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Abstract

Many financial data are now collected at an ultra-high frequency,

such as tick-by-tick. However, increasing the observation frequency

while keeping the time span of the observation fixed does not always

help in estimating parameters. A different type of consistency, the

consistency of a estimator as the observation frequency goes to in-

finity, becomes important in studying high frequency data. In addi-

tion to the consistency, the deviation of a financial time series from

a continuous process is also increasingly significant as the observation

frequency increases. This deviation is not negligible and causes an-

other difficulty in estimating parameters. This paper concentrates on

constructing estimators of variance parameter using contaminated ob-

servations; i.e., observations from a continuous process with deviation

at time of observation. The consistencies of these estimators, as the

observation frequency goes to infinity, are analyzed.

Key Words: f-consistency; observation noise; quadratic estimator.



1 Introduction

I start with an example of estimating the mean parameter /j in a simple

process dB(t) = fidt + adW(t). For a fixed span of observation interval and

a = 1, does increasing the observation frequency help the estimation? This

type of question has come up recently in studying high frequency financial

time series. We now accumulate more and more financial data not because

time goes fast, but because data are recorded more frequently. We have

gone from quarterly data to monthly data to weekly, daily and now tick-by-

tick data. How does more data help us in estimating parameters? It may
surprise many people to know that increasing observation frequency while

keeping the span of observation fixed does not always help in estimating

the parameter. In the case of estimating the mean parameter, increasing

observation frequency does not help the estimation at all. When a is given,

the minimum sufficient statistic for the mean parameter is the difference of

the two end observation points. The difference of these two end observation

points does not change as the observation frequency increases. However,

when the variance parameter is interested, increasing observation frequency

does help the estimation. The quadratic variation is a consistent estimator

of the variance parameter as the observation frequency in the limit. This

raises a new consistency problem, f-consistency, the consistency when the

observation frequency goes to infinity while time span keeping fixed.

There is another issue associated with using high frequency data. When
the observation frequency increases, the difference of financial data from a

continuous process becomes increasingly significant. For example, as obser-

vation frequency increases, the variance of price increment does not approach

zero. The first order autocorrelation of the increments is strongly negative.

We often neglect such a difference in using low frequency data such as daily

or monthly prices. This difference is not negligible in high frequency data.

However, this should not keep us from using a continuous process for high

frequency data. I suggested (Zhou 1991) that the high frequency financial

data can be viewed as observations from a diffusion process with observation

noises:

S(t) = P(t) + t t ,
te[a,b), (1)

where P(t) is a diffusion process

dP(t) = fi(t) + a(t)dWt
. (2)



I call the diffusion process the signal process and the e
t
observation noise.

The observation noise is the deviation of data from the continuous process

and is assumed to be independent from the diffusion process. Many things

contribute to this observation noise. In the currency market, for example,

non-binding quoting error is part of the noise. In other markets, bid and

offer difference also contributes to the observation noise. Many other micro-

structural behaviors are all included in this so-called observation noise. For

low frequency observations, the observation noise is overwhelmed by the sig-

nal change. When observation frequency increases, the signal change becomes

smaller and smaller while the size of the noise remains the same. The noise

totally dominates the price change in ultra-high frequency data. Viewing

high frequency data as observation with noise certainly captures many basic

characteristics of high frequency financial time series mentioned above.

In this paper, I concentrate on constructing the estimators of the vari-

ance parameter using noisy high frequency observations. The f-consistency

is investigated for each estimator. Without loss of generality, I assume that

the time span considered here is [0,1], which can be an hour or a month. The
parameter to be estimated is

a
2 = f a

2
{t)dt = Var(P(l) - P(0)). (3)

Jo

This paper is organized as follows. In Section 2, I study the f-consistency

of the maximum likelihood estimator under the assumption of Gaussian noise

and a constant variance parameter. In Section 3, I explore the estimator

by the method of moment under more relaxed assumptions. In Section 4,

I construct an optimal quadratic estimator. In section 5, I investigate the

sensitivity of each estimator to its assumptions and give an overall evaluation

of each estimator.

2 F-consistency of The Maximum Likelihood

Estimator

In this section, I assume that the process (1) has independent Gaussian

noise with constant variance and the signal process (2) has ^(t) — //£, a(t) =
a. Under these assumptions, I can obtain a maximum likelihood estimator



(MLE). Solving the different equation (2), 1 have

S(t) = nt + aW(t) + tu te[0,l], (4)

where W{t) is a standard Winner process and e t are independent Gaussian

random variables with mean zero and variance rj
2

. Taking n + 1 equally

spaced observations from [0,1], I have {So,n,Si,n,~-,Sntn } such that

X-in — "Jt.n
—

<Jt-l,Ti — — + r=^i ~^~ C »
—

" e*-l
n y/n

(5)

where Zj is a standard Gaussian random variable. The joint distribution

of {Xi
:

n,...,Xn,n} is a multivariate normal distribution with mean zero and

variance matrix

n
In + V

2K (6)

where /„ is an identity matrix and

An =

(
2



The derivatives of the log-likelihood function with respect to each param-

eter are

dl(n,a
2
,r}

2;X) = /a-_jWnte-i£ /n)
dp n

n
n

^^^ = -itr(S„-M„) + I(X-^Sn-M„Sn-'(X-^)(13)
077^ z z n n

Rewrite matrix A as

^n = VnAn V?, (14)

where e is a vector with all elements 1 and Vn = (vi,...,vn ) is the matrix

consisting of eigenvectors defined in (8) and An =diag(Aj) is a diagonal matrix

with diagnal elements being the eigenvalues defined in (9). The inverse of

the covariance matrix

^n
1 = V^diag(

\
)V?

t

Let

(Y
l
,...,Yn )

T = V?X

Let v.i = J2j Vij and notice that £, Vij = 1. The MLE of p, a2 and T]
2

is the

solution of equations:

ft (<r
2/n + v

2K) n
ttt (a2/n + 77

2
Ai) *

;

V l

1 V {Yi ~ ^,n)2
rttt

£{ 2n{a2/n + V
2K) h M°2/n + rfKY

K
'

ttt 2(a2/n + r/2A t ) ,tt 2(a 2/n + ^A,) 2 ^ '

The Fisher information matrix of (p,a2
,r)

2
) is

/(/i.a
2
,^

2
) =

( Eij[Z-%/n2

^trfE^ 1

) ^(E-M^- 1

)

V £tr(5£Mn£^) ^tr(S-MnS;Mn )



(T.

\

i

n2(<72/n+T72 Ai)

£— 9«2^2/„ ._2\12 Z-,
—

2n2 (
-2/n+T,2Ai)2 2n(<r2/„+T,2A0 2

A?

^ 2n(cr2/n+r)2A.) 2 ^ 2(7PJW+^iF J

The MLE of the mean is

Am = n(£ Vfo
)/(£

i

ttt (<r
2Ai +»W v^ (*7* + V

2K)
:) (18)

Using the scoring method, the variance parameter and the variance of noise

can be solved by the iteration of

2,(fc)

2,(fc)

Vm
( ^k~ l)

+ i(°r-
l

\vT-
1)r 1

(19)

where

dt l)

^ [ ^H^-V/nW^K) + 2n2(^ 1
Vn-H7^

fc- 1
>Ai )

2J

)
A.

2-A „/ 2,(fc-l) ; " 2,(Jfc~l) .
+ 2.(fc-l)/„ J_„2,(k-l) A x 2 'Vn+r,

and I(a2
,r)

2
) is the lower-right corner sub-matrix of the information matrix

(18).

Theorem 1 77ie asymptotic behavior of the information matrix is

(

/(/^W) =

where y=T]
2/a7

2^ + °(VM o

V

o

o

8

8<r«
* + o(n)

(20)

/

The proof can be found in the Appendix.

It is easy to prove that

Var(/tM ) = E 1

^(aVn + ^Ai)
J"

1 = O(v^)



The variance diverges as the observation frequency increase. It is worse

than the estimator ft
= £„„ — 5 ,n, which has constant variance for any

observation frequency. Instead of using the MLE of fi, ft
= £„,„ — S0>n is

used in this section as the estimator of mean parameter fi. The classical

asymptotic results about MLE do not apply here because we are considering

the observation frequency, rather than the time span, goes to infinity. To
investigate the f-consistency of the estimator, I conduct a series of simulations

for using different a2
, signal-to-noise ratio 7 = if/a

2
. For each observation

frequency n, I simulate 100 series of noisy observations as in process (4).

Then I calculate 100 MLE's and their sample mean and sample variance.

The results are given in Table 1. Empirical results indicate that the MLE is

f-consistent and the convergence rate of the variance of the MLE is simmilar

to the inverse of the information matrix (20). That is

Var(^) = ^ + (-L)
(21)

Var(^) = ^-+0^) (22)
n n

When there is no observation noise, the MLE of the variance parameter is the

quadratic variation a2 = £ X?n
— (£ Xhn )

2
/n. The variance of the quadratic

variation estimator is cr
4
/n. For both mean and variance parameter, the

variances of MLE's converge y/n slower when there are observation noise.

Because the eigenvalues of matrix An are known, it is not too expensive to

computing the MLE. However, there are several setbacks for this estimator.

First, the variances of high frequency financial data are extremely unevenly

distributed among all observations; i.e., the <rt = a is often violated. Second,

the noise in (4) is often not normally distributed and may be dependent.

Third, the iteration (19) needs a reasonable initial guess. In the next sec-

tion, I look for the estimator by the method of moment under more relaxed

assumptions.



Table 1: Empirical Mean and Variance of MLE



3 Estimating the Variance Parameter by the

Method of Moments

Assuming that the observation noises are independent with a finite fourth

moment, I can construct a very simple estimator by the method of moment:

? = £(*?« + 2Xi,nXi-i,n) - (E *>,n)
2
/n. (23)

The second term converges to zero and therefore is negligible as n — oo. For

simplicity, I assume that \i = 0. The estimator (23) simplifies to

&MU = £(*?n + 2Xi,„Xi_ lin) (24)

This estimator does not require any distribution assumption on the noises.

The noise can be non-stationary. The estimator is nearly unbiased. The

mean of this estimator is

E{g2
mm ) = Y,Wn + ri! + vLi-2vU)

= °
2 + V$-vl (25)

where a 2
n — Jt^ n a

2
dt and rj

2
is the variance of observation noise e*. Unfor-

tunately, this estimator is not f-consistent if the majority of noises is non-zero.

The variance of the estimator is

Var(a^M ) = £(2<n + 4a
2
nV

2 + Aa2
_ l<na

2

n + Aa 2
_ hn -q

2
_

x
+ ^i-i,nVi

+±nhU + toLijti + toilmU) + v
{

n
A)
+ vi

4

\ (26)

where n\ is the fourth moment of noise Cj. Suppose that rj
2

is the minimum
non-zero value of rj

2
, let m be the number of rj

2 > rj
2 and m be proportional

to n, then

Var(^M ) > J>ftk) > 4 5>.
2

E^- 2/« = 4m2/nV\

If all a 2
n = a 2

In and e* are independently and identically distributed (i.i.d.)

with mean zero variance 7y
2

, then

Var(<7^M ) = 6a4/n + I6a2
n
2 + Sriv

4
. (27)



The optimal observation frequency is n = JZ/A/^. The minimum variance

of the estimator is

Var(^M ) = 29.867/V.

This estimator, after a certain point, is getting worse as the observa-

tion frequency goes to infinity. However, because of its simplicity, I want

to investigate if there is an f-consistent estimator with this simplicity. In

the next section, I construct an optimal quadratic estimator of the variance

parameter.

4 Quadratic Estimator

In this section, I study the estimator in following quadratic form

a% = XTQX (28)

where X = (AT1>n , ..., Xntn )

T and Q is any n x n matrix. Similar to the last

section, I assume /i = 0. Oq has mean and variance:

Eo% = tr(QE) (29)

Var(aJ) = tr(gEQS) (30)

Assume that ofn = a2/n and rj
2 = rf.

2 2

En = —In + r?An = Kndiag(— + W)K
n n

where Vn and Aj are defined in (8) and (9). Vn is symmetric, therefore

V? = Vn . Let

<2„ = VnQnVn , (31)

then

E&1 = £&(— +W) (32)

t
n

Var(aJ) = ^ 9-J(^ + A
l
r
7

2
)

2 = ^4

E9j(1 + Ai7)
2

) (33)

a
n

ij
n

10



where 7 = if/a
2

, the signal-to-noise ratio. Obviously, aQ is unbiased if and

only if

^2qi,=n and Yl^^ = °
(
34

)

i i

Theorem 2 For any given r, the solution of

minQ^4(- + Air)
2

subject to ^ g.i = n and ^ g-jjAj =
i i

is g'jj = for i ^ j and

a + pXi
(35)*" 2(l/n + A,r) 2

w/ierie o: and /? satisfy

2n = a
^(l/n + Atr)2

+/?
^(l/n + Al r)2

Ai A2

a^ (l/n + A,r) 2
+^ (l/n + A,r) 2

The proof is given in the Appendix.

For any given r, the best quadratic estimator is

*5 = £&!?, (36 )

i

where g« is defined in (35).

Theorem 3 For the optimal quadratic estimator aq, with Q defined in (31)

and (35), the asymptotic convergence rate of

y/r 2^ V™ V"

11



The proof is again given in the Appendix.

From Theorem 3, for any given r, the quadratic estimator &q, with Q
defined in (31) and (35) is f-consistent. The prefered value of r is 7, which

is unknown, r should be chosen in order of 7, but should not be too small.

When r is close to 7, the performance of the quadratic estimator is similar to

MLE and it does not need any distribution assumption about noises. Other-

wise, the variance does not decrease as the signal-to-noise ratio 7 dereases.

Without assumption of constant variances, it is very difficult to find an

f-consistent estimator. In the next section, I empirically examine the sensitiv-

ity of both MLE and the quadratic estimator to the assumptions of constant

variance and Gaussian noises.

5 Non-normal Noises and Unequal Variances

In applications to financial market, both assumptions of constant variance

and Gaussian noises are not valid. The variance of the prices is changing

over time, especially among high frequency observations. The noise is hardly

Gaussian. In this section, I examine the sensitivity of both the MLE a2
M

and the quadratic estimator Oq to their assumptions. The following six time

series are simulated and used in estimating the overall variance:

Series I: a2
n = a2/n and the noise e* is i.i.d. r/t(5), a t random variable with

a degree of freedom 5.

Series II: a2
n = a2/n and the noise a is i.i.d. ^Bernoulli (p) with p = .5.

Series III: a2
n is sampled from uniform distribution U(0, 1) and then re-scaled

such that J2<Ti >n
= (T

2
,
the noise e» is i.i.d. ryt(5).

Series IV: ofn is sampled from lognormal distribution LN(0, 1) and then re-

scaled such that Yjv"in = °"
2

>
the noise e^ is i.i.d. r/t(5).

Series V: ofnis sampled from Bernoulli(p) with p = 0.1 and then re-scaled

such that Z)ofn = a2 and the noise et is i.i.d. 7/Bernoulli(p) with p = .5.

12



Series VI: a 2
n = a 2/n and the noise t

{
MA(1) with MA coefficient 0.5 and

noise 77t(5).

In the simulation, following values are used for various parameters: a2 =
I, T]

2 = 0.01 and n = 100,500 and 1000. The empirical results are listed in

Table 2.

The first two series have non-Gaussian noises. For t and Bernoulli random

noises, both a2
M and Oq show the variance convergence rate of l/y/n. The

MLE takes advantages of smaller sigmal-to-noise ratio in series II and has

smaller sample variance of the estimates.

The next three series have unequal variances over time. Again, both a2
M

and Oq show the variance convergence rate of l/-y/n. The performances of

two estimators are somewhat similar. The MLE is slightly better. For small

n, both estimators slightly under estimate the variance. The bias disappears

as the observation frequency increases. More variation in a2
n causes more

bias in both estimators. However, asymptotically, both estimators are not

sensitive to this deviation from the assumption of equal variance. Many other

simulations have confirmed above findings.

Series VI has correlated observation noises. The MLE clearly has signifi-

cant bias that does not go away as observation frequency increases. However,

the quadratic estimator performed much better. The bias, if any, is negli-

gible. The variance of o2
M converges at rate of 1/y/n. For this set of data,

the mean squared error of the quadratic estimator is about the same as ones

using series I-V. Therefore, the quadratic estimator has advantages of being

not sensitive to correlation among noises. The quadratic estimator, in other

cases, can be used as an initial guess of the MLE. I end this section by giving

a summary table (Table 3).

6 Discussion

A misleading perception is that the more data there is, the better. Increas-

ing observation frequency while keeping time span constant does not always

help parameter estimation. An estimator developed for low frequency data

may not be usable for high frequency data. The observation noise, which

does not decrease as the observation frequency increases, is the key obsta-

cle. The name of observation noise is sometimes misleading in the financial

13



Table 2: Sensitivity of a2
M and Oq to Their Various Assumptions



Table 3: Summary and Comparason of a 2
M and Oq

Is the estimator Gaussian equal spaced correlated

sensitive to: noises? variances? noises?

MLE Bias No Yes— Significant

Var(<7^) O(fijn) O(yffjn) Not Converge

Q.E. Bias No. Yes^ Small

Var(^) 0(1 /y/n) Q(l/M Q(UM
The summary of this table is based on empirical simulations

incuding ones not listed in this paper.

community. Currency spot quotes have widely recognized noises. However, a

stock transaction price recorded precisely may still have so-called observation

noise. The noise is simply the deviation of the price from an assumed under-

lying continuous process and may prefer to be called a different name in such

application. The observation noise can include micro-activies of the market

that is not interested in applications. If high frequency data is used in study-

ing the macro-activity of the market such as daily volatility, the variance of

daily price change, it is important not to be overwhelmed by micro-activities.

The advantage of using high frequency data to estimate parameter such as

daily volatility is that we can estimate the volatility day-by-day rather than

an average. The MLE estimator developed here has been applied to many
financial data such as the currency exchange rates and prices from futures

market. The results are not listed here because that the true volatilities are

unknown and no comparisons can be made. The estimators developed in

this paper can be generalized to estimate the multi-dimensional covariance

matrix. Treating micro-activities as observation noise, one can construct a

consistent estimator of covariance matrix (Zhou 1994).

The f-consistency and observation noise issues also exist in many other ap-

plications. A lot of manufacturing processes have generating high frequency

data series in last decade. To study such type data and to perform parameter

estimation, one has to be aware of the observation noises and examine the

consistency of high frequency.

15



Appendix:

i) Proof of Theorem 1, the asymptotic behavior of the Fisher information

matrix (20):

From (18),

/(jx,*W) =
f r _ _fa _^ n2(<r'/n+»?2Ai)

\

V

^ 2n2 (<7
2 /n+r,2A0 2 ^ 2n(<r2/n+tj2A i )

2

A?
" 5- 2n(cr 2/n+r,2Ai )

2 ^ 2(<r2 /n+rj2A i )
2 /

First, I prove that the (2,2)-th element of the matrix

E
i

+ o(y/n).
2n2 (a2/n + r)

2
\i)

2 8a4^y

Recall that A, = 4sin
2
( 2

,

*

+1) ). We can easily prove that

1

(l/n + 47sin2
(7rx/2))

2:

is a decreasing function of x G [0, 1] and

1

7 >

r i

•/^r(l/n + 47 si
r
(l/n + 47sin2

(7ra:/2))
-dx <

<

n+l

A n+l

Jo

E
"n+l''"'n+l

„ (l/n + 47sin
2
(7ra:/2)) 2

1

(l/n + 47sin2
(7rx/2)) 2

The maximum value of 1/(1 jn + 47X2
)

2 over [0,1] is n2
. Therefore

1 ^ 1

dx. (37)

n + l
E

, (l/n + 47sin2 (ra/2)) 2

'n+l' -

''n+l

Jo [t + 47 sin (?x)r(i + 47 sin
2
(fx))^

(5 + 47)

L(i + 4>v/^+ 4^

Arctan(
(^^)tan(^)

16



47 sin (7ra:)

+
(£+ 4X^ + 47-47Cos(7rx))

(^+47) 7T

n=i
+ 0(n)

x=0

+ 0(n)

47 1

3/2

4- 0(n3/2
)

7;

4^/7
+ o(n

3'2

)

Therefore

E
1

2n2 (a 2/n + ^Ai) 2

n + 1 . n3/2
. , /2 ..

8a4^ + o(V")-

Next, I prove the (3,3)-th element of the matrix

A2 n
E + o(n)

2(a2/n + T)
2
\i)

2 Irf

It is easy to see that x2/(l/n + 7x) 2
is an increasing function of x. Therefore,

sin
4
(7nr/2))

(l/n + 47sin2
(7rx/2)) 2 , 7 >0

is an increasing function of x. The maximum value of above function is

l/(47)
2

. Using the similar technique as used above,

E
sin

4
(7rx/2))

n -\ ^ B (1/n + 47 sin
2
(7rx/2)) 2

2

=
L a

sin4 (f") dx + (

1

-)
(I + 47sin2

(fx))
2d:C + CV

(4 + 12 2
)

1672(j+ 47)^+4*
27ri __ I2yirx

167
2
7rx + 167

2
7rxcos(7rx) + 4

^(7rxcos(7rx) — sin(7rx))

(167
2
(^ + 47)7r(-^ - 47 + 47cos(7rx))

1=1

J 1=0

+0&
17



(£ + 12*) JL , -S-^-167^-167a
7r + ?(-7r) 1

1672
(
I + 47)7ryT^I 2 (167

2 (1 + 47)7r(-£ - 47 - 47)
V

(12*) 1 -327
2

1672(47)y4^2 167
2 (+47)(-87 )

+ o(l)

1

167
2

Therefor

+ o(l).

A? 162 (n + l). 1

(t^ + °( 1
)) =^ + °(")-

n

2rf2(<r2/n + r/
2 A,) 2 2aA v

167
2

It is slightly tricky to prove the asymptotic result of (2,3)-th element

A, y/n

£
Function

2n(a2/n + r)
2\x )

2 " 8a4v^

sin
2
(7ra;/2)

+ o(y/n).

(l/n + 47 sin
2
(7ra:/2)) 2

is not monotone. However, it is positive and has maximum one turning point.

The maximum value of the function is ^-. The similar technique can be used

here

1

n+ 1
. 1 n
"n+1 '"'n+l

1

sin
2
(7rx/2) i sin

2
(fx)

L a

(i + 47WA + 4^

sin(7rx)

(l/n + 47 sin
2
(7rx/2)) 2 Jo (± + 47 sin

2
(fx))

,(^ + 47)tan(fx).
Arctan(^— " _ 2 '

)

;
dx + 0(l)

Vr n

i=l

(i + 47)tt(-| - 47 + 47 cos(7rx))J x=0

1 ^ / /-\
+ o(y/n)

+ 0(1)

477T^4f 2

16v9*
+ 0(^/71).

18



Therefor

E
A,

2n{a2/n + r?
2^) 2

4(n + 1) y/n . r

Now, I come back to the (l,l)-th element

+ o(y/n).

First,

Therefore

Since

^[E- 1

] ii
/n2 = - + o(l).

y

^- x = Vndmg(l/(a2/n + rj
2X l

))Vn .

£[^ = £(t&/(*Vn + r?
2
Ai)).

«j u

XX = ^E sinV/(« + i))

= i -

= i,

1 cos(inir/(n + 1)) sin(i7r)

n + 1 sin(z7r/(n + 1))

XX- 1W"2 - E
n2((72/n + 7?2Aiy

It is easy to argue that

^nV/n +A)
=:

"2^ 2
-/o i+47 sin

2
(fx)

<iE + 0(1/n)

n+ 1

712(72 W^ +4 n

1 2 7T . 1 .

+ o(-/=)

2
a /(^ + 47)tan(|x)
Arctan(-'

11=1

,A + 4^
yn' n

+ 0(l/n)

-> x=0

na 2
n ./4^2 y/n'
V n

2a2 y/yn y/n
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ii) Proof of Theorem 2, the optimal matrix Q for the quadratic estimator:

For the optimization problem

min$H9y(- + A«r)

2

ij
n

subject to ^<7ii = n and ^2qnK = 0,

i i

I define Lagrangian function

*(Q;a,/J) = E€(- + A «r )

2
- «(E* - n

) - /*(£&*)
ij

n
i i

Obviously, (jij = for i ^ j. For z = j, differentiate 4> with respect to each

Qu,

Q = 2qil (- + \
l
r)

2 -a-p\ l
.

n

Conditions

J2 On = n and ]T <?»Ai = °

lead to follow equations

1 „x- A,
2n " a

£(l/n + V)'
+/3

£(l/n+\r)»
A A2

°
= a

^(l/n + Air)
2+/? ^(l/n + Air)

2

and
a + /?Ai

9..
2(l/n + V) 2

'

iii) Proof of Theorem 3, the convergence rate of the quadratic estimator <Jq.

From Theorem 1,

1 n5/2

S (l/n + V)'
=
V?

+ 0("
S/2)
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A, -3/2

^(1/n + V) 2 ~~ 4r3 /2
+ °(n3/2)

(1/n + V) 2
=

H + °(n) -

Therefore,

n n n

a =
(2„)(^ +0(„))/(g^ + (n^))=^ + o(n-^)

" = ^)(-^ +^3/2

))/(^^ + °c
7/2

)) = -| + <'(^

Rewrite the variance

Var(aJ) = a* ]Tg2
(- + Al7 )

2

= ^E^K1 +W + 2(7 - r)(± + A,r) + (7 - r)
2

(^ + A,r)
2

]

i
n

It is easy to check that the first term

E*<5+vr - TD^vr! + o (
i)

= -^r + o{-=).
y/n y/n

The other two terms can be proved by similar techniques. It is a long and

tedious calculus manipulation. Numerically, one can easily verify following

equations:

i
n y/rn y/n

£*A? = ^7 +4)
i 2Vr3 y/n \/n
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Therefore

Var(aJ) = ^E^ + Ai7)
2

.j
n

. (4Vf +2^ + <l^)^+o(4=).
v/r 2V73 V" V"
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