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Abstract

An important problem in clustering research is the stability of

sample clusters. Cluster diagnostics, based on the bootstrap subsampling

procedure and Fowlkes and Mallows' B statistic, are developed in this
K.

study to aid the users of cluster analysis in assessing the stability

and validity of sample clusters.





1. INTPQDUCTIQN

An important problem in clustering research is the

stability and validity of the sample clusters. For Euclidean

data, Hartigan (1981), Wong (1982), and Wong and Lane (1983)

have developed procedures to evaluate sample clusters using

the density-contour clustering model. However, it is often

true that in clustering the nations of the world, or the

political states of the United States, or the companies of a

major industry, the objects under study cannot be reasonably

viewed as a sample from some such underlying population.

Under these circumstances, it is not reasonable to talk about

sampling errors in the computed clusters. But, the stability

of the sample clusters can be evaluated in other ways.

In the approach taken by Baker (1974) , Hubert (1974) , and

Baker and Hubert (1975) , the question of how the clustering

solutions provided by the single and complete linkage methods

are affected by changes in the distance or similarity matrix

is addressed. This is a reasonable question as different

data collected on the objects might change the distances or

similarities. Ling (1973) took a different approach and

developed an exact probability theory for testing the

compactness and isolation of single linkage clusters, under

the (admittedly unrealistic) assumption that the rank order

of the entries in the distance matrix is completely random.



Another approach is appropriate when the sample

similarity matrix provides an approximation of the population

similarity matrix for a fixed set of objects. For example,

in marketing research/ if the brand-switching behavior of the

total population of coffee consumers were known, a population

similarity matrix (in terms of relative frequency of

switching between brands) between various coffee brands could

be obtained. For such a finite population, a true

hierarchical clustering can be defined on the objects (here,

coffee brands) using the population similarity matrix (e.g.,

the block-distance clustering model can be used). However,

only the brand-switching behavior of a sample of coffee

consumers is available in practice, and the sample similarity

matrix obtained only provides an approximation of the true

aggregate similarities between brands. Consequently, the

sample hierarchical clustering obtained from this similarity

matrix is merely a sample estimate of the true hierarchical

clustering.

In this type of study, standard sampling procedures like

the bootstrap or cross-validation methods described in Efron

(1979a, 1979b), or the error analysis scheme given in

Hartigan (1969, 1971) can be usefully applied to the sample

subjects (e.g., coffee consumers) to perform two main tasks:

1. to assess the similarity between the sample and

population hierarchical clusterings, and



2. to assess the stablility of the sample clusters

both using the Bk measure developed by Fowlkes and Mallows at

Bell Laboratories (1983).

In Section 2, we describe the theoretical background for

this study. There are discussions on the type of data we are

concerned with, the clustering methods used, the statistics

to compare clustering trees, and how the bootstrap method is

used. The sampling experiments are described in detail in

Section 3. The simulation results and their implications are

also discussed there. Section 4 draws conclusions and

describes how the techniques can be used most effectively.



2. RESEARCH BACKGROUND

In this study, our main concern is to develop diagnostic

tools for assessing the stability and validity of sample

clusters in the case where the sample similarity matrix is

merely an approximation of the population similarity matrix.

For a finite population, a true hierarchical clustering can

be defined on the objects by the ultrametrics model (Johnson

1967) . In order to evaluate the clusters obtained by various

clustering techniques from the sample similarity matrix, we

need to examine the degree of agreement between the

population and sample clusters and its distribution in a

series of simulated sampling experiments. We will adopt

Fowlkes and Mallows' Bk statistic as a measure of the degree

of agreement. The clustering techniques used in this study

are described in section 2.1, and the Bk statistic will be

reviewed in section 2.2. In section 2.3, the bootstrap

procedure will be outlined.

2.1. CLUSTERING METHODS

Clustering is a splitting of the set of objects into

partitions, or sets, or groups of one or more objects. A

heirarchical clustering is a set of clusterings, { Ci }, of

the objects indexed from 1 to N, the number of objects. The



index i is the number of clusters in partition Ci. What makes

it hierarchical is that if objects X and Y are in the same

cluster in partition Ci then they are in the same cluster for

all Cj where j < i. A tree will mean a dendrogram, a

taxonomy, and a number of other things which all can mean

hierarchical clustering. The term tree reflects the property

that a hierarchical clustering can be represented on paper by

something which resembles an upside-down botanical tree.

Here is a more dynamic definition of a tree. Given a

distance matrix, each clustering method proceeds as follows:

Start with each object in it's own cluster. At each step

combine two clusters into a single cluster. Continue linking

until all the objects are in a single cluster. Thus for N

objects, we will have N-1 linkings and a tree of N

clusterings, the first and last being trivial.

The differences in the linking methods come from

different criteria used to decide which two clusters to

combine at each step. One of the most common criteria is the

distance between the closest two objects of the two clusters.

This is known as single linkage. Complete linkage defines

the distance between two clusters to be the maximum of the

distances between any object in the first cluster and any

object of the second. At each step, this method links the

two clusters which are closest together by that distance



measurement. Average linkage is the same except it uses the

average of the distances between objects in each cluster.

Wong and Lane (1983) have proposed a method which

involves looking at the Kth nearest neighbor to each object

where K is a parameter chosen by the data analyst. The

rationale comes from density estimation so that it is like

estimating the density of the true distribution at each

object. Clusters are linked together by highest density

first and only on the additional condition that at least some

object in one cluster be within the Kth nearest neigborhood

of some object in the other cluster. As a result, this

method also produces an estimate for the number of clusters.

Wong and Lane have suggested a method to decide which K to

use by looking at the results for all values of K and see

what the most common value of the number of clusters is.

There are many other existing clustering methods and

criteria , but they will not be considered here.

2.2. THE Bk STATISTIC

The definition of Bk is as follows: The k in Bk refers

to the number of clusters and we will compare the clusterings

with k clusters in the two trees. Consider a table Mij where

i and j run from 1 to k and where Mij equals the number of
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objects in cluster i of clustering 1, the clustering from the

first tree, and cluster j of clustering 2, the clustering

from the second. Let Mio be the number of objects in cluster

i of the first clustering/ and Moj be the number of objects

in cluster j of the second. Mio and Moj are the marginal

totals of the rows and columns of table Mij.

Given k, let

Pk = ^Mio - N
1

2

and then

Qk = 2^Moj - N

y 2
Tk = ^ Mij - N

ij

Tk
Bk =

JPk Qk

Fowlkes and Mallows (1983) calculated a null

distribution for Bk, that is, the distribution for two

completely independent trees. However, it is difficult to

imagine a situation in which the null distribution should be

considered since there is almost always going to be

clustering of some kind. Most situations will have

significant deviation from the null case.



Rand (1971) also proposed a statistic to measure the

similarity between clusterings. With the same P, Q, and T as

defined above for Bk , Rand's statistic was

Tk Pk+Qk
Rk = +1

C 2C

where C equals Comb (n, 2), the number of combinations of n

objects taken 2 at a time.

In the paper introducing Bk, Fowlkes and Mallows show

clearly that Rand's statistic was insensitive since it did

not indicate important differences in situations where Bk

rightfully did. We will use the Bk statistic in this study.

2.3. THE BOOTSTRAP METHOD

Bootstrapping is a numerical technique proposed by Efron

(1979a, b, 1983) to estimate the distribution of a statistic.

Given a true probability distribution F, a set of N random

variables X, = {Xi}, independent and identically distributed

(iid) with distribution F, and a statistic R (X, F) , the

objective is to estimate the distribution of R. To do the

bootstrap, consider the empirical distribution of X, i.e.

each Xi has probability 1 / N and call this distribution G.

Note that not each value of Xi has equal probability because

Xi might have the same value for two or more values of i.

10



Now draw a number of new samples Y j , = {Yi}j, from G where

the size of each sample Yj is the same as that of X, i.e. i

runs from 1 to N. Then calculate R (Y j , G) for each

bootstrap sample Yj

.

The main assumption is that G is a good approximation of

F. With this assumption, we say that the empirical

distribution of the R(Yj,G)'s is a good approximation of the

true distribution of R (X,F) . This is not an unreasonable

assumption: the same assumption applies when a statistician

rejects a model because it lies outside some confidence

region. He or she is assuming that the data is not unusual

or exceptional. Standard probablility theory tells us that

for a large N, G approaches F almost surely with suitable,

but hardly restrictive conditions. The data analyst may

decide to smooth the data by adding random noise or fitting a

smooth distribution to it if he or she feels that is

appropriate.

A bootstrap sample is a sample based on the original

sample by being drawn from the empirical distribution, G,

defined by the original sample, or perhaps a smoothed

version. The term sample by itself will mean a sample from

the true distribution, not a bootstrap. In this study, we

have an unknown "population" similarity matrix and a sample

similarity matrix. The bootstrapping procedure will be
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applied to the elements of the sample similarity matrix

independently to obtain subsample matricies.

2.4 SIMULATION DATA

It is difficult to make general statements about data

because it comes in so many different forms. In fact,

translating data to computer usable form usually requires

writing a new program for each problem. Here we describe our

data and how it is treated in this paper.

Objects are the things of interest which we want to

cluster. These objects might be variables or countries or

brands of chewing gum. N will denote the number of objects

here. Data is made up of responses or single values, e.g. a

single draw Xi from a distribution F is a response. A sample

is a collection of independent responses.

In this study, the set of objects of interest will not

change within the scope of a single problem. On the other

hand, getting many samples is an important part of the

bootstrap technique and so there will be many different

samples and resamples. The bootstrap procedure we used has

the resample size fixed equal to the original sample size.

(Some studies have been done where the sample size does

change for different samples (Hartigan 1981) , but we will not

be concerned with that here.)
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Since all the clustering methods we will be using

involve a distance matrix, eventually, through some

operations, we want to change the raw data into a distance

matrix between the objects. The resulting distance need not

be a true metric in the mathematical sense, i.e. it need not

satisfy the triangle inequality. Since this is not the focus

of the paper, we will assume that the transformation from X

to its distance matrix is clear and done implicitly. Thus,

the techniques presented here will apply to any situation

where one can create a distance or similarity matrix from the

data.

Here are some examples of responses and their relation

to distance matrices:

a) A sample of distance matricies, one for each individual

giving his or her associations between objects combined in

some fashion. Some average of these responses would then

become the distance matrix corresponding to the sample.

b) A vector of values for each individual where we are

trying to cluster the variables. We might measure the

association between variables by linear or monotone

correlations, or something more sophisticated.

c) A simple distance matrix between the objects. This is

the case addressed by Hubert (1974) and will not be

approached here.
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In our experiments, the ultrametrics tree model will be

used to generate the population distance matrix. Below is

the distance matrix for data set Al; it corresponds to a

hierarchical clustering of 10 objects with 3 well defined

clusters. Following that is the tree corresponding to set

Al. Other data sets will be introduced in Section 3 as they

are used.

Table 2.4.1: True Distances of Set Al

Al A2 A3 Bl B2 B3 CI C2 C3 C4

Al - .10 .10 .40 .40 .40 .70 .70 .70 .70

A2 - .10 .40 .40 .40 .70 .70 .70 .70

A3 - .40 .40 .40 .70 .70 .70 .70

Bl - .05 .05 .70 .70 .70 .70

B2 - .05 .70 .70 .70 .70

B3 - .70 .70 .70 .70

CI - .15 .15 .15

C2 - .15 .15

C3 - .15

The application we have in mind can be described as

follows: Suppose the objects were brands of detergents and

the respondents were consumers. The real distance between

detergent 1 and detergent 2 is the proportion of consumers

who would not use each as a substitute for the other. In

14



marketing research studies, a finite sample of , say, 100

people would be tested if they would accept one product as a

substitute for the other. So if 80 percent of the people

switched, then the distance is .20, and it is a reasonable

estimate of the true distance in the population.
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Figure 2.4.2: Tree for Data Set Al
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To simulate the survey described above, the natural

thing to do is to create binomial random variables with

probability parameters equal to the distance and with n = 100

trials. Sample distances are distributed Binomial

(Pi j ,100) /lOO where Pij is the true distance between objects

i and j. Likewise, if Sij is the sample distance, the

bootstrap distances are distributed Binomial (oi j ,100) /lOO.

The next two distance matrices are examples of a sample from

set Al and then one of the bootstrap samples based on that

sample.
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Table 2.4.3: Example of Sample Distances

Al A2 A3 Bl B2 B3 CI C2 C3 C4

Al -



3. RESULTS

3.1 BK PLOTS

3.1.1 Data Set Al, Complete Linkage

In the first experiment based on data set Al, 50 samples

from the true distribution were generated and complete

linkage was used to make 50 trees. Bk was calculated by

comparing each of the 50 trees with the true tree.

The distribution of Bk for each k is shown in the figure

3.1.1.1. The horizontal scale runs from 1 to N, (N = 10); 1

and N lie at the left and right borders, respectively. The

vertical scale runs from at the bottom to 1 at the top and

hatch marks are at increments of .10. For each k, the

numbers count how many Bk's took on that value.
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Figure 3.1.1.1: Plot of Bk versus k

Set Al, Complete Linkage

k =



Figure 3.1.1.2 shows the means of Bk, indicated by

stars, "*", and plus and minus one sample standard deviation

on each side, indicated by dashes, "-". They are truncated

at the top and bottom boundaries because Bk will only lie in

the unit interval.
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Figure 3.1.1.2: Plot of Bk versus k

Set Alf Complete Linkage

* * *
*

The following are box plots of the same results. The

median is represented by a number sign, "#", the quartiles by

a plus sign, "+", and the first and seventh eighths by minus

signs or dashes, "-", The regions in between the quartiles

was filled in with vertical bars, "I", to make the boxes in

the box-plots more visible. Often, because the eighths are

equal to the quartiles and/or the quartiles equal to the

21



median, only one of the symbols is shown. The discreteness of

the distribution causes this problem. It also often causes

rather large boxes for higher values of k.
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Figure 3.1.1.3: Plot of Bk versus k
Set Al, Complete Linkage

«

I

+

Because of the discreteness, simply finding the average

may not be an appropriate summary of the information. The

box plots seem to convey the variability of Bk most

efficiently. The frequency plot contains the most

information, but can be difficult to read, especially when

there are many objects.
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Before we continue with more experiments, let us

explain the important feature of the Bk plot. It is clear

that the plot of Bk is not a smooth one but jagged and

contains many peakS/ valleys, and steep cliffs. The reason

is natural, and actually desirable, because the peaks

indicate the more stable and relevant clusterings.

To see the reason, consider the structure of Set Al and

the process of linking together clusters. Even with the

perturbation to for the samples, the objects labelled with

B's are most likely to link before those with A's or C's.

After 2 linkings, when k = 8, the B cluster is usually linked

and Bk is higher. At k + 1, (9), none of the clusters is

completely linked, and only random pieces have been linked.

Then, Bk is smaller. Similarly, for k - 1, (7), Bk is

smaller because the incomplete cluster of A's is only

beginning to link together. The peak is not always exactly

at 8 though because sometimes some A's may get a small

distance in the sample, or the B's a large distance, and then

A's link before the B cluster is complete. So by looking at

the clustering at level k when k is one of these peaks, one

will likely find stable clusters.

3.1.2. Data Set Bl, Complete Linkage
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Figure 3.1,2.1: Tree for Data Set Bl
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The three figures here are for Data Set Bl, consisting

of 18 objects, which represents a different population.

There are 3 distinct clusters of 4 objects each labelled with

A's, B's, and C's, and 6 other objects labelled with D's and

E's which are in a less distinct cluster.
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Figure 3.1.2.2: Plot of Bk versus k

Set Bl, Complete Linkage, 50 Samples
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More objects made the distribution smoother, except for

the very high values of k; but it is still not smooth enough

for us to use only the sample mean and standard deviation as

descriptors for the distribution.
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Figure 3.1.2.3: Plot of Bk versus k

Set Bl, Complete Linkage, 50 Samples
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3.1.3. Data Set Al, Other Methods

Section 3.1.1 contained the plots of Bk for 50 samples

when complete linkage was the method used to form the trees.

Next are the results when single linkage, average linkage,

and the kth nearest neighbor algorithm are used.
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Figure 3.1.3.1: Plot of Bk versus k

Set Al, Single Linkage, 50 Samples

The Bk's for single linkage are typically higher,

especially for high values of k near N, the number of

objects. Complete linkage finds the stable clusters at lower

values of k, near 1. In their experiments, Fowlkes and

Mallows also see that the complete linkage decayed faster

than single linkage. This is easily explained by the fact

that single linkage is "continuous" while complete is known

28



to be "discontinuous". Discontinuous means that drastic

changes in the result can come from small change in the data.

However, single linkage has its problems, too. It is

sensitive to the small distances which can lead to

"chaining", or linking clusters earlier than they should

normally be linked.
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Figure 3.1.3.2: Plot of Bk versus k
Set Al, Average Linkage, 50 Samples
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By using the average distance between objects in

clusters instead of the minimum or maximum, chaining and

discontinuity might be avoided. As one would expect, Bk with

average linkage (figure 3.1.3.2) usually ends up between the

single and complete linkage results.
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Figure 3.1.3.3: Plot of Bk versus k

Set A, Nearest Neighbor (2) Linkage, 50 Samples

In the plot above, it is shown that the kth nearest

neighbor method failed to identify the two population

clusters, indicated by low Bk's at k =2, although it did

find stable clusters for k = 3. The reason for this

confusion is that the kth nearest heighbor method is oriented

towards picking out the number of clusters and the clusters

themselves and not towards the reproducing whole tree. Here,
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3 is its choice of the number of clusters and that is a

perfectly good answer. Thus, it is not appropriate to

evaluate the kth nearest neighbor method by how well it

reproduces the tree nor use it together with Bk . One

additional point, this method is not designed for a small set

of objects but more for Euclidean data with more than 100

objects. When other parameters besides 2 were used,

reproduction of the tree was worse than for 2. For these

reasons, we will not consider this method for the remainder

of the study.

3.1.4. Data Set Bl, Other Methods

Recall figure 3.1.2.3. The graph showed stable

clustering at k = 9, when only clusters A, B, and C are

linked. The graph of Bk would tell us that the D's and E's

are not really clusters. However, by simply looking at the

tree, figure 3,1.2.1, one might be mislead into declaring

that there were 4 clusters. Complete linkage says 4 clusters

in unstable while single linkage, above, shows stable

clusters for 2, 3, 4, 5, 6, 7 and 9 clusters! Average

linkage has stable clusters at 2, 3, 4, and 5, and of course

9. It is difficult to say which method is more correct.
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Figure 3.1.4.1: Plot of Bk versus k

k =

Set Bl, Single Linkage

9

I # t *

I + +
- +

+
I

+
I +
#

I I I i +

+ # +

I «

+ 11 +
I I I

+ I #

I +
+

- # # #

33



k =

« *

+

»

4

f

I

*

Figure 3.1.4.2: Plot of Bk versus k

Set Bl, Average Linkage, 50 Samples
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3.1.5. Data Sets A2 and A3, Complete Linkage

Set Al is an unusually nice set with well separated

clusters. By changing the distances but conserving the

topology of the tree, set A2 is formed with less distinct

clusters.
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Table 3.1.5.1: Distances for Data Set A2

Al A2 A3 Bl B2 B3 CI C2 C3 C4

Al - .20 .20 .25 .25 .25 .50 .50 .50 .50

A2 - .20 .25 .25 .25 .50 .50 .50 .50

.25 .25 .25 .50 .50 .50 .50

.15 .15 .50 .50 .50 .50

.15 .50 .50 .50 .50

A3 -

Bl -

B2 -

B3 -

CI -

C2 -

C3 -

.50 .50 .50 .50

.10 .10 .10

.10 .10

.10

35



Figure 3.1.5.2: Tree for Data Set A2
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Figure 3.1.5.3: Plot of Bk versus k
Set A2, Complete Linkage
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The stability of clusters with this data not only

depends on the difference in distances, e.g. .20 to .25 in

set A2, but also the variation that sampling will produce.

The maximum variance in a binomial random variable occurs

when the probability is .50. So for data set A3, pictured

below, the real difference between links at .50 and .55 is

less than those in set A2 at .20 and .25, even though the
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arithmetic difference, .05, is the same. This property is

something that a data analyst could easily forget while

simply looking at a single tree, especially when the

variation is not well known. As expected, the Bk plot for

set A3 with complete linkage has even less stablility at 3

clusters.
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Figure 3.1.5.4: Tree for Data Set A3
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Figure 3.1.5.5: Plot of Bk versus k

Set A3, Complete Linkage
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Because we can not define a true null distribution, it

is difficult to say exactly how one could tell whether a peak

is significant or not. It would be easy to make an arbitrary

cut off point at, say, .90 or .85; but as k increases, this

may not be appropriate since the Bk plot must eventually

decay. Perhaps this question of significant peaks can only

be answered after a few hundred plots of experience.
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3.1.6. Data Set B2

Figure 3.1.6.1: Data Set B2
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Data set B2 is a less stable version of Bl. Average and

complete linkage find stable clusters at k = 9 while single

linkage does not. However, these 9 clusters are not as

stable as those is Set Bl, as indicated by the lower values

of Bk.
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Figure 3.1.6.2: Plot of Bk versus k

Set B2, Complete Linkage
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Figure 3.1.6.3: Plot of Bk versus k

Set B2, Single Linkage
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Notice that average linkage (figure 3.1.6.4) has stable

clusters at 4 which is odd because set B2 does not. It also

has stable clusters at k = 9.
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Figure 3.1.6.4: Plot of Bk versus k
Set B2, Average Linkage
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So we have shown that the Bk plot is useful in finding

stable and relevant clusters. The problem is that we were

taking many samples from a known truth while in practice we

get only one sample and no truth. Now the question is "Can

one find a reliable estimator of the true Bk between the

sample and population trees?"
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3.2. THE DISTRIBUTION OF BK

Since we do not know the population in practice, we must

use subsampling techniques like the bootstrap to simulate

sampling from the true distribution. As stated above, the

bootstrap uses the sample as an approximation of the

population.

In order to see if the distribution of the

sample-to-bootstrap Bk was actually close to that of the

true-to-sample Bk, 50 samples were taken from the true

distances and some of these samples were chosen and 50

bootstrap-samples were drawn from each of them. Then the

sample Bk could be compared with the bootstrapped Bk's to see

if the bootstrap reproduced the original situation well. To

compare the distributions, a standard chi-squared goodness of

fit test was used. The null hypothesis is that the

distributions are the same and a low value of the chi-squared

statistic, relative to the degrees of freedom, will indicate

that the null hypothesis is acceptable.

Binning was based on the distribution of the

true-to-sample Bk's. Those Bk's from the bootstraps were

binned with the closest sample Bk. For complete linkage and

50 bootstraps on each of 6 samples from set Al, the results

are in Table 3.2.1.
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Table 3.2.1: Results of Chi-squared Tests
Set Al, Complete Linkage, Samples 1 through 6

k df chisq

4 2 61.879
4 2 16.425
4 2 6.901
4 2 32.516
4 2 5.014
4 2 5.209

95th percentile = 5.991

5 4 64.729
5 4 241.342
5 4 195.578
5 4 147.015
5 4 306.318
5 4 71.061

95th percentile = 9.488

6 1 7.219
6 1 .357
6 1 .357
6 1 7.219
6 1 2.228
6 1 7.219

95th percentile = 3.841

7 3 106.452
7 3 106.390
7 3 20.121
7 3 93.056
7 3 122.238
7 3 2.400

95th percentile = 7.814

8 1 8.000
8 1 18.000
8 1 5.120
8 1 .720
8 1 11.520
8 1 6.480

95th percentile = 3.841

9 1 .750
9 1 4.083
9 1 21.333
9 1 .750
9 1 .000

46



9 1 33.333
95th percentile = 3.841

The results show that the distribution of the sample Bk

is not close to that of the true. The cases when k = 2 or 3

could not be tested because the sample distributions were

degenerate. Even with different binning schemes, the results

were still the same: the distributions are different. This

was also true for all three clustering methods. The

difference was that the bootstrapped Bk's were nearly always

shifted from the sampled. Usually, it was shifted to the

lower side, which is what one would expect.

This difference is made clear by the two plots shown

below. The Bk plot in figure 3.2.3 compares the 50 bootstrap

samples (based on sample number 33) with sample number 33

itself, while the one in figure 3.2.2 compares the 50

original samples with the population.
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Figure 3.2.2: Plot of Bk versus k

Set Bl, Average Linkage, 50 Samples
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For data sets with 18 objects, e.g. set Bl, the

situation was the same. So the problem was not simply caused

by the small number of objects. Even average linkage, the

least sensitive method, had bootstrap Bk's that were very

different from the sample.
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Figure 3.2.3: Plot of Bk versus k

Set Bl, Average Linkage, 50 Bootstrap Samples
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These results are not particularly good news. It means

that the empirical distributions defined by the samples can

be very different from the true distribution. In these

caseS/ it was always different. However, all is not lost.

Notice that the median of the bootstrap Bk's is equal to the

median of the sample Bk's for k = 2, 3, 4, 5, 9, and 10

above. Even though the distributions of Bk's are not the
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Seunc/ some statistics like the median may be very close to

the original. The purpose of section 3.3 is to examine how

close it really is.

3.3. ESTIMATORS FOR BK

It may be sufficient to estimate the sample-true Bk

rather than its distribution. It is proposed here that

estimators can be calculated from bootstrapped Bk's. We

looked at 3 natural estimators, the mean, median, and mode,

for 50 bootstraps of one sample. The values are given in

Table 3.3.1.

Table 3.3.1: Estimators of Bk
Set Al, Complete Linkage

k true



Most of the time, the median equaled the mode. After

examining many trials it appears that the median and mode are

either exactly equal to the true Bk, or they are further from

it than the mean.

3.3.1. Data Set Al, Complete Linkage

In order to get a better idea on how accurate estimators

are, the bootstrap can be used again to estimate the

distribution of these statistics. One sample from the true

distribution was taken and 30 sets of 50 bootstrap samples

from the sample distribution were created. For each set, the

mean median, and mode of the 50 boots were calculated and the

true Bk was subtracted.
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Figure 3.3.1.1: Deviation of Esimator from the True Bk
Data Set Al, Complete Linkage / Sample Number 10
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Figure 3.3.1.2: Deviation of Estimator from True Bk
Set Al/ Complete Linkage r Sample 10
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The median appeared better than the mode and mean as an

estimator, if only slightly. So we will present only the

median in the remainder of the study.
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Figure 3.3.1.3: Deviation of Estimator from True Bk
Set Al, Complete Linkage, Sample 10
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3.3.2. Data Set Al, Other Methods

Here we present the results for the same data set using

single and average linkage. The median does slightly worse

with single linkage than complete while it does slightly

better with average linkage.
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Figure 3.3.2.1: Deviation of Estimator from True Bk
Set Al, Single Linkage, Sample 10
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All three methods did perfectly for k =2, 3, 5, and 9,

In this context, it does not mean those are stable clusters.

It only means that we accurately estimated the true Bk.
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Figure 3.3.2.2: Deviation of Estimator from True Bk
Set Al, Average Linkage, Sample 10
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3.3.3. Data Set Bl, All Three Methods

Figure 3.3.3.1: Deviation of Estimator from True Bk
Set Bl, Complete Linkage, Sample 10
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With more objects, estimation becomes less accurate.

However/ when the true-sample Bk was high, the

bootstrap-sample estimator was high also. Recall that for

set Al, the estimators were perfect for k equal to 2 and 3.

Here, the estimate of Bk for k = 9 is usually accurate.
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Figure 3.3.3.2: Deviation of Estimator from True Bk
Set Bl, Single Linkage, Sample 10

MEDIAN
.60 +

.40 +

+ + +
_ *

,20+ 2
2 2

4 *

9 * + 2
+ 77

,00+ 3 + + + +58
- * 8 + + 2 +
- 5 * 2 *

- * * 5
- 6 +

-.20+ 2

3

9

40+

.0 4.0 8.0 12.0 16.0 20.0

59



Figure 3.3.3.3: Deviation of Estimator from True Bk
Set Bl, Average Linkage, Sample 10
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3.3.4. Data Set Al, Other Samples
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Most of the results above are based on one sample, the

tenth. In order to make sure that the sample is not

atypical, the same procedure was run on other samples,

numbers 11 through 13.
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Figure 3.3.4,1: Deviation of Estimator from True Bk
Set Al, Average Linkage, Sample 11
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These plots show that certain statistics on bootstrap

samples will be reasonable estimators of the true Bk.

Different samples will give different results, however. In

any situation where the bootstrap is used, it would be

advisable to create and examine many samples from possible

models. That way the reliability of the bootstrap in that

particular situation would be known.
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Figure 3.3.4.2: Deviation of Estimator from True Bk
Set kl, Average Linkage, Sample 12
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Figure 3.3.4.3: Deviation of Estimator from True Bk
Set A, Average Linkage, Sample 13
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Complete linkage worked perfectly on sample number 13

Figure 3.3.4.4: Deviation of Estimator from True Bk
Set Al, Complete Linkage, Sample 13
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3.3.5. Data Set B2, Average Linkage

This last plot shows how the technique works on a set

with less distinct clusters. The results are not

significantly different from the other experiments.
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Figure 3.3.5,1: Deviation of Estimator from True Bk
Set B2, Average Linkage/ Sample 13
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4. CONCLUSIONS AND SUMMARY

In this study we propose to use the bootstrap and the Bk

statistic in combination to perform two tasks:

1) We can find the more stable and important clusters by

looking at those clusterings which tend to produce peaks in

the Bk plot. This information about the variability of the

data set will be very useful when interpreting the

clustering tree.

2) We can estimate the sample-to-true Bk by examining the

bootstrap-to-sample Bk's. The best results in this study

came from using the median of bootstrapped Bk's and either

average or complete linkage.

We have documented the results of a simulation study

here and these results indicate the usefulness of the

proposed procedure. The model used in the experiments was

appropriate for the common example described above. However,

it is not known whether the variation in other situations is

comparable. It could be much more, with worse results, or

much less, with better results. The methods presented here

show promise but, because of the limited scope of the study,

have yet to be tested in real applications.
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