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ABSTRACT

Phase correction, realized in the form of an all-pass net-
work, 1s frequently used in order to improve the transient
response of a system. An investigation is made here to
determine the phase correction that should be used to achieve
the optimum corrected response for a given system. In general,
the ideally desired resronse cannot be obtained by means of
phase correction. Then an error criterion must be used to
define the corrected response that best approximates the desired
response. The phase correction which gives the corrected
response that approximates the desired response with minimum
integral square error is determined. For the particular class
of systems in which reproduction of the system input is desired,
it 1s found that the correction should linearize the phase of
the system in order to produce a corrected response with
minimum integral square error.

Phase correction is most commonly used to enable a system
to reproduce better a step function input. It is found that
the correction which ylelds the corrected response with
minimum integral square error does not provide the step response
with the shortest rise time. By consideration of a suitably
chosen weighted integral square error criterion, a phase
correction is derived which ylelds a corrected step response
with the shortest possible rise time. It is found, however,
that the realization of this correction requires an all-pass
network with an extremely large number of circuit elements.
When correction to reduce the overshoot of the step response of
a system 1is desired, it is found that correction for minimum
integral square error provides the optimum response,
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CHAPTER 1

INTRODUCTION

1.1 Brief Statement of the Problem

The problem to be considered here may be stated as follows:
what can be done to change a given time domain transient to a
different, given, transient using only an all-pass network? An
all-pass network has a transfer characteristic whose zero
locations on the complex s-plane mirror the pole locations about
the imaginary axis. Thus the amplitude factor 1s a constant
along the imaginary axis, while the phase is a function of

frequency.

1.2 Origin and History of the Problem

It may happen that after design of a network having a
desired amplitude characteristic, it is found that its response
to some transient 1s undesirable. Then it would be advantageous
to alter this transient response by cascading with the original
network, a network with a constant amplitude transfer function.
For example, government regulations place limits on the band-
width allowed to television transmitters; full utilization of
the allotted bandwidth would require a sharp cutoff of the
amplitude spectrum near the band edge. But the output of such
a sharp cutoff filter contalns an undesirable ripple, or ringing
component after a sharp change in input. Perhaps by cascading
an all-pass network this ripple can be controlled.

In order to transform exactly one given transient to

another, a network with both a specific amplitude characteristic
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and a specific phase characteristic 1s required. The network
may, or may not, be physically realizable. If the impulse
response of the network is zero for negative times and bounded
for positive times, then the network 1is realizable. ’?
The problem of correcting the distortions which occur in
telephone lines has long been of interest. The effort of most
of the early correction schemes was primarily directed toward
flattening the amplitude of the transfer function. No attempt
at phase correction was made because the effect of phase dis-
tortion on voice communication over relatively short lines was
not important. As longer lines came into service, phase dis-
tortion became a serious problem and correction, in the form of
an all-pass network, was used to linearize the phase. Recog-
nizing the importance of the effect of phase distortion on
transient response, researchers in the field endeavored to
develop facile methods for evaluating this effect.2'3 Working
backwards from the results of analyses of particular cases,
they were able to reach some general conclusions which served
as guldes in other problems of phase correction. But no refer-
ence in the literature has been found attempting to make a
basic investigation of Just how much can be done to change one
transient to another by altering only the phase of its Fourier
transform. It is not clear, for example, that correcting a
telephone line or an amplifier to give linear phase leads to

the best possible transient response.

a Superscripts refer to numbers in the Bibliography




CHAPTER II
PROPERTIES OF ALL-PASS NETWORKS

2.1 Phase of an All-Pass Network

An "all-pass" network i1s so named because the amplitude
cf the transfer function is a constant, unity, for all fre-
quencies, These networks pass sinusoids of any frequency with-
out attenuation but with a phase shift which is, in general, a
function of frequency. Let the transfer function of an all-

pass network be

¢~ Jo(w) (1)

If an all-pass network is to be realized with lumped,
linear circult elements, its transfer function can have only
poles as singularities in the complex frequency, or s-plane;
if the network is to be stable, the poles must lie in the left
half of the s-plane. Since the amplitude is a constant, it
must be that the network has only right-half-plane zeros, and
that these zeros are placed at locations which are mirror
lmages about the imaginary axis of the pole locations. Figure 1
shows typical pole and zero locations of the transfer function
of an all-pass network. The fact that the transfer function of
an all-pass network must have a pattern of poles and zeros of
this sort restricts the form of the phase which can be reallzed
by these networks. It is evident, for example, that €(w) must
increase monotonically with frequency.

The restrictions on a phase function which can be realized
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as the phase of an all-pass network can also be made evident
by time domaln considerations. For an arbitrarily specified
phase B(w), the inverse Fourier transform of the function
e-jB(w)’ denoted F'l[e-jﬁ(w)], will not be zero for all nega-
tive time, in general. Obviously, only those phases for which
F-l[e-jﬁ(w)] is zero for all negative time can be physically

realized.

2.2 Approximation of Any Phase Function by All-Pass Network
Phase
Although not all phase functlions can be realized as the
phase of an all-pass network, it will now be shown that the
phase of an all-pass network, ©(w), can approximate as closely

as desired a phase function B(w) + wT over any finite frequency




range, however large, where B(w) is any phase function, and
wT is a linear phase which must be added to B(w) in order to
allow realization in the form of an all-pass network. This
means that we can approximate any desired phase plus the phase
of a delay network by an all-pass network phase; we can use
all-pass networks to realize a good approximation of any phase
if we are willing, in addition, to tolerate a delay, T.

In order to prove that the above statements are true, let
us consider the phase of a single pole-zero pair. Figure 2(b)
shows the phase of a pair whose zero lies at 8, = al + jwl .
Note that the pair contributes a total phase shift of 2m over

the range of frequencies -oco<w<oo.

broken-line
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Fig., 2. Phase of (s - ai) = Juy and Broken-Line Approximant
(s + 017 - Jwy
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The phase of this pair may be approximated by a broken-line
approximant of three segments, as shown in Fig. 2(b). The
broken-line approximant is tangent to the phase curve at

w o= wy and at w = + oco. The total phase of several pole-zero
pairs comrrising a given all-pass characteristic can be
represented as a sum of these broken-line approximants.

For the purposes of this proof, let no pole-zero palir be
placed on the real axis, Further, if the zeros are located at
S1s Sps cevy Spy eee with Wy < W<, .. <w < ..., let
these locations be chosen so that

w = o
Wpap =@ =7 Lopeg + oay) (2)

By choosing palr locations in this way, the second break point
of the rhase aprroximant of the pailr with the zero S and the
first break point of the phase approximant of the pair with the
Zero s .1 will occur at the same frequency. The approximant
to the phase of an all-pass network whose palr locations are so
chosen is shown in Fig. 3; the length of each line segment when
projected on the phase axis, or "phase length", is 2m. Now
it will be shown that by means of this broken-line phase
apprroximant of an all-pass network we can approximate Blw) + wT
for some choice of T.

Consider approximation of the curve B(w) versus w by a
curve of broken-line segments. Let us define a frequency
interval x which is small enough so that any broken-line

approximate makes a satisfactory approximation of B(w) provided
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Fig. 3. The Broken-Line Approximant to a Possible Phase Shift

Characterlstic of an All-Pass Network

that all of the line segments have a projected length on the

w axis, or "w length", that is no greater than x. If the least
slopre of B(w) is -m, let T be chosen large enough so that

xT - xm 2 2n. Now let the curve of B(w) + wT versus w be
approximated by a broken-line with segments of phase length 2m;
thls broken-line curve is also the approximant of some all-pass
network phase, ©{(w), as shown in Fig. 3. The line segment of
longest w length will occur in the vicinity of the point of
minimum slope of B(w) + wT and, because of the choice of T
indicated above, will have an w length equal to, or less than x.
By the original supposition of this paragraph, this is a good

approximation,




Because, in general, the function B(w) + wT approaches
infinity as w aprroaches infinity, it would take an infinite
number of line segments of phase length 2m to approximate the
function over an infinite range of frequencies. But an all-
rass network with a finite number of lumped circuit elements
can have only a finite number of pole-zero pairs; thus it can
have a phase characteristic which 1s apprroximated by only a
finite number of line segments of phase length 2m. Then the
vhase of an all-pass network can be made to approximate any
rhase function, B(w), plus some linear phase, wT, over a range
of frequencies O < w < Wy s where W is arbitrarily large but

e'jﬁ(w) , 1s needed to

finite. If a given transfer function,
operate on a transient whose transform has no significant com-
ronents above the frequency w,, an all-pass network can be
realized whose transfer function closely approximates

e-jﬁ(w)e-ij over the important frequency range, zero to Wy




CHAPTER III
PHASE CORRECTION TO ACHIEVE TRANSIENT RESPONSE
WITH MINIMUM INTEGRAL SQUARE ERRCR

3.1 Consequences of Allowing Unrestricted Choice of Phase

Function

Chapter II was concerned with finding the class of phase
characteristics which can be realized as the phase of the
transfer function of an all-pass network. We found that any
arbitrary phase characteristic can be aprroximated as closely
as may be desired by the phase of an all-pass network, provided
only that we are willing to acceprt, in addition, a time delay
in the response of the all-pass network. In the transient
correction problems being considered here, this delay is not
objectionable; we conclude that we can realize any phase that
we may need in order to accomplish a given transient correction.

The problem of this chapter, and of succeeding chapters,
1s to find the phase characteristic which does the best job of
transient correction in a given problem, No physical realiza-
bility restrictions need to be imposed on the phase character-
istic. We will simply look for the phase, ©(w), which makes
the best transient correction, where 6(w) can be any odd
function of frequency. Now the transfer function e'jg(w) can
be considered as belonging to a fictitious, nonrealizable net-
work but can no longer be associated with a realizable all-pass
network. Remembering this, it should come as no surprise when,

for example, the step response of some system which has been
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- Jo(w)

cascaded with the phase correction network ¢ has non-
zero values before t = 0, Certalnly this situation is not
physically possible in the laboratory. However, we have shown
that it is possible to realize an all-pass network for rhase
correction of the system which will give very nearly the same

corrected system step response, except for a delay.

3.2 Choice of an Error Criterion

Having explored the consequences of allowing the phase
correction, 6(w), to be any odd function, we proceed to the
discussion of ways of choosing ©{w) in a given transient cor-
rection problem., Suppose that i(t) is the undesired tran-
slent that we propose to improve by means of phase correction.
If possible, the phase correction should change i(t) into r(t),
where r(t) is the desired transient. The network which

changes 1(t) to r(t) has the transfer function

G(w) = %%i% =|G(w)] c— g (w) (4)

where R(w) and I(w) are Fourier transforms of r(t) and 1i(t),
and |G(w)] and #(w) are the magnitude and phase of G(w).
The convention implied here, that of using corresponding small
and capital letters for time and frequency domain functions
related by the Fourier transform, will be continued throughout
and without further comment.

Clearly, unless |G(w)| = 1, a phase correction network,

e-jO(w), cannot change i(t) to r(t). To allow more freedom in
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the attempt to correct the undesired transient suppose that we
also use an amplifier with a transfer characteristic K; a

phase correction network with the transfer function Ke-Jg(w)
is now available for use in making the transient correction.

* .
Jo(w) cannot accom-

Sti111, unless |G(w)| = K, the network Ke~
plish the change to the desgired transient. The best that can
be done with rhase correction is to change 1(t) to r*(t),

where r*(t), the corrected transient, is an approximation of

r(t) and where

R*(w) = KI(w)e™ 30w (5)

There is an error in the approximation

e(t) = r(t) - r*(t) (6)

Because the transient correction cannot be made without
error, there 1s a question as to what constitutes the "best"
correction., Some sort of error criterion must be imposed in
order to define the r*(t) which best approximates r(t). The
use of the integral square error criterion furnishes an appro-
rriate starting point in this investigation; the criterion
makes good sense physically and, in additlion, leads to a math-

ematical formulation which can be handled quite easily.

3.3 Minimization of Integral Square Error

The integral square error, ez, is given by
2 © 2
e =f [r(t) - r*(t)]° at (7)
-®
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By making use of Parseval's Theoren

(1]
e2 = E%T-f |R(w) - R*(w) | 2 qw (8)
-0
And since

R(w) - R*(w) = T(w)[G(w) - Ke~30(W)] (9)
Equation 8 becomes

©
e? = %FOIOII(w)IZ [G(w) - Ke-Jg(w)] (a(-w) - K€+Jg(w)] dw (10)
-0

We want to find the phase function ©(w) and the gain factor K

which minimize e2 .

At this point the discussion will digress to introduce
enough of the theory of calculus of variations to permit solu-
tion of this minimization problem. Knowledge of ordinary
differential calculus allows us to find values of x for which
P(x) 1s a maximum or a minimum, or more directly, the values of
x for which P(x) has zero slope. But this knowledge does not
tell us how to find the function 6(w) which minimizes the

integral

_ (00
2 =f QLw, o(w)] dw (11)
- .

However, a close analogy can be drawn between these two
problems. We find values of x for which P(x) has zero slope,
and we find functions, ©(w), called "extremals" of the integral

for which the value of 32 is "stationary". At points of zero
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slope of P(x), an infinitesimal change in x produces no change

2

in the value of P(x). For extremals of e“, an infinitesimal

change in the form of the function 6(w) produces no change in

the wvalue of e2. Then extremals of e2 are the functions ©(w)

which satisfy the equation

(00)
0= -d—f Qfw,0(w) + a A (w)] dw (12)

v0] a=20

where A(w) is any allowable variation of ©(w). In the partic-
ular problem that is being considered in this section, A(w)
can be any odd function of w., Extremals of the integral of
Eq. 11 give values of the integral which are stationary. Just
as points of zero slope of P(x) occur where P(x) is a maximum,
a minimum, or possibly where it is nelther a maximum nor a

minimum, stationary values of e2 may be values which are maxima,

minima, or neither. Further testing of some sort is needed to

determine which extremal gives the value of e2 which is the

minimum that can be obtailned.

Now we can proceed to find the phase function and the

gain factor which minimize ez. The integral square error, as

given by Eq. 10 must be minimized with respect to both 6(w)
and K, The problem will be attacked as follows. First the
extremals, ©(w), will be found with K as a parameter. Substi-
tution of these extremals into Eq. 10 wlll leave an expression
for 25 involving only K, which can then be minimized with

respect to K. Proceeding according to this outline
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@O
0 = é%‘/. | T(w)] 2 (G(w) - xe—JL8(w) + ak(w)])
-0

(G(-w) = Kejfg(w) + a}\(w)]) aw (13)

Performing the differentiation indicated in Eq. 13

© . .
0 = 3‘/. [I(w) | { Ke'Jg(w)[G(_w) - Kejg(w)]
-

ke W g(w) - ke W} a(w) aw (1)

With simplification of the curly bracketed term, Eq. 14 becomes

©
0 =f Aw) [T(w) | ° {nlo(w)e* )1} au (15)
-

Note that the integrand of Eq. 15 is an even function of w.
Because A (w) can be any, arbitrary odd function, if Eq. 15 is

to be satisfied, it must be that
2 Jo(w)
2] ° { mlc(w)e 1} = o (16)

Assume now that there are no frequency intervals over which
either |I(w)] or |G(w)] is identically zero. This is

certainly the usual case. Then using Eq. 4

sin [F(w) - 6(w)] = 0 (17)

The solution of Eq. 17 is not unique. The general solutlon is

o(w) = g(w) + n(w)m (18)
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where n(w) is any odd function of w whose value is elways an
integer except at discontinuities.

Remember that the plan of attack on this minimization
problem called first for finding 6{(w) with K as a parameter,

However, according to Eq. 18, ©(w) is independent of K. Then

we can proceed immediately to minimize ez, as given in Eq. 10,

with respect to K,
2

_4de
0 =S¢ (19)

o
i

@
./' |I(w)|2 { ~e—de(w) [(H(~w) - ke IO (W)
-®

-~ Jolw) [(H(w) - Ke-Jg(w)] } dw (20)

@®
0 .-.-f Iz’ {x - Rele®(0)1} aw (21)
-

Solving for K and making use of Eq. 18

[ ? W) (12 aw
K = -: 2 (22)
[o11@)? aw

Now there 1s the question of the furiction n(w). For some one
particular n(w) function Eqs. 18 and 22 give the phase

function and the gain factor which minimize ez. Substituting
e(w) as in Eq. 18 into Eq. 10

— (00}
e = %f]:c(w)l2 [la(w)| - K(-:L)n(‘”)]2 dw (23)
-
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Evidently e2 is minimized when n(w) identically equals zero
(or some even integer since a change of 2m in a phase function
is inconsequential). Now the solution of the minimization

problem is complete,

8(w) = glw) (24)
@ 2
[Jr) 2] aw
[z ? aw
-00
The minimum integral square error is
—_ @
e? =f 1T(w)]? []6(w)] - K1% aw (26)
-

Perhaps some discussion and interpretation of these
results is in order. The specification of the phase correc-
tion needed %o minimize integral square error 1s surprisingly
simple. Put into words, Eq. 24 says that we should make the
phase correction network the same as the phase of the network
needed to make the transient correction without error. Further,
this result 1s not dependent upon the transient to be corrected,
1(t), or upon the magnitude function of the network needed to
make errorless correction, |G(w)|.

Application of the minimum integral square error criterion
to the common practical problem of phase correcting an ampli-
fier gives an interesting result. An amplified reproduction of

the input 1s desired, thus r(t) = Ci(t). Errorless correction
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would be made by a network whose phase exactly cancels the
rhase shift of the amplifier; the phase correction network
must also have this phase characteristic i1f its response is to
have minimum ;E. Thus, the over-all phase characteristic of
the amplifier with phase correction must be made zero. But

the network to make this phase correction is not physically
realizable., Instead, we must realize a network which makes the
rhase of the corrected amplifier approximately linear., And
this is Jjust what is done in current engineering practice. It
is not generally known, however, that this conclusion can be

reached by requiring phase correction leading to minimum inte-

gral square error.
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CHAPTER IV
PHASE CCRRECTICON OF A SIUGGISH SYSTEM

4.1 Correction of a Sluggish System for Minimum Integral

Square Error

A comprletely general specification of the phase correction
needed to minimize ;E is given by Eqs. 24 and 25 of Chapter III.
In this chapter we wish to ugse these results in a particular
transient correction problem, This example will make clear
some of the implications of using the integral square error
criterion and will suggest a modification and extension in the
mode of 1ts application.

Phase correction finds its most common use with an
amplifier, where 1t serves to improve the fidelity of the out-
put of the system. The performance of such a system 1is
usually Judged by the accuracy with which it reproduces a unit
ster input. The definition of a unit step which will be used
here is different from that used by most authors. A unit step
will be defined as a function which is -3 for negative times
and +3 for positive times with a discontinuity at t = 0. The
Fourier transform of this unit step 1is (jw)-l. The definition
of the unit step is made in this way so that it will be a time
function which is odd; its transform 1is purely imaginary and
an odd function of w,

Suppose that we want to correct a sluggish system having
the transfer function

1

—_— (27)
(Jwt1)?
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so that its step response has minimum integral square error.

Ar ideal system would have a step response with the transform

R(w) = —jlu; (28)

The input to the phase correction network is

S S —
I(w) = 55 Y (29)

—

To correct for minimum eZ, the phase correction must be such

that R¥(w) has the same phase as R(w). Thus

= <& () (30)

The gain factor, K, needed to mirimize e~ is obvious from
rhysical considerations; K = 1 is needed because this is the
gailn for which r#¥(t) approaches the same final value as r(t),
or +3.

Figure 4 shows r*(t), and 1i(t) plotted with its time
origin moved back to t = -1.7 seconds. The rise time of the
system, defined as the time taken for the response to climb
from =-0.4 to 0.4, is reduced somewhat by the phase correction;
from 3.25 seconds for i(t) to 3.2 seconds for r#*(t).

It is interesting to notice that r*(t) is an odd function
of time; R*(w) is purely imaginary. The fact that the correct-
ed response that ylelds the least integral square error turns
out to be an odd function seems very appropriate. Intuitively,

we might well have expected an odd function because in
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—

evaluating ez, the error is consldered as being equally unde-
sirable for both positive and negative times. That is, the
error is given equal weighting under the integral for all times.
Therefore 1t seems appropriate that the magnitude of the error
be the same for like values of positive and negative time.
Further, if r*(t) had contained both odd and even components,
its specification could not have been unique. Corrected
responses with the transforms R;(w) + jRZ(w) and R;(w) - jRZ(w)
have the same integral square error. Nelther of these argu-
ments is offered as anything conclusive, but they are intended
only to suggest that we might have guessed that an odd response

would minimize e2.

4,2 Extension of the Integral Square Minimization Method
Having solved in Chapter III the general problem.of find-
ing the phase which 1s needed to make a minimum integral square
error correction, and having noted in the first section of
this chapter some of the implications of this solution, let us
now consider for a moment whether the use of the integral
square error criterion 1s really leading to the most desirable
corrections. Since we are unable to make an errorless trans-
formation of the undesired transient by means of phase correc-
tion, perhaps we should define a more realistic objective. For
the case of correcting the step response of the sluggish system
of section 4.1, we would like to have the shortest rise time
which can be obtained without excessive overshoot. In some

other problem where the step response of the system exhibits
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overshoot, it may be that we want to reduce this overshoot by
the phase correction. Thus, while the minimum integral square
error criterion can be considered to give a broadly conceived
"best over-all transient correction", there is no reason to
believe that it leads to the best correction in terms of
decreasing rise time or overshoot. In fact, as we shall see,
it does not. But it 1is very difficult, if not impossible, to
formulate a mathematical error criterion which guarantees a
corrected step response with shortest rise time, or with
minimum overshoot. However, it is fruitful to look at the
results given by some other errcr criteria.

A simple extension of the integral square error criterion
proves useful. Although ideally we would like the corrected
step response of the sluggish system of section 4.1 to be a
step function, a better corrected step response can be obtained
by the somewhat devious procedure of designating a function
other than a step as the desired response, and correcting for
minimum integral square deviation from this function.

Suppose that we take as the desired response

r(t) = v(t) (31)

where v(t) is as shown in Fig. 5. The functicn v(t) is an odd
function of time which is composed of three line segments, one
of which is tangent at t = 0 to the corrected response obtalned
for the minimum 25 approximation of a step function, the curve
r#(t) of Fig. 4.

It is convenlent to suppose that correction for the
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minimum ;5 approximation of a step has already been made, and
that we are adding additional correction in the form of a
network with the transfer characteristic e-j@(w) to further
improve the translent response. Thus the input to the phase
correction network is the curve r*(t) of Fig. 4, which has the

transform

1 1
I(w) = = (32)
Jw w2+1
We must now find the phase correction, 6(w), which transforms
1(t) into the approximation of v(t) having the least integral
square error.
The transform of r(t) = v(t) is

R(w) = —b—s [ . 7] = L 2l0 0 (33)
2(Jw)

The phase correction must be chosen so that R¥(w) has the same
phase as R(w). This phase 1s given by the curve of Fig. 6.
The transfer function of the corrected system, JwR*(w), is a
purely real function of w and is as shown in Fig. 7.

At this poilnt an argument that r*(t) must have a shorter
rise time than i(t) can be made. The corrected response, r*(t),
is a better approximation, judged by ;5, of v(t) than is 1(t).
In the region of time near t = 0, r*(t) has less slope than
1(t); the area under the curve of JwR*(w) in Fig. 6 1is less
than the area under a curve of (w?+1)”l. The function v(t) is
tangent to 1(t) at t = 0. Thus near t = 0, 1(t) 1s a better
approximation of v(t) than is r#*#(t). It must be that in some
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Fig. 6. Phase Correction Needed to Give Minimum e?
Approximation of v(t)
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Fig. 7. Transfer Function of System Corrected to Give
Approximation of v(t) with Mimimum R
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other region of time, r#*(t) approximates v(t) more closely than
does 1(t). Looking at the curves of i(t) and v(t) in Fig. 5,
it seems most likely that this occurs in the vicinity of t = 1.
If this is so, it is evident that r*(t) should have a shorter
rise time than 1i(t).

Having provided a Justification of why phase correction
designed to minimize integral square deviation from v(t)
should give a corrected step response with a shorter rise time
than that obtained for phase correction designed to minimize
;§ deviation from the desired step function, we shall evaluate
the response, r#(t), obtained in this manner, The function
R¥(w) is shown in Fig. 8. Notice that beyond the first dis-
continuity in R*(w) at w = m, R*(w) very nearly equals fjw—B.
The sum of the functions of Fig. 9(a), (b), (e), ... , closely

approximates R*(w). The inverse transform of the curve of

Fig. 9(a) is the step response of the system corrected for

minimum e2 deviation from a step function, which has already

been calculated and plotted in Fig. 4. If the inverse trans-

form of the functions FéB)(w), where
o

0, |w
F‘£3)(w) ={ 1 ll l|< Yo (34)
o , lwl>w
(Jw)? °

were known for w, = 27, ... , the job of calculating r*(t)

could be completed rather simply. However, curves of this




R*(w) A
—_—
jw(w2+1)
-1
v 1//5;‘ jw(w2+l)
| -
*
Fig. 8. Plot of R (w) vs. w

jw(w2+l)

(a)

ALy

(c)

Fig. 9.

The Series of Functions Whose Sum
3
Approximates R (w)
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function could not be found in any of the mathematical publi-
cations and the task of calculating them had to be undertaken.

Curves of the inverse transform of the function

o, |w|<1
F](_n) (w) ={ 1 (35)
——, jw]>1
(Jw)

are presented in Figs. 10 through 16 for values of n from 2 to
8. The curves giving fgn)(t) can be extrapolated to larger

values of time by noticing that for n even, f{n)(t) approaches

(n)

n
(--1)2 BAn % o, large t, and that for n odd, f; (t) approaches

mwt
n-1

(-1) 2 9§Stt for large t. By a simple normalization of these

curves, the inverse transform of Fin) (w) 1s found to be
o)

) () = — £3) (w_t) (36)
(o]

The curve of f§3)(t) of Fig. 11 is the one of immediate
interest; the other curves are plotted for reference and will
be used in a later chapter.

The s tep response of the corrected system, r*(t), is
shown in Fig. 5. Only the first two terms of the infinite
series indicated in Fig. 9 were taken. The inverse transform
of the function of Fig. 9(b) is the difference between the
curves r*(t) and 1(t) of Fig. 5. This difference is small and

according to Eq. 36, the amount which would be contributed by
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the remaining terms of Fig. 9 is even smaller. Again, as we
might have guessed, the correct response is odd. By the
additional phase correction 6(w) of Fig. 6, we have managed to
decrease the rise time of the step response from 3.2 seconds
to 3.15 seconds with negligible overshoot. Although this
improvement in rise time is small, it is now quite clear that
correction for minimum ;E deviation from a step function does
not lead to the shortest possible rise time. Other phase

corrections, such as the one presented in this section, should

be investigated.
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CHAPTER V
PHASE CORRECTION TO ACHIEVE
TRANSIENT RESPONSE WITH MINIMUM
WEIGHTED INTEGRAL SQUARE ERROR

5.1 Derivation of the Equation Satisfied by the Phase

Correction which Minimizes Weighted Integral Square Error

In section 4.2 it was established that correction for
minimum integral square deviation of the corrected response
from the desired response may not lead to the best step
response in terms of shortened rise time or suppressed over-
shoot. Thus we are led to consider other error criteria. A
simple extension of the integral square error criterion has
been discussed 1n which the subterfuge was used of considering
the integral square deviation from some function other than
the desired response. This criterion gave a slightly improved
corrected step response for the system of section 4.1, The
principal fault of the extended ;5 criterion is that it is
difficult to use with much real perception; that is, it 1is
hard to know how to choose r(t) so as to improve r*(t). For
example, it was not obvious that by choosing r(t) = v(t), a
better step response would be obtained. The choice of r(t)
which is needed to give the best possible corrected step
response is not at all clear.

Considering the above situation, it is evident that the
need is for an error criterion which is more flexible than the

simple integral square error criterion, but one which gives a



38

greater prior indication of the resulting response than does the
extended integral square error criterion. A useful criterion

is weighted integral square error, aez, where

- ®
ae? =f a(t)[r(t) - r*(t)1° dt (37)
-
and where a(t), the weighting function, can be any desired
function of time. The weighted integral square error
criterion meets the requirements of flexibility and percep-
tiveness mentioned above. In correcting for minimum ;;§, the
weighting function can be used to galn greatest fidelity in
important regions of time, while de-emphasizing errors in less
important regions.

If we are to use weighted integral square error as the
basis for correcticn, we must solve the problem of finding the
phase correction, ©(w), and the gain constant, K, which
minimize ;;§ in a given problem, The mathematics of solving
this minimization problem are more involved than they were in
solving the 25 minimization problem of section 3.3, but the
ideas are exactly the same. Unfortunately, the resulting two
equations which must be satisfied by €(w) and K cannot be
solved, in general. However, with suitable speciallzation,
the equations yileld information which 1s very useful in making
phase corrections.

Having made these preliminary remarks, let us proceed

with the solution of the minimization problem. The plan of

attack will be first to find the values of K for which the
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rate of change of ae2 with respect to K 1s zero, then to

eliminate K and find, by the calculus of variations technique,

the equation satisfied by the extremals, ©(w), of ae?,

Equation 37 may be written

- ®
ae? =f a(t)le(t)]? at (38)
-

If Eq. 38 is written in terms of E(w), the transform of e(t),
the result is

_ ® ® pm
ne? = —%f a(t) E[IE(X)E(y)eJ(X *V)0axay 14t (39)
oo o/~

Interchanging orders of integration

_ © P ©
ae? = ;—l-gf f E(x)E(yi[ a(t)c-:‘j(X oyt dt dx dy (40)
T oJ-0o/-m ©

o)
—l—é-f v/ﬂq;_.‘(x)E(y) A(-x -y) dx ay (41)
™ olap -0

Written in terms of ©(w) and K, Eq. 41 becomes

—_— (10 00}
ae =ﬁ-5f f I(x)I(y) [Ke=®X) _ g(x)]
- o~

[Ke-Jo(y) - G(y)] A(-x -y) ax dy (42)

In order to minimize ae2 with respect to K, we set
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aK (43)

® (¢0)
0 =f f I(x)I(y) A(=x ~y)e39(%) [ke=38(¥) _ g(y)lax ay (44)
-0 Y-

Solving (44) for K

K= D (45)
where

® PO

N =°/p J[;(X)I(y) A(-x -y)e-jg(X) G(y) ax dy (46)
- 9-®
o PO

D =f fI(x)I(y) Al=x —y)e=38(x) =38(¥) 4y 4y (47)
-0~

By means of Eqs. 45, 46 and 47, Eq. 42 may be written

O P
ae® = L [K°D - 2Km +f f I(x)I(y) Al-x -y)G(x)c(y) dx dy]
o ~ 0 (48)

o
®
L[}

® p© 2
_1_2. [jﬂ f I(x)I(y)A(-x~y)G(x)G(y) dx dy = %—- 1 (49)
k™ oo~

Now, having an expression for ae2 from which K has been elim-
inated, we can find the extremals of this integral. In order
to simplify the writing of the equations which are to follow,
the definitions will be adopted
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(e0) (e 0]
S f fP[x,y,G(x),O(y)] dx dy
—CD —CO a) Q)

= Egon f Plx,y,0(x) + aA(x),0(y) + ar(y)] dax ay

a=0
(50)
(o] @
f fP[x,y e(x), e(y)] ax day
= f f Plx,y,0(x) + aA(x),6(y)] dx ay o (51)
Extremals of ;;§ must satlsfy the equation
= 8 (ae’) (52)
From Eq. 49
0—8(-193)—2@8N N2 8D (53)
= 9% =2p0N -2 53
Obviously
N
0 = 5- = K (54)
is not the solution of Eq. 53 which is of interest. Thus
=28N - K8D (55)
Noticing that
8N = 3_N (56)
8D=8xn+8yn=zan (57)
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Eq. 55 becomes
0= SXIJ- K 8x D (58)

Now the quantities SXN and 8xD must be evaluated

W PO
8N = ..f f I(x)I(y)A(-x-y)A(x)e'JQ(X)G(y) dx dy (59)
~0d-0

® LrO
8D - -f f I(x) T(3)A(-x-y)A(x) =30 (X =38(¥) 4y ay  (60)
~0o-

Substituting Eqs. 59 and 60 into Eq. 58

) @©
0 -f x(xmx)e-ﬂg"‘){f I(y)A(-x-y)[0(y) - k™7 ay} ax
- -0
(61)

Grouping some of the terms and substituting w for the dummy

variable x

00} (e8]
0 =f R*(w)k(w){f A(-w-y)[R(y) - R*(y)] ay } dw (62)
-0

-

Since A(w) can be chosen as any odd function of w, if Eq. 62
is to be satisfied for all possible choices of A(w) it must
be that

©
0 = Im[R*(w)f A(-w-y) (R(y)-R*(y)) day] (63)
)
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Then

©
arg R*(w) + argf A(-w-y)[R(y) - R*(y)] day = n(w)m (64)
-

where n(w) is any odd function of w whose value is always an
integer except at discontinuities. The usual abbreviation for
argument, arg, is used in Eq. 64; thus arg [cejd] is 4. It
follows from Eq. 64 that

(e 0]
0 = arg [(-l)n(w)R*(w)] + argj° A(-w-y)[R(y)=-R*(y)] ay (65)

-~
Since the second term of Eq. 65 could represent the phase of a
real time function, this term must be an odd function of w,

Making use of this fact
(0 0)

arg [(-l)n(w)R*(w)] = ar%Jf A(w-y)[R(y)-R*(y)] a4y (66)
-

There is a question as to the choice of the function n(w), for
it is unspecified as yet. Remember that an integral may have
a number of extremals, some of which yleld maxima, some
minima, and some neither. The choice of n(w) determines which
of these extremals satisfies Eq. 66. But we do not know which
choice of n(w) allows the extremal that minimizes ;25 to
satlisfy the equation.

There is something else which must be noted about Eq. 66.
Extremals of ;25 must satisfy Eq. 66, but the equation, being
a non-linear integral equation, cannot be solved, in general,

to find these extremals. The analysis to find the phase

correction which minimizes weighted integral square error has
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been carried out, but the equation which results cannot be
solved when 1t is formulated in completely general terms. How-
ever, for the particular cases where phase correction 1is
usually most desired, specialization of Eq. 66 simplifies it
sufficilently so that a solution can be obtained.

To preserve complete generallty in this section, the gain
factor K was allowed to vary in order to find the value which
minimizes aez. Equation 45 gives this value., However, in a
large number of the practical problems of phase correction,
the necessary galn factor is obvious from physical considera-
tions. In order to simplify the notation in the succeeding
sections of this chapter, it will be assumed that the desired

response has been normalized so that K = 1,

e

5.2 Minimizing ae2 When the Desired Response Is Either 0dd or

Even

Since Eq. 66, which must be satisfied by the phase that
minimizes ;;E, cannot be solved in its most general form, let
us make some appropriate specializations which make solution
possible. In most phase correction problems, the desired
response, r(t), is a step function, which is a purely odd
function of time. Occasionally, the desired response may be
an even function of time, such as a pulse. Thus, desired
responses are mostly elther odd or even functions of time, If
the desired response 1s an odd or an even time function, the

weighting function, a(t), should be chosen as an even time

function, since errors at like values of time before and
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after time t = 0 are equally undesirable., If we adopt the
convention that the subscripts 1 and 2 are associated with the
even and odd parts of a time function, or the real and imagine
ary parts of a frequency function, the special cases of r(t)

odd or even may be written

r{t) odd: r(t) = r,(t) (67)
R(w) = JRp(w) (68)
a(t) = a;(t) (69)
Alw) = 4, (w) (70)

© (00}
a e’ =°/° a, (t) [ry(t)-ry(£)1% at +°/° a,(£)[r; (£)12 at

(00 -

(71)

or
r(t) even: r(t) = r,(t) (72)
R(w) = Ry (w) (73)
a(t) = a, () (74)
Alw) = A (w) (75)

+0) @
a,0? =f 8, (6)(ry (£)-r) (£)1% at +f 8, (0)[rp(6)1° at  (76)

(+8) -
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Let us specialize Eq. 66 for the case where r(t) is an
odd time function, such as a step function; notice that a
parallel development for the case of r(t) even could be made

throughout. If r(t) is odd, Egq. 66 becomes
arg { (-1 R (w) + 3R} (w)1}

(00
= argf Al(w-y)[JRz(y)-R;(y)-JRZ(y)] dy (77)
-

The requirement of Eq. 77 may be stated as two requirements:

3
n(“")R (w) must have the same

(1) the imaginary part of (-1)
algebraic sign as that of the integral expression of Eq. 77
and, (2) the ratio of the real and imaginary parts of
(-1)n(w)R*(w) must be the same as the ratio of the real and
imaginary parts of the integral expression. These requirements

may be written

(-l)n(w)RZ(w) with same sign as

e8)
fwAl(w-y)[Rz(y)-R;(y)] ay (78)

and

0
Rz(w) --/-'oo Al(w"y)RI(Y) dy

- (79)
Ry (w) [:Alm-y)[nz(y)-n;(yndy

The extremals of aez are those functions, 6(w), that
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satisfy Egs. 78 and 79, where the relationships

Ry (w) = Re [I(w)e™30(W)) (80)

and

Ry(w) = Im [I(w)e™30(®)] (81)

are implied, of course. At the moment, however, the corrected
responses which correspond to these extremals, rather than the
extremals themselves, are of primary concern. Therefore, let
us consider solving Eqs. 78 and 79 for R;(w) and R;(w) directly.

Since we have complete freedom in choosing the function
n(w), Eq. 78 can always be satisfied for any R*(w) and the
equation really has no meaning. Thus; Eq. 79 is equivalent to
Eq. 77, but with the troublesome function n(w) eliminated.

At this point, it may appear doubtful that we have made
any real progress toward solving the minimization problem by
specialization of Eq. 66 for we are still faced with a non-
linear integral equation, Eq. 79. Nevertheless, Eq. 79 has an

obvious solution

Ry(w) = 0 (82)

From Eq. 82 we see that any odd frequency function with the
magnitude, |I(w)|, satisfies Eq. 79. Thus

R™(0) = Ry(w) = 3(-1)(*) | 1(w) (83)
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where m{w) may be chosen as any odd frequency function whose
value 1is always an integer, except at discontinuities. It
should be noted that there may very well be other solutions of
Eq. 79 which are not given by Eq. 83; however, we are unable
to solve Eq. 79 to find them, One of the solutions of Eq. 79,
either a solution given by Eq. 83, or possibly some other

solution, is the transform of the corrected response that

minimizes alez.
On the basis of our past experience with the integral

square error criterion, we might guess that one of the

solutions given by Eq. 83 minimizes alez; this would mean that
the corrected response that best approximates an odd desired
response, Judged by the weighted integral square error
criterion, is an odd function. However, this conclusion 1is
very difficult to support with proof. Remember that extremals
of an integral give stationary values of that integral. These
stationary values may be maxima, minima, or neither. When
given a complete set of extremals of an integral, in order to
find which of the extremals produces the minimum value of the
integral, we simply substitute each extremal into the integral
expression and note which one yields the smallest value. The

difficulty in trying to prove that one of the functions gilven

by Eq. 83 minimizes ale2 lies in the fact that we are not sure
that we know a complete set of solutions of Eq. 79. It is
concelivable that there might exist a solution of Eq. 79, not

given by Eq. 83, which minimizes alez.

We can show, however, that in all cases of any practical
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interest a purely odd corrected response dces minimize alez.

Because of the difficulties explained above, the proof of this

fact is rather involved and has been relegated to the Appendix.

5.3 Further Consideration of the ae2 Minimization Problem

Let us turn again to consideration of the general problem

of minimizing ae2 that is discussed in section 5.1. In that

section we attempted to find those phase functions, ©(w), that

are extremals of the integral expression in Eq. 42, or aez.
In this section we wish to find the corrected response time
functions, r*(t), that are the extremals of the integral

e

expression in Eq. 37, or aez, subject to the constraint that

(v0]
fr*(t)e'J“’tat = | T(w)| (84)

00

To make the distinction clear, let us call the former, phase
extremals of aez, and the latter, response extremals of ;;5.
We expect to find a close relationship between the response
extremals and the corrected responses related to the phase
extremals by

R*(w) = I(w)e'jg(w) (85)

Certainly we know that the corrected response related to the

et

vhase extremal that minimizes ae2 must be the same as the
response extremal which minimizes aez. The discussion in this
section will show that every response extremal is identical to

a corrected response related to some phase extremal by Eq. 84,
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but that the converse of this statement is not true. In other
words, we will show that the number of phase extremals exceeds
the number of response extremals, The response extremals must
satisfy Eq. 66, but must satisfy some other restriction as well.
It 1s worthwhlle to investigate the response extremals simply
because they are fewer in number than the phase extremals,
Thus the task of recognizing the one function that minimizes
;;§ from among all of the extremals is made easier.

Let us recall the definition of an extremal of an integral.
An extremal 1s a function which has the property that an
infinitesimal change in the form of the functlion makes no change
in the value of the integral. Let us examline the procedure
used in finding the extremals of an integral by reviewing the
derivation of section 5.1 where we attempted to find the phase
extremals of ;EE. We allowed an infinitesimal change, or a
variation, a A(w), in the form of ©(w). The function A(w) can
be any function that is an allowable variation of ©(w); thus
A{w) can be any odd function of frequency. We made the
substitution

e(w) —> 6(w) + a r(w) (86)

in an integral expression giving ;;§ in terms of ©(w). Then,
by considering the change in the value of ;;E caused by an
infinitesimal change in a from ¢ = 0 for all of the possible
Mw) functions, we derived Eq. 66 which must be satisfied by
the phase extremals,

Let us now consider the problem of finding the response
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extremals of aez. Suppose that we allow a variation in r*(t)
of the form pq(t). The function q(t) can be any function that

satisfies the relation

(v0)
lf [r#(t) + pa(t) 1”9 at| = |T(w)] (87)
-

for infinitesimal values of p., Then we make the substitution

r*¥(t) —> r*(t) + pq(t) (88)

e

in an integral expressing ae2 in terms of r*(t). By consider=-
ing the changes in the value of ;;§ caused by an infinitesimal
change in p from p = 0 for all of the allowable q(t) functions,
we derive the requirements to be satisfled by the response
extremals of ;;E. However, it 1s very difficult to make thils
derivation due to the difficulty in srecifying the allowable
q(t) functions. Rather than attempting this derivation, let
us seek another approach which avoids this difficulty.

Notice what a variation in ©(w), o A(w), means in terms

of a variation of r*(t), pq(t).

r#(t) = F1{ 1(w) e300} (89)

Making the substitution indicated by Eq. 86, where o is

infinitesimal

() —b FL { 1(w) ¢~ 30(W) = da A (w)} (90)




52

r* () —> FL { 1(w) e 7)1 = g A(w) 1} (91)

r*(t)—D r*(t) + a F [-3A(w)R*(w)] (92)

Thus we can make a variation of r#*(t) by making a variation
of ©(w). Every variation of 6{w), a A(w), exactly corresponds

to a variation of r#*(t)

pa(t) = @ F 1 ~In(w)R*(w)] (93)

for the infinitesimal values of @ and p that are of interest.
We deduce that every response extremal is identical to a

corrected response related to some phase extremal by Eq. 85.
Thus the response extremals must satisfy Eq. 66 just as the

phase extremals must satisfy Eq. 66.

We should now investigate the generality of the variation
of r*(t) that can be accomplished by means of a phase varia-
tion. Can every possible variation, pq(t), subject to the
constraint of Eq. 87, be accomplished by introduction of a
variation of phase? As we shall see, the answer is no. We
can demonstrate this by consideration of an example, Consider

» * 1
two purely odd response functions rz(t) and r, (t). The
3* 3t
transforms of the two responses, ij(w) and ijl(w), have the
* ®1
same magnitude. Both R,(w) and R, (w) are discontinuous

#1
functions, and R2 (w) has points of discontinuity that are
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3*
located at frequencies which differ from the Rz(w) discon-
tinuity location frequencies by an infinitesimal amount. We
%*
can take as an allowable variation of rz(t) the purely od4d,

infinitesimal time function

pa(t) = ry (t) - ry(t) (94)

However, we notice that, according to Eq. 93, for a function
r*(t) which is purely odd, we can create only even variations
through a variation of phase, ¢ A(w). Thus we are unable to
create all allowable response variations, pq(t), by means of
the phase variation, a Aw),.

Although the phase variation, a A(w), fails to provide a
general response variation, the concept of using phase
manipulations to create response variations 1s very attractive.
The fulfillment of the magnitude constraint in Eq. 87 is
guaranteed. The phase variation, a A(w), fails to provide a
general response varlation because it cannot shift the dis-
continuity locations of @(w). Thus we are led to consider the

substitution

6(w) —> olw + Bu(w)] (95)

where 6(w) may have discontinuities and p(w) is any continuous
odd function. Making the substitution for ©(w) indicated in

Eq. 95, the response extremal becomes

(<o)

r*(t)—b-§% I(w)e""'g[m'*'ﬁ“"(w)]e'j“‘)t aw (96)
-©
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Since B is an infinitesimal quantity, we can make the change of

variable
x = w+ Bulw) (97)
w=x - Bu(x) (98)
Equation 96 becomes
®
er(6) —> A [ Tlx-pu(x) e~ I0() FIlx-Pulx) ]t oy (99)
~©
©
r(6)—b & [ [I(x) - pulx)& T(x)1e™30F) IX01_gpu(x) 4] ax
-©
(100)

r¥(t) —b r*(t) + B { -F-l[u(w)c'Je(w)a% I(w)]

- é% F'l[u(w)e-Je(w)I(w)]} (101)

Thus the substitution for 6(w) that is indicated in Eq. 95

ereates the response variation

pa(t) = 8 {F 1w e L 1(0)1- & Pl ¥ 1(w) 1}
(102)

It will be noticed, however, that this response varlation is

not completely general, Jjust as the variation in Eq. 93 is not,.
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Consider the case where both i(t) and r*(t) are odd time
functions; the variation given by Eq. 102 can only be purely
odd. But according to Eq. 93, even variations are also
allowable in this case.

A completely general response variation can be created by

means of phase manipulation by the substitution for e(w)

o(w)—p olw+pp(w)] + a Alw) (103)

in Eq. 42, giving aez. The response extremals of ae2 must

satisfy both of the equations

—

L ae? =0 (104)
a@=0
B =20
Edﬁ- ae? .- 0 (105)
a =
B=20

We notice, however, that Eq. 104 has slready been treated in
section 5.1; Eq. 66 is the result., We have now established
that the response extremals must satisfy not only Eq. 66, but
also Eq. 105. In solving Eq. 105, we need to make only the
substitution for ©(w) given in Eq. 95 since Eq. 103 reduces to
Eq. 95 for a = O,

We will now solve Eq. 105, not for the most general case,
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but with approrriate specializing assumptions. Let us assume
that neither I(w) nor .[a,A(w-x)[R(x) -~ R*(x)] dx has
discontinuities, These-:ssumptions will not always be valid.
As we shall see, however, there is only one problem in which
a solution of Eq. 105 is useful; this is the problem of
correcting a sluggish system to obtain the step response with
the shortest possible rise time. These assumptions will prove
justified here.

Using the substitution given by Eq. 95 in Eq. 42

— @ L
ae? =f f A(=x-y)[R(x)-TI(x)e™ 0 (x+Bulx));
-0 -0

[R(y)-I(y)e~®*Bu(y)) ] ax ay  (106)

———p—

Differentiating ae2 with respect to B

0 = g% ael

B=0

(00) (¢0]
2f fA(-x-y)[R(x)-R*(x)J[-I(y)u(y)a%e‘ig‘y’J ax dy (107)
- o~

Let ©(y) be divided into a sum of continuous and discontinuous

parts

My) = ec(y) + ed(y) (108)

The function Od(y) contains all of the discontinuities of

o(y) and has zero slope between discontinuities.
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Then
-Jo(y) -3o(y) -jo (y) =30.(y)
f; ¢ dy = -Je é% O,(y) ayte = °ale "¢ 71 (109)

Equation 109 substituted into Eq. 107 gives

® ®
0 = {jﬁ dy u(y)[§% Qc(y)JR*(y)Jf dx A(-x-y)[R(x)-R*(x)]
-0 ®

® ©
~30.(y) -30 _(y)
-—f ale = ¢ Y 1wy I(y)e © yf dx A(-x-y)[R(x)-R*(x)]

® (110)

Let us recognize that the first term of Eq. 110 has exactly

the same form as the right-hand member of Eq. 61 and, there-
fore, must equal zero., An interpretation of Eq. 110 is
possible. The first term accounts for the change in ;;5 caused
by the change in ©(w) between points of discontinuity. The

second term gives the effect on ae2 caused by the discontin-

ulty shifting alone. Now we have

© ©
-Jo,(y) -je_(y)
0 =f ale ~ 477 w(y)I(y)e © yf dx A(-x-y)[R(x)-R*(x)]
- -®
(111)

Suppose that the points of discontinuity of ©(y) occur at

Yy = ¥y, for k= -N, ..., -1, +1, ...,N, and that in golng from
-364(¥) -JOd(yk)].

Ve = to ¥+, ¢ changes by Ale From Eq. 111
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N
-je _(y,) -3 .(y,)
0 = Z Ny uly,) e CUK Al dyk]
k = =N

@

xf A(-x-yk)[R(x) - R*¥(x)] ax (112)
-

Notilecing that

-39, (y,) -JOd(yk)]

I(y,) ¢ Ale =AR* (y,) (113)

where AR*(yk) is the change in R*(y) that occurs in going

from Y- to yk+, Eq. 112 becomes

(00}
N
=N =

Because p (y) can be any odd function, if Eq. 114 is to be

satisfied for every choice of uly) it must be that

®
AR*(yk)f A(-x-y, )[R(x)-R*(x)] ax
~®

@
= AR*(y_k)f Al-x-y_, J)[R(x)-R*(x)] ax (115)
~©

But the right-hand member of Eq. 115 is the negative conjugate
of the left-hand member. Then finally

(19
0 = Re { AR*(wk)[w A(wk-x)[R(x)-R*(x)] dx } (116)
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Equation 116 is the result of the derivation that started with
Eq. 105. We now know that response extremals of ;;E must

satisfy not only Eq. 66 but also Eq. 116. But since Eq. 116

is a non-linear integral equation, we are unable to sclve it

for the extremals. However, for the special class of correction
problems considered in section 5.2, a simplification is possible.
It is given that A(w) = Al(w) and that R(w) = ij(w), and 1t

is shown in the Appendix that R*(w) = jRZ(w). Therefore

Eq. 116 can be written

™
o[:O Al(wk-x)[Rz(x) - RZ(X)] dx = 0 (117)

where the discontinuities of ©(w) occur at the frequencies Wy .

The response extremal that minimizes a e2 must satisfy not

1
only Eq. 79, but also Eq. 117.

5.4 Correction of a System to Give a Step Response with the
Shortest Posslible Rise Time,

The previous sections of Chapter V have been devoted to
deriving the equations that must be satisfied by a corrected
response that minimizes weighted integral square error. Section
5.2 was concerned with the class of problems in which the
desired response 1s a purely odd time function. In this section
we will investigate a specific problem within this class. By
minimizing ;I;f for an appropriately chosen weighting function,
we want to shorten the rise time of the step response of a

sluggish system. The problem of correcting the step response
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of a sluggish system for minimum (unweighted) integral square
error has been considered previously in Chapter IV, It is

convenlent here to suppose that the system has already been

corrected for minimum ez, and that we are making an additional

correction to minimize alez.

Thus both r(t) and i(t) are odd

time functions.

r(t) = u_l(t) (118)
= -1

R(w) = o (119)

1(t) = 12(t) (120)

I{w) = 3I,(w) (121)

Furthermore, we know from the work of Chapter IV that Iz(w)
equals -|I(w)] for w>0 and +|I(w)| for w<0; let us assume

that |I(w)] has no discontinuities,

Since the desired response is an odd function, the weight-

ing function should be chosen as an even function. Then the

corrected response that minimizes alez will be some odd time

function.
r*(t)

]

ro(t) (122)

R (w) = R (w) (123)

We shall see that with a suitable cholice of the weighting

function, the corrected response which minimizes ale2 is
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ll al(t)

unlt impulses

L

Fig. 17. An Appropriate Weighting Function

guaranteed to have the shortest rise time that can possibly
be obtained. Rise time will be defined as the time required
for the response to rise from the value -¢ to the value c.

In practice, the value of ¢ is usually taken as 0.4 or O.45 .,

Let us now consider the choice of an appropriate weight-

ing function, a,(t). Let us choose

al(t) = uo(t-tl) + uo(t+tl) (124)

where uo(t) is a unit impulse at t = 0. This weighting
function is shown in Fig. 17. Thus the weighted integral

square error is simply the sum of the squares of the errors
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at the times tl and -tl.

a0 = e?(-t)) + e*(t;) (125)

Since we know that the corrected response that minimizes ale2

18 an odd function

aje’ = 26%(t;) = 2[4 - ry(,)1? (126)

for this response.

Now let us imagine that we have determined the corrected

*
responses, r2m(t), which minimize alez for a number of
different choices of tl. Suppose that we have found the small-

est value of tl for which

*
ronlty) = ¢ (127)
and that we denote this value of t, as 'r . Clearly, the
2
corrected response that minimizes ale2 when tl = Eg is the
2

corrected response with the shortest possible rise time; if
there exists a response with a shorter rise time, then tl, does
not have the smallest value for which Eq. 127 is satisfied, and
we have stated that t, 1s chosen to have this smallest value.
Then the shortest step response rise time that can be achieved

by means of phase correction is tr .

Having shown the usefulness of the welghting funection
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given by Eq. 124, we must determine the corrected response,

*
r2m(t), that minimizes a ez for a given value of t,, and we

1
must develop an easy method of finding the smallest value of

tl for which Eq. 127 is satisflied. First, suppose that tl is

glven; let us find the corrected response that minimizes

alez. From the work of the previous sections of this chapter,

we know that this response is purely odd. Furthermore, we
know that the transform of this response must satisfy Eq. 117.
Transforming both sides of Eq. 124, we find that

A (w) = 2 cos wty (128)
For Al(w) as in Eq. 128, we may write Eq. 117 as
©
*
0 =°[:D cos (w -y)t,(R,(y) - Ry(y)] ay (129)
©
0 = sin wktla[;o sin ytl[Rz(y) - R;(y)] dy (130)
0 = [ry(t)) - ry(t)] sin w by (131)

where w, 18 a frequency at which e(w), and thus R;(w), has a

discontinuity. According to Eq. 131, the response extremals of

. *
alez are all odd functions whose transforms, ij(w), have the

magnitude | I(w)| and have discontinuities only at frequencies
n
51
of these response extremals that minimizes a

that are integral multiples of . Let us now select the one

lez. The transform
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of this minimizing extremal may have discontinuities at any of

the frequencies that are integral multiples of % ; we must
1

determine the frequencies at which discontinuities actually

occur.

Remember that alez is minimized when e(tl) is minimized,

For the desired cholce of t; where t, = 'r , e(t;) 1s
2

» *
minimized when rz(t) is maximized. The value of rz(tl) is

given by

®
# »
rz(tl) = %;ollo Rz(w) sin wt, dw (132)

%*
It is obvious that rz(tl) has the maximum possible value when
»*
Rz(w) has a change of algebraic sign at each frequency for

which sin wt, changes sign. Then the transform of the

extremal that minimizes alez has a discontinuity at each of

the frequencies

(133)

£
=
n
)

where k assumes every integer value from - owto . The only

remaining question ie how to choose tl = Eg without actually

2
calculating a serlies of trial solutions.

The proper choice of t, can be made quite simply. This
fact 1s best 1llustrated by taking an example. Let us consider
again the sluggish system that was examined in Chapter IV,

The system, when it has been corrected to give the step
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response having minimum ez, has the transfer function (w?+1)~%,
The step response of this system, 1(t), is shown in Fig. 18,

Let us define rise time as the time required for the corrected
response to rise from -0.4 to +0.4, Looking at the curve of
1(t) versus t in Fig. 18, we guess that t,; should have a value
of about 1.25 seconds. This would place the first discontinuity

of R;(w) at about w, = %— =2,5, This frequency is large

1
enough so that we can utilize the same procedure for evalua-

ting the corrected response that was used in Chapter IV, Thus
we note that

Ll L el (134)

Jw W+l Jw3

Making use of the series expansion of [Jw(w2+1)]'1 analogous

to that of Fig. 9, we find that

@ _q)k-d
oplt) = () + 2 Z ———— {3 (Em (135)

where the transform of f§3)(t) is given by Eq. 35, and f&B)(t)

is plotted in Fig. 11. Since the series in Eq. 135 converges
rapidly, we will take only the first two terms

2
5 (6) = a(e) + 2 =3 £ (& ©) (136)
m
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The termination of the serlies in this way corresponds to

%
allowing Rzm(w) to have a discontinuity only at w = %L for
1

w> 0, rather than having an infinite number of discontinulties

at w = %ﬂ . However, the termination makes very little
1

difference in the time response, and the functions given by

Egs. 135 and 136 are nearly the same.

Now we are able to find the value of tl that makes the

corrected response that minimizes a132 have the shortest

L
possible rise time., This is the value for which er(tl) = 0.4 .
From Fig. 11 we note that

f§3)(n) = 0.06 (137)

According to Eq. 136, t, should have the value for which

2
t
0.4 = 1(t,) + 2—= 06 (138)
1 ﬂ2
Suppose that we plot a curve of i(t) + *%g t% versus t, as
n
shown in Fig, 18. We note that the curve has the value 0.4 for
vy
t =14 =t =5 (139)

*
Thus RZm(w) has a discontinuity at w = gl = 2,24, Using the
1

value of tl given by Eq. 139, we can calculate the corrected

response rgm(t), as given by Eq. 136, that has the shortest
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possible rise time, This function is shown in Fig. 18.

Let us review that which we have been able to accomplish

by means of phase correction.

Response of system Rise time Rise time
with shortened by
(1) no correction 3.3 sec. —_—

(2) correction for
minimum ;5, or 3.2 sec. 3%
linear phase

(3) correction for
shortest possible 2.8 sec. 15 %
rise time

By means of phase correction, the rise time of the step
response of this sluggish system can be reduced by as much as
(but by no more than) 15 . It should be noticed however that
the optimum transient correction requires a discontinuous
rhase correction characteristic. We can approximate such a
characteristic by the phase of an all-rass network, but the
cost, in terms of complexity of the network, is very high
irdeed. This matter will be discussed in Chapter VI,

In the derivation of the correction giving the shortest
rossible step response rise time, we have given no considera-
tion to the overshoot that this correction may create. In

the example discussed here, this correction causes an overshoot
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Since I(w) has branch points in the complex s-plane, an
approximation method, or rather a combination of several
approximation methods, will be used to calculate i(t). For
0O<w<0.8, we represent I(w) by
4)

I(w) = -315 (1-0.4w”) , 0<w<0.,8 (142)

To this portion of the frequency function there corresponds a

time response

[

Both of the functions needed in calculating this portion of

A=

o8t 3
f SILX gx-(0.4)(0.8)" &5 SA0X
o) dx

] (143)
x=0,8¢t

the response are tabulated.u"5 In the frequency range 0.8<w<2,
I(w) is approximated by three straight line segments. The
contribution to 1(t) made by these line segments may be readily
calculated.6 For w> 2, I(w) is approximated by -jw-3. The

part of the time response that corresponds to this portion of
the frequency function may be found using the curve of f§3)(t)
given in Fig, 11, The result of these computations is the

curve of 1(t) versus t shown in Fig. 19 and also in Fig. 20.

This function is the corrected response that is the minimum

ez approximation of a step function. We notice that this

corrected step response has an overshoot of 2.5 %, as compared
to an overshoot of 4 ¥ for the step response of the uncorrected

system, r (t).
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Now let us linvestigate the possibility of making an
additlional correction to obtain a corrected step response that
has less overshoot than does 1(t). It has already been

mentioned that the straightforward approach, wherein we solve

Eq. 117 to find the corrected response that minimizes alez,

is impossible in this problem. But we know that the straight-
forward approach would lead to a corrected response that is
some odd function of time; this fact is verified in the
Appendix. Suppose that this odd function is denoted as r;m(t).
The transform of the corrected response, jR;m(w), has the
magnitude function |I(w)|. Only the locations of the discon-
tinuities of R;m(w) are unspecified, and these can be

determined quite easily.

Note that the discontimuities of R, (w) cannot be located
at low frequencies; the first discontinuity must be located at
a frequency that is well above the cutoff frequency of the
filter, wc = 1. A discontinulty located at low frequencies
would create a very large, low frequency ripple component in
r;m(t) that could not possibly cause a decrease in the over-
shoot. The same argument can be stated in a slightly different
form. It is known that the step response, 1(t), has overshoot
because I(w) exhibits a sharp decrease in the region near the
cutoff frequency. The addition of a discontinuity, a sign
reversal of I(w), in this region could only increase the over-

shoot.

*
The first discontinuity of R2m(w) is located at a
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frequency, Wy, that is well above w,= 1. Let us suppose that

%
RZm(w) has only one discontinuity for w > 0, By making the

approximation
I(w) = —;§ w > wy (144)
Jw
we can write
r;m(t) = 1(t) + (—-2—)7 f:(L”(wlt) (145)
w
1

where f§3)(t) is plotted in Fig. 11. Notice that the second
term of Eq. 145 is simply the function f§3)(t) with an
appropriate normallization of the time scale and of the constant

multiplier to account for the choice of wy .

In our attempt to suppress the overshoot of i(t), we have

#®
developed Eq. 145 which gives the corrected response, r, (t)

as the sum of i1(t) and a normalized form of the function f§3)(t).

Now we simply look at Fig. 11 and determine by inspection the
most desirable normalization, thus determining the value of Wy .
The peak of the overshoot of i(t) occurs for t = 2.75. The
normalization of f§3)(t) should be chosen so that one of the
negative peaks of the normalized function falls at t = 2.75.
The first negative peak of f§3)(t) occurs at t = 1, To move
this peak to t = 2,75 by normalization requires that

wy = 2175 = 0,364 , But we have previously noted that in order
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to make the desired correction, wy must be chosen greater than
1. Then let us consider the normalization that causes the

second negative peak of f§3)(t) to occur at t = 2.75. This

requires that

w, = 57;% = 2.36 (146)

Using this value of Wy, Eq. 145 becomes

"

ron(t) = 1(5) + 0.36 £{3)(2.36¢) (147)

This function 1s plotted in Fig. 20. The overshoot at t = 2,75
has been suppressed by this correction, Jjust as desired. How-
ever, note that er(t) has the same overshoot as 1(t). The

fact is that the curve of i(t) versus t 1s so nearly flat in

the region near its peak overshoot that the positive peak of
fga)(2.36t) at t = 3.4 causes r;m(B.M) to be as great as 1(2.75).
However, r;m(t) does have a slightly smaller rise time than

does 1(t), and with no increase in overshoot.

Perhaps by taking additional discontinuities in the
function R;m(w), a small decrease in the overshoot of 1(t) can
be obtained, but it is clear that very little can be done to
decrease the overshoot of the step response of a system that

has already been corrected for minimum ez. The correction for
minimum 62 effected a sizable decrease in overshoot (from
4 %4 to 2,5 %) but little more can be accomplished by further

correction.
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of perhaps 1 ¥. The problem of making a phase correction in

order to decrease overshoot is considered in the next section.

5.5 Phase Correction of a System to Reduce Step Response

Overshoot.

In the previous sections we determined the phase correc-
tion that leads to the step response wlth the shortest possible
rise time for a given system. The solving of this problem was
stralghtforward and the solution was unique. In this section
we will consider the possibility of correcting a system step
response so as to decrease the amount of overshoot, or so as to
decrease both rise time and overshoot. The solving of these
problems 1s more difficult and the solutions are less clear-

cut than for the problem of correction to reduce rise time.

First let us consider the choice of the weighting function

that is needed in order to make the corrected response that

minimizes ale2 to have the least possible overshoot. As usual
it is convenlent to assume that the system has already been
corrected to minimize e> . We might think that the weighting
function given by Eq. 124 would lead to the response with the

least overshoot if tl were chosen equal to the time at which

the largest peak of i(t) occurs. Correction to minimize alez
would certainly suppress the peak at t = tl; unfortunately,
this correction also causes peaks to crop up elsewhere. We
could add other pairs of impulses to the al(t) function in an
attempt to suppress all of the peaks of the corrected response

simultaneously, but the result of such an endeavor 1is
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uncertain. We must concede that it is difficult to know how
to choose the weighting function that leads to the corrected

response with the least possible overshoot.

Even if the proper weighting function were known, the

solution of the alez minimization problem 1s not easy. The

transform of the corrected response that minimizes alez must
be an odd function that satisfies Eq. 117. But it is very
difficult to solve Eq. 117 for any weighting function except
the simple one of Eq. 124, However, we shall develop a
method for the direct synthesis of corrected responses that
avoids both the question of choosing al(t) and the difficulty
of solving Eq. 117. This method can best be demonstrated in

an example.

Let us consider the step response, r (t), of a second-

order Butterworth filter. The transform of this response 1s

(140)

R R 1
u(w) Jw _w2+3/§ w1

The uncorrected step response, ru(t), is plotted in Fig. 19
with 1ts time origin shifted back to t = =1.4 seconds.

We must now make the correction that minimizes e2 for

this filter. The step response of the filter with correction

for minimum e° 1is denoted i(t), and

I(w) = & L =d -3 (141)
VTN Lz e W
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Also shown in Fig. 20 is the step response of the system
when corrected for shortest possible rise time. This function

31
is denoted as er(t).

5.6 Phase Correction of a Fourth-Order Butterworth Filter

Let us consider the step response, ru(t), of a fourth-

order Butterworth filter. The transform of thls response 1is

1

-J—]-'-—Bln

1% -

n)(Jw-—e ) (Jw-e ) (148)

1 -
) (Jw-e

The uncorrected step response, ru(t), is plotted in Fig, 21
with its time origin shifted back to t = -2,85 seconds.

The transform of the system step response, when corrected

for minimum 32 is

1 1
I(w) = — ——— (149)
/148

The function i(t) was calculated by approximation methods like
those described in the previous section; the curve of i(t)
versus t is shown in Fig. 21. Notice that correction for
minimum ;5 has reduced the overshoot from 11 % to 6 %, with

no change in rise time,

No significant improvement in step response can be
obtained by additional phase correction. For example, shown

in Fig. 21 are points on the curve of the system step response
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when corrected for shortest rise time. The amount of deviation
from the 1(t) curve is barely perceptible. The reason for the
failure of additional correction attempts is clear. These
corrections always involve the placement of discontinuities at
frequenclies above the cutoff frequency of the filter. Since
the magnitude of I(w) behaves like w™> above the cutoff
frequency, |I(w)| is so small that the addition of discontin-

ulties in this region can cause little change in the response,

In sections 5.4 and 5.5, and in the present section, we
have investigated the effect of phase correction on the step
responses of various systems. Let us summarize the findings.
Correction to obtain the step response with minimum integral
square error produces a decrease in overshoot for those systems
whose uncorrected step response exhibit this characteristic.
However, thls correction makes very little change in the rise
time of the step response of any system. Additional phase
correction involving phase discontinuities can be used to
reduce rige time, especilally for a sluggish system, but cannot

be used to decrease overshoot.
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CHAPTER VI

REALIZATION OF DESIRED PHASE
CORRECTIONS BY ALL-PASS NETWORKS

6.1. Possible Circuits for Realizing an All-Pass Network.

Figure 1 shows the pole-zero pattern in the s-plane of a
typrical all-pass network transfer function. It consists of a
prole-zero pair on the real axis and two pole-zero quadruplets.
In the realization of an all-pass network, it is convenient
to divide the network into all-pass "sections", where each
section reallizes a pole-zero palr or quadruplet. The all-pass
sections are cascaded to obtain the desired all-pass network
transfer characteristic. It is expedlient to realize these
all-pass sections in the form of constant resistance networks,
A constant resistance network has the property that when it
is terminated in the characteristic resistance Rl’ the input
impedance of the network is Rl for all frequencies. Thus,

all-pass sections realized in this form can be cascaded directly.

The realization of the all-pass network with the transfer

function

ZlZ(w) = -t Jwtoy

(150)

can be made as shown in Fig. 22,

Two possible forms of realization of the all-pass network
with the transfer function
(Jw-ai-le)(Jw-alfjwl)

(Jw+ai-3w1713w+oi+3Q17 (151)

Z5(w) = %




Fig. 22. A Constant Resistance Network with le(w)= -%
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are shown in Fig. 23. The network of Form 1 can always be

realized, and when d > 1, the network of Form 2 can be realized.

6.2 Number of All-Pass Sections Required to Linearize Phase

In Chapter II we showed that any phase function plus the
phase of a delay network, wT, canbe closely approximated by the
phase of a reallzable all-pass network. But we gave no
attention to the practical problem of realizing the all-pass
network, Let us consider now the number of all-pass sections
that are needed to realize the various phase corrections that

have been derived in Chapters IV and V.

First, let us determine the number of all-pass sections
needed to approximate the phase characteristic that corrects a
system for minimum ;5 step response. This requires correction
to linearize the phase of the corrected system. As a specific
example let us attempt to linearlize the phase of the second-
order Butterworth filter of section 5.5 . In practice, correc-
tion is usually made to flatten the corrected group delay
characteristic rather than to linearize the phase, where group
delay is defined as the derivative of phase with respect to w,
Then we want to design a correctlon that makes the group delay
of the Butterworth filter, TgB’ rlus the group delay of the
all-pass network, TgAP' nearly equal to a constant. Shown in
Fig. 24 i8 a curve of 5.3 =- TgB’ Also shown is the curve of
TgAP that 1s obtalned for a three section all-pass network

where the transfer functions of the sections have the zero

locations
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section 1: oy = 0.96 , w, =0
section 2: o, = 0.85 , w, =+ 1.5
section 3: o3 = 0.72 , w3 =+ 2,315

We note that TgB + ’I‘gAP very nearly equals 5.3 seconds for

frequencies less than w = 2, Let us denote the step response
of the Butterworth filter with this correction as i*(t). The
function 1*(t) should be a good approximation to the
corrected response with minimum ;E, or the function i(t)
shown in Fig. 19, except for a delay of about 5.3 seconds.
Shown in Fig. 19 are points on the curve of 1%*(t) versus t
when plotted with its time origin shifted back to t = -5.15
seconds. The approximation of 1(t) by 1*(t) is very good
indeed.

Our experience with this example leads us to believe that
a satisfactory correction to linearize the phase of a system
can be accomplished with a reasonable number of all-pass
sections, no more than four or five at the most. Then if
substantial improvement in the step response of a system can
be obtalned by correction to minimize EE, it may be worthwhile

to construct an all-pass network to achlieve phase linearization

of the system.
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6.3 Number of All-Pass Sections Needed to Permit Approximation
of a Discontinuous Phase Function by the Phase of an All-

Pass Network,

Correction to linearize the phase of a system can be
accomplished rather easily, as was indlicated in the previous
section. But some desirable phase corrections require a
discontinuous phase function. Correction of a system to give
the step response with the shortest possible rise time requires
a phase correction with discontinuities; the value of the
phase correction function must change by an amount ™ at the
discontinuities. It is shown in Chapter II that the phase of
an all-pass network, ©(w), can closely approximate the
function B(w) + wT over any finite frequency range, where B(w)
can be any odd frequency function. As we shall see, however,
if the function B(w) is discontinuous, the number of all-pass

sections needed to make this approximation is very large.

Let us make an estimation of the number of all-pass
sections needed to correct the sluggish system of Chapter IV
80 as to obtain the corrected step response with the shortest
possible rise time. We have shown in Chapter V that the
vhase correction needed to accomplish this must linearize the
phase of the sluggish system and have a discontinuous change
in value of amount m at w = 2,24, However, the phase lineari-
zation can be made quite easily with the number of all-pass
sections that is required to approximate the discontinuity.

Therefore, let us assume that the desired correction is simply
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a linear frequency function except at w = 2,24, where there

is a discontinuity. This function is shown in Fig. 25, Let
us represent the phase of an all-pass network by a series of
line segments of phase length 2m, Jjust as was done in Fig. 3.
The approximation of the desired phase correction that is
made by the all-pass network phase is shown in Fig. 25, By
imagining a shift of origin to t = T in the time domain, we
elininate the linear component, wT, of the phase functions
shown in Fig. 25. Now, corresponding to the difference between
the desired phase and the all-pass network phase, there exists
an error in the real and imaginary parts of the transform of
the corrected response, as 1is shown in Fig, 26, The error in
the corrected time response due to the approximation of the
discontinuous desired phase by the all-pass network phase must
be less than the total area enclosed by the two curves plotted

in Fig., 26. The total of this enclosed area amounts to

2(1 + 0.571) |I(2.24) = LM (152)

Suppose that we want the time domain error in the corrected

response to always be less than 0,01l. Then we must choose
T = 44 geconds (153)

Remember that we can approximate the desired phase
correction by the phase of an all-pass network for only a

finite frequency range. Suppose that for frequencies greater
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| phase
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Fig. 25. Approximation of a Discontinuous Phase Function by the
Phase of an All-Pass Network
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Fig. 26. Errors Occurring in Real and Imaginary Parts of the
Corrected Response
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than w = 5, we decide that we will no longer attempt to make
the approximation, Then we can see from Fig. 25 that the
total phase shift contributed by the all-pass network as w

varies from zero to infinity is about

ST = 220 radians (154)

Each all-pass section contributes a phase shift of 2m over
this frequency range; then the number of all-pass sections

must be

T 35 all-pass sections (155)

The above considerations give us at least a rough estimate
of the number of all-pass sections that would be needed in
order to correct this sluggish system to gilve the step response
with the shortest possible rise time. The use of 35 all-pass
gsections to accomplish a 15 % decrease in rise time hardly

seems Justifled.
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APPENDIX
PROCF THAT AN ODD CORRECTED RESPONSE

APPROXIMATES AN ODD DESIRED RESPONSE WITH MINIMUM ale2

A.1 Outline of the Froof and Assumptions to be Made

Since we will be making frequent references to the
solutions of Eq. 79 in this appendix, when we mention a
"solution", Eq. 79 is referred to unless otherwise stated.

In section 5.2 we have shown that any odd frequency func-
tion that has the proper magnitude is a solution of Eq. 79.
We noted,however, that there may be other solutions for which
Ri(w) # 0; such functions, when they exist, will be called
"degenerate solutions". The task of this appendix is to show

that a purely odd solution, rather than a degenerate solution,

minimizes alez. Because Eq. 79 cannot be solved for the
degenerate solutions, if there are any, this must be shown in
a way that does not require knowledge of the complete set of
extremals of ;;;5.

The method of proof wlll be as follows. We wilill postulate
that Eq. 79 does have a degenerate solution., We will then
construct a non-degenerate, or purely odd, solution in such a

way that it can be shown that this solution ylelds at least

as small a value of ale2 as does the degenerate solution. The

non-degenerate solutlion which will be constructed in this way

will not, in general, be the solution which minimizes a162 R

But we will have proved that some non-degenerate solution

minimizes ale2 » 8lnce we will have shown that we can always
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construct a non-degenerate solution which gives at least as

small a value of ale2 as 1s given by a specified degenerate
solution.

In order to fix ideas, let rz(t) be taken as a unit step
function in this proof. The same proof, with only minor changes,
could be made using any other odd function as the desired
response,

It is convenient to suppose that phase correction has

already been made to minimize ez, and that the additional phase

correction, ©(w), will be used to minimize alez. Thus 1(t) is
odd and I(w) = jIz(w).

We must assume that it 1s possible to make a phase

correction for which ale2 is finite; otherwise, any considera-

tion of minimizing ale2 would be meaningless, Thus, for
example, 1if al(t) approaches a constant at large times, 1i(t)
must approach the same final value as the desired step function,
r (o) = 3.

Knowledge of the sort of errors to be corrected in this
problem restricts the class of weighting functions, al(t),
which need to be considered. Because the system has already
been corrected for minimum ;E, the additional correction cannot

reduce the error over one time interval without increasing the

error elsewhere. The additional correction, which is designed

to minimize alez, may be considered to shift the error from one
time interval to another., It is known that in all physically
motivated problems, the principal part of the error, be 1t due

to sluggishness or overshoot, occurs near the time origin. 1In
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4 al(t)

s e — ————— —— ——— S—  — ——  S——— —

F e ——
4
<t

b

Fig. Al. Example of a Suitable Weighting Function.

general, 1t is desired to shift some of the error from the
vicinity of the time origin to later times where the error is
not so large. In order to accomplish this, the weighting
function should be like the one shown in Fig. Al. It should
be a function which is always greater than its asymptotic
value b. A weighting function of this form accomplishes the
desired shift of error away from the time origin by weighting
early errors more heavily than later errors. The exact form
of the weighting function that is needed depends on the partic-
ular problem, but it should always have this characteristic.
It will be supposed that by the time 12 al(t) has reached the
level Db.

a,(t) =Db [t] > ¢ (A1)

b
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A.2 The Value of ale2 Given by a Degenerate Solution of Eq. 79.

The equation giving a162 may be written as in Eq. 71. The

equation is repeated here for convenlence.

0 0] @
a e’ -.-[ a, (£)[ry(6) - ry(£)1% at +f a, (£)[r) (6117 at
® -®© (A2)

The relation

IRY ()] 2 + IRy ()| % = |T(w)] 2 (43)

L 4%
must exist between the transforms of rl(t) and rz(t).

Equation A2 indicates that ae”

equals to sum of two terms,
the weighted integral square of the difference between the
desired response and the odd part of the corrected response
plus the weighted integral square of the even rart of the
corrected response. For a corrected response that 1s the
inverse transform of a degenerate solution, the second term of

Eq. A2 is non-zero and positive; for a non-degenerate solution

the second term 1s zero,

Now suppose that there does exist a degenerate solution

of Eq. 79

R} (w) = Ry (w) + JR3, (w) (A4)

and thus

r;(t) = rId(t) + r;d(t) (A5)
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¥*
The even part of this response, rld(t), always makes a positive

contribution to alez. However, since the magnitudes of the
* 3*

transforms of ry,(t) and r2d(t) are related as in Eq. A3, it

may be that the first term of Eq. AZ is smaller than the

2
minimum value of ale“ that can be obtained for a non-degenerate

solution. It is not possible to tell by this discussion

whether or not a degenerate solution can minimize alez. But

it is obvious that if a given degenerate solution can possibly

*
minimize alez, Rld(w) must be the one function among all of

%
the real functions with the magnitude |R,4(w)| that minimizes
3*
the second term of Eq. AZ. Although Rld(w) will not satisfy
this requirement, in general, let us assume for the sake of
argument that it does. It is now possible to determine some
3*
of the characteristics of Rld(w) and its inverse transform
*
riq(t).
Let us recall that the integral square of any time
function is dependent only upon the magnitude of the transform
of the function. Thus all time functions with transforms

*
having the magnitude lRld(w)l have the same integral square

} (A6)

* 2
1t 1s evident that the second term of Eq. A2, a,(t)lr;,(£)]1%,

value., When we note that

a,(t) 2 v, [t]l < ty

a,(t) = b , el >ty

»
has its smallest value when rld(t) is a function that is zero,
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or nearly zero for |t|<‘tb, if there can be such a function,
And such a function always does exist. Suppose, for example,

* 3*
that IRld(w)I is as shown in Fig. A2(a). R,,(w) can then
3 3%
have either the value IRld(w)l or minus IRld(w)[ at a given

*
frequency. Suppose that the curve of Rld(w) has very closely

spaced, regular, discontinuities, as shown in Fig. A2(Db), with

Aw<< - (A7)
b

ct

where Aw is the frequency interval between discontinuities,

*
Thus, the inverse transform of Rld(w) is a function with

3

ra (A8)

(¢) = o , |t|<tb
as desired. This 1s the one function among all of the functions
*

with the transform magnitude IRld(w)I that has the smallest
weighted integral square. The weighted integral square of this

function is

a (), (£)1% & by, ()12 (49)

If a degenerate solution of Eq. 79 1s to yield the minimum

%
alez, then it must be that Rld(w) has very closely spaced
discontinuities, as shown in Fig. A2(b). The inverse transform
of this degenerate solution approximates the desired response

with a weighted integral square error of
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(a) [Ria ()

(b) S R;d(w)
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Fig. A2. Characteristics of the Function Ry4(w)




a e’ =
1

a, (£)[ry(t) = roq(6)1% + vlryy(£)1° (A10)
The "approximately equals" sign appears in Eqs. 8-10 and
will appear in the equations of the next section. It should be
noted that in each case the two quantities related by the sign
can be made as nearly equal as desired by carrying toward the
limit some process involved in the derivation of the equatlon.
For example, the members of Eqs. 8-10 can be made as nearly
equal as desired by making Aw sufficiently small., Then we can
interpret the approximately equals sign as meaning equals since

we know that it can mean "as nearly equal as demanded".

A.3 Generation of a Non-Degenerate Solution of Eq. 79 with

Smaller ale2 Than That of any Degenerate Solution

In this section we shall show that it is possible to
construct a non-degenerate solution, R;(w) = jR:n(w), which has
the required magnitude, |I(w)| , and whose inverse transform
approximates the desired response with a weighted integral
square error which is at least as small as that of any degen-
erate solution. Let us express RZn(w) as the sum of two
functions: the imaginary part of the degenerate solution of
section A.2, R;d(w), plus a function ch(w) which will be

defined presently.

Ry (w) = Ryy(w) + Ry (w) (A11)
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*
The function RZn(w) can have either the value |[I(w) or minus

|I(w)] at a given frequency.

Ry () = (-1)2) 1(w)) (412)

where n(w) is any odd function of frequency whose value is
always an integer, except at discontinuities. Through our
choice of n(w) we are able to choose the wvalue of R;c(w) at any
frequency as either of the values allowed by

3

g (W) (A13)

R:C(w) = (1)) 1wy -r

And because

IRog @) < Iz(w) (A14)

%
for all w, the two possible values of RZC(w) are never of the

same algebraic sign.

Suppose, for example, that the two possible values of

3
ch(w) are as shown in Fig. A3, Now we propose to choose

3% *
RZG(w) in such a way that r2n(t) is a corrected response whose
weighted integral square error is at least as small as that of
* *
the degenerate solution, rd(t). Let RZc(w) be chosen as shown

*
in Fig. A4, Choose ch(w) positive for 0 < w < w; , negative

for W< w<uw, , negative for w, < w < w3 s positive for
w3 <w<uw , etc.,as shown in Fig. A4, The width of the

»*
frequency intervals in which ch(w) is either wholly positive
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Fig. A3. Two Possible Values
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of R, (w)
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or negative is always much, much smaller than %L . Thus the
b
L ]
curve of ch(w) versus w is composed of many very short seg-

% *
ments of the curves of -R,s(w) + |I(w)] and -Ry,(w) - [I(w) .

Further, the frequencies Wyy Wy, ... , 8re chosen in such a
way that the areas under pairs of ad jacent segments are equal.

In the notation of Fig. Ak, o = o, oy

it is not necessary that o = a3 = a5 = ... » Having so

= 0, etc. However,

+*
chosen ch(w), we note that

rp (8) = 0, |tl<t, (415)
and
ay (6)rp, ()12 2 blr, ()12 (426)

The inverse transform of the non-~-degenerate solution,

3%
Rn(w), arproximates the desired response with

©
2
aie2 =J/;, al(t) { r,(t) - [er(t)+r;c(t)] } dat (AL7)

= 8, (8)[ry(8)-ryq (£)1% = 2a) (8)r) _(8)[r,(t)-rpq(t)]

+ 8 (B)rp, (£)12 (18)
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We must now treat two separate cases, depending on whether
or not b = 0. First, suppose that b = 0. The second term of

3*
Eq. Al8 is almost zero because r20(t) is almost zero for

|t] <ty end a;(t) =b=20 for [t| >t Further, using Eq.

'bo

Al6, the third term of Eq. 18 is almost zero. Thus

ale2 =3 al(t)[rz(t) - r;d(t)Jz (A19)

But for b = 0, Eq. A10 is the same as Eq. Al9. We have been
able to show that the weighted integral square error given by
the non-degenerate solution generated in this section is the
same as that of the arbitrarily specified degenerate solution

in section A.2 .

Treatment of the case for which b # 0 is more difficult.
As it was remarked in section A.1, if b # 0, |I(w)] must be
of a form which makes 1t possible for the corrected transient

to approach the same final value as the desired step function,
2

rz(oo) = %; otherwise the consideration of minimizing a;e has
no meaning. Thus I(w) must behave like (jw)"l near w = 0, and

must have no other poles on the Jw axis of the s-plane.

An additioral assumption about the choice of the time tb
in Fig. Al 1is needed. It will be assumed that the time tb is
3
chosen large enough so that for t > %, r2d(t) has practically

reached its final value of r,(w). This choice can always be

* *
made, and the forms of Rld(w) and R, (w) readjusted to satisfy




101

Eq. A8 and Eq. Al5, if necessary. But now the second term of

*
Eq. Al9 is almost zero because rZO(t) is almost zero for

3%
|t] < £, and r (%) - r,;(t) is almost zero for |t]| > t,. Thus

& 2 a (t)lry(t)-ry (£)1° + vlry (+)1° (420)

L3
Comparing Eq. A20 with Eq. Al0, we can see that an(t) yields

. %

less weighted integral square error than does rd(t) if
* 2 * 2

[r, (€)1 < [r4()1° .

Remembering that the value of the integral square of any
time function is dependent only upon the magnitude of its

transform, we can write

[y, (6112 = [rg(t)1? (a21)

or

[rpg (8117 + 2 1, (E)rg () + [rg (8)17 = [rgg(£)12 + [roy (£)12

(A22)

Some care should be used in the interpretation of the above
equations, for both sides of Eq. A2l are infinite and the mean-
ing of the equation is som?what in doubt. For the equations to
have a clear meaning, it must be imagined for the moment that

* »
the functions rz(t), r2n(t) and rd(t) all approach zero rather
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than a final value at large times, but that they converge
toward zero so slowly that all phenomera of interest have
taken place long before rz(t) shows an apprecilable decrease,
After all, this 1s what must be assumed if these functions are
to be Fourier transformable, in the strict sense. Then, if
we consider the members of Eq. 21 as being extremely large,
but finite, the Egs. A21 and A22 are unambiguous. This
distinetion is mentioned only to avoid possible confusion and

is really of no concern.

From Eq. A22, we notice that we can show that
- ® 2 - ® 5 ¥, . ®
[rZG(t)] < [ry4(t)]° by showing that er(t)ch(t) is

positive. First we must establish the fact that the function
%*

ch(w) does indeed approach zero as w approaches zero Jjust as
shown in Fig. A4, This can be proved most easily by assuming

*
that RZG(w) does not approach zero and deducing a contradiction.

3
Assume, for example, that RZc(w) behaves like the step func-

tion, 2ku_l(w), in the vicinity of w = 0., Notiecing that

1T(w)|2 = [R3, (@)% + [R]4(w)1? = [Ryq(w) + Ry (w)1? (423)

*
and making use of the assumed form of R2c(w), we find that for

small w

[Ryq ()12 + [RI;(w)1% = [IR},(w) + k]2 (a24)
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3
Fig. A5. Assumed Behavior of RZc(w) Near w = 0

or

2

[R’{d(w)]z = 2k IR;d(w)l + k (A25)

L2
Since we know that rd(t) approaches rz(a>) as its final value,

it must be that in the vieinity of w=0

other terms involving
* -
JRZd(w) = (jw) 1 +~{ w raised to powers }- (A26)
greater than -1
Considering now the integral square of r;d(t)
(V")
¥ 2 _ 1 * 2

* 2
it follows from Eqs. A25 and A26 that [rld(t)] is infinite,
Since al(t) has the form shown in Fig. Al with b # 0, it must




104

¥* 2
be that a,(t)lr ,(t)]° 1is infinite and thus from Eq. A10

3%
that ale2 for the degenerate solution, Rd(w), is infinite. A

degenerate solution which yields infinite weighted integral

square error certainly cannot minimize alez . It is

3
necessary to conclude that RZc(w) does not have the behavior
that we assumed above, and that it does approach zero as w

approaches zero, just as in Fig. A4,

Having disposed of this matter, we can now evaluate the

¥ ¥
quantity rzd(t)rZG(t) to see whether or not it is positive.
B > (%) |t drp(t) & r(w)
ecause r20 is almost zero for |t -<tb and r,, t = r2 )

for |t| > ty

@
rya (D)5 (8) 2 21 (e )I ry. () at  (a28)

n

2 ry(@) [u_y (8) rp (1)1 (429)

where u l(t) is a unit step function. Equation A29 can be

3%
written in terms of the transforms of u_l(t) and rzC(t) as

r, (@) [®
ryq(t)ry (t) = ~2;-—-—fw (- TRy (W) dw (A30)

m w

[v'e) 3%
R
_ ?__éfz';lf Rac@) o (a31)
o
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Let us determine the algebraic sign of the integral expression

%*
(o]

w

*
in Eq. A31l. Remember that the curve of RZO(w) versus w is

3%
composed of many short segments of the curves 'RZd(w) + | I(w)] ,

¥
and that ad jacent pairs of segments of RZc(w) enclose equal

areas. But considering now the integrand of Eq.A32, the areas

T
enclosed by adjacent palrs of segments of w lRZC(w) are not

equal; the net contribution of each rair of segments of

w-lRZc(w) to the integral is of the same sign as the first
segment of the pair. We see in Fig. A4 that the first pair of
segments come in the order, positive then negative., All
succeeding pairs of segments come in the order, negative then
positive. The first pair of segments of w"lR;c(w) makes a
positive contribution to the integral in Eq. A32, Since ch(w)
approaches zero as w approaches zero, this contribution 1is
finite and can be made arbitrarily small by choosing wq and wy
sufficiently small., All succeeding pairs of segments of
w'lR;c(w) make negative contributions to the integral. Let us
suppose that the frequencies wy and w, have been chosen small

enough so that the integral expression of Eq. A32 is negative;

F —¥
according to Eq. A3l er(t)rZC(t) is positive. From Eq. A22,

Loy (0112 > [rp (£)12 (433)
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Comparing Eqs. Al0 and A20, we see that the weighted integral
square error given by the inverse transform of the non-degen-
erate solution RZn(t) is less than that given by the inverse
transform of the degenerate solution R;(t). The proof for the

case where b # 0 is complete,

It should not be inferred that the particular non-degen-—

¥*
erate solution derived in this section, RZn(w), is the

non-degenerate solution which minimizes alez. The function
R;n(w) is simply a non-degenerate solution which was generated
in such a way as to permit easy proof that its weighted
integral square error is at least as small as that of the

*
degenerate solution, Ry(w). Since we can always obtain a

non-~degenerate sclution which yields a value of ale2 at least

as small as the ale2 of any given degenerate solution, it must
be concluded that the function which minimizes ale2 is a
ncn-degenerate solution. But there is no reason to believe
that the minimizing solution is one which can be generated as

3 -3
RZn(w) was., In fact, an(t) exhibits a very undesirable

3%
behavior. It approaches rz(t) nicely, Jjust as er(t) does,
until after a large time tb when appreciable error again

*
occurs due to r20(t). If it should happen that a corrected

response with this behavior does minimize alez, then al(t) has
been poorly chosen. In this case, the level b in Fig., Al
should be increased in order to weight more heavily the later
errors., There are certainly appropriate weighting functions

that give rise to a minimizing response which does not exhibit
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this undesirable behavior, In the limiting case of railsing the
level b to higher and higher values, the weighting function
becomes a constant, and then the minimizing response certainly

3*
does not have the undesirable characteristic of r2n(t).

We have assumed a particular desired response here, a
unit step function, in order to facilitate the discussion.
However, when we review the proof we realize that 1t could as
well have been made for any other odd function that might be

desired as the response in a physically motivated problem,

The conclusion that has been reached is this: in any
practical phase correction problem, the corrected response
which approximates any odd desired response with the least

weighted integral square error is an odd time function.,
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