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Abstract

In this paper we provide econometric tools for the evaluation of

intertemporal asset pricing models using specification-error and volatility

bounds. We formulate analog estimators of these bounds, give conditions for

consistency and derive the limiting distribution of these estimators. The

analysis incorporates market frictions such as short-sale constraints and

proportional transactions costs. Among several applications we show how to

use the methods to assess specific asset pricing models and to provide

nonparametric characterizations of asset pricing anomalies.
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In this paper we provide statistical methods for assessing asset-pricing

models using specification-error and volatility bounds. The statistical

procedures can account for market frictions due to transactions costs or

short-sale constraints, and are easier to interpret than standard tests of

asset-pricing models. For the most part these methods are quite easy to

implement, even when market frictions are considered. They are designed to

provide a better understanding of the statistical failures of some popular

asset-pricing models and to offer guidance in improving these models.

Models of asset pricing with frictionless markets imply that asset prices

can be represented by a stochastic discount factor or pricing kernel. A

stochastic discount factor "discounts" payoffs in each state of the world

and, as a consequence, adjusts the price according to the riskiness of the

payoff. For example, in the Capital Asset Pricing Model the discount factor

is given by a constant plus a scale multiple of the return on the market

portfolio. In the Consumption-Based CAPM the discount factor is given by the

intertemporal marginal rate of substitution of an investor.

The implications of particular models with observable (up to a finite

number of parameters) stochastic discount factors are often tested by looking

directly at the average "pricing errors" of the models. Formal statistical

tests are performed using a time series of portfolio payoffs and prices by

examining whether the sample analogs of the average and predicted prices are

significantly different from each other. For examples of this type of

procedure, see Hansen and Singleton (1982), Brown and Gibbons (1985),

MacKinlay and Richardson (1991) and Epstein and Zin (1991).

While tests such as these can be informative, it is often difficult to

interpret the resulting statistical rejections. Further, these tests are not

directly applicable when there are market frictions such as transactions

costs or short-sale constraints. Extending the models to allow for such



frictions entails inequalities instead of the pricing equalities that prevail

in frictionless market models (e.g., see Prisman 1986 and Jouini and Kallal

1993). Finally, these tests can not be used when the candidate discount

factor depends on variables unavailable to the econometrician.

As an alternative to considering the average pricing errors of a model,

we consider a different set of tests and diagnostics using the

specification-error bounds of Hansen and Jagannathan (1993), and the

volatility bounds of Hansen and Jagannathan (1991). We also consider

extensions of these tests and diagnostics, developed by He and Modest (1993)

and Luttmer (1994), that handle transactions costs, short-sale restrictions

and other market frictions. We develop an econometric methodology to provide

consistent estimators of the specification-error and volatility bounds, and

an asymptotic distribution theory that is easy to implement and that can be

used to make statistical inferences.

Among other things, the results in this paper allow one to: (i) test

whether a specific model of the stochastic discount factor satisfies the

volatility bounds implicit in asset-market returns; (ii) compare the

information about the means and standard deviations of discount factors

contained in different sets of asset returns; and (iii) test hypotheses about

the size of possible pricing errors of misspecified asset pricing models.

While Burnside (1994) and Cecchetti, Lam and Mark (1993) have devised

tests of models of the discount factor along the lines of (i), their tests

are based on a different parameterization of the volatility bound. Our

parameterization yields tests that are simpler to implement and can

accommodate market frictions in a straightforward manner. In regards to

(ii), our results permit these comparisons among data sets to be made

independent of a specific stochastic discount factor model. Our motivation

for (iii) is to shift the focus of statistical analyses of asset pricing



models away from whether the models are correctly specified and towards

measuring the extent to which they are misspecif ied.

The rest of the paper is organized as follows. In Section 1 we review

the specification and volatility bounds of Hansen and Jagannathan (1991,

1993), He and Modest (1993) and Luttmer (1994). We show formally that the

volatility bound can be viewed as a special case of the specification-error

bound. This permits us to develop the underlying econometric tools in a

unified way. In Section 2 we provide consistency and asymptotic distribution

results for estimators of the bounds. In Section 3 we present two

applications of our results of Section 2, each of which can be read

independently. Section 3. A shows how to use the volatility bounds to test

models of the discount factor. In Section 3.B we extend the distribution

theory of specification-error bound to the case where there are parameters of

the discount factor proxy that are unknown and must be estimated.

Section 4 discusses the limiting distribution of the parameters

underlying the bounds both with and without market frictions. Among other

things, these results can be used to determine whether the volatility bound

is degenerate or more generally whether additional security market data

sharpens the bound. Finally, Section 5 describes some extensions and

provides some concluding remarks.

1. General Hodel and Bounds

Our starting point is a model in which asset prices are represented by a

stochastic discount factor or pricing kernel. To accommodate security market

pricing subject to transactions costs, we permit there to be short-sale

constraints for a subset of the securities. Although a short-sale constraint

is an extreme version of a transactions cost, other proportional transactions



costs such as bid-ask spreads can also be handled with this formalism. This

is done as in Foley (1970), Jouini and Kallal (1993 ^ and Luttmer (1994) by

constructing two payoffs according to whether a security is purchased or

sold. A short-sale constraint is imposed on both artificial securities to

enforce the distinction between a buy and a sell, and a bid-ask spread is

modeled by making the purchase price higher than the sale price.

Suppose the vector of security market payoffs used in an econometric

analysis is denoted x. The vector x is used to generate a collection of

payoffs formed using portfolio weights in a closed convex cone C of R
n

:

P = {p : p = a'x for some a € C}

.

(1)

The cone C is constructed to incorporate all of the short-sale constraints

imposed in the econometric investigation. If there are no market frictions,

then C is R
n

. More generally, partition x into two components: x' =

[x ' ,x '] where x contains the k components not subject to short-sale

constraints and x contains the I components subject to short-sale

constraints. Then the cone C is formed by taking the Cartesian product of R

I
and the nonnegative orthant of R .

Let q denote the random vector of prices corresponding to the vector x

of securities payoffs. These prices are observed by investors at the time

assets are traded and are permitted to be random because the prices may

reflect conditioning information available to the investors. In the absence

of short sales constraints, prices can be represented by:

q = E(mx|?) (2)

where m is a stochastic discount factor and ? is the information set



available to investors at the time of trade. Since it is difficult to model

empirically the conditioning information available to investors, we instead

work with the average or expected value of (2):

Eq - Emx = . (3)

Some conditioning information can be incorporated in the usual way by

multiplying the original set of payoffs and prices by random variables in the

conditioning information of economic agents.

More generally in the case of market frictions, x is partitioned in the

manner described previously and the pricing is represented by:

Eq
n

- Emx" = (4)

Eq
s

- Emx
s

£ .

For notational simplicity we write (4) as:

Eq - Emx € C (5)

where the elements of C are of the form (0,0')', (3 nonnegative. In the

absence of frictions we take C to contain only the zero vector so that (5)

encompasses (3). The inequality restriction emerges because pricing the

vector of payoffs x
s

subject to short-sale constraints must allow for the

possibility that these constraints bind and hence contribute positively to

the market price vector.



l.A Haintained Assumptions

There are three restrictions on the vector of payoffs and prices that

are central to our analysis. The first is a moment restriction, the second

is equivalent to the absence of arbitrage on the space of portfolio payoffs,

and the third eliminates redundancy in the securities.

For pricing relation (5) to have content, we maintain:

Assumption 1.1: £|x| <«, £|q|<

Assumption 1.2: For any a € C, a.' Eq > if a'x £ and Probia' x > 0} > 0.

Further for a € C, a' Eq £ if a'x = 0.

Recall that C is the Cartesian product of R and the nonnegative orthant of

I
IR , which captures the short-sale restrictions on some of the securities.

Assumption 1.2 is a statement of the Principle of No-Arbitrage applied to

expected prices and modified to account for the fact that C need not be

linear [e.g., see Kreps (1981), Prisman (1986), Jouini and Kallal (1993), and

Luttmer (1994)]. It guarantees that there exists a non-negative stochastic

discount factor m with finite second moment such that (5) holds. Jouini and

Kallal (1993) discuss additional assumptions that imply the existence of a

positive discount factor satisfying (5), however in our analysis we consider

only nonnegative discount factors.

Next we limit the construction of x by ruling out redundancies in the

securities:

Assumption 1.3: If a'x = a 'x and a' Eg = a ' Eq for some a and a in C, then

a = a .



In the absence of transaction costs, Assumption 1.3 precludes the possibility

that the second moment matrix of x is singular. Otherwise, there would exist

a nontrivial linear combination of the payoff vector x that is zero with

probability one. In light of (5), the (expected) price of this nontrivial

linear combination would have to be zero, violating Assumption 1.3. To

accommodate securities whose purchase price differs from the sale price, we

permit the second moment matrix of the composite vector x to be singular.

Assumption 1.3 then requires that distinct portfolio weights used to

2
construct the same payoff must have distinct expected prices.

l.B Minimum-Distance Problems

There are two problems that underlie most of our analysis. Let M denote

the set of all random variables with finite second moments that satisfy (5),

and let M be the set of all nonnegative random variables in M. Recall that

Assumption 1.2 implies that there is a nonnegative discount factor that

satisfies (5) so that both sets are nonempty. Let y denote some "proxy"

variable for a stochastic discount factor that, strictly speaking, does not

satisfy relations (5). Following Hansen and Jagannathan (1993), we consider

3
the following two ad hoc least squares measures of misspecif ication:

8
2

= min £[(y - m)
2

] , (6)

and

mzM

min £[(y - m)
2

] . (7)

meM

Clearly, the specification-error bound implied by (7) is no smaller than that

implied by (6) since it is obtained using a smaller constraint set. The

solutions to (6) and (7) are the objects we are interested in estimating and



making inferences about. Sections 2 and 3 provide large-sample

justifications for the solutions to sample counterparts to these optimization

problems.

By setting the proxy y to zero, the specification error problems

collapse to finding bounds on the second moment of stochastic discount

factors as constructed by Hansen and Jagannathan (1991), He and Modest (1993)

and Luttmer (1994). In particular, the bounds derived in Hansen and

Jagannathan (1991) are obtained by setting y to zero and solving (6) and (7)

when there are no short-sale constraints imposed (when C is set to R
n
); the

bound derived in He and Modest (1993) is obtained by solving (6) for y set to

zero; and the bound derived by Luttmer (1994) is obtained by solving (7) for

y set to zero. These second moment bounds will subsequently be used in

deriving feasible regions for means and standard deviations of stochastic

discount factors.

In solving the least squares problems (6) and (7) and in developing

econometric methods associated with those problems, it is most convenient to

study the conjugate maximization problems. They are given by

5
2

= max{Ey
2

- £[(y - x'a)
2

]
- 2a' Eg} , (8)

aeC

and

S
2

= max {£y
2

- £[(y - x'a)
+2

]
- 2a' Eg} (9)

where the notation h denotes max{h,0}. The conjugate problems are obtained

by introducing Lagrange multipliers on the pricing constraints in (5) and

exploiting the familiar saddle point property of the Lagrangian. The a'

s

then have interpretations as the multipliers on the pricing constraints.

The conjugate problems in (8) and (9) are convenient because the choice



variables are finite-dimensional vectors whereas the choice variables in the

original least squares problems (6) and (7) are random variables that reside

in possibly infinite-dimensional constraint sets. In fact, optimization

problem (8) is a standard quadratic programming problem. The specifications

of the conjugate problems are justified formally in Hansen and Jagannathan

(1991, 1993) and Luttmer (1994). In Section 2 we develop the properties of

estimators of S and S based on time series sample analogs to problems (8)

and (9). In so doing we rely on several important proprieties of the

solutions to problems (8) and (9) and on an additional identification

assumption.

Notice that the criteria for the maximization problems are concave in a

and that the first-order conditions for the solutions are given by:

Eq - £[(y - x'a)x] e C (10)

in the case of problem (8) and

Eq - EUy - x'a)
+
x) € C (11)

in the case of problem (9), along with the respective complementary slackness

conditions. Interpreting the first-order conditions for these problems,

observe that associated with a solution to problem (8) is a random variable m

= (y - x'oc) in M and associated with a solution to problem (9) is a

nonnegative random variable m = (y - x' a)* in M* . These random variables are

the unique (up to the usual equivalence class of random variables that are

equal with probability one) solutions to the original least squares problems

(6) and (7).

Consistency of the estimators of 5 and 5 relies upon the fact that the



sets of solutions to (8) and (9) are compact. Compactness in the case of (8)

is easily established. Since Assumption 1.3 eliminates redundant securities

and the random variable (y - x' a.) is uniquely determined, the solution a to

conjugate problem (8) is also unique. This follows because the value of the

criterion must be the same for all solutions, implying that they all must

have the same expected price a' Eg. The solution to conjugate problem (9) may

not be unique, however. In this case the truncated random variable (y -

x' a) is uniquely determined, as is the expected price a' Eg. On the other

hand, the random variable (y - x'a) is not necessarily unique, so we can not

exploit Assumption 1.3 to verify that the solution a is unique. The set of

solutions is convex due to the concavity of the criterion and the convexity

of the constraint set. As is shown in Appendix A, it is also compact.

As is typical in asymptotic distribution theory, in Section 2 we will

need an identification restriction that there is a unique solution to the

conjugate problems, except when all prices are constant. Since the set of

solutions is convex, local uniqueness implies global uniqueness. To display

a sufficient condition for local uniqueness, let x denote the component of

the composite payoff vector x for which the pricing relation is satisfied

with equality:

Emx* = Eg* (12)

where g is the corresponding price vector. Notice that in addition to x
n

,

x may contain elements of x
s

. Let 1,~ „, be the indicator function for the

event {m>0>. A sufficient condition for local uniqueness is that

Assumption 1.4: Ex x 'l/~
>0 \ is nonsingular.

10



To see why this is a valid sufficient condition, observe that from the

complementary slackness conditions we know the multipliers a are zero

whenever the pricing constraints are satisfied with a strict inequality. As

a result m is given by (y - x '/3) for some vector J3, and consequently,

E« = £^
{S>o}

- Eixx,1Cm>o}^ (13)

When the matrix £(x x 'l/~sn i) is nonsingular, we can solve (13) for
{m>0>

l.C Volatility Bounds and Restrictions on Means

The second moment bounds described in the previous subsection can be

converted into standard deviation bounds via the formulas:

a = IS
2

- {Em)
2

]

W2
(14)

r
~2 ,„ ,2,1/2

o- = [8 - (Em) ]

~2 ~2
where 6 and 6 are constructed by setting the proxy to zero. Em is equal to

the average price of the unit payoff when trade in this payoff is not subject

to transaction costs. If there are transactions costs or if no data is

available on the price of a conditionally riskless payoff then Em cannot be

identified. In these circumstances, volatility bounds can still be obtained

for each choice of Em by adding a unit payoff to P (augmenting x with a 1)

and assigning a price of Em to that payoff (augmenting Eq with Em). In

forming the augmented cone, there should be no short-sale constraints imposed

on the additional security. Mean-specific volatility bounds can then be

obtained using (8), (9) and (14).

Although Em may not be identified, the Principle of No-Arbitrage does

put bounds on the admissible values of Em: Em € [A ,v ] where A is the lowerooo



arbitrage bound and v is the upper arbitrage bound. These bounds are

computed using formulas familiar from derivative claims pricing:

A = - infia'Eq : a e C and a'x 2 -1} (15)

v s infia'Eq : a € C and a'x 2 1} (16)

While X is always well defined via (15), v may not be because there may not

exist a payoff in P that dominates a unit payoff. In such circumstances, we

define v to be +00. In Section 2 we show how to consistently estimate X and

v . Consistent estimation of these bounds is important since the standard

deviation bound <r is infinite for choices of Em outside these bounds.

2. Estimation of the Bounds

In this section we develop consistency and asymptotic distribution

results for the specification-error bounds presented in Section 1. A key

presumption underlying our analysis is that the data on asset payoffs and

prices are replicated over time in some stationary fashion. That is,

associated with the composite vector (x'.q'.y)' is a stochastic process

{ (x. ' ,q ' ,y )' } whose sequence of empirical distributions approximate the

joint distribution of (x'.q'.y)'. We denote integration with respect to the

empirical distribution for sample size T as T. More precisely, for any z

that is a (Borel measurable) function of (x' ,q' ,y) with a finite first

moment, we will approximate £z by T.z where

j;z = H/T)£
=i
z
t

. (17)

\?.



Among other things, we require that this approximation becomes arbitrarily

good as the sample size T gets large. That is we presume that {z } obeys a

Law of Large Numbers. A sufficient condition for this is:

Assumption 2.1: The composite process i(x ' ,q ' ,y )} is stationary and

ergodic.

4
Under this assumption, we can think of (x'.q'.y) as (x ' ,q ' ,y ).

To estimate the specification-error bounds, we suppose that a sample of

size T is available and that the empirical distribution implied by this data

is used in place of the population distribution. [Thus we are applying the

Analogy Principle of Goldberger (1968) and Manski (1988)]. We introduce two

random functions 4> and #:

>(a) = y
2

- (y - a' x)
2

- 2a'q, (18)

and

i(a) = y
2

- (y - a'x)
+2

- 2a'q . (19)

(d )

2
= max y[i(a)] (20)

T
tt€C

and

13



(d )

2
= max T [0(a)] . (21)

T
aeC

2. A Consistent Estimation of the Specification-Error Bounds

We first establish the statistical consistency of the estimator

sequences {d > and {d }:

almost surely to 5 and <5, respectively.

The proof of this proposition is given in Appendix A and is not complicated

by the presence of short-sale constraints. The basic idea is that the

population and sample criterion functions for the conjugate problems are

concave and the sets of maximizers are convex. By Assumptions 1.1 and 2.1,

the criterion functions converge pointwise (in a and 6) almost surely to the

population criterion functions introduced in Section l.B. In light of the

concavity of the criterion functions, this convergence is uniform on compact

sets almost surely [for example, see Rockafellar (1970)]. Finally, since the

sets of maximizers of the limiting criterion functions are compact, for

sufficiently large T one can find a compact set such that the maximizers of

the sample and population criteria are contained in that compact set [for

example, see Hildenbrand (1974) and Haberman (1989)]. Hence the conclusion

follows from the uniform convergence of the criteria on a compact set.

2.B Asymptotic Distribution of the Estimators of the Bounds

We consider next the limiting distribution of the analog estimator

sequences of the specification-error bounds. Our ability to express the

objects of interest as solutions to the conjugate problems permits us to

14



obtain results very similar to those in the literature on using likelihood

ratios as devices for model selection in environments when models are

possibly misspecified [for example, see Vuong (1989)]. We show that when the

specification error bounds are positive, we obtain a limiting distribution

that is equivalent to the one obtained by ignoring parameter estimation, and

when the specification error bound is zero the limiting distribution is

degenerate. [See Theorem 3.3 of Vuong (1989) page 307 for the corresponding

result for likelihood ratios.]

Let a be a maximizer of T $> a a maximizer of E<p, a a maximizer of

T (j>, and a a maximizer of £0. To study the limiting behavior of the

estimators, we use the decompositions:

\/T[(d
T

)

2
- I

2
) = •T^.[0(a

T
) - i(a)] + /T^liu) - E*U)] , (22)

and

•T[(d
T

)

2
- 5

2
] = /I^[$(Z

T
) - $(£)] + /T^tfU) - £0(a)] . (23)

We make the following assumptions:

Assumption 2.2: **, converges in distribution to a
*(a) - E*(a)

[{mx - q) - Eimx - q)]

normally distributed random vector with mean zero and covariance matrix V.

Assumption 2. 3: y% converges in distribution to
^(a) - £0(a)

[(mx - q) - E(mx - q)]_

a normally distributed random vector with mean zero and covariance matrix V.

More primitive assumptions that imply the central limit approximations



underlying Assumptions 2.2 and 2.3 are given by Gordin (1969) and Hall and

Heyde (1980).

Let u denote a selection vector with a one in its first position

followed by k + I zeros. The limiting distributions for the

specification-error bound estimators are given by Proposition 2.2:

Proposition 2.2: Suppose that 5*0 and 6*0. Under Assumptions 1.1 - 1.3,

2.1 - 2.2, WT[d - 8]} converges to a normally distributed random vector

2.3, WT[d - 5]> converges in distribution to a normally distributed random

As Proposition 2.2 indicates the limiting distributions for the maximized

values depend only on the second terms of the decompositions in (22) and

(23). In other words, the impact of replacing the unknown population

maximizers by the sample maximizers in the sample criterion functions is

negligible. As a consequence the presence of short-sale constraints does not

complicate the limiting distribution.

To see why the asymptotic distribution in Proposition 2.2 is not

affected by sampling error in the estimation of the multipliers, consider the

~ 2 ~
case of the sequence {(d) }. By the concavity of <f>, we have the following

gradient inequalities:

(24)

[(mx - q) - E(mx - q)]-(a^ - a)

+ E(mx - q) (a - a) .

However, it follows from the first-order conditions (including the

16



complementary slackness conditions) for the population conjugate problem that

(25)

constrained to be in C. Combining (24) and (25) we have that

£ /TEjtfU^ - 0(a)] (26)

£ VT^Umx - q) - E(mx - qU-(i - a)

Since, by Assumption 2.3, the sample counterparts of the pricing errors obey

a Central Limit Theorem, {v'TY [0(a ) - 0(a) ]> converges in probability to

zero if the maximizers can be chosen so that {(a - a)} converges almost

surely to zero. This latter convergence can be demonstrated by exploiting

the concavity of the population criterion function and the convexity of the

constraint set [for example, see the discussion on page 1635 of Haberman

(1989) and Appendix A].

To use Proposition 2.2 in practice requires consistent estimation of

u'Vu or u'Fu. Consider the case of u'Vu. For each T form the scalar

sequence {0 (a ): t=l,2,3, ... T> and use one of the frequency zero spectral

density estimators described by Newey and West (1987) or Andrews (1991), for

example.

As is shown in Appendix A, when the price vector q is a vector of real

numbers (degenerate random variables), the asymptotic distribution for {v^Tld

- 6]> remains valid even when the population version of the conjugate maximum

problem fails to have a unique solution (Assumption 1.4 is violated). In

this case, the lack of identification of the parameter vector a does not

alter the distribution theory for the specification-error bound. While this

17



special case is of considerable interest, it rules out the possibility of

using conditioning information to form synthetic payoffs as described in

Section 1.

Notice that if 5 = or 8 = 0, Proposition 2.2 breaks down. This occurs

if y is a valid stochastic discount factor in which case the solutions to the

population conjugate problems are a = a = 0. As a consequence,
<f> (a) and

4> (a) are both identically zero giving rise to a degenerate limiting

"2 ~ 2
distribution for Wl(d ) } and Wl(d^) }. Our results in Section 4 on the

convergence of the parameter estimators can be used to establish that the

"2 ~ 2
rate of convergence of {(d) > and {(d) } is T, and is given by a weighted

utions (see Vu

converge at the rate v'T, although the limiting distribution is not normal.

2.C Consistent Estimation of the Arbitrage Bounds

As we discussed in Section 1, the second moments bounds can be converted

into standard deviation bounds if the mean of m is known or if it can be

estimated using the price of a risk-free asset. When Em is not known it must

be prespecif ied. Let v be the hypothesized mean of m when a risk free asset

is not available. Proposition 2.1 can be applied to establish the

consistency of the second moment bound estimators for each admissible price

assignment v. In the case of 5 , for the price assignment to be admissible,

it must not induce arbitrage opportunities onto the augmented collection of

asset payoffs and prices. Any price (mean) assignment in the open interval

(A ,d ) is admissible in this sense,
o o

The final question we explore in this section is whether the arbitrage

bounds, A and u given in (15) and (16), can be consistently estimated using

the sample analogs:



t = -infia'Yq : a € C and (27)

a'x * -1 for all t-1,2, . .
.
,T>

and

u = infia'Yq : a € C and (28)

a'x i 1 for all t-1,2 T> .

The estimated upper arbitrage bound u is always finite when there is a

payoff on a limited liability security that is never observed to be zero in

the sample. Our estimated range of the admissible values for the (average)

price of a unit payoff and hence mean of n is [I ,u ]. Notice that these

bounds can be computed by solving simple linear programming problems. In

Appendix A we prove:

almost surely. If v is finite, then {u } converges to v almost surely; and

2.D Consistent Estimation of the Feasible Region of Means and Standard

Deviations

We now consider consistent estimation of the set of feasible means and

standard deviations of stochastic discount factors. Previously we showed

that for a given mean of the stochastic discount factor, the standard

deviation bound can be consistently estimated. However, the mean of the

stochastic discount factor typically is not known. As a result it is

important to understand the sense in which the entire feasible region can be

approximated. Such a region can be computed with or without imposing the

no-arbitrage restriction that the stochastic discount factors be positive.

Let S denote the feasible region without positivity and S* the (closure) of



the feasible region with positivity Similarly, let S and the S* denote the

sample counterparts. The question we now turn fco is in what sense are S and

S* good approximations to S and S ?

When there is a unit payoff, all four feasible regions are vertical rays

in mean and standard deviation space because the (average) price of this

payoff is the mean discount factor. In this case the points of origin of the

rays S and S* can be estimated consistently by the points of origin of the
o o

corresponding rays S and S .

In the more usual case when data on the price of a unit payoff is not

available, matters are a little more complicated. The feasible regions are

no longer vertical rays but instead are unions of such rays resulting in

convex sets with nonempty interiors. The boundaries of these sets can be

represented as (possibly extended) real-valued functions of the ordinate

(hypothetical mean), and our previous analysis implies pointwise (in the

mean) convergence of the sample analog functions to their population

counterparts. This result implies uniform convergence of the sample analog

functions in following sense.

Since the lower and upper arbitrage bounds can be consistently

estimated, for large enough T, the sample analog functions under positivity

are finite on any compact subset of (A ,v ). When positivity is ignored the

functions are finite on any compact subset of R. Further these functions are

convex functions of the hypothetical mean of the discount factor. As a

result [see Theorem 10.8 of Rockafellar (1970)] the sample analog functions

converge uniformly, almost surely, on any compact subset of (A ,v ) in the

case of positivity and on any compact set when positivity is ignored. One

difficulty is that the approximations deteriorate as the mean assignment, v,

approaches the arbitrage bounds in the case of positivity, or when v gets

large when positivity is ignored.



arbitrage bound turns out not to be problematic. To see this, instead of

viewing the boundaries of the feasible regions as functions of the ordinate,

we explore the approximation error from a set-theoretic vantage point in (R .

Consider first the case in which v < +00. Associated with a sample of size T

is an approximation error as measured by the Hausdorff metric:

max<n(S ,S ),tt(S ,S )> (29)TO TO

where:

n(K ,K ) = sup inf \(v ,w )-lv,w)\ (30)12
(v ,w )eK (v ,w )€K

1 1111 222

Measuring the approximation error via the Hausdorff metric allows

ordered pairs to get close without restricting them to have the same

ordinate. In other words, we no longer confine our attention to "vertical"

measures of distance, as is the case when we view the boundaries of the

feasible regions as functions of the hypothetical (expected) prices of a unit

payoff. The added flexibility in the Hausdorff metric permits us to exploit

better the consistent estimation of the upper and lower arbitrage bounds

(Proposition 2.3)

.

When v is infinite, the approximation error t> defined by (29) will be

infinite. As a remedy, we replace n by

re (C ,C ) = sup inf |(v ,w )-(v ,w )| (31)
P * 2 (.. ... \~v (., ... \^v 1 1 2 2

Osv sp



where p is any arbitrary positive number greater than the lower arbitrage

Proposition 2.4. Under Assumptions 1.1-1.3 and 2.1, {y > converges to zero

almost surely.

This proposition follows since the arbitrage bounds can be consistently

estimated (Proposition 2.3) and the lower boundaries of {S } approach the

lower boundary of S uniformly on any compact interval within the arbitrage

bound. This latter convergence follows from Proposition 2.1 and the

convexity of the boundary.

3. Applications

In this section we discuss two applications of the analysis of Section

2. First we show how the feasible regions for the means and

standard-deviations can be used to test a specific model of the discount

factor. Burnside (1994) and Cecchetti, Lam and Mark (1993) have developed a

version of this test when there are no assets subject to short-sale

constraints or transactions costs. We demonstrate how this test can be

implemented in a relatively simple manner by exploiting the results of

Section 2. Further we formulate the test so that it is also applicable when

there are assets subject to short-sale constraints. As a result this

provides (large-sample) statistical foundation to the tests of asset pricing

models suggested by He and Modest (1993), and Luttmer (1994).

Second we outline an extension of the specification-error bound analysis

that is useful when the discount factor proxy under consideration depends

upon a vector of unknown parameters. We consider how these results can be

used to select between two nonnested models by comparing the minimized values



of the specification-errors.

3. A Testing a Specific Hodel of the Discount Factor using Volatility

Bounds

Suppose that in addition to asset-market data, a model of the discount

factor is posited and a time series of observations of the discount factor is

available: {m : t=l T}. One way to test the model is to examine

whether it satisfies the volatility bounds discussed in Sections 1 and 2.

Since observations of the discount factor are available, the average price of

a unit payoff can be estimated by the mean of m. Specifically, form x by

augmenting the original vector of payoffs with a unit payoff; form q by

augmenting the original vector of prices with the random variable m; and form

C by constructing the the Cartesian product of the original cone with R. In

effect, we have added a unit payoff with an average price m that is not

subject to a short-sale constraint. In forming a test, we can apply the

results of Section 1 and 2.B with one minor modification. The random

functions 4> and 4> are now constructed by setting the proxy y to zero and

2
subtracting m :

i(ct) = - (-a'x)
2

- 2a'q - m , (32)

and

0(a) = - (-a'x)*
2

- 2a' q - m
2

. (33)

2
Subtracting m does not alter the solutions to either the sample or

population maximization problems. It does, however, change the maximized

values of the criteria functions. The volatility bounds for Em will be



satisfied, if, and only if

£ = max E<p(a) s 0, (34)

aeC

when positivity is ignored, or

max E<t>(cc) £ 0, (35)

aeC

when positivity is imposed. The limiting distribution reported in

Proposition 2.2 (appropriately modified) can be applied to construct a test

of these hypotheses using sample analog estimators of £ and £. Again, we

have formulated the problem so that approximation error due to parameter

estimation plays no role in the limiting distributions for these sample

analogs.

In practice we find the solutions for the sample maximization problems,

estimate the asymptotic standard errors, and form one-sided tests. In

particular, let c be the maximized value of F (0) over the constraint set C.

Then Wl[c - £•] converges in distribution to a normal random variable with

mean zero and variance u'l^u. This variance can be estimated in the manner

described in Section 2.B. Since £ is not specified under the null hypothesis

(35), the "conservative" choice of £, = is used in constructing the test

statistic.
7

Similar approaches to testing a model of the discount factor can be

applied when a time series for m can be constructed from simulated data

instead of actual data. In this case the randomness of 0(a) can be

decomposed additively into two components, one due to the randomness of the

security market payoffs and prices and the other due to the simulation of m.
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As in the work of McFadden (1989), Pakes and Pollard (1989), Lee and Ingram

(1991) and Duffie and Singleton (1993), the asymptotic variance in the

limiting distribution will now have an extra component due to the sampling

error induced by simulation. For an example of this approach and a more

extensive discussion see Heaton (1993).

When the first two moments of m can be computed numerically with an

arbitrarily high degree of accuracy, we can proceed as follows. Augment the

2
price vector with Em instead of m and subtract Em from the criteria instead

2
of m as in (32) and (33). This same strategy can be employed to assess the

accuracy of the estimated feasible region for means and standard deviations

of stochastic discount factors. For any hypothetical mean-standard deviation

pair for m, one can compute the corresponding test statistic and probability

value.

3.B Minimizing the Specification-Error Bound for Parameterized Families of

Models

Recall that the specification-error bounds provide a way to assess the

usefulness of an asset pricing model even when it is technically

misspecif ied. In many situations the discount factor proxy depends on

unknown parameters. For example, in a representative consumer model with

constant relative risk aversion preferences, the pure rate of time preference

and the coefficient of relative risk aversion are typically unknown. In this

case one way to estimate the parameters of the model is to minimize the

specification error. Alternatively, in an observable factor model, the

discount factor proxy depends on a linear combination of the factors with

unknown coefficients. As in the work of Shanken (1987) one could imagine

selecting factor coefficients to minimize the specification error. We now

sketch how the results of Section 2.B extend in a straightforward manner to
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obtain a distribution theory for the minimized value of the

specification-error bound. In Section 4 we discuss distribution theory for

the resulting estimators of the parameters of the discount factor.

Suppose that the discount factor proxy y depends on the parameter vector

€ B where B is a compact set. The population optimization problems of

interest are now:

5^ = min max |£y(/3)
2

- E{{y{B) - x'a)
2

} - 2a' Eq\ , (36!

0eB aeC

5
2

= min max £y(p)
2

- £{[(y(/3) - x'a)*]
2

} - 2a' Eq] . (37)

BeB aeC I >

When 5 and 6 are strictly positive and the parameterized family of stochastic

discount factors satisfies the appropriate smoothness and moment

restrictions, an extended version of Proposition 2.2 can be obtained for the

sample analog estimators of 5 and 8. Again the limiting distribution will be

the same as if the solutions to the population optimization problems were

known a priori.

The approach can be extended to compare the smallest

specification-errors for two nonnested families of models. Such a comparison

potentially can be used as a device for selecting between the two families of

models. Vuong (1989) examined a very similar problem by using the

large-sample behavior of likelihood ratios for two nonnested families of

misspecified models (in particular, see the discussion in Section 5 of Vuong

1989); and we can imitate and adapt his analysis to our problem. More
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with two such families. Take the null hypothesis to be:

(38)

Under the null hypothesis, the smallest specification-error associated with

each parameterized family is the same. As a consequence the performance of

the two parameterized families can not be ranked once sampling error is

accounted for. This hypothesis can be tested by using the corresponding

distribution theory for the difference between the analog estimators of S

4. Asymptotic Distribution of the Multipliers

Recall that the asymptotic distribution f

discussed in Sections 2 and 3 depends only on the population solutions to the

conjugate problems (8) and (9). In other words, sampling error in the

estimated multipliers does not contribute to the limiting distribution of the

specification error bounds. However, as elsewhere in econometric practice,

the magnitude of the multipliers remain interesting in their own right as a

measure of the importance of components of the pricing relations to the

bounds. Consequently, it is advantageous to be able to make statistical

inferences about their magnitude.

To amplify this point, one use of the asymptotic distribution for the

multiplier estimators is to test whether the specification-error or

volatility bounds remain the same when a subset of assets is omitted from the

analysis. A special case of such a test is a region subset test where the

question of interest is whether given an initial set of asset returns,

additional asset returns result in an increase in the volatility bounds. It

is problematic to construct a test directly in terms of the difference



between a measured bound computed with the full set securities and the

corresponding bound calculated with the more limited array of securities

because the resulting statistic has a degenerate distribution under the null

hypothesis. This degeneracy follows from the fact that sampling error in the

multipliers does not contribute to the limiting distribution for the bounds

and is circumvented by instead basing the statistical test directly on the

estimated multipliers. That is, it is advantageous to reformulate the null

hypothesis to be:

Ra = 0, or R a = (39)

where R is an appropriately constructed selection matrix (see below), and to

use the limiting distribution for the estimated multipliers in constructing

an asymptotic chi-square test.

Several versions of region subset tests have been used in the

g
literature. For example, Snow (1991) considered the small firm effect by

examining whether the returns on small capitalization stocks have incremental

importance in determining the volatility bounds over and above the returns of

large capitalization stocks. Other examples can be found in Braun (1991),

Cochrane and Hansen (1992), De Santis (1993) and Knez (1993).

The limiting distribution for the multipliers shows up in other

applications as well. For instance, testing (39) in conjunction with

specification-error analysis is helpful in ascertaining which assets are

important contributors to model misspecif ication. Also, when a researcher

uses the specification-error bounds to select among a parameterized family of

discount factor proxies, it is desirable to make inferences about the

parameter vector chosen. As we will see in this section, the asymptotic

distribution for the parameter estimator selected in this fashion interacts

ZS



with the limiting distribution for the estimated multipliers. As a

consequence, our characterization of the multiplier limit distribution is an

important component in the derivation of the limiting distribution for

estimators of parametric stochastic discount factor proxies.

The remainder of this section is organized as follows. In Section 4.

A

the distribution theory for the estimated multipliers is developed assuming

that there are no assets subject to short-sale constraints. In Section 4.B

we comment briefly on how the theory can be extended to the case where

short-sale constraints are imposed on some of the assets.

4. A Distribution without Market Frictions

In the absence of short-sale constraints, the cone C is R
n

. As a

consequence the estimation problem for the multipliers is posed as an

unconstrained maximization problem and the limiting covariance matrices for

the asymptotic distribution of the coefficient estimators have a form that is

familiar both from M estimation [for example, see Huber (1981)] and from GHH

estimation [for example, see Hansen (1982)]. The only complication occurs

when considering the bounds in which the no-arbitrage restriction is fully

exploited because of the kink induced by the nonnegativity restriction.

The moment conditions of interest are given by the first order

conditions (10) and (11) for the conjugate maximum problems:

E[x{y-x'a) - q] = 0, (40)

and

E[x(y-x'a)
+

- q) = . (41)
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Y^[x(y-x'a
T

) - q] = (42)

and

Ej.txCy-x'a^)* - ql = . (43)

While the equations for a are linear, those for a are nonlinear. In the

latter case, we use a linear approximation to the moment conditions in

deriving the central limit approximation for the parameters:

x(y-x'a) - q ~ x(y-x'a) - q - xx' 1 . ,~ .(a-a) (44)

x(y-x'a)l
{y_x,^0>

- q

Notice that the function of a on the left side of (44) is differentiable

except at values of a such that y-x'a =0. We assume that such sample points

are "unusual":

Assumption 4.1: Pr{y-x' a = 0} = 0.

As is shown in Appendix C, Assumptions 1.1 and 4.1 are sufficient for us to

study the asymptotic behavior of the estimator {a > using the linearization

9
on the right side of (44)

£[x(y-x'ct)l. ,~ .. - q] = . (45)
{y-x'aiO} M

To use linear equation system (45) to identify a, the matrix

£(xx'l. _ /~
>n y) must be nonsingular. Given Assumption 4.1, this rank

condition is equivalent to Assumption 1.4 because x and x must coincide when

no short-sale constraints are imposed. The counterpart to this rank
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condition for a is that the second moment matrix E{xx' ) be nonsingular as

required by Assumption 1.3.

Working with the two linear moment conditions, we obtain the

approximations:

•T(a
T

- a) * -[Eixx'l^.-^r^T^lxiy-x'*)* - q) (46)

/T(a
T

- a) ~ -lEUx' ))~ 1
VT£

i
lxiy-x'a) - q]

where the notation ~ is used to denote the fact that the differences between

the left and right sides of (46) converge in probability to zero. Let w a

[01]. Combining approximations (46) with Assumptions 2.2 and 2.3 gives us

the asymptotic distribution of the analog estimators.

Proposition 4.1: Suppose Assumptions 1.1-1.3, 2.1 and 2.2 are satisfied.

Then {v^T(a -a)} converges in distribution to a normally distributed random

Suppose Assumptions 1.1-1.4, 2.1, 2.3 and 4.1 are satisfied. Then Wl{a -a)}

converges in distribution to a normally distributed random vector with mean

zero and covariance matrix: [Eixx'l. _ /~
>n »)l wVw' [E{xx' 1. _ /~

>n \)l

To apply these limiting distributions in practice requires consistent

estimators of the asymptotic covariance matrices. The terms wVw' and vW

can be estimated using one of the spectral methods referenced previously.

Under assumptions maintained in Proposition 4.1, the matrices Eixx' ) and

E(xx'\. _ /~
>n ») can be estimated consistently by their sample analogs, where

the estimator a is used in place of a in estimating the second of these

matrices.
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We now briefly consider two extensions of Proposition 4.1:

(i) Estimation of the parameters of a discount factor proxy. Suppose

that the discount factor proxy depends on the parameter vector and let be

the parameter vector that minimizes the specification error when positivity

is imposed. Assume that the parameterized family satisfies the appropriate

smoothness and moment restrictions, and that is in the interior of the

parameter space. The population moment conditions are given by:

E{x[y(0)-x'a] - q> = 0; (47)

and

e[—(pXyW - [y(£) - a'x]
+

}} = 0. (48)

^30 >

The distribution theory for the analog estimators {b > and {a > of and a

respectively can be deduced by taking linear approximations to the sample

moment conditions (47) and (48) and appealing to the results of Appendix C.

(ii) Region subset tests. Let z denote an (n-1 )-dimensional vector of

assets under consideration with price vector s, and let f be the

k-dimensional subvector of z including the k-1 asset payoffs that are to be

used to construct the bound augmented by a unit payoff. Formally, the region

subset test can be represented as the hypothesis:

£[z(f'9)
+

- s] =0, (49)

El(f'e)* - v ] = 0.

vector of securities z correctly. One possibility is to test this hypothesis

for a prespecified v , and the other is to test whether it is satisfied for



our previous setup, form the n-dimensional vector x by augmenting z with a

unit payoff and form q by augmenting s with the "price" v . Then hypothesis

(49) can be interpreted as a zero restriction on the coefficient vector a

employed in Sections 1, 2 and 4. A. The components of coefficient vector a

set to zero correspond to the entries of z that are omitted from f. A large

sample Wald test of this zero restriction can be formed by applying the

limiting distribution in Proposition 4.1.

Alternatively, we could estimate the parameter vector based on the

overidentif ied system (49) using GMM. The analysis leading up to Proposition

4.1 can be easily modified to show that the minimized value of the criterion

function is distributed as a chi-square random variable with n - k degrees of

freedom [see Hansen (1982)]. When the hypothesis of interest is altered to

freedom.

4.B Distribution with Market Frictions

We now briefly describe how the distribution theory is modified when

some short-sale constraints are imposed (C is a proper subset of IR ) . We

will focus on the limiting behavior of Vlia -a), but the results for Vt(a -a)

are very similar. As in Section 1, we partition x by whether or not m prices

the payoffs with equality or not, that is by whether

Emx = Eq , or Emx < Eq . (50)



strict inequality will equal zero with arbitrarily high probability as the

sample size gets large. Hence the limiting distribution is degenerate for

these component estimators.

Consider next the estimator of the remaining subvector of a, which we

denote 7. Because of the degeneracy just described, we can, in effect, treat

the limiting distribution of the estimator of y separately. Let C be the

lower-dimensional cone associated with estimating y. If y is an interior

point of C, then the argument leading up to Proposition 4.1 can be imitated

to deduce a limiting normal distribution for the parameter estimator.

However, if y is at the boundary of the cone C, the limiting distribution may

be a nonlinear function of a normally distributed random vector [see

Haberman (1989), page 1645].
10

5. Conclusions and Extensions

In this paper we provided statistical methods for assessing

asset-pricing models based on specification-error and volatility bounds. Two

significant advantages of the statistical methods are that they are easy to

interpret and that they are simple to implement even in the presence of

transactions costs and short-sales constraints. The results can be used in a

variety of ways. For example, they can be used to test specific models of

the discount factor, to examine the information contained in different sets

of asset-market data, and to assess misspecified asset-pricing models.

There are several interesting extensions of the econometric methods in

this paper including the following:

(i) The short-sale constraint formulation could be generalized to include

"solvency constraints" whereby portfolios are restricted so that portfolio
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payoffs are nonnegative. This amounts to imposing a form of borrowing

constraint on consumers [see, for example, Hindy (1993) and Luttmer (1994)].

As in Section 1, the constraints on portfolio weights in the presence of

solvency constraints can be formulated as a closed convex cone. However,

without knowledge of the distribution of the payoffs on primitive securities

the cone would be subject to estimation error and hence not directly covered

by the results in this paper. The consistency proof in Section 2.C for the

arbitrage bounds might well be adaptable to approximating constraint sets

more generally. It is then of interest to understand how approximation

errors for the constraint sets impact on the distribution of the

specification and/or volatility bounds.

(ii) A difficult feature of the limiting distribution theory for the

Lagrange multipliers in the presence of short-sales constraints (Section 4.C)

is the manner in which it depends on the true parameter vector and the

associated discontinuities. This feature makes the distribution theory

harder to use in practice and, in other settings, has led researchers to

compute approximate bounds on probabilities of test statistics [see, for

example Wolak (1991) and Boudoukh, Richardson and Smith (1992)]. Perhaps

similar probability bounds could be derived for the region subset tests with

frictions.

(iii) Using tools similar to those described in Section 1, Chen and Knez

(1995) have developed nonparametric measures of market integration. It

should be possible to extend the econometric methods in this paper to

incorporate transactions costs in the market integration measures they

propose.
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Appendix A: Consistency

In this appendix we demonstrate formally the results of Section 2. A, and

2.D. We maintain Assumptions 1.1-1.3, and 2.1 throughout.

Let 11 denote a compact set in IR
n

. For any subset h of 11, we let cl(h)

denote the closure of h. Let K denote the collection of all nonempty closed

subsets of 11. We use the Hausdorff metric tj on X given by

t)(/i ,/i ) = max{ sup inf I a - a |, sup inf I a - a |> . (A.l)

a eh a eh a eh a eh112 2 2 2 11

to define notions of convergence of compact sets. For some of our results we

will use the construct of a lim sup of a sequence in K. We follow

Hildenbrand (1974) and define:

Definition A.l: For a sequence {h > in 11, lim sup h = n cl ( u h )

J J » J2*> J

Since the lim sup is the intersection of a decreasing sequence of closed

sets, it is closed and not empty. An alternative way to characterize the Jim

sup is to imagine forming sequences of points by selecting a point from each

h . All of the limit points of convergent subsequences are in the lim sup,

and, in fact, all of elements of the lim sup can be represented in this

manner.

We shall make reference to an implication of a Corollary on page 30 of

Hildenbrand (1974) that characterizes the set of minimizers of an

"approximating" function over an "approximating set."
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Lemma A.l: Suppose

(i) {0 } is a sequence of continuous functions mapping 1/ into R that

converges uniformly to ip
;

and

(ii) {h } converges to h

Then Jim sup g c g where g = {u e h : \p (u) i \p (u' ) for all u' € h },
J °° J J J J J

and iim min </< = min .

t CO

h J
h

J °°

Proof: To verify that this follows from the Corollary in Hildenbrand, let }

denote the set of positive integers augmented by +oo, and endow £ with the

usual metric for a one-point compactif ication. Then in light of (i), the

sequence {</> } in conjunction with defines a continuous function on } x 11;

and in light of (ii), the sequence {h } in conjunction with h defines a

continuous compact correspondence mapping } into Ii. The conclusion of the

Lemma Al then follows from the Corollary together with part (ii) of

Proposition 1 of page 22 in Hildenbrand. Q.E.D.

Turning to the result in Sections 1 and 2. A, we first establish the

compactness of the set of solutions to the conjugate problems:

Lemma A. 2: The set of solutions to conjugate maximization problems (8) and

(9) are compact.
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Proof: We consider the case of problem (9). The proof for the case of

problem (8) is similar. The set of solutions is closed because the

constraint set is closed and the criterion function is continuous.

Boundedness of the set of solutions can be demonstrated by investigating the

tail properties of the criterion function. We consider two cases: directions

< for which £' x is negative with positive probability and directions C, for

which <;'x is nonnegative. To study the former case we take the criterion in

2
(9) and divide it by 1 + |a| . For large values of |a| the scaled criterion

is approximately:

- E[(-x'0
+2

] where < = a/[l + |a|
2

]

1/2
. (A. 2)

Hence |<| is approximately one for large values of |a|. Moreover, C,' x is a

payoff in P. Consequently, the unsealed criterion will decrease (to -co)

quadratically for large values |a|.

Consider next directions C, for which C,' x is nonnegative. From

Assumption 1.2 we have that C,' Eq must be strictly positive unless C,' x is

identically zero. When <;'x = 0, it follows from Assumptions 1.2 and 1.3 that

C' Eq is again strictly positive.

For directions ^ for which the payoff C,' x is nonnegative, we study the

2 1/2
tail behavior of the criterion after dividing by (1 + |a| ) , which yields

approximately - <'£q for large values of |a|. Hence in these directions the

the unsealed criterion must diminish (to -») at least linearly in |a| . Thus

in either case, we find that the set of solutions to conjugate problem (9) is

bounded. Q.E.D.

We now formally establish Proposition 2.1:



Proof of Proposition 2.1:

We treat only the cc

for {d > is very similar. Assumptions 1.1 and 2.1 imply that {Yiioc)}

converges almost surely to E$(a) for each aeC. Since for each T, 70 is

concave as is E$, Theorem 10.8 of Rockafellar implies that {£>} converges

uniformly on any compact set in IR . Further from Lemma A. 2, the set of

maximizers of E4> is bounded. For a positive number N, define C {a € C :

|ot| s N> and D = {a e C : I
a

I
= N>. Then C and D are compact. By

choosing N to be sufficiently large we can ensure that C contains all of the

maximizers of E4> over the constraint set C and that none of the maximizers

are in D . Let 5 be the maximized value of Ed> over D . Then by choice of N
N N

r
N

3

we have that 5 < 6. Since {Y ^} converges uniformly to E<j> on C almost

surely, for sufficiently large T, the maximizers of £_0 over C are also not

in D . By the convexity of C and concavity of Lf it follows that for

sufficiently large T, the maximizers of T 4> over C coincide with those over

C. Consequently, the almost sure convergence of {d } to 5 follows from the

almost sure uniform convergence of {T <p} on C . Q.E.D.

We now turn to the results in Section 2.C and investigate the

statistical consistency of sample analog estimators {£ > and {u > for the

arbitrage bounds A and v . Recall that the arbitrage bounds are

representable as solutions to linear programming problems. Since there is no

natural compact set for the choice variables in these problems, we must

explore "directions to infinity." We study these "directions" using a

compactif ication of the parameter space.

First consider any a e C such that a' x £ -1 with probability one. Then

with probability one a'x £ -1 for all t with probability one and (aTq)



I < u-'Tji' ^ follows that lim sup I * A with probability one.

To construct a compact parameter space, we map the original parameter

space for each problem into the closed unit ball in R
n
which we denote as II.

We consider explicitly the case of u . The proofs for the case of I are

completely analogous to the case for u and are omitted.

Notice that the constraint set used in defining v can be represented as

the set of all a € C satisfying the equation:

£[(1 - a'x)
+

] = . (A. 3)

As in the proof of Lemma A. 2, we map the parameter space into the unit ball

(with a slightly different transformation). The transformation < = a/(l+|a|)

maps R
n

into the open unit ball. To compact ify the transformed parameter

space, we consider adding the boundary points of the unit ball. Notice that

we can recover the original parameterization by considering the inverse

mapping:

a = C/(l " |C|) (A. 4)

for |<| < 1. Using the transformation in (A. 4), instead of considering those

a's that satisfy (A. 3) we consider:

D* = { < e llnC | £{[(1 - |<|) - x'0
+
> = } . (A. 5)

This transformation potentially adds solutions to (A. 3) by including the
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boundary of the unit ball. The potentially problematic values of C are those

for which x' C, £ 0, C,eC and |<| = 1. We rule this out by limiting attention

to values of < in

(A. 6)

effect by focusing on £'s in D we are eliminating C,' s corresponding to

payoffs with "high" prices. This does not cause us problems because we are

concerned with estimated upper arbitrage bounds that are too low, not too

high. Also, any < in D for which |<| = 1 must have an (average) price that

is nonpositive. This eliminates the troublesome points (directions) from D .

Lemma A. 3: Suppose that u < oo. Then lim sup D n D c D n D.

Proof: First notice that since Fq converges to Eq almost surely, then

T)(D ,D) converges almost surely to 0. We next establish that lim D = D .

To do this we first show that T [(1 - |^|) - x' C,] converges uniformly to

£[(1 - |<| ) - x'C,]* on U. Note that 11 n C is compact and that:

e||[(1 - IC
1
1) - x'cj

+
- [d - K

2
D - *'V

+
l| (A7)

s (1 + (£|x|
2

)

1/2
)Kr C

z
|.

This is sufficient for the Uniform Law of Large Numbers of Hansen (1982) to

apply. Hence, from Lemma A.l, the lim sup of the sequence of minimizers of



T [(1 - ICU - x' C.) over 11 n C is contained in the set of minimizers of £[(1

- I<l) - x' <;]* . Since v < oo, the set D is not empty and D is the set of

minimizers of £[(1 - |<|) - *'<]*. With probability one, any point in D

must also be in D for all Til. Since D is separable, a common probability

Proof: First note that

u = mini C'Ej-g/d-lCN I < € D
t
n D

t
> for sufficiently large T, (A. 8)

and

in smaller values of the maximized criterion. For instance, suppose the

constraint set is augmented to include all of the points in D n D. Then

Lemma A. 2 implies that this sequence of augmented constraint sets converges

to D n D. The conclusion then follows from Lemma A.l. Q.E.D.

Lemma A. 5: Suppose that v = oo. Then iu > diverges with probability one.

Proof: Since v = oo, there are no values of a € C such that a'x £ 1 with
o

probability one. Consequently, the only values of £ in D are ones for which



Kl = 1. We consider two cases. First suppose that D = a. The uniform

convergence of ^[(1 - |<M - x' C,)* to £[(1 - |<|) - x' <]
+

implies that for

sufficiently large T, D = a and u = <x>. Next suppose that D * 0. Since

there are no arbitrage opportunities (Assumption 1.2), C'Eq > for any C * n

D such that ll^'xll > 0. Also, Assumption 1.2 together with the no-redundancy

Assumption 1.3 imply that C,' Eq > for any < in D* such that II<'jcII = 0.

Furthermore, D is closed implying that

e = inf{C,'Eq : C, € D* } > . (A. 9)

Since {Y q} converges to Eq almost surely and D converges almost surely to

D , it follows from Lemma A. 1 that with probability one for sufficiently

large T, CI_<7 > c/2 for all £ e D . The convergence of {D > to D coupled

with the fact that all elements of D have norm one then implies that {u >

diverges almost surely. Q.E.D.

Taken together. Lemmas A. 3, A. 4 and A. 5 imply Proposition 2.3.

Appendix B: Asymptotic Distribution of the Bounds Estimators

In this appendix we show that in the case in which the prices of the

payoffs are constant, the asymptotic distribution of the estimated bounds can

be demonstrated even when the parameter vector is not uniquely identified

(even when Assumption 1.4 is not satisfied).

Proof of Proposition 2.2:

We consider the case of d . The case of d is similar. Let h be the

set of maximizers of Y 4> and l et h be the set of maximizers of £#. For each



T, let a be a measurable selection from h (see Theorem 1 of Hi ldenbrand

(1974), page 54). Since lim sup h = h almost surely and h is compact,

there is a sequence {a } in h such that lim \a -a \ =0 almost surely (see

Appendix A). Further, an implication of Lemma A. 1 of Hansen and Jagannathan

(1991) is that all a e h result in the same random variable m = (y-a'x)
+

.

Also, the complementary slackness condition for problem (9) implies that for

+ +2
a € h , a' q = £{y(y-a'x) - (y-a'x) >, so that a' q is the same for all a €

h . As a result, the random variable 0(a) is the same for all a € h . Now

consider the decomposition of /IT [ (d ) - 5 ] as in (23):

v'T[(5
t

)

2
- I

2
} = /IX^U^ - 4>(a

r
)] + VT^[4>U

t
) - E4>U

r
)]. (B.l)

As in relation (26), we have:

s VTj^lila^ - 4>U
t
)} (B.2)

s V
,

TX
T
[(mx - q) - E[mx - q))-{a^ - aj .

Since \a -a | converges almost surely to 0, the result follows. Q.E.D.

Appendix C: Asymptotic Distribution of the Multipliers

In this appendix we consider the asymptotic distribution of our

estimator of the Lagrange multipliers when there are no transaction costs.

We begin by demonstrating that restrictions used in Hansen (1982) can be

extended along the lines of Pollard (1985) and Pakes and Pollard (1989) to

accommodate "kinks" in the functions used to represent the moment conditions.

We then show how to use this result to prove Proposition 4.1.

The notation used in our initial proposition for GMM estimators



conflicts with some of the notation used elsewhere in the paper. We let

denote the parameter vector of interest and any hypothetical point in the

underlying parameter space T. The parameter space is restricted to satisfy:

Assumption C.l: T contains an open ball in IR about .

We will use the construct of a random function. A random function ip maps the

set of sample points into the space of vector-valued continuous functions on

T. We require that ^(0) be an n-dimensional random vector for each in T.

We also consider an approximating function

that is linear 0. The composite random function satisfies:

Assumption C.2: { (i/» '
,\Jj*'

)
' } is stationary and ergodic and has finite first

moments.

We now specify the sense in which \p is required to approximate ip . The

approximation error induced by using is \p in place of \p is

r
t
(0) = |0

t
(0) - 0*O)I •

Define:

Note that dmodA-) is monotone in 6. Therefore, we can take almost sure
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limits as 5 declines to zero. We impose the following restrictions on mod .

Assumption C.3: lim dmod (8) = almost surely.
5*0

Assumption C.4: Eldmod AS)] < <*> for some 5 > 0.

The approach adopted in Hansen (1982) is to restrict the modulus of

continuity of the derivative of ifi to converge almost surely to zero and to

have a finite expectation for some neighborhood of the parameter. It follows

from the Mean-Value Theorem that restrictions imposed in Hansen (1982) on the

local behavior of ip imply Assumptions C.3 and C.4.

We use Assumptions C.3 - C.4 to study the sense in which T^ is

stochastically differentiable. Hence look at the approximation error

c(8) = sup <\Zj?lt(P) - E^'OH/I/HM : ie-3
o
l<5,0*0

o
> .

By the Triangle Inequality we have that

c(5) £ ^.dmod(5)

Thus by Assumptions C.1-C.2, we have that

lim lim sup c (5) ^ lim Edmod{8) (C.l)
5* o t-x» 5* o

4b



0.

This in turn implies the stochastic differentiability condition in Pollard

(1985) because the counterpart to c (5) in Pollard's condition is scaled by

•TI0-0 |/(1 + /TI0-0 |), which is less than one. Also, the iterated limit
o o

in (C.l) implies the limit taken in Pollard's condition because c is

monotone in 6. The differentiability of limiting moment function £0 follows

directly from Assumption C.4. Therefore, 70 ~ E,P satisfies the stochastic

differentiability condition with derivative at given by 7A-EA. Since

{*/!.} is stationary and ergodic, {Y A-£A> converges almost surely to zero

hence the derivative is asymptotically negligible.

Next we impose a global identification condition on the approximating

function . Since the approximation of by 0* is local, this condition

can also be viewed as a local identification condition on the original

function .

This rank condition on the derivative together with the stochastic

differentiability conditions already established imply the equicontinuity

condition (iii) in Theorem 3.3 of Pakes and Pollard (1989) (see the

discussion on page 1043 of Pakes and Pollard).

»A* (b
T

) = o

combination of moment conditions to be used in estimation.
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Assumption C.6: {b } converges in probability to 6.

Assumption C.7: {a } converges in probability to a nonrandom matrix a

where a £A is nonsingular.

Finally, to obtain a limiting distribution for {b } we assume:

Assumption C.8: {/T£_.0O )> converges in distribution to a normally

distributed random vector with mean zero and nonsingular covariance matrix

Sufficient conditions for Assumption C.8 can be obtained using martingale

approximations as described by Gordin (1969), Hall and Heyde (1980) and

Hansen (1985). This condition implies that E^O ) is equal to zero.

The following extension of Theorem 3.1 in Hansen (1982) is now a direct

consequence of Theorem 3.3 and Lemma 3.5 in Pakes and Pollard (1989).

Proposition C.l: Suppose that Assumptions C.1-C.8 are satisfied. Then

{V
,T(b_-£ )> converges in distribution to a normally distributed random vector

with mean zero and covariance matrix [a £(A,)] aV a ' [E(A ' )a ]

o t ooo to

Estimation of £A follows as in Hansen (1982) as long as A can be expressed in

finite first moment for some 5 > 0. In this case, {F D(b )> converges in

probability to £A.



Proof of Proposition 4.1:

In light of Proposition C.l, we now verify that our approximation in

(44) satisfies Assumption C.3. Let r(a) denote the random approximation

error:

r(a) = |x(y-x'a)(l. , in ,-l, ,-\.n JI • (c2)J {y-x'aiO> {y-x aiO}

It follows from the Cauchy-Schwarz Inequality that

r(«) * l'(ri'«)llli^
(l0)Vio} )l (c - 3)

s |xx'a - xx'a||(l, , ny -l, #~ „»)l{y-x'aaO> {y-x'a^O}

where the second inequality follows because |x'a - x'a| dominates |x(y-x'a)|

whenever y-x'a and y-x'a have opposite signs. Therefore, the random

approximation error satisfies:

r(a)/|a-a| s \x\
2

(C.4)

for a * a implying that the modulus of differentiability

dmodic) = sup{r(oc)/|a-a| : |a-a|<e, for a*a> (C.5)

2
is dominated by |x| Combined with Assumption 1.1 this implies that for any

positive value of c, £[dmod(E)] is finite. As c * 0, dmod(c) goes to zero

except when 1, ~ _, = 1. In this case it is possible to choose a suche {y-x a=0}

that |a-a| < e and 1, _ , . = 1 so that r(a) = |xx'|. However Assumption
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4.1 implies that this occurs with probability zero

converges almost surely to zero. Q.E.D.
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Formally C is the dual cone of C.

2
A weaker version of this restriction would replace Eq by q. In effect,

Assumption 1.3 does more than eliminate redundant securities. It also

precludes cases in which distinct portfolio weights give rise to the same

payoff, with possibly different prices but the same expected prices.

3
Hansen and Jagannathan (1993) showed that the least squares distance between

a proxy and the set M of (possibly negative) stochastic discount factors has

an alternative pricing-error interpretation: Formally, the pricing-error

interpretation for the least squares problem (6) is

inf sup \Emp - Eyp\

mzM peP

£p
2
=l

and for (7) is

inf sup \Emp - Eyp\
mzM* peH

£P
2
=1

where H is the set of payoffs on hypothetical derivative claims.
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Assumption 2.1 could be weakened in a variety of ways, but it is maintained

for pedagogical simplicity. More generally, we might imagine that the

process { (x.

'

,q. ' ,y. )} is asymptotically stationary, where the convergence to

the stationary distribution is sufficiently fast to ensure that the Law of

Large Numbers applies to averages of the form (17). In this case, the joint

distribution of (x'.q'.y) is given by the stationary limit point of the

The Hausdorff metric is usually employed for compact sets to ensure that the

resulting distance is finite. Because of the vertical character of the

regions and the existence of finite arbitrage bounds, the Hausdorff distance

will be finite even though the sets are not bounded. The Euclidean distance

in (30) could be replaced by the square root of a quadratic form in the

differences between two points as long as a positive weight is given to both

dimensions.

Even if hypothesis (35) is satisfied, the sample analog may be infinite,

making implementation problematic. This happens when the sample mean is

outside the estimated arbitrage bounds. This phenomenon does not arise for

hypothesis (34).

7
Burnside (1994) and Cecchetti, Lam and Mark (1993) developed and studied

alternative versions of the volatility bounds tests when no transactions

costs are introduced. The test used by Cochrane and Hansen (1992) abstracted

from positivity and can be formulated equivalently using <p in (34). See

Burnside (1994) for a Monte Carlo comparison of various volatility tests.
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g
The impetus for this work was the econometric discussion in an unpublished

precursor to this paper: Hansen and Jagannathan (1988).

9
Our formal derivation of the distribution theory uses a result from Pakes

and Pollard (1989). A byproduct from our analysis in the appendix is a

(modest) weakening of the assumptions imposed in Hansen (1982) to accommodate

kinks in the moment conditions used in estimation.

Haberman characterized this nonlinear function as a particular projection

onto a closed convex set formed by translating C by -y. Although Haberman

(1989) only considers the case in which the data are iid, his

characterization of the limiting distribution applies more generally with a

covariance matrix replaced by a spectral density matrix at frequency zero.
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