

LIBRARY of the Massachusetts institute of technology

WORKING PAPER ALFRED P. SLOAN SCHOOL OF MANAGEMENT

COPYI

Evaluation of an Ad Hoc Procedure for Estimating

Parameters of Some Linear Models

A. Ando and G.M. Kaufman

94-64

OCT 30 1914

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 50 MEMORIAL DRIVE CAMBRIDGE, MASSACHUSETTS 02139 COPYI

Evaluation of an Ad Hoc Procedure for Estimating

Parameters of Some Linear Models

A. Ando and G.M. Kaufman 94-64 OCT 30 1000 DEWEY LICENA

Authors are Associate Professor of Economics and Finance, University of Pennsylvania and Assistant Professor of Industrial Management, Massachusetts Institute of Technology. The contribution of Ando to this paper was supported by a grant from the National Science Foundation. The authors acknowledge the contribution of Mr. Bridger Mitchell of Massachusetts Institute of Technology, who prepared the computer program for calculations reported in this paper.

Economists and other users of statistical methodology often posit a probabilistic model of some real world phenomenon which has more unknown parameters than there are sample observations. In such cases it is usually impossible to jointly estimate <u>all</u> parameters from the sample data. Even in those instances where there are well established estimation procedures when the number of sample observations n is larger than the number of parameters r, these methods are generally inadequate when n < r, as the necessary calculations cannot be carried out. Furthermore, when n is only "slightly larger" than r, such estimates often prove to be unreliable in more than one sense.

One particular example of such a problem that frequently occurs in analysis of psychological and of economic data is this: the researcher posits a linear regression model as defined in (2) below with r-1 independent variables but only n < r observations on the dependent variable. Since the standard least squares procedure cannot be applied, he may ask the following seemingly reasonable question: "What subset of the r-1 independent variables should I select for inclusion in a "new" model to which I <u>can</u> apply the standard least squares procedure?"

Our purpose here is to demonstrate that one frequently used ad hoc method for determining such a subset by ordering simple sample correlation coefficients can be highly misleading. Any procedure which uses a given set of sample data to both determine the structure of the model to be tested <u>and</u> to estimate parameters of this model is intuitively unsettling. Here we present tables which quantitatively demonstrate how dangerous such ad hoc methods can be.

Consider an r-dimensional Independent Multinormal process defined as one that generates independent r x l random vectors $\underline{\tilde{x}}^{(1)}, \dots, \underline{\tilde{x}}^{(j)}, \dots$ with identical densities

$$f_{N}^{(\mathbf{r})}(\underline{x}|\underline{\mu}|\underline{h}) = (2\pi)^{-\frac{1}{2}\mathbf{r}} e^{-\frac{1}{2}(\underline{x}-\underline{\mu})^{\mathbf{t}}\underline{h}(\underline{x}-\underline{\mu})} |\underline{h}|^{\frac{1}{2}} - \underline{\omega} < \underline{x} < \underline{\omega} - \underline{\omega} < \underline{u} < \underline{\omega}$$

$$-\underline{\omega} < \underline{\mu} < \underline{\omega}$$

$$\underline{h} \text{ is PDS}$$

$$(1)$$

We wish to estimate parameters of the conditional distribution of $\tilde{x}_{1}^{(k)}$ given $x_{2}^{(k)}, \ldots, x_{r}^{(k)}$ when neither $\underline{\mu}$ nor \underline{h} is known with certainty from a set of n vector sample observations $\underline{x}^{(1)}, \underline{x}^{(2)}, \ldots, \underline{x}^{(n)}$. Alternatively, we may consider an r-dimensional Normal Regression process defined as a process generating independent scalar random variables according to the model

$$\widetilde{\mathbf{x}}_{1}^{(\mathbf{j})} = \boldsymbol{\beta}_{1} + \frac{\mathbf{r}}{\mathbf{i} = 2} \, \mathbf{x}_{1}^{(\mathbf{j})} \boldsymbol{\beta}_{1} + \widetilde{\boldsymbol{\varepsilon}}^{(\mathbf{j})} \tag{2}$$

where β_i s are parameters whose values remain fixed during an entire experiment, the $x_i^{(j)}$ s are known numbers which in general may vary from one observation to the next, and the $\tilde{\epsilon}_j$ s are independent random variables with identical normal densities

$$f_{N}(\epsilon|0, h) = (2\pi)^{-\frac{1}{2}} e^{-\frac{1}{2}h\epsilon^{2}} h^{\frac{1}{2}}$$
 (3)

Suppose now that we have n observations, and let

$$\underline{X} = \begin{bmatrix} 1 & x_2^{(1)} & \dots & x_i^{(1)} & \dots & x_r^{(1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_2^{(j)} & \dots & x_i^{(j)} & \dots & x_r^{(j)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x_2^{(n)} & \dots & x_i^{(n)} & \dots & x_r^{(n)} \end{bmatrix}$$

be a matrix of observations of "independent" variables together with an additional column of 1's. If the rank of $\underline{X}^{L}\underline{X}$ is singular the following method, or a slight variation of it, is often employed to make standard least squares "work":

- 1. Using the n sample observations, compute r-l sample statistics ρ_i , i=2,...,r, where ρ_i is the simple sample correlation coefficient between x_1 and x_i .
- 2. Relabel variables x_2, \ldots, x_r so that $|\rho_2| \ge |\rho_3| \ge \ldots \ge |\rho_r|$.
- 3. Choose an integer $r^* < rank(\underline{X}^{\mathsf{L}}\underline{X})$.
- Restructure the model, eliminating from consideration relabelled variables x_{r*+1},...,x_r. (Henceforth we call the initial model, "Model A" and the restructured model, "Model B".)
- 5. Assuming that Model B is an adequate approximation to Model A use $\underline{X}^{L} \underline{X}$ to estimate parameters of the conditional distribution of \widetilde{x}_{1} given the values of relabelled variables x_{2}, \dots, x_{r*} .

3. Simulation Study

Model B is a strongly biased approximation to Model A, and the magnitude of the bias is a function of the joint distribution of the r*-1 largest simple sample correlation coefficients. Analytical expressions for this distribution and for the distribution of the sample multiple correlation coefficient in Model B are in general extremely complex and unwieldy. Hence we have resorted

to simulation[†] in order to numerically determine the salient features of Model B. The steps in this simulation were:

- 1. We assumed that:
 - (a) the data generating process is a Model A as defined in (2);
 - (b) the dependent variables $\tilde{y}^{(j)}$ and the independent variables $\tilde{x}_1^{(j)}, \ldots, \tilde{x}_r^{(j)}$, $j=1,2,\ldots,n$, are mutually independent random variables identically distributed uniformly on [0, 1].
- For each (n, r) pair, n=10(2)20, 30, 40, 50, and r=10(5)50, 50(10)100, 150, 200 we generated 50 sets of n observations each.
- 3. For each set of n observations we used the ad hoc procedure outlined in section 2 to calculate the five largest simple sample correlation coefficients and Model B multiple correlation coefficients for Model B's with m=2, 3, 4, and 5 independent variables.
- 4. Regarding each of the five sets of 50 simple sample correlation coefficients as a set of sample observations we then calculated the sample mean $|\overline{\rho_i}|$ and sample variance $V(|\rho_i|)$ of the absolute value of each of the five largest simple sample correlation coefficients. The results are tabulated in Tables 1 and 2.

Tames and Reiter [1] performed a somewhat similar experiment in a different context: they drew 100 economic time series at random from the <u>Historical Statistics of the United States</u> and then computed the sampling distributions of correlation and autocorrelation coefficients of the series drawn, finding that "correlations and lagged cross-correlations are quite high for all classes of data. E.g., given a randomly selected series, it is possible to find, by random drawing, another series which explains at least 50 per cent of the variances of the first one, in from 2 to 6 random trials, depending on the class of data involved." [1], p. 637.

5. We follow a similar procedure with the sample multiple correlation coefficients. In Table 3 the mean $\overline{R_m^2}$ of the square of 50 sample multiple correlation coefficients for model B's with a constant term plus m=2, 3, 4, and 5 independent variables are tabulated.

The tables given us a reasonably accurate idea[†] of the order of magnitude of Model B sample correlation coefficients and of the five largest simple sample correlation coefficients whatever the distribution of the independent variables-so long as they are mutually independent and have finite mean and variance.^{‡‡} Tables 2 and 4 of the sample variances of the $|\overline{\rho}_i|$ and of sample multiple correlation coefficients show that variations in Tables 1 and 3 entries due to sampling error are practically negligible; e.g. the coefficient of variation of $|\overline{\rho}_2|$ for n= 10 and r= 10 is less than .001 as calculated from Tables 1 and 2.

Evaluation

Examination of Tables 1 and 3 illustrate clearly that not only is the procedure outlined in section 2 biased, but that bias of an order of magnitude shown in Tables 1 and 3 entries will occur with extremely high probability. For

- 5 -

TIN order to assess the effect of assuming that the data generating process generates values of mutually independent but <u>uniformly</u> distributed random variables, we duplicated the experiment for n= and r= 10 under a different assumption: each sample observation was generated by summing 10 values of mutually independent, identically uniformly distributed random variables. This spot check using an approximately normal data generating process revealed no differences to the third significant digit between values generated under this assumption and values tabled in Tables 1, 2, 3, and 4.

 $[\]ddagger_{0ne}$ interesting feature of Table 1 is that for given r and i, $|\vec{\rho}_i|^2$ decreases almost exactly proportional to 1/n. This is most pronounced for i=2.

example, for n=10, r=10, $|\overline{\rho}_2|$ =.617 with sample variance of only .0172 and for n= , r= , $|\overline{\rho}_2|$ = with sample variance of only even when the population values of $|\rho_4|$ i=2,...,r are controlled to be 0!

One effective way of dealing with the problem is to reformulate it in Bayesian terms so that we may systematically incorporate information the researcher possesses from sources other than the sample into the analysis. In [2] we indicate how Bayesian estimation of the mean vector and variance-covariance matrix of a multinormal process may be done even when the dimensionality of the process is r and there are only $n \leq r$ sample observations available. And in [3] we show how Bayesian estimation can be done when the data generating process is one frequently occurring in econometric analysis--a set of simultaneous linear equations with stochastic components--and there are less vector observations than parameters,

* * * * * *

- Ames, E. and Reiter S., "Distributions of Correlation Coefficients in Economic Time Series," Journal of the American Statistical Association, 56 (1961), pp. 637-656.
- [2] Ando, Albert and Kaufman, Gordon M., "Bayesian Analysis of the Independent Multinormal Process-Neither Mean nor Precision Known-Part I," Massachusetts Institute of Technology, Alfred P. Sloan School of Management, Working Paper No. 41-63.
- [3] Ando, Albert and Kaufman, Gordon M., "Bayesian Analysis of the Reduced Form System," Massachusetts Institute of Technology, Alfred P. Sloan School of Management, Working Paper No. 79-64.

.

s When
Coefficient
Correlation
mple Sample
Largest Si
3
0
Value
Absolute
of
1.1
Mean
Sample

TABLE 1

Model A has r Independent Variables and There are n Observations

40 45 50 60 70 80 90	305 •271 •241 •238 •221 •217 •21	226 •207 •186 •181 •174 •170 •15	182 •174 •150 •144 •142 •141 •12	159 •144 •127 •121 •115 •109 •10	132 •122 •101 •095 •096 •086 •08	20 200 520 520 720 200 200		91 11 061 602 272 062 66	.93 •198 •179 •168 •153 •145 •13	.64 .169 .156 .132 .129 .127 .11	39 •141 •133 •109 •110 •106 •09	06 .311 .280 .265 .233 .228 .22	51 •245 •228 •202 •187 •170 •17	08 •209 •191 •171 •153 •147 •14	85 •177 •159 •146 •136 •129 •12(67 •151 •138 •123 •113 •113 •10	37 •321 •292 •262 •268 •728 •27	67 253 236 207 209 186 17	28 •219 •199 •181 •180 •154 •15	95 .193 .174 .157 .162 .137 .13	67 .166 .152 .138 .141 .121 .11	35 -307 -307 -270 -260 -244 -22	68 256 243 218 210 192 183	38 220 215 189 178 167 156	05 197 191 163 167 167
30 35	43 .320 .	:67 •257 •	07 .208 .	78 •171 •	46 .139 .	61 • 342 -	84. JEO	• • • • • • • •	34 •212 •	99 .186 .	68 el60 e	62 • 331 •	95 •276 •.	51 •231 •	21 •201 •	94 .175 .	91 • 356 •	14 • 292 •	70 .254 .	37 .222 .	05 • 193 •	89 .357 .	27 .294 .	84 .253 .	48 •222 •2
25	• 379 • 3	• 296 •	•236 •2	•189 •1	•157 •1	5. 885.	C . 015 .		• 543 • 5	•208 •1	•176 •1	•415 •3	•338 •2	•292 •2	• 258 • 2	•229 •1	•407 •3	• 329 • 3	•285 •2	•250 •2	•219 •2	•398 •3	•335 •3	• 294 • 2	• 263 • 2
20	•433	• 333	•275	•222	•193	-462	276.		×05.	•254	•215	•460	•370	•316	•268	• 235	•488	• 387	•339	•295	•261	•443	•370	•324	•288
15	°495	• 393	e320	•265	•216	.519	405		1450	•293	•250	•550	•420	•366	•307	e273	•574	• 463	• 391	e 343	•307	•555	•472	•423	e.367
0	17	\$82	377	318	261	632	501		4 30	366	307	655	550	414	418	368	673	564	489	429	382	686	568	909	452

AND DESCRIPTION OF THE OWNER OF T

TABLE 1 (continued)

150	6110		471.	•112	•066	4010		0.1.	•143	•131	•140	•190	•165	•151	•141	.131	1120	11.10	•161	• 148	• 140	
100	• 217	•1/0	• 154	134	•120	734	104	• 100	•167	•152	•142	•235	607°	•186	•170	• 15d	-243	• 417	•198	•182	•171	
90	• 218	• 184	• 160	• 144	•128	050		1010	•176	•160	•148	• 257	• 216	•195	•179	• 169	671-	• 220	• 200	•189	•178	
80	• 2 5 8	• 196	• 167	 148 	•135	264		1770	•196	•176	• 162	• 255	• 22]	•199	•183	•172	180-	• 246	•223	• 205	• 193	
20	- 247	• 206	•178	•160	•148	304		• 1 0 0	• 209	•185	•171	•288	• 244	•222	• 207	•193	289	• 259	.238	• 220	• 205	
60	• 286	677.	• 196	.173	•152	286	27.6	0 1 7 0	•218	•197	•184	•325	• 269	• 241	•220	• 208	316	- 282	• 261	• < 38	• 221	
50	• 306	• 248	•219	•192	•174	230		t120	• 243	•219	• 201	•337	• 301	•272	•251	• 230	365	.313	• 277	• 252	• 238	
45	•318	° 262	• 228	•204	e 184	346		*) C *	•271	.251	•228	•372	• 305	•273	•251	•238	346	.308	• 286	• 265	•249	
40	e335	6170	e 5 2 e	°217	e193	356		1100	•275	•252	•234	•379	•319	•289	•271	•252	280	.336	•310	•292	•274	
35	• 359	6670	• 261	• 234	• 208	108		0000	• 302	•279	• 259	•418	• 358	• 321	• 300	• 279	619-	.360	• 329	• 308	• 291	
30	• 390	e 2 5 9	•279	•250	•224	414		540.	• 308	•283	•267	•439	•385	•344	•317	• 303	744-	.383	• 348	•322	• 300	
25	• 422	• 348	• 305	•274	•244	77.1		×07×	• 365	•334	• 305	177 •	*0*°	•373	•341	• 321	.614	437	•405	•371	• 349	
20	•483	•403	•350	•313	•281	612		レナナ・	•398	•362	•329	•535	6477	•425	•391	•365	550	489	5447	•408	.387	
15	•564	•468	•413	•364	e318	103		1700	0475	°436	•405	e604	e533	•493	°463	•434	664	-554	e513	e475	e451	
10	• 657	• 570	• 505	677 .	•406	101		179.	•561	•521	• 484	• 726	• 650	• 591	• 542	• 509	77.0	680	• 634	• 592	•561	
c	i=2	ņ.	=4	<u>=</u> 2	9=																	
1	4	1	20						80					40					50			

TABLE 2

Sample Variance V($|\hat{b}_i|$) of Absolute Value of 50 Largest Simple Sample Correlation Coefficients When

Model A has r Independent Variables and There are n Observations

u v	^b i=2 =3 =4 =5 =6	12	4	• • • • •	
10	0172 0132 0103 0085 0066	0153 0123 0088 0073 0051	0138 0087 0081 0080 0080	0105 0093 0087 0070 0073	0101 0075 0055 0055
15	 0106 0057 0045 0043 0041 	•0112 •0069 •0064 •0067 •0067	•0100 •0060 •0065 •0061	•0126 •0104 •0070 •0053	•0080 •0059 •0038 •0025
20	•0134 •0074 •0049 •0047	• 0095 • 0078 • 0061 • 0054	• 0104 • 0075 • 0068 • 0047	• 0120 • 0054 • 0039 • 0030	•0061 •0036 •0033 •0033
25	• 0079 • 0049 • 0041 • 0041	• 0112 • 0058 • 0047 • 0036	• 0069 • 0040 • 0027 • 0023 • 0023	• 0063 • 0047 • 0031 • 0033	• 0046 • 0029 • 0029 • 0027
30	•0095 •0052 •0031 •0024	•0091 •0052 •0037 •0032	•0078 •0043 •0033 •0033	• 0060 • 0035 • 0035 • 0025	•0081 •0051 •0038 •0038
35	 0086 0046 0036 0024 0016 	• 0073 • 0029 • 0024 • 0021 • 0016	• 0046 • 0042 • 0037 • 0028	• 0065 • 0035 • 0032 • 0022	• 0054 • 0030 • 0021 • 0018
40	•0050 •0033 •0025 •0023	•0069 •0042 •0027 •0023 •0023	•0036 •0033 •0019 •0015	•0057 •0031 •0026 •0021 •0013	•0041 •0023 •0017 •0013 •0013
45	• 0055 • 0032 • 0025 • 0015	• 0046 • 0028 • 0023 • 0022	 0046 0034 0025 0018 0015 	• 0052 • 0021 • 0017 • 0016	• 0045 • 0032 • 0027 • 0022
50	•0043 •0022 •0018 •0013 •0013	•0047 •0024 •0018 •0017 •0017	•0047 •0020 •0025 •0019	•0057 •0025 •0016 •0011	•0048 •0027 •0021 •0021
60	•0030 •0023 •0020 •0016	•0036 •0028 •0028 •0018	 0041 0022 0017 0013 0010 	•0026 •0016 •0010 •0010 •0011	• 0034 • 0025 • 0019 • 0011
70	•0037 •0017 •0010 •0008 •0008	•0035 •0021 •0015 •0011	• 0029 • 0020 • 0007 • 0007 • 0006	• 0037 • 0012 • 0010 • 0010 • 0010	•0028 •0019 •0015 •0015
80	• 0031 • 0020 • 0013 • 0008 • 0006	• 0017 • 0008 • 0009 • 0009 • 0010	•0029 •0018 •0016 •0015	• 0023 • 0014 • 0012 • 0009 • 0007	• 0028 • 0011 • 0008 • 0008
90	• 0027 • 0020 • 0014 • 0012	• 0024 • 0017 • 0010 • 0010	• 0036 • 0014 • 0009 • 0008 • 0008	• 0025 • 0014 • 0011 • 0009	• 0019 • 0009 • 0011 • 0008
100	•0034 •0013 •0011 •0008 •0008	• 0015 • 0013 • 0010 • 0009 • 0008	•0017 •0016 •0011 •0011	• 0023 • 0008 • 0006 • 0005	• 0022 • 0012 • 0008 • 0006
150	•0021 •0011 •0007 •0006	•0014 •0011 •0008 •0007	•0010 •0006 •0004 •0005	• 6014 • 0008 • 0004 • 0004 • 0003	•0021 •0009 •0007 •0005
200	• 0009 • 0006 • 0006	• 0015 • 0006 • 0005 • 0005	• 0008 • 0004 • 0003 • 0003		

P

1.0

- - - -

TABLE 2 (continued)

150	0019 0005 0005 0003	0011 0004 0004 0003 0007 0003 0003	0003 0003 0003 0003
100	• 0024 • 0012 • 0009 • 0007	00021 00005 00005 00013 00013 00013	0012 0007 0004 0004
06	• 0016 • 0001 • 0008 • 0008	• 00020 • 00020 • 0006 • 0006 • 0005 • 0007	• 0016 • 0016 • 0006 • 0005
80	• 0003 • 0015 • 0009 • 0006	• • • 00036 • • • 00012 • • • 00007 • • • 0006 • • • 0008 • • • 0008 • • • 0008 • • • 0008	• 0022 • 0013 • 0010 • 0007
70	•0040 •0016 •0001 •0009	•0029 •0014 •0017 •0007 •0007 •00031 •0005	• 0020 • 0018 • 0010 • 0010 • 0008
60	•0029 •0016 •0012 •0011	•0024 •00128 •00128 •0009 •00031 •00038 •0018	• 0022 • 0012 • 0012 • 00010
20	•0047 •0016 •0016 •0016 •0010	•0039 •0021 •0015 •0011 •0003 •0023 •0012	• 0028 • 0017 • 0009 • 0007
45	•0039 •0022 •0016 •0012	• 00042 • 00130 • 0012 • 0010 • 0010 • 0010 • 0010	• 0036 • 0021 • 0017 • 0012 • 0010
07	•0044 •0025 •0020 •0016 •0014	 0054 0037 0024 0016 0024 0011 0024 0013 	• 0051 • 0025 • 0021 • 0017 • 0015
35	•0044 •0032 •0028 •0028 •0021	• 00046 • 0021 • 0021 • 0018 • 00141 • 00120 • 0013	• 0031 • 0021 • 0012 • 0015
30	•0051 •0034 •0021 •0020 •0016	• 0053 • 00185 • 0018 • 0016 • 0012 • 0012 • 0018	• 0039 • 0022 • 0015 • 0018
25	•0061 •0040 •0033 •0036	• 0089 • 0030 • 0031 • 0026 • 0051 • 00153 • 00153	• 0057 • 0033 • 0031 • 0024
20	•0082 •0035 •0030 •0027 •0027	• 0074 • 00368 • 00368 • 0030 • 0030 • 0025 • 0022	• 0063 • 0042 • 0028 • 0024
15	•0103 •0063 •0048 •0040	.0088 .00388 .00433 .00343 .00343 .0034 .0034 .0034 .0034 .0037	• 0073 • 0041 • 0035 • 0025 • 0025
10	•0109 •0091 •0067 •0059	• 0071 • 0058 • 0058 • 0049 • 0049 • 0073 • 0073	• 0059 • 0045 • 00332 • 00233
E	1=2 =3 =4 =5 =6		
/	r 20	30	20

Sample Mean $\frac{2}{R^2}$ of the Square of 50 Sample Multiple Correlation Coefficients When Model A

has r Independent Variables, Model B has m Independent Variables and There are n Observations

	r m=2 0 =3	=5	7				و		ω,
10	•507	•637	• 522	• 738	• 556	• 702	• 603 • 685	.601	- 681 - 749 - 795
15	•347 •417	• 474 • 523	• 430	• 535 • 535	• 419 • 481	•585	•449 •520	•625 •439	•526 •589 •650
20	•287 •343	• 381	•316 •385	0 4 4 4 0	•362	• 4 1 0 • 4 4 6	• 339 • 395	•489 •303	• 368 • 420 • 455
25	•227 •277	• 331	•239 •285	• 348 • 348	•311	• 365	•259 •313	• 407	• 309 • 357 • 400
30	•185 •216	•275	•205 •254	320	•251	• 321	.241 .302 .331	• 359	• 304 • 340 • 374
35	• 164	.237	• 184 • 215	.271	• 177	•274	• 252 • 252	• 324	• 287 • 287 • 320
40	•144 •170	•211	•148 •179	.221	•154 •191	•238	•182 •223 •251	•274	•251
45	•119 •146	•181	•142 •176	.223	•149 •187	•231	•163 •204 •230	•252 •154	• 192 • 224 • 247
50	•098 •118	• 144	•123 •151	• 189	•135 •165	•205	•143 •173 •193	•211 •154	• 242
60	•090 •108	•134	•131 •147	• 157	•112 •139	• 170	•111 •138 •157	•175 •116	161.
70	•081 •100 •114	.125	•119 •135	• 146	1110	.142	•114 •142 •163	.180 .110	•158 •158
80	•078 •097 •110	•118	•076 •096 •111	•125	• 103 • 103	.132	•085 •107 •123	•136	.153
90	•072 •089 •100	• 108	•092	• 116	• 100 • 114	.126	•082 •100 •118	•130 •081	134
100	•061 •074 •083	• 089	•072	• 090	.090	111.	•073	•075	121
150	•051 •058	• 063	056	• 040	.051	• 065	•057 •057	040°	•077
200	•029 •036	•044	0.5	• 036	44	• 05			

TABLE 3

TABLE 3 (continued)

150	+400	°068	•077	•086	•063	•087	°096	e109		• 063	• 0 8 3	•101	e116	47.01		• 097	e 117	48T.	
100	610.	•103	•118	•130	• 087	•112	•131	•147	4	• 90 خ	.127	•149	• 168	201		•136	•164	• 188	
90	180.	•104	•123	•139	¢60•	•120	•142	•160		•110	• 143	• 168	•191	111	***	• 146	•173	•196	
80	160°	•123	• 144	•163	•117	•151	•175	•197		.110	•146	•173	•193	121	1010	•172	•203	• < 30	
70	e 104	•136	•159	•177	e 144	•181	•203	•226		•138	•179	• 208	•232	0.71.	1410	•188	°223	••251	
60	e133	e162	•190	•209	 132 	e171	• 204	• 228		e 168	•214	•250	•277	170	0 1 1 0	•228	•274	• 30 l	
50	•152	• 197	•228	•253	•172	•215	• 247	•280		•192	• 245	•288	•317	010	0170	• 265	• 307	•338	
45	•163	•207	•244	•267	•211	•265	• 306	• 332		.216	•272	•318	•356	, v ,	2020	•254	•302	• 335	
40	e173	•217	•258	°283	•218	•274	•315	•353		•228	•284	•327	•359		1020	.317	•365	•407	
35	• 204	• 254	•289	•319	• 245	• 304	• 348	• 386		•270	• 329	• 370	• 405		107.	• 327	•382	• 426	
30	•234	•287	• 325	•360	•267	•324	•365	• 392		• 293	•366	•421	•471	000	6670	• 368	•418	•462	
25	•284	• 345	•385	•425	• 342	•409	•460	•510		• 346	•424	•473	•529		• 200	•471	• 525	•567	
20	•351	•417	•471	•524	•382	•460	•523	•575		•420	• 508	•569	•621		0000	• 503	.583	•629	
15	7447 e	•533	•592	•625	•485	• 5 4 9	• 629	e681		• 505	°590	.667	.734		° 740°	.629	.687	.734	
10	• 540	• 631	• 705	• 770	• 629	• 713	• 777	.817		• 654	• 743	• 789	.850		• 6 6 6 6	- 760	. 814	.869	
c	ш=2	<u>۳</u>	=4	۳						,									
	н	00	2			00	2				40						2		

Sample Variance $V(\frac{2}{R_{p}})$ of the Square of 50 Sample Multiple Correlation Coefficients When Model A

has r Independent Variables, Model B has m Independent Variables and There are n Observations

200	•0001 •0002 •0003 •0003	• 0002 • 0003 • 0004 • 0004	0001 0001 0002 0002		
150	00005 00006 00007	0003	0002 0003 0003	0003 0004 0006	0006 0008 0008 0009
100	0010 0012 0013 0014	0006 0009 0011 0014	0006 0009 0013 0014	0008 0012 0013	0008 0011 0014 0016
06	0011 0017 0019 0023	0010 0013 0015 0017	0013 0017 0018 0018	0008 0011 0016 0016	0006 0009 0011
80	•0012 •0018 •0019 •0020	•0007 •0010 •0014 •0018	0011 0015 0018 0024	0010 0014 0017 0017	0011 0014 0015 0015
70	0014 0019 0022	0015 0021 0027 0030	0018 0021 0023 0026	0017 0021 0027 0028	0016 0024 0030 0036
60	0015 0018 0026 0034	0022 0030 0037 0039	0021 0030 0037 0042	0015 0017 0022 0022	0020 0036 0039 0047
50	0024 0030 0035 0041	0029 0036 0040	0034 0046 0051 0054	0035 0041 0047 0053	0034 0045 0054 0067
45	0028 0037 0043 0045	0027 0033 0043 0043	0034 0045 0056 0062	0041 0049 0058 0058	0037 0054 0064 0072
40	0039 0056 0069 0073	0044	0036 0044 0042 0042	0051 0063 0068 0089	0030 0036 0043 0043
35	0064 0088 0100 0101	00530069	0048 0072 0082 0082	0061 0089 0090 0104	0042 0052 0057 0069
30	•0089 •0096 •0117 •0124	0074 0103 0112 0130	0082 0095 0108 0118	0057 0100 0112 0121	0090 0129 0139 0143
25	•0086 •0100 •0114	•0117 •0124 •0161 •0161	0074 0083 0088 0088	0079 0101 0103 0123	0068 0074 0087 0109
20	0172 0156 0169	0151 0183 0185 0185	0129 0120 0138 0138	0133 0135 0125 0125	0088 0120 0135 0138
15	0152 0157 0182 0197	0158 0196 0280	0142 0151 0182 0197	0228 0236 0196 0225	0161 0189 0169 0149
10	•0319 •0286 •0269 •0284	•0317 •0253 •0305 •0278	• 0231 • 0223 • 0207 • 0164	•0195 •0188 •0150	•0193 •0210 •0183 •0148
c	==2 =4 =5				
/	10	12	14	16	18

TABLE 4

TABLE 4 (continued)

150	• 0005 • 0007 • 0007	0002 0004 0006 0006	0004 0005 0006 0008	0004 0008 0008 0009
100	• 0008 • 0012 • 0016	• 0008 • 0010 • 0012 • 0012	• 0005 • 0009 • 0011	0006 0008 0010 0013
06	• 0007 • 0011 • 0015	• 0009 • 0011 • 0014 • 0017	• 0008 • 0012 • 0017 • 0020	0010 0015 0018 0020
80	•0012 •0015 •0019 •0024	• 0017 • 0022 • 0024 • 0024	• 0009 • 0014 • 0017 • 0020	• 0015 • 00 2 3 • 00 2 4 • 00 2 4
20	•0020 •0033 •0040 •0048	•0019 •0026 •0030 •0034	• 0022 • 0030 • 0032	•0016 •0023 •0032 •0037
60	•0019 •0022 •0028 •0030	•0015 •0025 •0036 •0038	• 0025 • 0035 • 0040 • 0043	0024 0037 0053 0053
50	• 0034 • 0047 • 0056	• 0031 • 0044 • 0049 • 0050	• 0020 • 0035 • 0045 • 0052	• 0026 • 0033 • 0036 • 0036
45	•0031 •0038 •0043 •0043	• 0036 • 0045 • 0058 • 0058	• 0042 • 0050 • 0061 • 0061	0036 0048 0056 0049
07	•0034 •0051 •0064 •0074	•0061 •0074 •0084 •0089	•0054 •0058 •0067 •0063	• 0065 • 0079 • 0088 • 0095
35	•0050 •0066 •0072	• 0049 • 0060 • 0068	• C048 • 0047 • 0052 • 0052	0038 0049 0046 0056
30	•0048 •0061 •0094	•0076 •0078 •0388 •0387	• C049 • 0065 • 0061	• 0044 • 0070 • 0066 • 0073
25	•0101 •0130 •0136 •0150	•0112 •0125 •0137 •0137	•0100 •0100 •00090	• 0073 • 0095 • 0087 • 0084
20	•0131 •0135 •0131	•0120 •0140 •0142 •0122	•0100 •0110 •0126 •0126	•0107 •0104 •0091 •0096
15	•0203 •0185 •0167 •0168	•0177 •0154 •0166 •0127	•0127 •0147 •0130 •0093	•0105 •0111 •0112 •0112
10	• 0237 • 0240 • 0200 • 0147	•0152 •0129 •0116 •0121	•0164 •0175 •0122 •0122	• 0131 • 0136 • 0130 • 0067
c	m=2 =3 =4 =5		,	
~	⁵⁰	30	\$	20

-

The second se

no. 95-64 CANCELLED

45 000 E00 0400 E	85-64			
ни циалия З 9000 D03 869 21.	86 - 64 B			
3 9040 000 E00 040 P	87-64	Ţ	175189 <u>1</u> Joan	
712 004 E00 0806 E	88-64	9 · P	, toeni .o*;	
3 9080 003 900 47b	89-64			
ит следется 3 9080 003 869 457	90-64			
Э ПОАС ССЗ АЬЯ 507	91-64			
3 9060 003 900 500	92-64			
	93-64			
9080 003 869 465	94-64			
UT CORACES 3 9080 003 900 468	97-64			
ит намия 3 9080 003 869 481	98-64			
3 9080 003 869 531	99-64			
	45°			

