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ABS TRlA CT

Phase correction, realized in the form of an all-pass net-
work, is frequently used in order to improve the transient
response of a system. An investigation is made here to
determine the phase correction that should be used to achieve
the optimum corrected response for a given system. In general,
the ideally desired response cannot be obtained by means of
phase correction. Then an error criterion must be used to
define the corrected response that best aproximates the desired
response. The phase correction which gives the corrected
response that approximates the desired response with minimum
integral square error is determined. For the particular class
of systems in which reproduction of the system input is desired,
it is found that the correction should linearize the phase of
the system in order to produce a corrected response with
minimum integral square error.

Phase correction is most commonly used to enable a system
to reproduce better a step function input. It is found that
the correction which yields the corrected response with
minimum integral square error does not provide the step response
with the shortest rise time. By consideration of a suitably
chosen weighted integral square error criterion, a phase
correction is derived which yields a corrected step response
with the shortest possible rise time. It is found, however,
that the realization of this correction requires an all-pass
network with an extremely large number of circuit elements.
When correction to reduce the overshoot of the step response of
a system is desired, it is found that correction for minimum
integral square error provides the optimum response.

Thesis Supervisor: Ernst A. Guillemin
Title: Professor of Electrical Communications
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CHAPTER I

INTRODUCTION

1.1 Brief Statement of the Problem

The problem to be considered here may be stated as follows:

what can be done to change a given time domain transient to a

different, given, transient using only an all-pass network? An

all-pass network has a transfer characteristic whose zero

locations on the complex s-plane mirror the pole locations about

the imaginary axis. Thus the amplitude factor is a constant

along the imaginary axis, while the phase is a function of

frequency.

1.2 Origin and History of the Problem

It may happen that after design of a network having a

desired amplitude characteristic, it is found that its response

to some transient is undesirable. Then it would be advantageous

to alter this transient response by cascading with the original

network, a network with a constant amplitude transfer function.

For example, government regulations place limits on the band-

width allowed to television transmitters; full utilization of

the allotted bandwidth would require a sharp cutoff of the

amplitude spectrum near the band edge. But the output of such

a sharp cutoff filter contains an undesirable ripple, or ringing

component after a sharp change in input. Perhaps by cascading

an all-pass network this ripple can be controlled.

In order to transform exactly one given transient to

another, a network with both a specific amplitude characteristic

_ .---I1UII --
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and a specific phase characteristic is required. The network

may, or may not, be physically realizable. If the impulse

response of the network is zero for negative times and bounded

for positive times, then the network is realizable 1,a

The problem of correcting the distortions which occur in

telephone lines has long been of interest. The effort of most

of the early correction schemes was primarily directed toward

flattening the amplitude of the transfer function. No attempt

at phase correction was made because the effect of phase dis-

tortion on voice communication over relatively short lines was

not important. As longer lines came into service, phase dis-

tortion became a serious problem and correction, in the form of

an all-pass network, was used to linearize the phase. Recog-

nizing the importance of the effect of phase distortion on

transient response, researchers in the field endeavored to

develop facile methods for evaluating this effect.2' 3 Working

backwards from the results of analyses of particular cases,

they were able to reach some general conclusions which served

as guides in other problems of phase correction. But no refer-

ence in the literature has been found attempting to make a

basic investigation of ust how much can be done to change one

transient to another by altering only the phase of its Fourier

transform. It is not clear, for example, that correcting a

telephone line or an amplifier to give linear phase leads to

the best possible transient response.

a Superscripts refer to numbers in the Bibliography
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CHAPTER II

PROPERTIES OF ALL-PASS NETWORKS

2.1 Phase of an All-Pass Network

An "all-pass" network is so named because the amplitude

of the transfer function is a constant, unity, for all fre-

quencies. These networks pass sinusoids of any frequency with-

out attenuation but with a phase shift which is, in general, a

function of frequency. Let the transfer function of an all-

pass network be

¢-Je(w) (1)

If an all-pass network is to be realized with lumped,

linear circuit elements, its transfer function can have only

poles as singularities in the complex frequency, or s-plane;

if the network is to be stable, the poles must lie in the left

half of the s-plane. Since the amplitude is a constant, it

must be that the network has only right-half-plane zeros, and

that these zeros are placed at locations which are mirror

images about the imaginary axis of the pole locations. Figure 1

shows typical pole and zero locations of the transfer function

of an all-pass network. The fact that the transfer function of

an all-pass network must have a pattern of poles and zeros of

this sort restricts the form of the phase which can be realized

by these networks. It is evident, for example, that (w) must

increase monotonically with frequency.

The restrictions on a phase function which can be realized

_ �_ II � _� � ___ �_� ^I·
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as the phase of an all-pass network can also be made evident

by time domain considerations. For an arbitrarily specified

phase (w), the inverse Fourier transform of the function

e- J(w), denoted F-1[ie- J (w )] , will not be zero for all nega-

tive time, in general. Obviously, only those phases for which

F 1lie JP(w)] is zero for all negative time can be physically

realized.

2.2 Approximation of Any Phase Function by All-Pass Network

Phase

Although not all phase functions can be realized as the

phase of an all-pass network, it will now be shown that the

phase of an all-pass network, Q(w), can approximate as closely

as desired a phase function (w) + wT over any finite frequency

4
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range, however large, where (w) is any phase function, and

wT is a linear phase which must be added to 3(w) in order to

allow realization in the form of an all-pass network. This

means that we can approximate any desired phase plus the phase

of a delay network by an all-pass network phase; we can use

all-pass networks to realize a good approximation of any phase

if we are willing, in addition, to tolerate a delay, T.

In order to prove that the above statements are true, let

us consider the phase of a single pole-zero pair. Figure 2(b)

shows the phase of a pair whose zero lies at sl = l + Jwl 1

Note that the pair contributes a total phase shift of 2 over

the range of frequencies -oo < w < oo.

(a) (b)

s-plane JOw

I

-0a,

laiI
IIl
l

0'

broken-line
approximant•a'phase

S

W

o IU 
I~z1 En

Fig. 2. Phase of (s- 1) Jw and Broken-Line Approximant
(S + a ) - w1 1 
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The phase of this pair may be approximated by a broken-line

approximant of three segments, as shown in Fig. 2(b). The

broken-line approximant is tangent to the phase curve at

w = W1 and at w = + oo. The total phase of several pole-zero

pairs comprising a given all-pass characteristic can be

represented as a sum of these broken-line approximants.

For the purposes of this proof, let no pole-zero pair be

placed on the real axis. Further, if the zeros are located at

sl , s2 , ..,, sn, ... , with wl< w 2 < ... < <n< ... , let

these locations be chosen so that

W T (ona + ) (2)
Wn+l - n = (n+l (2)

By choosing pair locations in this way, the second break point

of the hase approximant of the pair with the zero s n , and the

first break point of the phase approximant of the pair with the

zero sn+l, will occur at the same frequency. The approximant

to the phase of an all-pass network whose pair locations are so

chosen is shown in Fig. 3; the length of each line segment when

projected on the phase axis, or "phase length", is 2. Now

it will be shown that by means of this broken-line phase

approximant of an all-pass network we can approximate (w) + wT

for some choice of T.

Consider approximation of the curve (w) versus w by a

curve of broken-line segments. Let us define a frequency

interval x which is small enough so that any broken-line

approximate makes a satisfactory approximation of (w) provided



7

8n

6Tr

2nr

phase

w

Fig. 3. The Broken-Line Approximant to a Possible Phase Shift

Characteristic of an All-Pass Network

that all of the line segments have a projected length on the

w axis, or "w length", that is no greater than x. If the least

slope of (w) is -m, let T be chosen large enough so that

xT - xm 2rr. Now let the curve of (w) + wT versus w be

approximated by a broken-line with segments of phase length 2Tr;

this broken-line curve is also the approximant of some all-pass

network phase, Q(w), as shown in Fig. 3. The line segment of

longest w length will occur in the vicinity of the point of

minimum slope of (w) + wT and, because of the choice of T

indicated above, will have an w length equal to, or less than x.

By the original supposition of this paragraph, this is a good

approximati on.

_ ___�q_ I^ ^_____ __ 1
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Because, in general, the function (w) wT approaches

infinity as w approaches infinity, it would take an infinite

number of line segments of phase length 2n to approximate the

function over an infinite range of frequencies. But an all-

pass network with a finite number of lumped circuit elements

can have only a finite number of pole-zero pairs; thus it can

have a phase characteristic which is approximated by only a

finite number of line segments of phase length 2. Then the

phase of an all-pass network can be made to approximate any

phase function, (w), plus some linear phase, wT, over a range

of frequencies 0 < w < w o , where w o is arbitrarily large but

finite. If a given transfer function, e-ji(w) , is needed to

operate on a transient whose transform has no significant com-

ponents above the frequency wo, an all-pass network can be

realized whose transfer function closely approximates

e- J(w) e JwT over the important frequency range, zero to w o.

I _
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CHAPTER III

PHASE CORRECTION TO ACHIEVE TRANSIENT RESPONSE

WITH MINIMIM INTEGRAL SQUARE ERROR

3.1 Consequences of Allowing Unrestricted Choice of Phase

Function

Chapter II was concerned with finding the class of phase

characteristics which can be realized as the phase of the

transfer function of an all-pass network. We found that any

arbitrary phase characteristic can be approximated as closely

as may be desired by the phase of an. all-pass network, provided

only that we are willing to accept, in addition, a time delay

in the response of the all-pass network. In the transient

correction problems being considered here, this delay is not

objectionable; we conclude that we can realize any phase that

we may need in order to accomplish a given transient correction.

The problem of this chapter, and of succeeding chapters,

is to find the phase characteristic which does the best ob of

transient correction in a given problem. No physical realiza-

bility restrictions need to be imposed on the phase character-

istic. We will simply look for the phase, (w), which makes

the best transient correction, where (w) can be any odd

function of frequency. Now the transfer function e-J(w) can

be considered as belonging to a fictitious, nonrealizable net-

work but can no longer be associated with a realizable all-pass

network. Remembering this, it should come as no surprise when,

for example, the step response of some system which has been

�_�______s__l__llllIll�---.l�_--Xls�--· III-�*-·�-L·leYIIIII_^_lll-L._ i ...- Y� -_I



cascaded with the phase correction network -JQ(w) has non-

zero values before t = 0. Certainly this situation is not

physically possible in the laboratory. However, we have shown

that it is possible to realize an all-pass network for phase

correction of the system which will give very nearly the same

corrected system step response, except for a delay.

3.2 Choice of an Error Criterion

Having explored the consequences of allowing the phase

correction, (w), to be any odd function, we proceed to the

discussion of ways of choosing (w) in a given transient cor-

rection problem. Suppose that i(t) is the undesired tran-

sient that we propose to improve by means of phase correction.

If possible, the phase correction should change i(t) into r(t),

where r(t) is the desired transient. The network which

changes i(t) to r(t) has the transfer function

=G(w)R =IG(W)l e-J(W) (4)

where R(w) and I(w) are Fourier transforms of r(t) and i(t),

and IG(w)l and (w) are the magnitude and phase of G(w).

The convention implied here, that of using corresponding small

and capital letters for time and frequency domain functions

related by the Fourier transform, will be continued throughout

and without further comment.

Clearly, unless IG(w)I = 1, a phase correction network,

-JO(w), cannot change i(t) to r(t). To allow more freedom in
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the attempt to correct the undesired transient suppose that we

also use an amplifier with a transfer characteristic K; a

phase correction network with the transfer function K -j ( w )

is now available for use in making the transient correction.

Still, unless IG(w) = K, the network K-j@(w) cannot accom-

plish the change to the desired transient. The best that can

be done with phase correction is to change i(t) to r*(t),

where r*(t), the corrected transient, is an approximation of

r(t) and where

R*(w) = KI(w) - j (w) (5)

There is an error in the approximation

e(t) = r(t) - r*(t) (6)

Because the transient correction cannot be made without

error, there is a question as to what constitutes the "best"

correction. Some sort of error criterion must be imposed in

order to define the r*(t) which best approximates r(t). The

use of the integral square error criterion furnishes an appro-

priate starting point in this investigation; the criterion

makes good sense physically and, in addition, leads to a math-

ematical formulation which can be handled quite easily.

3.3 Minimization of Integral Square Error

The integral square error, e , is given by

e2 [r(t) - r*(t)]2 dt (7)f3a

_ __I__ �--·II- .-- �- I�llp- I_·-·- _ __-
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By making use of Parseval's Theorem

o1

e2 = 2 JR(w) - R*(w)I 2 dw (8)

And since

R(w) - R*(w) = I(w)[G(w) - KQ(w)] (9)

Equation 8 becomes

e2 = 2f7 I(w)2 [G(w) - KEJ@()1 [G(-w) - Kc+ J@(w ) ] dw (10)

We want to find the phase function (w) and the gain factor K

which minimize e

At this point the discussion will digress to introduce

enough of the theory of calculus of variations to permit solu-

tion of this minimization problem. Knowledge of ordinary

differential calculus allows us to find values of x for which

P(x) is a maximum or a minimum, or more directly, the values of

x for which P(x) has zero slope. But this knowledge does not

tell us how to find the function (w) which minimizes the

integral

e2 Q[w, 9(w)] dw (11)

However, a close analogy can be drawn between these two

problems. We find values of x for which P(x) has zero slope,

and we find functions, (w), called "extremals" of the integral

for which the value of e2 is "stationary". At points of zero
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slope of P(x), an infinitesimal ohange in x produces no change

in the value of P(x). For extremals of e2, an infinitesimal

change in the form of the function (w) produces no change in

the value of e2 . Then extremals of e2 are the functions (w)

which satisfy the equation

0 = d Qw,(w) + a (w) dw (12)

where (w) is any allowable variation of (w). In the partic-

ular problem that is being considered in this section, A(w)

can be any odd function of w. Extremals of the integral of

Eq. 11 give values of the integral which are stationary. Just

as points of zero slope of P(x) occur where P(x) is a maximum,

a minimum, or possibly where it is neither a maximum nor a

minimum, stationary values of e2 may be values which are maxima,

minima, or neither. Further testing of some sort is needed to

determine which extremal gives the value of e2 which is the

minimum that can be obtained.

Now we can proceed to find the phase function and the

gain factor which minimize e2. The integral square error, as

given by Eq. 10 must be minimized with respect to both (w)

and K. The problem will be attacked as follows. First the

extremals, (w), will be found with K as a parameter. Substi-

tution of these extremals into Eq. 10 will leave an expression

for e2 involving only K, which can then be minimized with

respect to K. Proceeding according to this outline

�_�_·_111_ _· �1I-I�_-� ---�LTI·LI11--I^II^I�--·s�·--P1·-··�-·-· -
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0 = 2 I(w) 2 (G(w) - KJCi[(W) + (w)]

(G(-w) - K E[(w) + A(w)]) dw
Ca =0

Performing the differentiation indicated in Eq. 13

OD 2

0 = J I(W) { K- @(W)[G(-w) - KJ(W) ]

-KeJQ(W)[G(w) - K - JI(W)]} ?(w) dw

(13)

(14)

With simplification of the curly bracketed term, Eq. 14 becomes

OD

= S(w) I I(w) | {Im[G(w)eJ(u)]} d (15)

Note that the integrand of Eq. 15 is an even function of w.

Because (w) can be any, arbitrary odd function, if Eq. 15 is

to be satisfied, it must be that

II()l 2 { ImEG(w)JQ(W)] } = O (16)

Assume now that there are

either II(w)I or IG(w)I

certainly the usual case.

no frequency intervals over which

is identically zero. This is

Then using Eq. 4

sin E0(w) - (w)] = 0 (17)

The solution of Eq. 17 is not unique. The general solution is

9(w) = 0(w) + n(w)n

I _ _

(18)
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where n(w) is any odd function of w whose value is always an

integer except at discontinuities.

Remember that the plan of attack on this minimization

problem called first for finding (w) with K as a parameter.

However, according to Eq. 18, (w) is independent of K. Then

we can proceed immediately to minimize e , as given in Eq. 10,

with respect to K.

2
0 de (19)

0 II,(w)12 { -j(w) (w) Q(w)]

-jQ@() [H(w) - Ke- J (w)] } dw (20)

0 = II(w)2 { K - Re[ (w)HH( w) } dw (21)

Solving for K and making use of Eq. 18

|r I(W)l 2IH(w) I (-_)n(W)dw
XK 2~d (22)

£ II(W)I dw

Now there is the question of the function n(w). For some one

particular n(w) function Eqs. 18 and 22 give the phase

function and the gain factor which minimize e. Substituting

Q(w) as in Eq. 18 into Eq. 10

e2 = 1 II(W)l2 [ IG(w)I - K(1)n(W) dw (23)
~~~d- OD)

- -- I __I -- ------- I �II---------- --- - --- l- --- - ---



Evidently e is minimized when n(w) identically equals zero

(or some even integer since a change of 2 in a phase function

is inconsequential). Now the solution of the minimization

problem is complete.

e(w) = 0(w) (24)

JI(W)I I H(w) d2
K = X....(25)

J I(W)j dw

The minimum integral square error is

e = 'I(w)l2 [ElG(w)l - K 2 dw (26)

Perhaps some discussion and interpretation of these

results is in order. The specification of the phase correc-

tion needed to minimize integral square error is surprisingly

simple. Put into words, Eq. 24 says that we should make the

phase correction network the same as the phase of the network

needed to make the transient correction without error. Further,

this result is not dependent upon the transient to be corrected,

i(t), or upon the magnitude function of the network needed to

make errorless correction, IG(w)I .

Application of the minimum integral square error criterion

to the common practical problem of phase correcting an ampli-

fier gives an interesting result. An amplified reproduction of

the input is desired, thus r(t) = Ci(t). Errorless correction

I
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would be made by a network whose phase exactly cancels the

phase shift of the amplifier; the phase correction network

must also have this phase characteristic if its response is to

have minimum e2 . Thus, the over-all phase characteristic of

the amplifier with phase correction must be made zero. But

the network to make this phase correction is not physically

realizable. Instead, we must realize a network which makes the

phase of the corrected amplifier approximately linear. And

this is ust what is done in current engineering practice. It

is not generally known, however, that this conclusion can be

reached by requiring phase correction leading to minimum inte-

gral square error.

____1_1_1__1____1�1_I__·_II�--·IY�IPI-�� .�_1_ -C-- I
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CHAPTER IV

PHASE CORRECTION OF A SLUGGISH SYSTEM

4.1 Correction of a Sluggish System for Minimum Integral

Square Error

A completely general specification of the phase correction

needed to minimize e is given by Eqs. 24 and 25 of Chapter III.

In this chapter we wish to use these results in a particular

transient correction problem. This example will make clear

some of the implications of using the integral square error

criterion and will suggest a modification and extension in the

mode of its application.

Phase correction finds its most common use with an

amplifier, where it serves to improve the fidelity of the out-

put of the system. The performance of such a system is

usually udged by the accuracy with which it reproduces a unit

step input. The definition of a unit step which will be used

here is different from that used b most authors. A unit step

will be defined as a function which is - for negative times

and +-e for positive times with a discontinuity at t = 0. The

Fourier transform of this unit step is (Jw)-1 . The definition

of the unit step is made in this way so that it will be a time

function which is odd; its transform is purely imaginary and

an odd function of w.

Suppose that we want to correct a sluggish system having

the transfer function

1 (27)
(jw+l) 2
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so that its step response has minimum integral square error.

An ideal system would have a step response with the transform

R(w) = 1 (28)

The input to the phase correction network is

I(w) =1 1 (29)
jw (jw+l) 2

To correct for minimum e , the phase correction must be such

that R*(w) has the same phase as R(w). Thus

I i 1R*(w) = ( 1 ) (30)
jw +1

The gain factor, K, needed to minimize e2 is obvious from

physical considerations; K = 1 is needed because this is the

gain for which r*(t) approaches the same final value as r(t),

or +-

Figure 4 shows r*(t), and i(t) plotted with its time

origin moved back to t = -1.7 seconds. The rise time of the

system, defined as the time taken for the response to climb

from -0.4 to 0.4, is reduced somewhat by the phase correction;

from 3.25 seconds for i(t) to 3.2 seconds for r*(t).

It is interesting to notice that r*(t) is an odd function

of time; R*(w) is purely imaginary. The fact that the correct-

ed response that yields the least integral square error turns

out to be an odd function seems very appropriate. Intuitively,

we might well have expected an odd function because in

I _ _ _ _ 1� mI________ll^l__lI_·�___
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evaluating e2, the error is considered as being equally unde-

sirable for both positive and negative times. That is, the

error is given equal weighting under the integral for all times.

Therefore it seems appropriate that the magnitude of the error

be the same for like values of positive and negative time.

Further, if r*(t) had contained both odd and even components,

its specification could not have been unique. Corrected

responses with the transforms Rl(W) + JR2(w) and R 1 (w) - JR2(w)

have the same integral square error. Neither of these argu-

ments is offered as anything conclusive, but they are intended

only to suggest that we might have guessed that an odd response

would minimize e2.

4.2 Extension of the Integral Square Minimization Method

Having solved in Chapter III the general problem of find-

ing the phase which is needed to make a minimum integral square

error correction, and having noted in the first section of

this chapter some of the implications of this solution, let us

now consider for a moment whether the use of the integral

square error criterion is really leading to the most desirable

corrections. Since we are unable to make an errorless trans-

formation of the undesired transient by means of phase correc-

tion, perhaps we should define a more realistic objective. For

the case of correcting the step response of the sluggish system

of section 4.1, we would like to have the shortest rise time

which can be obtained without excessive overshoot. In some

other problem where the step response of the system exhibits

)I _� _ _ _ -_ __ II_�IIIIIYIYCI__JI� _ ·---·�·_-1··l--l-··L-·--11--11_ __ __
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overshoot, it may be that we want to reduce this overshoot by

the phase correction. Thus, while the minimum integral square

error criterion can be considered to give a broadly conceived

"best over-all transient correction", there is no reason to

believe that it leads to the best correction in terms of

decreasing rise time or overshoot. In fact, as we shall see,

it does not. But it is very difficult, if not impossible, to

formulate a mathematical error criterion which guarantees a

corrected step response with shortest rise time, or with

minimum overshoot. However, it is fruitful to look at the

results given by some other error criteria.

A simple extension of the integral square error criterion

proves useful. Although ideally we would like the corrected

step response of the sluggish system of section 4.1 to be a

step function, a better corrected step response can be obtained

by the somewhat devious procedure of designating a function

other than a step as the desired response, and correcting for

minimum integral square deviation from this function.

Suppose that we take as the desired response

r(t) = v(t) (31)

where v(t) is as shown in Fig. 5. The function v(t) is an odd

function of time which is composed of three line segments, one

of which is tangent at t = 0 to the corrected response obtained

for the minimum e approximation of a step function, the curve

r*(t) of Fig. 4.

It is convenient to suppose that correction for the

3
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minimum e approximation of a step has already been made, and

that we are adding additional correction in the form of a

network with the transfer characteristic c- J(w) to further

improve the transient response. Thus the input to the phase

correction network is the curve r*(t) of Fig. 4, which has the

trans form

I(w) 1 1 (32)I = 2. (32)

We must now find the phase correction, (w), which transforms

i(t) into the approximation of v(t) having the least integral

square error.

The transform of r(t) = v(t) is

R(w) = -I_ Jw i1 sin w (33)
2(w)2 Jw w

The phase correction must be chosen so that R*(w) has the same

phase as R(w). This phase is given by the curve of Fig. 6.

The transfer function of the corrected system, JwR*(w), is a

purely real function of w and is as shown in Fig. 7.

At this point an argument that r*(t) must have a shorter

rise time than i(t) can be made. The corrected response, r*(t),

is a better approximation, udged by e2, of v(t) than is i(t).

In the region of time near t = 0, r*(t) has less slope than

i(t); the area under the curve of wR*(w) in Fig. 6 is less

than the area under a curve of (w2+1)-1 . The function v(t) is

tangent to i(t) at t = 0. Thus near t = 0, i(t) is a better

approximation of v(t) than is r*(t). It must be that in some
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other region of time, r*(t) approximates v(t) more closely than

does i(t). Looking at the curves of i(t) and v(t) in Fig. 5,

it seems most likely that this occurs in the vicinity of t = 1.

If this is so, it is evident that r*(t) should have a shorter

rise time than i(t).

Having provided a Justification of why phase correction

designed to minimize integral square deviation from v(t)

should give a corrected step response with a shorter rise time

than that obtained for phase correction designed to minimize

e2 deviation from the desired step function, we shall evaluate

the response, r*(t), obtained in this manner. The function

R*(w) is shown in Fig. 8. Notice that beyond the first dis-

continuity in R*(w) at w = , R*(w) very nearly equals +Jw3.

The sum of the functions of Fig. 9(a), (b), (c), ... , closely

approximates R*(w). The inverse transform of the curve of

Fig. 9(a) is the step response of the system corrected for

minimum e2 deviation from a step function, which has already

been calculated and plotted in Fig. 4. If the inverse trans-

form of the functions F ( 3 ) (), where

(3) (W) - (34)
0J o (jw)3 '

were known for w 0 = T, 2rr, .. ., the ob of calculating r*(t)

could be completed rather simply. However, curves of this

I I
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function could not be found in any of the mathematical publi-

cations and the task of calculating them had to be undertaken.

Curves of the inverse transform of the function

0 , Iwul >1
(jw)n

are presented in Figs. 0 through 16 for values of n from 2 to

8. The curves giving fn)(t) can be extrapolated to larger

values of time by noticing that for n even, f(n)(t) approaches
n

(_1)2 sin t for large t, and that for n odd, f(n)(t) approaches

n-l

(-1) 2 cos t for large t. By a simple normalization of these

curves, the inverse transform of F (w) is found to be

f(n )(t) = f(n) (Wot) (36)
wo (W)n-i 1 

The curve of f(3)(t) of Fig. 11 is the one of immediate

interest; the other curves are plotted for reference and will

be used in a later chapter.

The step response of the corrected system, r*(t), is

shown in Fig. 5. Only the first two terms of the infinite

series indicated in Fig. 9 were taken. The inverse transform

of the function of Fig. 9(b) is the difference between the

curves r*(t) and i(t) of Fig. 5. This difference is small and

according to Eq. 36, the amount which would be contributed by

'I
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the remaining terms of Fig. 9 is even smaller. Again, as we

might have guessed, the correct response is odd. By the

additional phase correction (w) of Fig. 6, we have managed to

decrease the rise time of the step response from 3.2 seconds

to 3.15 seconds with negligible overshoot. Although this

improvement in rise time is small, it is now quite clear that

correction for minimum e deviation from a step function does

not lead to the shortest possible rise time. Other phase

corrections, such as the one presented in this section, should

be investigated.
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CHAPTER V

PHASE CORRECTION TO ACHIEVE

TRANSIENT RESPONSE WITH MINIMUM

WEIGHTED INTEGRAL SQUARE ERROR

5.1 Derivation of the Equation Satisfied by the Phase

Correction which Minimizes Weighted Integral Square Error

In section 4.2 it was established that correction for

minimum integral square deviation of the corrected response

from the desired response may not lead to the best step

response in terms of shortened rise time or suppressed over-

shoot. Thus we are led to consider other error criteria. A

simple extension of the integral square error criterion has

been discussed in which the subterfuge was used of considering

the integral square deviation from some function other than

the desired response. This criterion gave a slightly improved

corrected step response for the system of section 4.1. The

principal fault of the extended e2 criterion is that it is

difficult to use with much real perception; that is, it is

hard to know how to choose r(t) so as to improve r*(t). For

example, it was not obvious that by choosing r(t) = v(t), a

better step response would be obtained. The choice of r(t)

which is needed to give the best possible corrected step

response is not at all clear.

Considering the above situation, it is evident that the

need is for an error criterion which is more flexible than the

simple integral square error criterion, but one which gives a
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greater prior indication of the resulting response than does the

extended integral square error criterion. A useful criterion

is weighted integral square error, ae , where

0

ae a(t)[r(t) - r*(t)]2 dt (37)

and where a(t), the weighting function, can be any desired

function of time. The weighted integral square error

criterion meets the requirements of flexibility and percep-

tiveness mentioned above. In correcting for minimum ae , the

weighting function can be used to gain greatest fidelity in

important regions of time, while de-emphasizing errors in less

important regions.

If we are to use weighted integral square error as the

basis for correction, we must solve the problem of finding the

phase correction, (w), and the gain constant, K, which

minimize ae in a given problem. The mathematics of solving

this minimization problem are more involved than they were in

solving the e2 minimization problem of section 3.3, but the

ideas are exactly the same. Unfortunately, the resulting two

equations which must be satisfied by (w) and K cannot be

solved, in general. However, with suitable specialization,

the equations yield information which is very useful in making

phase corrections.

Having made these preliminary remarks, let us proceed

with the solution of the minimization problem. The plan of

attack will be first to find the values of K for which the
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rate of change of ae2 with respect to K is zero, then to

eliminate K and find, by the calculus of variations technique,

the equation satisfied by the extremals, 9(w), of ae2 .

Equation 37 may be written

ae2 = a(t)[e(t)] 2 dt

If Eq. 38 is written in terms of E(w), the transform of e(t),

the result is

2 * ao tae = 2 a(t)
4n2

0 E(x)E(y)(x + y)t dx dy dt

Interchanging orders of integration

ae2 = 1 E(x)E(y) a(t)E j(x + )t
ae 2- _

dt dx dy

= 12 E(x)E(y) A(-x -y)

Written in terms of G(w) and K, Eq. 41 becomes

-- a 1
ae =- 12 I(x)I(y)

4v 2 
KCK-ji(x) - (x)I

[K-J(Y(y) - G(y)] A(-x -y) dx dy (42)

In order to minimize ae2 with respect to K, we

(38)

(39)

(40)

dx dy (41)

1_1� 1111�1_1__1_1_1_11__111_1�·rm1.111-.1_
---- - I 
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d aeO =dK
dK

= I I(x)I(y) A(-x -y)C- j@(x) [Kc-J ( y ) - G(y)]dx dy

Solving (44) for K

N
D

where

N = Of)(x)I(y) A(-x -y)e- J(X)

D = Z I(x)I(y) A(-x -y)c-j(x)

G(y) dx dy

- je ( Y ) dx dy

By means of Eqs. 45, 46 and 47, Eq. 42 may be written

ae2 1 [K2D - 2KN + I(x)I(y) A(-x -y)G(x)G(y) dx dy]

(48)

2 ,[10a
ae = 1 I(x)I(y)A(-x-y)G(x)G(y) dx dy - D ]D

Now, having an expression for ae from which K has been elim-

inated, we can find the extremals of this integral. In order

to simplify the writing of the equations which are to follow,

the definitions will be adopted

(43)

(44)

(45)

(46)

(47)

(49)



$ pxyx OyOD xy

98 QP[ Px,y,x(x(y) d(x),(y)x dy

+ ai (y)] dx dy

aX J [xys(x

a
doa 2

Extremals of ae2

:), (y)] dx ay

P[x,y,g(x) + a (x),@(y)] dx dy

must satisfy the equation

0 = 8 (ae2)

From Eq. 49

Obviously

0 = 8(N-) = 2 BND D

N0=~=

is not the solution of Eq. 53 which is of interest.

0 = 28N - K D

Noticing that

N = 8x N

8D = 8 x D + 8yD = 2 8xD

41

(50)

0
(51)

(52)

N 2

D
(53)

(54)

Thus

(55)

(56)

(57)



42

Eq. 55 becomes

0 = 8xN - K 8x D

Now the quantities 8xN and 8xD must be evaluated

8xN = - I(x)I(y)A(-x-y)N(x)E -J(X)G(y) dx dy

0 f0

D =-
BxD - j I(x)I(y)A(-x-y)X(x)-JO(x)¢- JQ( y) dx dy

or 0X d

(58)

(59)

(60)

Substituting Eqs. 59 and 60 into Eq. 58

0=
P0

I(x)x(x)c- J(x){I I(y)A(-x-y)[G(y) - K- je ( Y ) ] dy} dx

(61)

Grouping some of the terms and substituting w for the dummy

variable x

0 R*(w)(w){f A(-w-y)[R(y) - R*(y)] dy } dw
a-) 0-Q

(62)

Since A(w) can be chosen as any odd function of w, if Eq. 62

is to be satisfied for all possible choices of A(w) it must

be that

A(-w-y)(R(y)-R*(y)) dy]
PO 

(63)
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Then

arg R*(w) + argJ A(-w-y)[R(y) - R*(y)] dy = n(w)r (64)

where n(w) is any odd function of w whose value is always an

integer except at discontinuities. The usual abbreviation for

argument, arg, is used in Eq. 64; thus arg [ccJd] is d. It

follows from Eq. 64 that

0 = arg [(-1)n(w)R*(w)] + arg A(-w-y)[R(y)-R*(y)] dy (65)

Since the second term of Eq. 65 could represent the phase of a

real time function, this term must be an odd function of w.

Making use of this fact

arg (-l)n(w)R*(w)] = arg A(w-y)[R(y)-R*(y)] dy (66)

There is a question as to the choice of the function n(w), for

it is unspecified as yet. Remember that an integral may have

a number of extremals, some of which yield maxima, some

minima, and some neither. The choice of n(w) determines which

of these extremals satisfies Eq. 66. But we do not know which

choice of n(w) allows the extremal that minimizes ae2 to

satisfy the equation.

There is something else which must be noted about Eq. 66.

Extremals of ae2 must satisfy Eq. 66, but the equation, being

a non-linear integral equation, cannot be solved, in general,

to find these extremals. The analysis to find the phase

correction which minimizes weighted integral square error has

1 --111-------�_ ---·- �-·--- --
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been carried out, but the equation which results cannot be

solved when it is formulated in completely general terms. How-

ever, for the particular cases where phase correction is

usually most desired, specialization of Eq. 66 simplifies it

sufficiently so that a solution can be obtained.

To preserve complete generality in this section, the gain

factor K was allowed to vary in order to find the value which

minimizes ae2 . Equation 45 gives this value. However, in a

large number of the practical problems of phase correction,

the necessary gain factor is obvious from physical considera-

tions. In order to simplify the notation in the succeeding

sections of this chapter, it will be assumed that the desired

response has been normalized so that K = 1.

5.2 Minimizing ae2 When the Desired Response Is Either Odd or

Even

Since Eq. 66, which must be satisfied by the phase that

minimizes ae2, cannot be solved in its most general form, let

us make some appropriate specializations which make solution

possible. In most phase correction problems, the desired

response, r(t), is a step function, which is a purely odd

function of time. Occasionally, the desired response may be

an even function of time, such as a pulse. Thus, desired

responses are mostly either odd or even functions of time. If

the desired response is an odd or an even time function, the

weighting function, a(t), should be chosen as an even time

function, since errors at like values of time before and

I
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after time t = 0 are equally undesirable. If we adopt the

convention that the subscripts 1 and 2 are associated with the

even and odd parts of a time function, or the real and imagin-

ary parts of a frequency function, the special cases of r(t)

odd or even may be written

r(t) odd: r(t) = r2(t)

R(w) = jR2 ()

a(t) = al(t)

A(w) = A (w)

ale 2 =i:
1a

or

r(t) even:

al(t) r 2 (t)-r2(t)] 2 dt+
1 2 2~~~~~~a

r(t) (t)

R(w) = R l(w)

a(t) = al(t)

A(w) = Al(u)

al e 2 =

(67)

(68)

(69)

(70)

al(t)[r(t) ]2 dt

(71)

(72)

(73)

(74)

(75)

(76)
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Let us specialize Eq. 66 for the case where r(t) is an

odd time function, such as a step function; notice that a

parallel development for the case of r(t) even could be made

throughout. If r(t) is odd, Eq. 66 becomes

arg {(-l)n(W)[R(w) + R2 (w)]}

= ar Al(W-y)[JR2(Y)-R(y)-JR2(Y)] dy (77)

The requirement of Eq. 77 may be stated as two requirements:

(1) the imaginary part of (-l)n()R*(w) must have the same

algebraic sign as that of the integral expression of Eq. 77

and, (2) the ratio of the real and imaginary parts of

(-l)n(w)R (w) must be the same as the ratio of the real and

imaginary parts of the integral expression. These requirements

may be written

(-l)n(w)R2(w) with same sign as

A (w-y)[R2 (y)-R(Y)] dy (78)

and

R 1(w) j A 1 (w-y)-)Rl(y) dy

R 2 (w) f A(w-y)[R2 (y)-R2(y)] dy

The extremals of ae2 are those functions, (w), that

I ____ _ _ _
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satisfy Eqs. 78 and 79, where the relationships

Rl(w) = Re I(w)e- @(W) (80)

and

R2(w) = Im I(w)E- j (w)] (81)

are implied, of course. At the moment, however, the corrected

responses which correspond to these extremals, rather than the

extremals themselves, are of primary concern. Therefore, let

us consider solving Eqs. 78 and 79 for Rl(w) and R 2 (w) directly.

Since we have complete freedom in choosing the function

n(w), Eq. 78 can always be satisfied for any R(w) and the

equation really has no meaning. Thus, Eq. 79 is equivalent to

Eq. 77, but with the troublesome function n(w) eliminated.

At this point, it may appear doubtful that we have made

any real progress toward solving the minimization problem by

specialization of Eq. 66 for we are still faced with a non-

linear integral equation, Eq. 79. Nevertheless, Eq. 79 has an

obvious solution

Rl(w) = (82)

From Eq. 82 we see that any odd frequency function with the

magnitude, I(w)I, satisfies Eq. 79. Thus

R (w) = JR2(w) = J(-l)m(w) II(w) (83)

__I �___ _ �-·-11---1-1·-- ����-----111111
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where m(wj) may be chosen as any odd frequency function whose

value is always an integer, except at discontinuities. It

should be noted that there may very well be other solutions of

Eq. 79 which are not given by Eq. 83; however, we are unable

to solve Eq. 79 to find them. One of the solutions of Eq. 79,

either a solution given by Eq. 83, or possibly some other

solution, is the transform of the corrected response that

minimizes ale2.

On the basis of our past experience with the integral

square error criterion, we might guess that one of the

solutions given by Eq. 83 minimizes ale2; this would mean that

the corrected response that best approximates an odd desired

response, udged by the weighted integral square error

criterion, is an odd function. However, this conclusion is

very difficult to support with proof. Remember that extremals

of an integral give stationary values of that integral. These

stationary values may be maxima, minima, or neither. When

given a complete set of extremals of an integral, in order to

find which of the extremals produces the minimum value of the

integral, we simply substitute each extremal into the integral

expression and note which one yields the smallest value. The

difficulty in trying to prove that one of the functions given

by Eq. 83 minimizes ale 2 lies in the fact that we are not sure

that we know a complete set of solutions of Eq. 79. It is

conceivable that there might exist a solution of Eq. 79, not

2
given by Eq. 83, which minimizes ale

We can show, however, that in all cases of any practical
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interest a purely odd corrected response does minimize ale2.

Because of the difficulties explained above, the proof of this

fact is rather involved and has been relegated to the Appendix.

5.3 Further Consideration of the ae2 Minimization Problem

Let us turn again to consideration of the general problem

of minimizing ae2 that is discussed in section 5.1. In that

section we attempted to find those phase functions, (w), that

are extremals of the integral expression in Eq. 42, or ae2 .

In this section we wish to find the corrected response time

functions, r*(t), that are the extremals of the integral

expression in Eq. 37, or ae , subject to the constraint that

f r*(t)cJWtdt II(w)I (84)

To make the distinction clear, let us call the former, phase

extremals of ae2 , and the latter, response extremals of ae2

We expect to find a close relationship between the response

extremals and the corrected responses related to the phase

extremals by

R*(w) = I(w)C- jQ(w) (85)

Certainly we know that the corrected response related to the

phase extremal that minimizes ae must be the same as the

response extremal which minimizes ae2. The discussion in this

section will show that every response extremal is identical to

a corrected response related to some phase extremal by Eq. 84,

_�_111� 1_ I I� _ sl___lC__III�____I__I-- .---I _�
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but that the converse of this statement is not true. In other

words, we will show that the number of phase extremals exceeds

the number of response extremals. The response extremals must

satisfy Eq. 66, but must satisfy some other restriction as well.

It is worthwhile to investigate the response extremals simply

because they are fewer in number than the phase extremals.

Thus the task of recognizing the one function that minimizes

ae2 from among all of the extremals is made easier.

Let us recall the definition of an extremal of an integral.

An extremal is a function which has the property that an

infinitesimal change in the form of the function makes no change

in the value of the integral. Let us examine the procedure

used in finding the extremals of an integral by reviewing the

derivation of section 5.1 where we attempted to find the phase

extremals of ae2. We allowed an infinitesimal change, or a

variation, a (w), in the form of (w). The function (w) can

be any function that is an allowable variation of (w); thus

A(w) can be any odd function of frequency. We made the

substitution

(w)- Q(w) + a A(w) (86)

in an integral expression giving ae2 in terms of (w). Then,

by considering the change in the value of ae caused by an

infinitesimal change in a from a = 0 for all of the possible

A(w) functions, we derived Eq. 66 which must be satisfied by

the phase extremals.

Let us now consider the problem of finding the response

_ ___ _.___
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extremals of ae2 . Suppose that we allow a variation in r*(t)

of the form pq(t). The function q(t) can be any function that

satisfies the relation

[r*(t) + pq(t)]c- jWt dt = I(w)I (87)

for infinitesimal values of p. Then we make the substitution

r*(t) -. r*(t) + pq(t) (88)

in an integral expressing ae2 in terms of r*(t). By consider-

ing the changes in the value of ae2 caused by an infinitesimal

change in p from p = 0 for all of the allowable q(t) functions,

we derive the requirements to be satisfied by the response

extremals of ae . However, it is very difficult to make this

derivation due to the difficulty in specifying the allowable

q(t) functions. Rather than attempting this derivation, let

us seek another approach which avoids this difficulty.

Notice what a variation in (w), a (w), means in terms

of a variation of r*(t), pq(t).

r*(t) = F-1 { I(w)e- j (w)} (89)

Making the substitution indicated by Eq. 86, where a is

infinitesimal

r*(t)-CD F- 1 { I(w) - J* (w) - J ( ) } (90)

_ __ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_~~~.. .-II --
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r*(t)-- F - {I(w)¢ V([1 - J1. A(W)]} (91)

r*(t)--> r*(t) + a F l[-JX(w)R*(w)] (92)

Thus we can make a variation of r*(t) by making a variation

of @(w). Every variation of @(w), a (w), exactly corresponds

to a variation of r*(t)

pq(t) = a Fl[-jJ(w)R*(w)] (93)

for the infinitesimal values of a and p that are of interest.

We deduce that every response extremal is identical to a

corrected response related to some phase extremal by Eq. 85.

Thus the response extremals must satisfy Eq. 66 ust as the

phase extremals must satisfy Eq. 66.

We should now investigate the generality of the variation

of r*(t) that can be accomplished by means of a phase varia-

tion. Can every possible variation, pq(t), subject to the

constraint of Eq. 87, be accomplished by introduction of a

variation of phase? As we shall see, the answer is no. We

can demonstrate this by consideration of an example. Consider

two purely odd response functions r2 (t) and r 2 (t). The

transforms of the two responses, JR2(w) and JR2 (w), have the

same magnitude. Both R2(w) and R 2 (w) are discontinuous

functions, and R 2 (w) has points of discontinuity that are



53

located at frequencies which differ from the R 2(w) discon-

tinuity location frequencies by an infinitesimal amount. We

can take as an allowable variation of r 2(t) the purely odd,

infinitesimal time function

pq(t) = r2 (t) - r2(t) (94)

However, we notice that, according to Eq. 93, for a function

r*(t) which is purely odd, we can create only even variations

through a variation of phase, a (w). Thus we are unable to

create all allowable response variations, pq(t), by means of

the phase variation, a (w).

Although the phase variation, a (w), fails to provide a

general response variation, the concept of using phase

manipulations to create response variations is very attractive.

The fulfillment of the magnitude constraint in Eq. 87 is

guaranteed. The phase variation, ca (w), fails to provide a

general response variation because it cannot shift the dis-

continuity locations of @(w). Thus we are led to consider the

substitution

G(w) -*[ + fi(W) (95)

where @(w) may have discontinuities and (w) is any continuous

odd function. Making the substitution for Q(w) indicated in

Eq. 95, the response extremal becomes

r* (t)I -i(w)JOI[w+P(w) ]jwt dw (96)

__�XI I_� _I __1_ ^1__·_·11_· _��_11_1__1_1111_�_1�
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Since is an infinitesimal quantity, we can make the change of

variable

x = w + p(w) (97)

w=x -c (x) (98)

Equation 96 becomes

r*(t) -->

kE:

I[x-.L(x) ]-JO(x) +J[x-p(x) t dx (99)

[ (x) p (x) dI(x)]C-J"(X)JiXt[l-JP.(x)t] dxCI~) -BI~dx~

(100)

r*(t) ~ r*(t) + {-F 1[(w)c-jg(w)ad I(w)]

d F-t (W) -Je(QW) I(w) ] } (101)

Thus the substitution for e(w) that is indicated in Eq. 95

creates the response variation

pq(t) {Fl -1E L(w)C- j O(w) I(w)]- d F - w)c-J(Q(wI(w)]}

(102)

It will be noticed, however, that this response variation is

not completely general, Just as the variation in Eq. 93 is not.

_ __ ���
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Consider the case where both i(t) and r*(t) are odd time

functions; the variation given by Eq. 102 can only be purely

odd. But according to Eq. 93, even variations are also

allowable in this case.

A completely general response variation can be created by

means of phase manipulation by the substitution for (w)

Q(w)-t [w+PB(w)] + a (w) (103)

in Eq. 42, giving ae2 * The response extremals of ae2 must

satisfy both of the equations

d ae2 0 (104)
da ae

d =0

d ae = 0 (105)

=0

We notice, however, that Eq. 104 has already been treated in

section 5.1; Eq. 66 is the result. We have now established

that the response extremals must satisfy not only Eq. 66, but

also Eq. 105. In solving Eq. 105, we need to make only the

substitution for (w) given in Eq. 95 since Eq. 103 reduces to

Eq. 95 for a = 0.

We will now solve Eq. 105, not for the most general case,

_ ___ _______�___Y____I_^_111 II I 1_1____� __- _
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but with appropriate specializing assumptions. Let us assume

that neither I(w) nor f A(w-x)[R(x) - R*(x)] dx has-sO
discontinuities. These assumptions will not always be valid.

As we shall see, however, there is only one problem in which

a solution of Eq. 105 is useful; this is the problem of

correcting a sluggish system to obtain the step response with

the shortest possible rise time. These assumptions will prove

justified here.

Using the substitution given by Eq. 95 in Eq. 42

ae 2 = A(-x-y)[R(x)-I(x)e -J(x+ y( x ) ) ]

[R(y)-I(y)c- j (y+ (y ) )] x dy (106)

Differentiating ae2 with respect to 

0 = ae

parts

'(Y) = 0 c (y) + d(y) (108)

The function d(y) contains all of the discontinuities of

@(y) and has zero slope between discontinuities.

II
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Then

dy = -_J
-:j(y) d -yJ c d(

- O c(y) dy+¢ d[e

Equation 109 substituted into Eq. 107 gives

dy ( dy)[ %(Yy)]R*(Y)f

d je (y ) -j Jc(dC ] p (y)(y) C

dx A(-x-y)R(x)-R*(x) ]

dx A(-x-y)R(x)-R*(x)]

(110)

Let us recognize that the first term of Eq. 110 has exactly

the same form as the right-hand member of Eq. 61 and, there-

fore, must equal zero. An interpretation of Eq. 110 is

possible. The first term accounts for the change in ae2 caused

by the change in (w) between points of discontinuity. The

second term gives the effect on ae2 caused by the discontin-

uity shifting alone. Now we have

0= Jy(Y)= d~c d I (y)I(y)c -Jc ( x A(-x-y)[R(x)-R*(x)]

(111)

Suppose that the points of discontinuity of (y) occur at

y = Yk' for k = -N, ... , -1, +1, ... ,N, and that in going from

k to k+' C changes by A[c d ]. From Eq. 111

-Jg(y)ddyC
-Jed(Y)

] (109)

-C 
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N

o Z I(Y (yk) 
k = -N

- ( )

x A( x-yk)LR(x) - R*(x)] dx (112)

Noticing that

] = AR* (yk) (113)

where AR*(yk) is the change in R*(y) that occurs in going

from k- to Yk+ , Eq. 112 becomes

P(Yk) AR* (Yk)
-

A(-x-yk)R(x)-R*(x)] dx (114)

Because (y) can be any odd function, if Eq. 114 is to be

satisfied for every choice of p(y) it must be that

A R*(yk)f 0Q~1·Yk J0 A(-x-yk) [R(x)R*(x)] dx

= AR*(Y_k) A(-x-k)[R(x)-R*(x)] dx
d-Q

(115)

But the right-hand member of Eq. 115 is the negative conjugate

of the left-hand member. Then finally

A(Wk-x)[R(x)-R*(x)] dx }

N
0= 

-N

t

-jec (k) A [ c -J d (yk)

I (k) C A [1E ~[

(116)·- ·· ( · ~~~i~iiO
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Equation 116 is the result of the derivation that started with

Eq. 105. We now know that response extremals of ae2 must

satisfy not only Eq. 66 but also Eq. 116. But since Eq. 116

is a non-linear integral equation, we are unable to solve it

for the extremals. However, for the special class of correction

problems considered in section 5.2, a simplification is possible.

It is given that A(w) = Al(w) and that R(w) = JR2(w), and it

is shown in the Appendix that R*(w) = jR2(w). Therefore

Eq. 116 can be written

f Al(wk-x)[R 2 (x) - R 2 (x)] dx = (117)

where the discontinuities of Q(w) occur at the frequencies w k.

The response extremal that minimizes ale2 must satisfy not

only Eq. 79, but also Eq. 117.

5.4 Correction of a System to Give a Step Response with the

Shortest Possible Rise Time.

The previous sections of Chapter V have been devoted to

deriving the equations that must be satisfied by a corrected

response that minimizes weighted integral square error. Section

5.2 was concerned with the class of problems in which the

desired response is a purely odd time function. In this section

we will investigate a specific problem within this class. By

minimizing ale for an appropriately chosen weighting function,

we want to shorten the rise time of the step response of a

sluggish system. The problem of correcting the step response

____1111111 _11·1�- 11 I ^-L�I I--�-*-LII_ ..-..
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of a sluggish system for minimum (unweighted) integral square

error has been considered previously in Chapter IV. It is

convenient here to suppose that the system has already been

corrected for minimum e2, and that we are making an additional

correction to minimize ale 2. Thus both r(t) and i(t) are odd

time functions.

r(t) = ul(t) (118)

R(w) 1 (119)
j w

i(t) = i 2 (t) (120)

I(w) = JI2(w) (121)

Furthermore, we know from the work of Chapter IV that I 2(w)

equals -I(w)l for w>0 and +II(w)l for w<0; let us assume

that II(w)l has no discontinuities.

Since the desired response is an odd function, the weight-

ing function should be chosen as an even function. Then the

corrected response that minimizes ale2 will be some odd time

func ti on.

r*(t) = r(t) (122)

R *(w) = JR2(w) (123)

We shall see that with a suitable choice of the weighting

function, the corrected response which minimizes ale2 is



Bses

t
-tl t1

Fig. 17. An Appropriate Weighting Function

guaranteed to have the shortest rise time that can possibly

be obtained. Rise time will be defined as the time required

for the response to rise from the value -c to the value c.

In practice, the value of c is usually taken as 0.4 or 0.45 .

Let us now consider the choice of an appropriate weight-

ing function, al(t). Let us choose

al(t) = u(t-t l ) + u(t+tl) (124)

where uo(t) is a unit impulse at t = 0. This weighting

function is shown in Fig. 17. Thus the weighted integral

square error is simply the sum of the squares of the errors

_ �I_ II � YI _ _11111-�1�11--�
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at the times t1 and -t 1.

ale2 = e2 (-tl) + e2(tl) (125)

Since we know that the corrected response that minimizes ale2

is an odd function

ale 2 = 2e2 (t ) = 2[ - r (t )] 2 (126)

for this response.

Now let us imagine that we have determined the corrected

responses, r2m(t), which minimize al e 2 for a number of

different choices of t. Suppose that we have found the small-

est value of t for which

r2m(t l) = c (127)

and that we denote this value of t as tr . Clearly, the
2

corrected response that minimizes ale2 when tr is the
2

corrected response with the shortest possible rise time; if

there exists a response with a shorter rise time, then tl, does

not have the smallest value for which Eq. 127 is satisfied, and

we have stated that t is chosen to have this smallest value.

Then the shortest step response rise time that can be achieved

by means of phase correction is tr .

Having shown the usefulness of the weighting function
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given by Eq. 124, we must determine the corrected response,

r2m(t), that minimizes ale for a given value of t l , and we

must develop an easy method of finding the smallest value of

t l for which Eq. 127 is satisfied. First, suppose that t is

given; let us find the corrected response that minimizes

a le2 . From the work of the previous sections of this chapter,

we know that this response is purely odd. Furthermore, we

know that the transform of this response must satisfy Eq. 117.

Transforming both sides of Eq. 124, we find that

Al(w) = 2 cos wt1 (128)

For A(w) as in Eq. 128, we may write Eq. 117 as

co

0 = cos (wk-y)tlR2(Y) - R2(y)] dy (129)

0 sin wktI sin yt R2(Y) - R(y) dy (130)

0 = r2 (t l) - r 2(t1 )] sin wktl (131)

where wk is a frequency at which (w), and thus R 2 (w), has a

discontinuity. According to Eq. 131, the response extremals of

a a2are all odd functions whose transforms, JR2(w), have the

magnitude II(w)I and have discontinuities only at frequencies

that are integral multiples of Let us now select the one

1 x 
of these response extremals that mi nimizes ale2 . The transform

II-_ _ I._J ---- II�--�-� ·-� -I.IIIIl·LII _�_ ___ ------ I
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of this minimizing extremal may have discontinuities at any of

the frequencies that are integral multiples of ; we must

determine the frequencies at which discontinuities actually

occur.

Remember that al e 2 is minimized when e(tl) is minimized.

For the desired choice of t1 where t - tr , e(t1) is
2

minimized when r2(t) is maximized. The value of r2(t1 ) is

given by

r*(tl) R 2( ) sin wtI dw (132)

It is obvious that r2 (t l) has the maximum possible value when

R2 (w) has a change of algebraic sign at each frequency for

which sin wt1 changes sign. Then the transform of the

extremal that minimizes al e 2 has a discontinuity at each of

the frequencies

Wk _ (133)"k t 1

where k assumes every integer value from - oo to o. The only

remaining question is how to choose t = tr without actually
2

calculating a series of trial solutions.

The proper choice of t can be made quite simply. This

fact is best illustrated by taking an example. Let us consider

again the sluggish system that was examined in Chapter IV.

The system, when it has been corrected to give the step
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response having minimum e 2 , has the transfer function (w2+1) -1

The step response of this system, i(t), is shown in Fig. 18.

Let us define rise time as the time required for the corrected

response to rise from -0.4 to +0.4. Looking at the curve of

i(t) versus t in Fig. 18, we guess that t should have a value

of about 1.25 seconds. This would place the first discontinuity

of R2(w) at about = = 2.5 . This frequency is large

enough so that we can utilize the same procedure for evalua-

ting the corrected response that was used in Chapter IV. Thus

we note that

1 A- 1, Iwl wl (134)
Jw w +1 Jw3

Making use of the series expansion of Ljw(w2+l)V - 1 analogous

to that of Fig. 9, we find that

r(t) L= (t) + 2( 3 (- t) (135)
k-l (kT )2 1

tl

where the transform of f(3 )(t) is given by Eq. 35, and f(3)(t)1 (t) is given b~r Eq, 35, and 1

is plotted in Fig. 11. Since the series in Eq. 135 converges

rapidly, we will take only the first two terms

*2 t =it) 2t 2
r 2 (t) = i(t) 2 - f(3) ( t) (136)2m W 1 1
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The termination of the series in this way corresponds to

allowing R2 m(W) to have a discontinuity only at w tn for

w > 0, rather than having an infinite number of discontinuities

kcn
at w k . However, the termination makes very little

difference in the time response, and the functions given by

Eqs. 135 and 136 are nearly the same.

Now we are able to find the value of t that makes the

corrected response that minimizes ale 2 have the shortest

possible rise time. This is the value for which r2m(tl) 0.4

From Fig. 11 we note that

f(3)() = 0.06 (137)

According to Eq. 136, t should have the value for which

t 2
0.4 = i(tl) + 2-- .06 (138)

Suppose that we plot a curve of i(t) + .12 t2 versus t, as2

shown In Fig. 18. We note that the curve has the value 0.4 for

tr
t = 1.4 = t I= 2 (139)

Thus R(w) has a discontinuity at w = 2.24. Using the

value of t given by Eq. 139, we can calculate the corrected

response r*m(t), as given by Eq. 136, that has the shortestrespose 2m

_ 11--1_1--____·_._·1. _1_·_ _------- �1-1.1 ·�._1
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possible rise time. This function is shown in Fig. 18.

Let us review that which we have been able to accomplish

by means of phase correction.

Response of system Rise time Rise time
with shortened by

(1) no correction 3.3 sec.

(2) correction for

minimum e, or 3.2 sec. 3 %
linear phase

(3) correction for
shortest possible 2.8 sec. 15 %
rise time

By means of phase correction, the rise time of the step

response of this sluggish system can be reduced by as much as

(but by no more than) 15 %. It should be noticed however that

the optimum transient correction requires a discontinuous

phase correction characteristic. We can approximate such a

characteristic by the phase of an all-pass network, but the

cost, in terms of complexity of the network, is very high

indeed. This matter will be discussed in Chapter VI.

In the derivation of the correction giving the shortest

possible step response rise time, we have given no considera-

tion to the overshoot that this correction may create. In

the example discussed here, this correction causes an overshoot
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Since I(w) has branch points in the complex s-plane, an

approximation method, or rather a combination of several

approximation methods, will be used to calculate i(t). For

0< w < 0.8, we represent I(w) by

I(w) = 1 (1-0.4w4 ) , O<w<0.8 (142)jw

To this portion of the frequency function there corresponds a

time response

x dx3 x (143)[t fu ntsin x dx-(0 4)( 08 )4 d3 sinx 1

Both of the functions needed in calculating this portion of

the response are tabulated.4'5 In the frequency range 0.8< w< 2,

I(w) is approximated by three straight line segments. The

contribution to i(t) made by these line segments may be readily

calculated.6 For w>2, I(w) is approximated by -jw-3 . The

part of the time response that corresponds to this portion of

the frequency function may be found using the curve of f(3)(t)

given in Fig. 11. The result of these computations is the

curve of i(t) versus t shown in Fig. 19 and also in Fig. 20.

This function is the corrected response that is the minimum

e 2 approximation of a step function. We notice that this

corrected step response has an overshoot of 2.5 %, as compared

to an overshoot of 4 % for the step response of the uncorrected

system, r( t).





Now let us investigate the possibility of making an

additional correction to obtain a corrected step response that

has less overshoot than does i(t). It has already been

mentioned that the straightforward approach, wherein we solve

Eq. 117 to find the corrected response that minimizes al e 2 ,

is impossible in this problem. But we know that the straight-

forward approach would lead to a corrected response that is

some odd function of time; this fact is verified in the

Appendix. Suppose that this odd function is denoted as r2m (t).

The transform of the corrected response, JR2m(w), has the

magnitude function II(w)l. Only the locations of the discon-

tinuities of R 2m(W) are unspecified, and these can be

determined quite easily.

Note that the discontinuities of R 2m(w) cannot be located

at low frequencies; the first discontinuity must be located at

a frequency that is well above the cutoff frequency of the

filter, wc = 1. A discontinuity located at low frequencies

would create a very large, low frequency ripple component in

r2m(t) that could not possibly cause a decrease in the over-

shoot. The same argument can be stated in a slightly different

form. It is known that the step response, i(t), has overshoot

because I(w) exhibits a sharp decrease in the region near the

cutoff frequency. The addition of a discontinuity, a sign

reversal of I(w), in this region could only increase the over-

shoot.

The first discontinuity of Rm(W) is located at a

�
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frequency, w1l, that is well above w c= 1. Let us suppose that

R2m(W) has only one discontinuity for w > . By making the

approximati on

I(w) w > (144)
3w 

we can write

r2m t) = i(t) + 2 f(3)(wt) (145)

where f(3)(t) is plotted in Fig. 11. Notice that the second

term of Eq. 145 is simply the function f(3)(t) with an

appropriate normalization of the time scale and of the constant

multiplier to account for the choice of w1.

In our attempt to suppress the overshoot of i(t), we have

developed Eq. 145 which gives the corrected response, r2m(t)

as the sum of i(t) and a normalized form of the function f(3)(t).

Now we simply look at Fig. 11 and determine by inspection the

most desirable normalization, thus determining the value of wl.

The peak of the overshoot of i(t) occurs for t = 2.75. The

normalization of f(3 )(t) should be chosen so that one of the

negative peaks of the normalized function falls at t = 2.75.

The first negative peak of f(3)(t) occurs at t = 1. To move

this peak to t = 2.75 by normalization requires that

Wl = = 0.364 . But we have previously noted that in order"1 2.75

� _� �rl �I� IIU� �II I_·___�__
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to make the desired correction, w 1 must be chosen greater than

1. Then let us consider the normalization that causes the

second negative peak of f(3)(t) to occur at t = 2.75. This

requires that

W = 2.75 = 2.36 (146)
2.75

Using this value of wl, Eq. 145 becomes

r2m(t) = i(t) + 0.36 f(3)(2.36t) (147)

This function is plotted in Fig. 20. The overshoot at t = 2.75

has been suppressed by this correction, ust as desired. How-

ever, note that r2m(t) has the same overshoot as i(t). The

fact is that the curve of i(t) versus t is so nearly flat in

the region near its peak overshoot that the positive peak of

f(3)(2.36t) at t = 3.4 causes r2m(3.4) to be as great as i(2.75).

However, r2m(t) does have a slightly smaller rise time than

does i(t), and with no increase in overshoot.

Perhaps by taking additional discontinuities in the

function R2m(W), a small decrease in the overshoot of i(t) can

be obtained, but it is clear that very little can be done to

decrease the overshoot of the step response of a system that

has already been corrected for minimum e2. The correction for

minimum 2 effected a sizable decrease in overshoot (from

4 % to 2.5 %) but little more can be accomplished by further

correction.
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of perhaps 1 %. The problem of making a phase correction in

order to decrease overshoot is considered in the next section.

5.5 Phase Correction of a System to Reduce Step Response

Overshoot.

In the previous sections we determined the phase correc-

tion that leads to the step response with the shortest possible

rise time for a given system. The solving of this problem was

straightforward and the solution was unique. In this section

we will consider the possibility of correcting a system step

response so as to decrease the amount of overshoot, or so as to

decrease both rise time and overshoot. The solving of these

problems is more difficult and the solutions are less clear-

cut than for the problem of correction to reduce rise time.

First let us consider the choice of the weighting function

that is needed in order to make the corrected response that

minimizes ale2 to have the least possible overshoot. As usual

it is convenient to assume that the system has already been

corrected to minimize e 2 . We might think that the weighting

function given by Eq. 124 would lead to the response with the

least overshoot if t were chosen equal to the time at which

the largest peak of i(t) occurs. Correction to minimize ale2

would certainly suppress the peak at t = tl; unfortunately,

this correction also causes peaks to crop up elsewhere. We

could add other pairs of impulses to the al(t) function in an

attempt to suppress all of the peaks of the corrected response

simultaneously, but the result of such an endeavor is
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uncertain. We must concede that it is difficult to know how

to choose the weighting function that leads to the corrected

response with the least possible overshoot.

Even if the proper weighting function were known, the

solution of the al e 2 minimization problem is not easy. The

transform of the corrected response that minimizes ale2 must

be an odd function that satisfies Eq. 117. But it is very

difficult to solve Eq. 117 for any weighting function except

the simple one of Eq. 124. However, we shall develop a

method for the direct synthesis of corrected responses that

avoids both the question of choosing al(t) and the difficulty

of solving Eq. 117. This method can best be demonstrated in

an example.

Let us consider the step response, ru(t), of a second-

order Butterworth filter. The transform of this response is

R (u) = 1 1 (140)
u(w) = w - l

The uncorrected step response, r(t), is plotted in Fig. 19

with its time origin shifted back to t = -1.4 seconds.

We must now make the correction that minimizes e2 for

this filter. The step response of the filter with correction

for minimum e2 is denoted i(t), and

I(w) 1 | 1 1 w (141)
3W -w +ULJV W+ 1 JWl+w4
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Also shown in Fig. 20 is the step response of the system

when corrected for shortest possible rise time. This function

is denoted as r2m(t).

5.6 Phase Correction of a Fourth-Order Butterworth Filter

Let us consider the step response, ru(t), of a fourth-

order Butterworth filter. The transform of this response is

RU~) _ - -J · - .- T8 11
Jw (w-e )(Jw-e )(Jw-e )(Jw-e ) (148)

The uncorrected step response, r (t), is plotted in Fig. 21

with its time origin shifted back to t = -2.85 seconds.

The transform of the system step response, when corrected

for minimum e is

1 1
I(w) - -(149)

w 1-+W8

The function i(t) was calculated by approximation methods like

those described in the previous section; the curve of i(t)

versus t is shown in Fig. 21. Notice that correction for

minimum e2 has reduced the overshoot from 11 % to 6 %, with

no change in rise time.

No significant improvement in step response can be

obtained by additional phase correction. For example, shown

in Fig. 21 are points on the curve of the system step response
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when corrected for shortest rise time. The amount of deviation

from the i(t) curve is barely perceptible. The reason for the

failure of additional correction attempts is clear. These

corrections always involve the placement of discontinuities at

frequencies above the cutoff frequency of the filter. Since

the magnitude of I(w) behaves like w -5 above the cutoff

frequency, II(w)I is so small that the addition of discontin-

uities in this region can cause little change in the response.

In sections 5.4 and 5.5, and in the present section, we

have investigated the effect of phase correction on the step

responses of various systems. Let us summarize the findings.

Correction to obtain the step response with minimum integral

square error produces a decrease in overshoot for those systems

whose uncorrected step response exhibit this characteristic.

However, this correction makes very little change in the rise

time of the step response of any system. Additional phase

correction involving phase discontinuities can be used to

reduce rige time, especially for a sluggish system, but cannot

be used to decrease overshoot.
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CHAPTER VI

REALIZATION OF DESIRED PHASE

CORRECTIONS BY ALL-PASS NETWORKS

6.1. Possible Circuits for Realizing an All-Pass Network.

Figure 1 shows the pole-zero pattern in the s-plane of a

typical all-pass network transfer function. It consists of a

pole-zero pair on the real axis and two pole-zero quadruplets.

In the realization of an all-pass network, it is convenient

to divide the network into all-pass "sections", where each

section realizes a pole-zero pair or quadruplet. The all-pass

sections are cascaded to obtain the desired all-pass network

transfer characteristic. It is expedient to realize these

all-pass sections in the form of constant resistance networks.

A constant resistance network has the property that when it

is terminated in the characteristic resistance R 1, the input

impedance of the network is R 1 for all frequencies. Thus,

all-pass sections realized in this form can be cascaded directly.

The realization of the all-pass network with the transfer

function
Jw-a 

Z () 1 (150)

can be made as shown in Fig. 22.

Two possible forms of realization of the all-pass network

with the transfer function

( JW-l- JWl) ( JW-JQl+JW l )
Z 12(w) -i (j+l-Jwl) ( Jl.JWl) (151)

( aw+o- 3W1) (w-'-j+3 1)

j
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I1

+ L =0
2 l

E 2

C = 2
_ ° 1R0

Fig. 22. A Constant Resistance Network with Z 12(w)=

Form 1 4dC1 A - rl
U J- r' /

u - L - J J

R 1+ R1

E2
L1

C 1 =
_
"1

4 w 1 2 

R 2

=L2 =

E2 L2

C2 =- 2- R 2

Fig. 23. Two Constant Resistance Networks with

( Jw-1-JWl) ( Jw-l+JWl )

12( i (Jwc 1 -3 Jwl) ( JiW+ 3l w )

- - P

,,
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are shown in Fig. 23. The network of Form 1 can always be

realized, and when d> l, the network of Form 2 can be realized.

6.2 Number of All-Pass Sections Required to Linearize Phase

In Chapter II we showed that any phase function plus the

phase of a delay network, wT, canbe closely approximated by the

phase of a realizable all-pass network. But we gave no

attention to the practical problem of realizing the all-pass

network. Let us consider now the number of all-pass sections

that are needed to realize the various phase corrections that

have been derived in Chapters IV and V.

First, let us determine the number of all-pass sections

needed to approximate the phase characteristic that corrects a

system for minimum e2 step response. This requires correction

to linearize the phase of the corrected system. As a specific

example let us attempt to linearize the phase of the second-

order Butterworth filter of section 5.5 In practice, correc-

tion is usually made to flatten the corrected group delay

characteristic rather than to linearize the phase, where group

delay is defined as the derivative of phase with respect to w.

Then we want to design a correction that makes the group delay

of the Butterworth filter, TgB, plus the group delay of the

all-pass network, TgAp, nearly equal to a constant. Shown in

Fig. 24 is a curve of 5.3 - Tg B . Also shown is the curve of

TgAp that is obtained for a three section all-pass network

where the transfer functions of the sections have the zero

locations
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section 1: = 0.96 , wl = 0

section 2: 2 0.85 w 2 = + 1.5

section 3: 3 0.72 , w 3 = + 2.315

We note that TgB + TgAp very nearly equals 5.3 seconds for

frequencies less than w = 2. Let us denote the step response

of the Butterworth filter with this correction as i*(t). The

function i*(t) should be a good approximation to the

corrected response with minimum e2 , or the function i(t)

shown in Fig. 19, except for a delay of about 5.3 seconds.

Shown in Fig. 19 are points on the curve of i*(t) versus t

when plotted with its time origin shifted back to t = -5.15

seconds. The approximation of i(t) by i*(t) is very good

indeed.

Our experience with this example leads us to believe that

a satisfactory correction to linearize the phase of a system

can be accomplished with a reasonable number of all-pass

sections, no more than four or five at the most. Then if

substantial improvement in the step response of a system can

be obtained by correction to minimize e , it may be worthwhile

to construct an all-pass network to achieve phase linearization

of the system.

-
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6.3 Number of All-Pass Sections Needed to Permit Approximation

of a Discontinuous Phase Function by the Phase of an All-

Pass Network.

Correction to linearize the phase of a system can be

accomplished rather easily, as was indicated in the previous

section. But some desirable phase corrections require a

discontinuous phase function. Correction of a system to give

the step response with the shortest possible rise time requires

a phase correction with discontinuities; the value of the

phase correction function must change by an amount at the

discontinuities. It is shown in Chapter II that the phase of

an all-pass network, (w), can closely approximate the

function (w) + wT over any finite frequency range, where (w)

can be any odd frequency function. As we shall see, however,

if the function (w) is discontinuous, the number of all-pass

sections needed to make this approximation is very large.

Let us make an estimation of the number of all-pass

sections needed to correct the sluggish system of Chapter IV

so as to obtain the corrected step response with the shortest

possible rise time. We have shown in Chapter V that the

phase correction needed to accomplish this must linearize the

phase of the sluggish system and have a discontinuous change

in value of amount at w = 2.24. However, the phase lineari-

zation can be made quite easily with the number of all-pass

sections that is required to approximate the discontinuity.

Therefore, let us assume that the desired correction is simply

_I�� I_ I
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a linear frequency function except at w = 2.24, where there

is a discontinuity. This function is shown in Fig. 25. Let

us represent the phase of an all-pass network by a series of

line segments of phase length 2, ust as was done in Fig. 3.

The approximation of the desired phase correction that is

made by the all-pass network phase is shown in Fig. 25. By

imagining a shift of origin to t = T in the time domain, we

elininate the linear component, wT, of the phase functions

shown in Fig. 25. Now, corresponding to the difference between

the desired phase and the all-pass network phase, there exists

an error in the real and imaginary parts of the transform of

the corrected response, as is shown in Fig. 26. The error in

the corrected time response due to the approximation of the

discontinuous desired phase by the all-pass network phase must

be less than the total area enclosed by the two curves plotted

in Fig. 26. The total of this enclosed area amounts to

T(1 + 0.571) II(2.24)1 = (152)

Suppose that we want the time domain error in the corrected

response to always be less than 0.01. Then we must choose

T = 44 seconds (153)

Remember that we can approximate the desired phase

correction by the phase of an all-pass network for only a

finite frequency range. Suppose that for frequencies greater
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than w = 5, we decide that we will no longer attempt to make

the approximation. Then we can see from Fig. 25 that the

total phase shift contributed by the all-pass network as w

varies from zero to infinity is about

5T = 220 radians (154)

Each all-pass section contributes a phase shift of 2rr over

this frequency range; then the number of all-pass sections

must be

220 (
22-0 35 all-pass sections (155)

The above considerations give us at least a rough estimate

of the number of all-pass sections that would be needed in

order to correct this sluggish system to give the step response

with the shortest possible rise time. The use of 35 all-pass

sections to accomplish a 15 % decrease in rise time hardly

seems ustified.
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APPENDIX

PROOF THAT A ODD CORRECTED RESPONSE

APPROXIMATES AN ODD DESIRED RESPONSE WITH MINIINT ale

A.1 Outline of the Proof and Assumptions to be Made

Since we will be making frequent references to the

solutions of Eq. 79 in this appendix, when we mention a

"solution", Eq. 79 is referred to unless otherwise stated.

In section 5.2 we have shown that any odd frequency func-

tion that has the proper magnitude is a solution of Eq. 79.

We noted,however, that there may be other solutions for which

Rl(w) 0; such functions, when they exist, will be called

"degenerate solutions". The task of this appendix is to show

that a purely odd solution, rather than a degenerate solution,

minimizes ale. Because Eq. 79 cannot be solved for the

degenerate solutions, if there are any, this must be shown in

a way that does not require knowledge of the complete set of

2
extremals of ale

The method of proof will be as follows. We will postulate

that Eq. 79 does have a degenerate solution. We will then

construct a non-degenerate, or purely odd, solution in such a

way that it can be shown that this solution yields at least

as small a value of ale2 as does the degenerate solution. The

non-degenerate solution which will be constructed in this way

will not, in general, be the solution which minimizes ale2 .

But we will have proved that some non-degenerate solution

minimizes ale2 , since we will have shown that we can always

1____________11_ _ _
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construct a non-degenerate solution which gives at least as

small a value of al e as is given by a specified degenerate

solution.

In order to fix ideas, let r 2(t) be taken as a unit step

function in this proof. The same proof, with only minor changes,

could be made using any other odd function as the desired

response.

It is convenient to suppose that phase correction has

already been made to minimize e , and that the additional phase

correction, Q(w), will be used to minimize al e 2. Thus i(t) is

odd and I(w) = JI2(w).

We must assume that it is possible to make a phase
2

correction for which ale2 is finite; otherwise, any considera-

tion of minimizing ale2 would be meaningless. Thus, for

example, if al(t) approaches a constant at large times, i(t)

must approach the same final value as the desired step function,

r2 (oo) = 2.

Knowledge of the sort of errors to be corrected in this

problem restricts the class of weighting functions, al(t),

which need to be considered. Because the system has already

been corrected for minimum e2, the additional correction cannot

reduce the error over one time interval without increasing the

error elsewhere. The additional correction, which is designed

to minimize al e 2 , may be considered to shift the error from one

time interval to another. It is known that in all physically

motivated problems, the principal part of the error, be it due

to sluggishness or overshoot, occurs near the time origin. In
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aat)

b 

tb

Fig. Al. Example of a Suitable Weighting Function.

general, it is desired to shift some of the error from the

vicinity of the time origin to later times where the error is

not so large. In order to accomplish this, the weighting

function should be like the one shown in Fig. Al. It should

be a function which is always greater than its asymptotic

value b. A weighting function of this form accomplishes the

desired shift of error away from the time origin by weighting

early errors more heavily than later errors. The exact form

of the weighting function that is needed depends on the partic-

ular problem, but it should always have this characteristic.

It will be supposed that by the time tb, al(t) has reached the

level b.

al(t) - b , Itl > tb

___1�1��1_ 11� 1_1__I_1· _IXIIXIIIIIX_ _---11 _ _
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A.2 The Value of ale2 Given by a Degenerate Solution of Eq. 79.

The equation giving ale2 may be written as in Eq. 71. The

equation is repeated here for convenience.

c 2 2
ae = tLr2 (t) al(t)r 1(t)[r2(t)] dt

(A2)

The relation

IR*( ) 2 + iR*2 (w) 2 II(w)12 (A-3)

must exist between the transforms of rl( t) and r2(t).

Equation A2 indicates that ale2 equals to sum of two terms,

the weighted integral square of the difference between the

desired response and the odd part of the corrected response

plus the weighted integral square of the even part of the

corrected response. For a corrected response that is the

inverse transform of a degenerate solution, the second term of

Eq. A2 is non-zero and positive; for a non-degenerate solution

the second term is zero.

Now suppose that there does exist a degenerate solution

of Eq. 79

Rd() = Rd(W) + JR(2d) (A4)

and thus

rd(t) = rld(t) + r2d(t) (A5)
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The even part of this response, rld(t), always makes a positive

contribution to ale2. However, since the magnitudes of the

transforms of rld(t) and r 2d(t) are related as in Eq. A3, it

may be that the first term of Eq. A2 is smaller than the

minimum value of al e s that can be obtained for a non-degenerate

solution. It is not possible to tell by this discussion

whether or not a degenerate solution can minimize al e . But

it is obvious that if a given degenerate solution can possibly

minimize al e 2 , Rld(w) must be the one function among all of

the real functions with the magnitude IRld(w)I that minimizes

the second term of Eq. A2. Although Rld(w) will not satisfy

this requirement, in general, let us assume for the sake of

argument that it does. It is now possible to determine some

of the characteristics of Rld(w) and its inverse transform

rld(t).

Let us recall that the integral square of any time

function is dependent only upon the magnitude of the transform

of the function. Thus all time functions with transforms

having the magnitude IRld(w)l have the same integral square

value. When we note that

al(t) b , Itl < tb

(A6)

al(t) = b , Itl >tb

it is evident that the second term of Eq. A2, al(t) [rld(t) 2 ,

has its smallest value when rld(t) is a function that is zero,

�_l_.lll�-·····L·····-··--·111- ·I·lll�-Lillll.__�_� _ _- 1- 
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or nearly zero for Itl< tbl if there can be such a function.

And such a function always does exist. Suppose, for example,

that Rld(w)I is as shown in Fig. A2(a). Rd(w) can then

have either the value IRld(w)l or minus IRld(w)l at a given

frequency. Suppose that the curve of Rld(w) has very closely

spaced, regular, discontinuities, as shown in Fig. A2(b), with

Aw<< rtb (A7)
tb

where Aw is the frequency interval between discontinuities.

Thus, the inverse transform of Rld(w) is a function with

rld(t) - 0 , Itl < tb (A8)

as desired. This is the one function among all of the functions

with the transform magnitude IRld(w)I that has the smallest

weighted integral square. The weighted integral square of this

function is

* -2 * 2 Aal(t)[rld(t b[r

If a degenerate solution of Eq. 79 is to yield the minimum

a1e2, then it must be that Rd(W) has very closely spaced

discontinuities, as shown in Fig. A2(b). The inverse transform

of this degenerate solution approximates the desired response

with a weighted integral square error of

_ __ _ __
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e 2 a t* (A)
ale - al(t)[r2(t) - r 2 (t)]2 + bErld(t)] (A

The "approximately equals" sign appears in Eqs. 8-10 and

will appear in the equations of the next section. It should be

noted that in each case the two quantities related by the sign

can be made as nearly equal as desired by carrying toward the

limit some process involved in the derivation of the equation.

For example, the members of Eqs. 8-10 can be made as nearly

equal as desired by making Aw sufficiently small. Then we can

interpret the approximately equals sign as meaning equals since

we know that it can mean "as nearly equal as demanded".

A.3 Generation of a Non-Degenerate Solution of Eq. 79 with

Smaller al e 2 Than That of any Degenerate Solution

In this section we shall show that it is possible to

construct a non-degenerate solution, Rn(w) = JR2n(W), which has

the required magnitude, II(w)l , and whose inverse transform

approximates the desired response with a weighted integral

square error which is at least as small as that of any degen-

erate solution. Let us express R 2n(W) as the sum of two

functions: the imaginary part of the degenerate solution of

section A.2, R2d(w), plus a function R2c(w) which will be

defined presently.

R 2 n(W) = R2() + R2c() (All)2n~~~~w) = 2d 2C ~~ ~ (ll
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The function R 2n(W) can have either the value I(w)I or minus

II(w)l at a given frequency.

R 2 n(w) = (-1)n ((W) II(w)J (A12)

where n(w) is any odd function of frequency whose value is

always an integer, except at discontinuities. Through our

choice of n(w) we are able to choose the value of R 2c(w) at any

frequency as either of the values allowed by

R (W) )n(w) *
R2c) (l) (II(w)l - R2d(W) (A13)

And because

IR*a(W) < II(w)I (A14)

for all w, the two possible values of R2c(W) are never of the

same algebraic sign.

Suppose, for example, that the two possible values of

R 2c(w) are as shown in Fig. A3. Now we propose to choose

R2c(W) in such a way that r2n(t) is a corrected response whose

weighted integral square error is at least as small as that of

the degenerate solution, rd(t). Let R 2 c(W) be chosen as shown

in Fig. A4. Choose R2 c(W) positive for 0 < w < w , negative

for wl < w < w 2 , negative for w 2 < < < 3 , positive for

w 3 < w < w4 , etc.,as shown in Fig. A4. The width of the

frequency intervals in which R2c(W) is either wholly positive

_XII ���--__·IPI�--·UL·-··--Y1�·_111·---1__I---- _ _ 
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or negative is always much, much smaller than t- Thus the

curve of R 2c(W) versus w is composed of many very short seg-

ments of the curves of -R2d(w) + II(w)l and -R2d(w) - [I(w) I .

Further, the frequencies wl, w2, ... , are chosen in such a

way that the areas under pairs of adjacent segments are equal.

In the notation of Fig. A4, l = a2 a3 = x4, etc. However,

it is not necessary that = = a .... Having so

chosen R2c(W), we note that

r2c(t) -0 , ItI< tb (A15)

and

al(t)[r2(t)]2 b[r2c(t)]2 (A16)

The inverse transform of the non-degenerate solution,

Rn(w), approximates the desired response with

ale2 f a l { r(t) - [r2d(t)+r2c(t)] (A17)
t 2 (A1)

= a (t)r 2(t)-r (t))2 - 2al(t)r2 c(t)[r 2 (t)-r 2d (t)

+ a(t)r(t)12 (A18)
1 2C;)r~

._ __�_ _� ___ � I_
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We must now treat two separate cases, depending on whether

or not b = 0. First, suppose that b = 0. The second term of

Eq. A18 is almost zero because r (t) is almost zero for
2c

Iti < tb and a l(t) = b = 0 for Itl > tb. Further, using Eq.

A16, the third term of Eq. 18 is almost zero. Thus

2 , (t)]2
ale a (t ) r2 (t) - r2d(t) (A19)

But for b = 0, Eq. A10 is the same as Eq. A19. We have been

able to show that the weighted integral square error given by

the non-degenerate solution generated in this section is the

same as that of the arbitrarily specified degenerate solution

in section A.2 .

Treatment of the case for which b # 0 is more difficult.

As it was remarked in section A.1, if b / 0, II(w)I must be

of a form which makes it possible for the corrected transient

to approach the same final value as the desired step function,

r2(oo) = ; otherwise the consideration of minimizing ale2 has

no meaning. Thus I(w) must behave like (jw)- 1 near w = 0, and

must have no other poles on the Jw axis of the s-plane.

An additional assumption about the choice of the time tb

in Fig. Al is needed. It will be assumed that the time tb is

chosen large enough so that for t > tb, r 2d(t) has practically

reached its final value of r2 (oo ). This choice can always be

made, and the forms of Rld(w) and R 2 c(w) readjusted to satisfy

__1 __ __�_
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Eq. A8 and Eq. A15, if necessary. But now the second term of

Eq. A19 is almost zero because r2c(t) is almost zero for

Itl < tb and r2(t) - r2d(t) is almost zero for Itl > tb. Thus

ale2 al(t)[r 2 (t)-rd(t) 2 + br 2c(t)]2 (A20)

Comparing Eq. A20 with Eq. A10, we can see that r 2n(t) yields

less weighted integral square error than does rd(t) if

* 2 * 2
[r2c(t) [rld(t)] ·

Remembering that the value of the integral square of any

time function is dependent only upon the magnitude of its

transform, we can write

*a 2 * 2
[r2 n(t)] rd(t) ] (A21)

or

Lr* 2 * * * 2 * 2 * 2r2d(t)] + 2 r 2d(t)r20(t) + r 2c(t)] = [r2 d(t)] + [rld(t)]

(A22)

Some care should be used in the interpretation of the above

equations, for both sides of Eq. A21 are infinite and the mean-

ing of the equation is somewhat in doubt. For the equations to

have a clear meaning, it must be imagined for the moment that

the functions r2 (t), r2n (t) and r(t) all approach zero rather2 ~2nd

�I_ I__ �_1��1_ 1__1__1___11_·_1__1111111� 1---1---�-_1 - ·- -�-·I
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than a final value at large times, but that they converge

toward zero so slowly that all phenomena of interest have

taken place long before r 2(t) shows an appreciable decrease.

After all, this is what must be assumed if these functions are

to be Fourier transformable, in the strict sense. Then, if

we consider the members of Eq. 21 as being extremely large,

but finite, the Eqs. A21 and A22 are unambiguous. This

distinction is mentioned only to avoid possible confusion and

is really of no concern.

From Eq. A22, we notice that we can show that

[r2(t) 2 < [rld (t)2 by showing that r2d(t)r2 c(t) is

positive. First we must establish the fact that the function

R 2 (w) does indeed approach zero as w approaches zero ust as

shown in Fig. A4. This can be proved most easily by assuming

that R(w) does not approach zero and deducing a contradiction.

Assume, for example, that R 2 c(w) behaves like the step func-

tion, 2kul(w), in the vicinity of w = 0. Noticing that

I(W)I 2= R 2d()] 2 + [Rld(w)32 = [R2 (w) + R 2c(w) 2 (A23)

and making use of the assumed form of R 2c(w), we find that for

small w

E[Rd(w)]2 + [Rld(w)j 2 = IR2d(w) + k 2 (A24)

�PIIIIL·IIIIIIIII
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Fig. A5. Assumed Behavior of R 2c (W) Near = 0

ERe (w) ]2 = 2k IR2 (w)Iid 2dU> + k 2
(A25)

Since we know that rd(t) approaches r 2(o ) as its final value,

it must be that in the vicinity of w=0

other terms involving
JR2d(w) (Jw) 1 + w raised to powers (A26)

greater than -1

Considering now the integral square of rld(t)

OD

rl (t) ] = 
"d 2

Rld(w) ] 2 dw

it follows from Eqs. A25 and A26 that [rld(t)]2 is infinite.

Since al(t) has the form shown in Fig. Al with b # 0, it must

103
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be that al(t)rld(t)]2 is infinite and thus from Eq. A10

that ae 2 for the degenerate solution, R(w), is infinite. A

degenerate solution which yields infinite weighted integral
2

square error certainly cannot minimize ale . It is

necessary to conclude that R2 c(W) does not have the behavior

that we assumed above, and that it does approach zero as w

approaches zero, ust as in Fig. A4.

Having disposed of this matter, we can now evaluate the

quantity r2d(t)r 2 c(t) to see whether or not it is positive.

Because r2c(t) is almost zero for Itl < tb and r2d(t) - r 2(D )

for It > tb

r2d (t)r2c (t) 2 r (D )r (t) dt (A28)

2 r2(co) Iu_l(t) r2c(t)] (A29)

where u _l(t) is a unit step function. Equation A29 can be

written in terms of the transforms of u (t) and r2c(t) as

... ..* r2 (co )OD
r2d(t)r2 (t) = (- )JR2c(w) dw (A30)

2r (oo) R 2 ()
= - __2 2c dw (A31)
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Let us determine the algebraic sign of the integral expression

00 R* (w)
R 2 dw (A32)

tO

in Eq. A31. Remember that the curve of R2c(W) versus w is

composed of many short segments of the curves -R 2 d() + I(W)| ,

and that adjacent pairs of segments of R2 c(w) enclose equal

areas. But considering now the integrand of Eq.A32, the areas

enclosed by adjacent pairs of segments of w lR2c(W) are not

equal; the net contribution of each pair of segments of

w1-R 2 o(w) to the integral is of the same sign as the first

segment of the pair. We see in Fig. A4 that the first pair of

segments come in the order, positive then negative. All

succeedingpairs of segments come in the order, negative then

positive. The first pair of segments of w R20() makes a

positive contribution to the integral in Eq. A32. Since R2c(W)

approaches zero as w approaches zero, this contribution is

finite and can be made arbitrarily small by choosing w1 and w2

sufficiently small. All succeeding pairs of segments of

-l R2c*(w) make negative contributions to the integral. Let us

suppose that the frequencies w1 and w2 have been chosen small

enough so that the integral expression of Eq. A32 is negative;

according to Eq. A31 r2d(t)r2c(t) is positive. From Eq. A22,

Crld(t)2. [2c(
Er * (t)]2 > 2r* (t)]2 (A33)

I __I_ ___I·� IIC ---
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Comparing Eqs. A10 and A20, we see that the weighted integral

square error given by the inverse transform of the non-degen-

erate solution R2n(t) is less than that given by the inverse

transform of the degenerate solution Rd(t). The proof for the

case where b 0 is complete.

It should not be inferred that the particular non-degen-

erate solution derived in this section, R 2n(w), is the

non-degenerate solution which minimizes ale2. The function

R2 n() is simply a non-degenerate solution which was generated

in such a way as to permit easy proof that its weighted

integral square error is at least as small as that of the

degenerate solution, Rd(w). Since we can always obtain a

non-degenerate solution which yields a value of ale2 at least

2
as small as the ale of any given degenerate solution, it must

be concluded that the function which minimizes ale2 is a

non-degenerate solution. But there is no reason to believe

that the minimizing solution is one which can be generated as

R2n(w) was. In fact, r2n(t) exhibits a very undesirable

behavior. It approaches r 2(t) nicely, ust as r 2d(t) does,

until after a large time tb when appreciable error again

occurs due to r2c(t). If it should happen that a corrected

response with this behavior does minimize ale 2 then al(t) has

been poorly chosen. In this case, the level b in Fig. Al

should be increased in order to weight more heavily the later

errors. There are certainly appropriate weighting functions

that give rise to a minimizing response which does not exhibit

_ __ __ __
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this undesirable behavior. In the limiting case of raising the

level b to higher and higher values, the weighting function

becomes a constant, and then the minimizing response certainly

does not have the undesirable characteristic of r2n(t).

We have assumed a particular desired response here, a

unit step function, in order to facilitate the discussion.

However, when we review the proof we realize that it could as

well have been made for any other odd function that might be

desired as the response in a physically motivated problem.

The conclusion that has been reached is this: in any

practical phase correction problem, the corrected response

which approximates any odd desired response with the least

weighted integral square error is an odd time function.

__.____ __ ·_
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