30. Ramamoorthy, C.V. et al. "Software Engineering: Problems and Perspectives."
Computer. Oct., 1984.

31. Richardson, G.P. and Pugh, G.L. HI. Introduction to System Dynamics Modeling
with Dynamo . Cambridge, Mass: The MIT Press, 1981.

32. Shooman, M.L. Software Engineering - Design. Reliability and Management..

New York: McGraw-Hill, Inc., 1983.

33. Zmud, R.W., "Management of Large Software Development Efforts." MIS
Ouarteriv. Vol. 4, No. 2, June, 1980.

18

765 o
J 8

Date Due

DEC a 1^9'^

M.C 2

APK26
FEB. 24 1998

OCT. 3 1

MIT LIBPARIFS

3 TDflO DDbSfll7S E

