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Abstract

Our object is threefold: to develop a basic theory of flow graphs; to extend their

known application to electrical networks; and to formulate the natural relation between

flow graphs and the properties of discrete statistical systems.

Part I deals with the first two objectives. Much of the linear theory of flow graphs

parallels linear equation theory in such a manner that considerable meaning is given

to many classical operations of formulation, inversion, and reduction. Part I covers

additive functional systems; inversion; electrical network formulation; mathematical

determinants; partitions and expansions of a determinant; rank, positive definite,

eigenvalues, and eigenvectors; group multiplication; and transcendental equations.

Part II deals with the third objective. The pictorial representation of a discrete

statistical system specifies its properties. With flow graphs these properties are

conveniently calculated and interpreted directly from the representative graph. The

material of Part II covers recurrent events, transient systems, stationary state distri-

butions, sensitivity and variation, generating functions, channel capacity, and informa-

tion structure.
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I. THEORY OF FLOW GRAPHS WITH APPLICATIONS TO

ELECTRICAL NETWORKS

1. INTRODUCTION

When a man goes out to have a house built he likes to see the drawings and sketches

of the house before he puts too much money into the project. When he buys a new suit

of clothes he likes to see how they look on himself before he buys them. It is the same

way with an engineer. He likes to see how his ideas "look" before he commits himself

to spending a great deal of time on them. In putting systems together, he likes to lay

them out to get a notion of the over-all operation of the system and to see how much

equipment will be involved. In this way he eliminates many mistakes at the beginning

and obtains an idea of how to go about realizing his system. Having the system laid out

in functional form, he is able to work on individual components and, if need be, fit the

components together from time to time to check on the combined operation. This pro-

cedure allows him to modify his system as he learns more about it and the equipment

necessary to make it operate.

1. 1 Mathematical Structure and Intuition. In the past few years a new development in

mathematics has allowed the applied mathematician to set up problems on a functional

component basis and then work on the components individually, much as the engineer

works on his components. The development has been pushed so far that the solutions

are being obtained directly from the functional representation of the problem. The

importance of this mathematical development is that there is a structure associated

with the mathematical statements. This mathematical structure corresponds very

closely to the original physical problem.

In visualizing a problem we have an intuitive idea of what the problem looks like.

The method of setting down the problem should include this intuition. Having set the

problem down along with our intuitive ideas, we should be able to solve the problem

directly from this semi-intuitive representation. Just as the engineer builds compo-

nents and tests them with others, so should the applied mathematician be able to obtain

component solutions and fit them together to get the whole solution. With this procedure

the mathematician gains considerable insight on the solution mechanism and its

requirements.

1. 2 Missing the Point. Some will strongly argue that algebraic representation and

manipulation are sufficient for obtaining solutions, but I fear that they have missed

the point. The point is this: an algebraic equation carries very little intuition

about the physical problem. With algebraic manipulation we do not get a full insight

of the solution mechanism and how the solution comes about.
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1.3 Background. S. J. Mason (8, 9) recognized the importance of this structural repre-

sentation and did a considerable amount of development work on it. He called the work

"flow graphs," partly because it represents the flow of the solution process.

Much of his work was directed at the solution of linear electronic problems. In this

field of mathematics, it was soon found that rather complicated problems could be put

down by inspection. Through standard reduction methods the solution could be obtained

directly from the formulation without the necessity of algebraic equations. Subsequent

work (10) shows that it is possible to put the solution down directly from the formula-

tion, thus eliminating the reduction procedure.

Previous to Mason's work, C. E. Shannon (11) worked out a number of the properties

of what are now known as flow graphs. Unfortunately, the paper originally had a

restricted classification and very few people had access to the material. A. Tustin (12)

applied flow graphs to dc machinery; and P. C. Watson (14) originated the application

of flow graphs to matrix equations.

More recent work (1-7) has been devoted to the application of flow graphs to electri-

cal network and statistical systems.

1.4 More Elegant Mathematical Methods. This past development has given the outsider

the feeling that flow graphs represent a "trick solution" that gives "quick results" that

could have been obtained by other more elegant mathematical methods.

It is very true that if I can solve a problem by flow graphs, you can obtain the solu-

tion through mathematical manipulation. But it is also true that I will have a better

insight into what the problem involves and how to modify it in order to obtain better and

more desirable results.

Flow graphs are a precise mathematical tool representing a method of mathematical

manipulation that parallels intuitive ideas about the mathematics.

1. 5 Motivation. This discussion leads up to asking about the basic relation between

algebra and flow graphs and, subsequently, the mathematical manipulation. The useful

things that can be done in algebra must be useful in flow graphs. The algebraic formula-

tions must be capable of being formulated with flow graphs. Specific manipulations must

correspond to specific manipulations of the flow graphs and, thus, to manipulation of

the physical problem.

The basic aim of Part I is to formulate flow graphs on a logical exact mathematical

basis. Because of the ease with which formulations and solutions of linear problems

are obtained, much of the initial material will be restricted to linear equations. Linear

network analysis provides excellent examples for demonstrating the various properties

of linear flow graphs.

1. 6 Summary of Part I. For the benefit of those unfamiliar with flow-graph manipula-

tion, Part I begins with a brief summary of the more important rules. A few examples
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give you a chance to sharpen your skill and become acquainted firsthand with the objec-

tives of flow-graph formulation and reduction.

In Section 3 the basic ideas of setting up and manipulating a general additive flow

graph are introduced. Formulation is a process of making mathematical statements.

Reduction is a process of substituting an equivalent statement for a group of statements.

In Section 4, the manipulation of flow graphs is extended by three methods of inver-

sion - a means of inverting the dependencies of the variables. The meaning of inversion

in standard mathematical terminology has never been clearly understood. However, the

use of flow graphs puts quite a bit of meaning into the word. Two general methods of

inversion that apply to additive functional relations have been formulated. One method

is particularly applicable to changing the direction of dependency without appreciably

changing the structure of the graph. The third method is applicable to the general theory

of linear equations.

Formulation of flow graphs for linear electrical networks provides the topic of

Sections 5 and 6. A number of interesting approaches have been evolved which facilitate

rapid formulation so that the flow graph retains many of the intuitive properties of the

network. Most electrical circuits are built in cascade for design considerations. Sec-

tion 5 develops a method of cascading the representative flow graphs in the same manner

as that in which the electrical circuit elements are cascaded. Section 6 deals with con-

ventional network analysis formulated in terms of flow graphs.

One of the most important aspects of these two formulations for electrical networks

is that customary circuit approximations can be made after the formulation instead of

before.

Flow graphs represent a mathematical tool that displays the interdependency of the

system of variables. The display allows us to use our intuition in the production of

various properties of the system.

The general theory and methods of flow graphs are closely tied in with those of

standard mathematical manipulations. With flow graphs some of the standard methods

become simpler to understand and to apply.

Determinants are a good example of the simplification that flow graphs afford. In

Section 7 a firm connection is established between the standard mathematical determi-

nant, D, and the flow-graph determinant, A, formulated by S. J. Mason (10),

A = (_)nD (1)

where n is the number of dependent variables.

Cramer's rule for the solution of a set of linear equations as the ratio of two deter-

minants follows with slight modification.

On the basis of further work with determinants in Section 7 it is easy to establish the

ideas of partitions and expansions of a determinant. These ideas are particularly impor-

tant because they readily allow the application of approximations to the solution of the

flow graphs.
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The partitioning of the graph also brings out a method of multiplying a group of

variables by a constant or multiplying a number of branch coefficients by a constant

without disturbing the external characteristics of the graph and equivalent dependencies.

This modification provides a means of reduction without changing the structure of the

graph. It also provides a means of changing an electrical network without changing its

external characteristics. At the end of the section it is shown for a graph in which all

branches have arbitrary values that the maximum possible number of branches that can

be made unity without changing the graph's external properties is equal to the number of

nodes in the graph, excluding those that are strictly independent or dependent.

A number of special properties of determinants, such as rank, positive definite,

eigenvalues, and eigenvectors, are included in Section 8.

S. J. Mason worked out a method of solving matrix equations. This material is

included in Section 9. The method is applicable for both right-hand and left-hand sys-

tems.

The concluding section takes up the properties of the group operation of multiplica-

tion and shows how it is applied to flow graphs involving transcendental functions.
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2. FLOW GRAPHS

This section gives an introduction to the mechanics of linear flow graphs. The

ideas of formulation and the rules for reduction are quite simple and can be easily

understood by anyone who has a knowledge of algebra. Possible questions as to why

X

¥

Z

Fig. 1. Flow-graph equation.

certain things are done will

results are introduced here

sented in Section I.

Fig. 2. Set of flow-graph equations.

be answered in the sections that follow. Some of the end

in order to give perspective to the general theory as pre-

2. 1 Drawing Out Equations. A flow graph represents a system of equations. The

graph is set up on the idea that a particular variable is equal to a number of other vari-

ables multiplied by different constants. Of course, the particular variable can also be

multiplied by a constant and added in with the other variables. The equation

z = ax + by + cz

has the flow-graph representation of Fig. 1. Thus, the nodes represent the variables

and the branches represent the multiplication operation on these variables. Converging

branches represent a summation.

The system of equations

Y1 = ax + ey 3 + ky 4

Y2 = byl + gY2
t 'Y4

Y3 = fYl + dy 2 + hy 3

Y4 = jy 2 + mY4

Z = CY 2 + iy3

is represented by the flow graph of Fig. 2.
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2. 2 Equivalent Dependencies. Flow graphs provide a means of solving a set of equa-

tions without becoming entangled in algebraic manipulation. By solving a set of equa-

tions you are essentially eliminating unnecessary variables and finding equivalent

dependencies. In Fig. 2 you may be interested in eliminating the variables y l , Y2 , Y3 ,

and y4 to find the equivalent dependency between x and z. One of the variables must

be independent so that the other variable can be dependent upon it. In the example, x

is independent, since all of its branches point away from the variable.

2.3 Loops

loop rule.

than once.

loop) equal

loop. The

and Paths. Equivalent dependencies in flow-graph notation are found by the

Here a loop is a closed sequence of variables, no variable appearing more

With each loop there is associated a loop product (sometimes also called the

to the product of the coefficients of the branches going in the direction of the

loops and loop products of Fig. 2 are

YI Y2 Y3 : bde

Y 1 Y2 Y4 : bjk

Y1 Y3
: fe

Y2 g

Y3 : h

Y4 : m

Y2 Y4 : J X

The loops on the single variables are called self-loops. Disjoint loops are loops having

disjoint sequences of variables as the loop Y1Y3 and the loop Y2 y4 are disjoint.

In like manner a path is a sequence of variables but it does not close on itself. There

are three paths from x to z in Fig. 2. These paths and their path products are

xY lY 2 Z : abc

xylY3 Z : afi

xY 1 Y2 Y3 z : abdi

2.4 Loop Rule.

sum of all paths

the determinant

Tjk =
jk

The loop rule states that the dependency is equal to the ratio of the

between the variables multiplied by their cofactor and all divided by

of the system, Eq. 2.

r Ljkr 'Ajk r

A
(2)

The cofactor of a path is the determinant of the system of variables not involved in the

path.

The determinant of a system of variables is calculated on the basis of the system's

loops as follows:

= 2 3A=1 · S -Z L 1 S +ZT L 'S -Z L '
1 r r r r r r r r r (3)
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where Ln is the loop product of n disjoint loops of two or more variables, and S is ther rnproduct of one minus the self-loops disjoint from the loops in L. For example, ther
determinant of the system in Fig. 2 is calculated in the following manner:

1. the product of one minus the self-loops

1 S = (-g)(1-h)(1-m)

2. the sum of the loops taken one at a time, each multiplied by any disjoint self-

loops

- L 1 S = -{bde(1-m) + bjk(1-h) + ef(l-g)(l-m) + j(1-h)}r r r

3. the sum of the product of the disjoint loops taken two at a time, each multiplied

by any disjoint self-loops

+E L 2 S = ef j
r r r

There are no combinations of three or more disjoint loops of two or more variables.

Thus the determinant of the system is

A = (l-g)(l-h)(1-m) - {bde(l-m) + bjk(l-h) + ef(l-g)(1-m) + j(l-h)} + effj

The cofactor of the path xyly 2 z is computed on the basis of the disjoint variables

Y3 and y4 to be

abc = (1-m)(1-h)

The cofactor of the other path, xyly 3 z, is based on the variables y2 and y4 .

Aafi= (1 -m)(1-g) - j

Thus the dependency of z on x is

abc(l-m)(l-h) + afi{(1-m)(l-g) - j} + abdi(l-m)
T =

xz

This dependence is the statement that

x T = zxz

Of course, once you know the rule, this answer could be written down directly

by inspection of the flow graph. By solving the original set of equations you will

find that it is the exact solution. The following sections will show that the exact

solution will always be obtained by this method. Other methods lead to approximate

solutions.

From the flow graph of Fig. 2 the following calculations are made upon inspection

of the loops and paths through the graph:
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a{(1-h)(1-g)(1-m) - j(l1-h)}
T =

XY1 A

ab (-h)(l-m)
T =

XY2 A

af{(1-g)(-m) - fj} + abd(1-m)
T =

xy 3 A

abj( 1-h)
T

xy4 A

The determinant is always the same for the same flow graph.

There is much more to flow graphs than solving equations. The interesting part is

that they are quite useful in analyzing electrical networks and statistical systems.

This section has shown some of the mechanics of formulation and reduction. In the

following sections details of the mechanics and their application to electrical networks

are presented.
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3. GENERAL ADDITIVE FORMULATION AND REDUCTION

In the formulation of problems, we are faced with the need to make statements. We

can say that something is true, not true, or more or less true than something else.

At present, flow graphs are formulated only on positive statements, represented

by the equality sign in algebra.

3. 1 Positive Statements. Positive statements are represented by nodes (small

round circles). The statement, "The quantity of electric current is x, " is repre-

sented by a particular node with an x beside it.

In this way a system of variables is set up by

f ( ) setting up a system of nodes.

xi p 0 X2 The functional operation between two vari-

ables is represented by a line (or branch) between
Fig. 3. Functional relation.

the two nodes with an arrowhead pointing in the

direction of the functional dependence. The func-

tion corresponding to the branch is placed directly on the branch. For example, the

variables xl and x2 related by the function

f(x ) = X2

are represented by the two nodes x 1 and x2 with a branch between them in the direction

of x2 , Fig. 3. The nose of the branch refers to the dependent end x 2 ; the tail of the

branch refers to the independent end xl. Multiplication by the factor "a" is indicated

by placing an "a" on the branch.

The group operation of addition is represented by the convergence of branches from

independent variables onto a single node, the dependent variable. Each of the branches

is some function of the independent variable. For example, Fig. 4 represents the

equation

h(y) + f(xl) + ax 2 - x3 = y

The divergence of branches is not given any mathematical meaning other than the

dependency of the variable. Thus, where the group operation is limited to addition

it becomes possible to represent sets of equations by graphical means. The set of

equations

Y, = a(x) + e(Y3)

= b(yl) + f(Y2 ) + g(Y3 )

Y3 = d(y 2 )

z = c(y 2 )

9



)xI f h(

x3

Fig. 4. Additive equation.

Y3

X a ab ( )

0( ) YI b( ) c( 

Fig. 5. Flow-graph representation.

e( )J

Fig. 6. Splitting the node IY 2".

d( ) g f( )

gO 9( ) h( 

f [d( )]

x Yh

( ) + f(d )] h( )

h{9( )+f[d( )]}

Fig. 7. Cascade and parallel reduction.

x, f,( )

f2( )

(a)

c h( )

x

b( I 0 ) ( 

f( Y h( )

d [b( )]

f( ) y h( )

Fig. 8. Elimination of the node "x".

z

x h f( 

h( ) c

(b)

Fig. 9. Linear conditions.
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is represented by the flow graph of Fig. 5. A consistent graph is obtained when not

more than one positive statement is made about each node.

3. 2 Paths and Loops. The paths and loops are important properties of a flow graph.

A path is a sequence of nodes in which each node appears no more than once. The path

starts at a particular independent node and ends at a dependent node, so that the path

has a direction as does the path xyly2 z in Fig. 5. With each path is associated the

functional dependence in the direction of the path. The important paths are those that

have a functional dependence between each node of the path and in the direction of the

path. Thus the important paths can usually be observed by inspection by moving through

the graph in the direction of the arrows, going by each node no more than once. A loop

is a path that starts and ends at the same node. The sequence of nodes Y1 Y2Y 3 of Fig. 5

forms a loop. For loops the starting node is immaterial. Only the direction and the

functional dependence is important.

3. 3 Node Splitting. Independent nodes are usually thought of as sources, in that the

graph and the dependency usually flow from these nodes. In like manner, the dependent

nodes are thought of as sinks. However, it is not possible to apply this notation too

rigidly because some variables are sinks in the sense that they depend on other vari-

ables, and sources in the sense that they are the independent variables in other rela-

tions. Splitting up the source and sink aspect of a node is commonly known as node

splitting.

Splitting the node Y2 of Fig. 5 into source yZ and sink yZ produces the graph of

Fig. 6, where the two variables y2 and y2 are dependent, by the relation, y = Y2 . The

plus sign is sometimes used to represent unity multiplication.

3.4 Strictly Independent and Dependent Nodes. In the reduction and inversion process

it is convenient to have a variable strictly independent or strictly dependent. The term

"strictly independent" refers to variables dependent upon no other variable. This situ-

ation can be recognized in flow-graph notation when all of the branches are divergent

from the variable's node. "Strictly dependent" refers to a variable upon which no other

variable is dependent. Such a variable is recognized by the fact that only branches con-

verge on the variable's node. It is always possible to make the node x strictly dependent

by defining the new relation, x - x', and placing this relation on the graph. This is

essentially "drawing off" a variable in order to get a better look at it.

The process of making a variable embedded in the graph strictly independent is to

first make it strictly dependent and then use the process of inversion which is described

in a following section.

3. 5 Reduction. One of the more important advantages of flow graphs comes from the

ability to reduce them to simpler graphs without ever having to revert to the algebraic

11



equations that they represent. The reduction process can be carried out at least as fast

as, and usually considerably faster than, it can be carried out with algebraic equations.

Usually in the manipulation of algebraic equations, there are several ways of bringing

about the reduction. Likewise, with flow graphs there are several ways. However,

with flow graphs it is usually easier to see the possible variations in the reduction.

3.6 Dependency and Equivalent Relations. Reduction hinges entirely on the dependency

of variables and equivalent relations. The final objective is usually to eliminate inter-

mediate variables, substituting equivalent relations so that the dependency is directly

between the desired variables in the desired form and direction.

Based on the representative mathematics, the equivalent branch of a number of

parallel branches is the sum of the branch functions. The equivalent branch of an

isolated chain of cascade branches is the multiple function of a function. The reduction

of the flow graph in Fig. 7 is an example. Each reduction operation can be verified by

writing out the equations and performing the operations algebraically. For linear graphs

the multiple function is the product of the branch coefficients.

Further elimination is accomplished by substituting equivalent branches for the ones

eliminated. The equivalence, of course, is determined from the dependence of the

remaining nodes. The only dependence that is affected is the dependence that passes

through the node that is to be eliminated.

In Fig. 8, the variable x is eliminated by substituting the dependency through x.

Note that in general it would not have been possible to have eliminated the variable y.

The two conditions for a function h to be linear are these:

h[fl(xl) + f 2 (x 2 )] = h[fl(xl)] + h[fZ(x 2 )] (4a)

h(cx) = ch(x) (4b)

These conditions are given in flow-graph notation in Figs. 9a and 9b, where the right

and left figures are equivalent.

3.7 Specification of Properties. For the elimination of the most general node, where

there is more than one branch coming in and going out, some of the properties of the

functions must be specified. It should be recognized that the properties need not be

specified completely for each function, and not at all for others. With flow-graph

manipulation we have a better idea of the properties that each function should have in

order to get a solution by a particular reduction procedure. Two specific types of

functions are treated in the following sections: linear functions and transcendental

functions.

The important point on reduction is that reduction of a flow graph is carried out as

a process of eliminating variables by substituting equivalent relations. The graphical

representation allows us to take advantage of the flexibility of the process to attain dif-

ferent forms of the solution.

12



4. INVERSION OF DEPENDENCY

Inversion plays an important part in making changes in the dependency to facilitate

the reduction or formulation of a graph or to make the final dependency of the graph in

the desired direction. This section presents three essentially different methods of

inverting the dependency in a flow graph. The first two methods are general; the third

is limited to linear graphs.

Inversion changes the independent variable to a dependent variable and vice versa.

It is essentially a process of turning around and is so represented in manipulating the

flow graph. Inversion has meaning only for two types of paths: a path from a strictly

independent variable to a strictly dependent variable, and a path that forms a loop.

In the process of inverting a path, we must be careful to preserve the mathematical

exactness of the formulation. At each node along the inversion path certain changes in

the branch functions and structure must be made in order to preserve the mathematical

exactness. The three following sections present different ways of preserving this

exactness. A group of comparative examples is given in section 4. 4.

4. 1 First Inversion Method. Consider the general node z shown in the flow graph of

Fig. 10a, where we are interested in inverting the path from yl through z to x. It is

assumed that the inverse exists. If it did not, the inversion could not be performed.

Figure 10a is the representation of the equations

fl(Y1 ) + f 2 (y 2 ) + h(z) = z

g l (z) = x 1 (5)

g2 (Z) = x2

One method of inverting Eqs. 5 gives Eqs. 6:

-1
f 1 (u) =Y1

z - h(z) - f 2 (z) = u

(6)

gl(x l ) = z

g2 (z) = x 2

This set is represented in Figs. 10b and 10c. Thus the general inversion rule is

formulated:

1. Invert the direction of the path, splitting all nodes along the way and inserting

the inverse function on the inverted branches.

2. At each split node attach all of the outgoing branches (except for the inverted

branch) onto the first node representing the original variable and attach all the incoming

13
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Fig. 10. (a) A general node "z". (b)
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branches (except for the inverted branch) to the second node, multiplying each function

by - 1.

This rule simplifies for the special case of either one branch leaving a node or one

branch entering a node. These degenerate conditions with their inverses are pictured

in Fig. 11. Note that only in the case of one branch entering the node before or after

inversion does the inverted node still remain the former variable.

4. 2 Second Inversion Method. The second general method involves another type of

inversion which superficially avoids the inverse functions of the branches.

The method is quite important in linear graphs, where it avoids the introduction of

fractions.

Consider again the set of Eqs. 5 and their graphical representation, Fig. 10a. An

inversion is indicated by Eqs. 7, which are represented in Fig. 12.

Y - fl(Y1 ) - f(Y 2 ) + z - h(z) = Y1

z - gl(z) + x 1 = z

g2 (z) = X2

14
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From this type of inversion we are able to formulate the following general rule:

1. Take the nose of each branch to be inverted and place it with its tail, changing

the branch function to one minus the former branch function.

2. Take the nose of all incoming branches along with the nose of the inverted branch,

changing the sign of the incoming branch functions. The former self-loop function is

changed to one minus the former function.

Inversion of a loop of a linear graph by this type of inversion corresponds to an

interchange of the columns of the determinant of the representative linear set of equa-

tions.

There is another inversion method corresponding to this second method which differs

only in an algebraic sign. However, it has the very poor characteristic of unnecessarily

introducing a large number of self-loops.

4. 3 Third Inversion Method. Restricting ourselves to linear portions of a graph, a

third type of inversion is possible. We need the linear property so that superposition

will be valid. This method was originally developed by S. J. Mason (9).

Consider the linear graph of Fig. 13a representing Eqs. 8.

ayl + by 2 + cz = z

dz = x 1 (8)

ez = x2

A method of inversion of the path Y1 to x1 through z is represented by Eqs. 9, which

are represented in Figs. 13b and 13c.

1 c b
aZ - Z - ay 2 Y1

1 (9)
dxl = Z

ez = x2

Thus we are led to the following rule for the inversion of linear graphs:

1. Invert the path changing the branch function to its reciprocal.

2. Move the nose of each incoming branch along with the nose of the inverted branch,

multiplying the branch function by minus the value of the inverted branch function.

4. 4 Comparison. As a means of comparison consider inverting the main forward path

of the flow graph representing the loaded transistor, Fig. 14. Formulation of this

graph is described in Section 5.

The three inversion methods are illustrated in Figs. 15a, 15b, and 15c. Another

example of inversion is the inversion of the two main paths xlC1 and x2C2 for Fig. 16a,

representing a second-order set of linear equations. For comparison, the three
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methods are shown in Figs. 16b, 16c, and 16d. The first method has the advantage of

leaving the form unchanged. The second method seems more complicated than the other

two but it has the advantage of not being involved with inverse functions or fractions.

The third method retains the original set of variables.

Inversion represents a convenient method of manipulating the dependency of a flow

graph. Its two main uses are as an aid in reducing a graph to the desired relations and

as an aid in setting up the graph.
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5. FORMULATION OF CASCADE ELECTRICAL NETWORKS

Two major steps are involved in the working of a problem: formulation and solu-

tion. At the start, neither of these steps is completely obvious. With flow graphs, the

same steps are necessary.

This section deals with the mathematical formulation in terms of the flow graphs of

electrical elements in cascade. We present individual flow graphs for the different

elements and then show how these graphs are cascaded in the same order in which the

elements are cascaded in the physical circuit. A more general element, which allows

the formulation of circuits involving feedback, is then introduced.

This type of formulation is important, since many electrical engineers find that

building networks in cascade greatly simplifies the work of designing the individual

circuits. The mathematics that represents these cascade systems should also look like

a cascade system.

5. 1 Two Terminal-Pair Networks. Cascade circuits are usually made by cascading

simple two terminal-pair networks. There are two parallel formulations for these net-

works: one emphasizes the current gain; the other, the voltage gain. Either formula-

tion, or a combination, can be used.

The three-terminal electrical network, Fig. 17 a, is conveniently represented

mathematically by Eqs. 10a, if we are interested in the current gain of the device, or

by Eqs. 10b, if we are interested in the voltage gain of the device. The flow graphs for

these two formulations are given in Figs. 17b and 17c.

el = hll il + h 12 e 2

current gain equations ( Oa)

i2 = -h 2 1 il - h2 2 e2

il g1llel - g1 2 i2

voltage gain equations (10b)
e2 = g2 1 el -glli 2

5.2 Cascading. The two terminal-pair flow-graph elements are cascaded in the same

manner in which the physical elements are cascaded. In order to obtain a consistent

flow graph, the output of a current-gain element drives the input of another current-

gain element. The same is true for voltage-gain elements. The cascading of current-

gain elements or voltage-gain elements shown in Fig. 18 is accomplished on the basis

of Eqs. 11.

i2 = i 3

(11)
e2 = e 3

The procedure consists of connecting the flow-graph elements with lateral branches of
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Fig. 17. (a) Two terminal-pair network. (b) Current gain.
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Fig. 19. (a) Mixed cascading. (b) Current inversion. (c) Voltage inversion.
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Fig. 20. Elements of cascade networks: (a) series impedance; (b) shunt
admittances; (c) ideal transformer; (d) physicaltransformer;
(e) ideal gyrator; (f) grounded-cathode amplifier; (g) cathode
follower; (h) grounded-grid amplifier; (i) grounded transistor
amplifier; (j) grounded-output transistor amplifier; (k) grounded-
input transistor amplifier.
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+1 that have the same direction as the branches in the elements. This type of cascading

then satisfies the consistency requirement of making no more than one positive state-

ment about each variable.

The advantage of this formulation comes from the fact that the flow-graph element

has the same characteristics as the electrical element and is cascaded in the same

physical relation. For example, the input impedance of the current-gain device is

observed by looking into the device from the left side. In like manner, if we look into

the representative flow graph from the left, we see the input impedance h 1 1 ' Another

important characteristic of the current-gain device is the forward current gain, h2 1

In the flow graph this gain is represented by the forward-pointing arrow between the

input and output currents.

By setting up the flow graphs in this manner, all of the currents appear on the upper

level, and all of the voltages are on the lower level. This is convenient from a dimen-

sional standpoint because all of the branches that point downward are impedances, and

all of the branches that point upward are admittances. Lateral branches are dimen-

sionless, and in bilateral networks the lateral branches are equal.

5.3 Mixed Cascading. In order to have a current-gain device cascade with a voltage-

gain device, we have to perform an inversion at the output of the first device or at the

input of the second device. There are a number of inversion methods. One method

involves inverting the path and its coefficients and changing the sign of any incoming

branches. The theory of inversions is presented in the preceding section.

The flow graph of a current-gain device cascaded with a voltage-gain device is

shown in Fig. 19b and Fig. 19c. In Fig. 19b, the output branch of the current-gain

device is inverted; in Fig. 19c, the input branch of the voltage-gain device is inverted.

5.4 Elementary Components. It is interesting to see what specific electrical elements

look like in this flow-graph formulation. Figure 20 shows the more common elements

used in pure cascade networks. The current-gain representation is on the left; the

voltage-gain representation, on the right. The gyrator is neither a current-gain nor

a voltage-gain device but a crossover from one to the other. The grounded-cathode

and cathode-follower vacuum-tube amplifiers are inherently voltage-gain devices, so

that no current-gain equivalents actually exist. However, they can be represented as

voltage-to-current-gain devices, as indicated in the diagrams.

In practice, the voltage-gain model for the transistor is not used. It is included

here only for completeness. Both grounded-base and grounded-emitter constants are

published for the transistor. The grounded-input transistor provides a method of going

from one system to the other.

The most practical method of connecting devices in cascade is to have voltage cir-

cuits drive voltage circuits and current circuits drive current circuits. If the system

contains both transistors and vacuum tubes the changeover is usually made in the
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Fig. 21. First example: vacuum tubes Fig. 22. Second example: transistor
in an electrical ladder. driving a vacuum tube.

vacuum-tube unit. Otherwise an inversion is necessary, as described before.

Because of the consistency requirement, termination of a current system is accom-

plished with a series impedance; termination of a voltage system, with a shunt admit-

tance.

The importance of this formulation stems from the fact that networks are usually

built in cascade. Being able to set up the mathematical formulation so that it carries

along the intuitive feeling of the cascade structure helps us to understand the implica-

tions of the mathematics.

5.5 Examples of Simple Cascading. In order to illustrate these points, a number of

examples are included. Note how the flow graph that represents the physical circuit

"strings out" in the same manner as the circuit.

The first example (Fig. 21) shows two vacuum-tube amplifiers in an electrical

ladder. The flow graph is set up on a voltage-gain basis by noting the physical position

of the elements in the circuit. From the flow-graph diagram it is easy to see how isola-

tion is obtained with the use of vacuum tubes.

The second example illustrates the joint use of current- and voltage-gain devices

(Fig. 22). The transistor network essentially terminates at the input to the vacuum

tube so that the element Z2 is considered to be in series.

The third example shows the use of a vacuum-tube device driving a current device

(Fig. 23).

The equivalent circuit for a transistor in terms of resistances and a current

gain is also a cascade circuit, as is indicated in the fourth example, Figs. 24a,

24b, and 24c. More usable flow graphs for approximations are obtained by

inverting the loop containing rb and rc in Fig. 24a and the loop containing re and

r in Fig. 24b.
c

The fifth example demonstrates the use of an inversion (Fig. 25). The inversion is

necessary in order to counteract the effect of the changeover of the gyrator from current

to voltage gain. The input to the shunt-admittance model could not be inverted, since

the input impedance is zero.
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5.6 General Cascade Elements. Many important cascade circuits employ some type

of feedback. The feedback is usually introduced in the third arm or across the input

and output arms of the two terminal-pair network. The feedback may come from another

+ + + + -h2 1 +

4 14

+ + + i + hl2+2

Fig. 23. Third example: cathode follower driving a transistor.

part of the circuit or from the circuit itself, as in the case of the vacuum-tube ampli-

fier with an unbipassed cathode resistor.

Naturally, it takes a more general circuit than the simple circuits shown in Fig. 20

to handle this type of situation. The more general circuits with their corresponding

flow graphs are shown in Fig. 26. Figures 26a and 26b are current-gain representa-

tions. Figures 26c and 26d are voltage-gain representations. Figures 27a and 27b

present the model for the gyrator which is neither a current- nor voltage-gain device

but a crossover from one to the other.

With the set of diagrams in Figs. 26 and 27, it is possible to obtain the different

configurations of the transistor and vacuum tube illustrated in Fig. 20 either directly

or with the use of an inversion. Different methods of inversion are discussed in

Section 4.

5. 7 Single-Element Feedback. Where a single element is placed in the base lead or

in shunt with the device over the top, the points of the general flow graph are folded

in and connected by a branch representing the element. Figure 28 is an example. The

use of a single element either in shunt or in the base of the ideal transformer or gyrator

produces a simple flow graph upon reducing the graph to a standard two terminal-pair

flow graph. These elements with their flow graphs are shown in Fig. 29. Current-

gain graphs are on the left; voltage-gain graphs, on the right. In the case of the

gyrator it is interesting to see how the backward coupling can be made zero when

K is positive.

Several types of vacuum-tube amplifiers have relatively simple flow graphs. These

amplifiers, with their flow graphs, are shown in Fig. 30.
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5. 8 Cascading General Elements. Formulating the mathematics with flow graphs on

an element basis permits the cascade of the flow-graph elements in the same order as

that in which the physical elements are cascaded. The general procedure is to have

current-gain elements drive current-gain elements and voltage-gain elements drive

voltage-gain elements.

The general elements of Fig. 26 are divided into two groups - current-gain and

voltage-gain. Each element has two inputs and one output or one input and two outputs.

I

83 82

(a)

'4

(b)

ei ' i2

e I Ie4 ~~ 021
e 3Th

(C)

'12
9

a2

(d)

Fig. 26. (a) Current gain, base input. (b) Current gain, shunt input.
(c) Voltage gain, base input. (d) Voltage gain, shunt input.

26

h - -& i-
' '2

i4_



ii 1 

K

13

o r e%- o

(a)

I-

e4

(b)

Fig. 27. Gyrator model: (a) current gain, base output;
(b) voltage gain, shunt output.

The difference between the input and output terminals is indicated by the direction of

the leads on the device. The input is from the left; the output is to the right. The con-

nection between the output and the input of the flow-graph elements is made on the basis

of Eqs. 12.

eout = ein

(12)
i
out = in

For example, consider the circuit in Fig. 31. The voltage-gain flow graph of the

gyrator is used, since the output of the cathode follower is on the voltage basis. The

usual procedure is to cascade the flow-graph elements in the same order as the physical

elements, making connections with lateral branches of +1. The direction of the lateral

connection branches is the same as within the flow-graph elements. By reversing the

sign of the current, a voltage-gain output becomes a current-gain input, and vice versa.

A good example is the vacuum tube that has both the cathode and plate as outputs. With

a change in sign the cathode operates as a current-gain output instead of a voltage-gain

input. This example is shown in Fig. 32.

5.9 Converging Cascade Circuits. The convergence of two cascade circuits into one

circuit is accomplished by either of two methods. One method is to have both of the

convergent circuits on a current-gain basis working into another current-gain device.

By this procedure the currents add to produce the current in the driven circuit. An

example of this type of cascading is given in Fig. 33, where we obtain the current

addition
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Fig. 29. (a) Ideal transformer, base-loaded. (b) Ideal transformer,
shunt-loaded. (c) Ideal gyrator, base-loaded. (d) Ideal
gyrator, shunt-loaded.
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Fig. 30. (a) Voltage gain, cathode input. (b)
(c) Plate-loaded cathode follower.
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i3 = i + i (13)

The current-gain output graphs are used for the cathode followers in order to get the

subsequent graphs on a current-gain basis.

The second method of connecting the flow graphs of a convergent circuit involves

the ideas of changing a current-gain output into a voltage-gain input. Converging cir-

cuits can be thought of as one voltage-gain circuit driving the other converging circuits

and the common circuit as in the case of diverging circuits. This means that it is nec-

essary to change the outputs of all but one of the converging circuits so that they appear

to be a voltage-gain input. The change is made by changing the sign of the current in

the output, which is essentially changing its direction.

5. 10 Diverging Cascade Circuits. The divergence of cascade circuits is another way

of looking at converging cascade circuits only with the viewpoint reversed.

The simplest method of connecting flow-graph elements in a divergent system is to

have the driving circuit on a voltage-gain basis working into the diverging circuits,

which are also on a voltage-gain basis. For example, consider the network of Fig. 34

and its flow-graph formulation. Looking at the flow graph backwards we see that its

structure is really that of two circuits converging to one, the current being added at the

junction.

Another way of treating diverging circuits from a common circuit, is to think of

them as a number of current-gain circuits converging on one of the diverging circuits.

Of course, this requires changing the sign of the current so as to change the diverging

voltage-gain circuits into converging current-gain outputs.

5. 11 Combined Diverging and Converging Circuits. By combining these two ideas of

converging and diverging circuits we have the means of introducing feedback into a

circuit. The feedback circuit essentially diverges from the main circuit at one point

and then converges with it at another point. Consider the example in Fig. 35 of a loaded

split-T network with a gyrator in its feedback arm. As a final example consider the

standard twin-triode feedback circuit of Fig. 36. In this example the feedback is on the

voltage-gain basis feeding back to the voltage-gain input of the cathode.

The object of this section has been to present a type of flow-graph element that is

capable of representing the elements of cascade circuits. These flow-graph elements

provide the means of setting up a mathematical formulation that has the same general

appearance as the cascaded system. Having the physical elements in a one-to-one

correspondence with the mathematical elements also provides a means of approximation

in the reduction of the flow graph by removing or inserting elements. The facility of

representing feedback in the cascade system, either within the element or from another

part of the circuit, comes from the ideas involved in converging and diverging networks.

This type of formulation can be worked out rapidly with very little complication.
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There are equally rapid methods for the flow-graph evaluation. The important thing is

that there is an exact mathematical method of representing the problem which exhibits

the structure of the mathematical setup and the structure of the system.
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6. FORMULATION OF CONVENTIONAL NETWORK ANALYSIS

This section shows how standard network analysis is formulated in terms of flow

graphs. The formulation results in a flow graph that not only represents the mathe-

matics of the network but also retains some of the geometry of the network.

6. 1 Use of Inversion. The work in the past has been directed towards procedures for

setting up a consistent set of equations based on loop currents or node-pair voltages.

By making use of these procedures and the principles of inversion of Section 4 it is

possible to obtain a set of precise rules for rapid formulation of the flow graph for

electrical networks. The rapid formulation is possible because of the ability to select

a set of variables that will be sufficient to formulate the network. The loop-current

formulation parallels the formulation for node-pair voltages. The only difference is in

the method for finding the self- and mutual impedances or admittances.

The formulation of network analysis on the basis of loop currents is perhaps the

most generally known and best understood. In general, it is first necessary to select

an independent set of loop currents. With this set it is then possible to write down in

matrix notation the equations of the system

ZI = E (14)

In order to solve this set of equations with flow graphs it is necessary that E be strictly

independent and I be dependent. This type of dependency can be obtained by using the

ideas of the second inversion method, section 4. 2. Thus, rewriting the equations so

that I is dependent

E + (U-Z)I = I (15)

permits the construction of the flow graph in the following manner (the quantity U repre-

sents the unit matrix):

1. Set up the collection of nodes representing the loop currents of I and the

voltages E.

2. Place on each current node a self-loop equal to one minus the self-impedance.

3. Doubly connecteach current node by branches equal to the mutual impedance

between the loop currents, the sign being positive if the currents are in opposite direc-

tions, and negative if they are not.

4. Drive each current node by the effective source-voltage rise in the path corre-

sponding to the loop current (current sources are considered as effective voltage

sources or as independent loop currents).

6.2 Another Loop Current Formulation. By using the principle of the third inversion

method of section 4. 3, a slightly different type of flow-graph formulation is obtained.

Instead of writing Eq. 14 in the standard form

Zij i + . . + Zjji. + ... Znj in = Ej (16)±z~ i1 + ... 3 n3 n J 16
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it could have been written in the form

Zij Znj E

1 .. i i i (17)Z i + ... r -- tn
z.. .. .

J3 JJ JJ

Thus, the second method of producing the flow graph is the following:

1. Set up the collection of nodes representing the loop currents and the voltage

sources associated with the loops.

2. Doubly connect each current node by branches equal to the mutual impedance

divided by the self-impedance associated with the loop current at the nose end of the'

branch. The sign is positive if the loop currents are in opposite directions in the mutual

impedance; it is negative if they are in the same direction.

3. Drive each current node by the effective path-voltage rise divided by the self-

impedance associated with the current node. A current source may be considered as

an independent loop current.

These rules are the same for the node-pair-voltage formulation except that every-

thing is in the dual (admittances for impedances and currents for voltages).

6.3 Selection of Variables. An effective means of setting up loop currents or node-pair

voltages is based on the concepts of cut sets and tie sets of a network tree. These con-

cepts permit the determination of the self- and mutual impedance or admittance by

inspection of the electrical diagram.

A tree is defined as any set of connected branches that is just sufficient in number

to connect all the nodes. The nodes are the connection points of the network elements.

The branches are lines that interconnect the nodes. Adding to the tree a branch corre-

sponding to an element in the network forms a loop of branches and thus the path of the

loop current.

The direction of the loop is assigned arbitrarily. In general practice the paths of

the current loops are drawn directly on the network graph. The self-impedance of the

loop is the impedance encountered along the path of the loop. The mutual impedance

Zij corresponds to the impedance encountered jointly by loops ii and i. Current sources

in the network can be considered as equivalent voltage sources by associating with them

a particular path between the two terminals of the source. The effective voltage in the

branch of this path is then the impedance multiplied by the magnitude of the current

source.

The self- and mutual admittance are found by cutting the tree. Cutting a

branch of the tree divides the tree into two parts; cutting two branches of the tree

It is unfortunate that two convenient definitions of nodes and branches exist, but

the context will make clear which interpretation is intended: the flow graph or the net-

work graph.
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divides it into three parts.

A node-pair voltage is associated with each branch of the tree and its direction is

assigned arbitrarily. Usually the tree of node-pair voltages is superimposed directly

on the network graph with arrowheads indicating the direction of the node-pair voltages.

The self-admittance Y.. corresponds to the admittance between the two halves of

the tree when the node-pair voltage ej is cut. The sign is always positive. The mutual

admittance Yij corresponds to the admittance directly between the outer parts of the

tree when the node-pair voltages e. and e. are cut. The sign is positive if the two
1 j

voltages are in the same direction in the tree.

The effective current source Ij is the source driving the two halves of the tree deter-

mined by the node-pair voltage ej. Voltage sources in series with a branch element may

be considered as effective current sources across that branch element.

6.4 Tie-Set and Cut-Set Example. As an example consider the network of Fig. 37a.

The solid lines of Fig. 37b represent a convenient tree; the dotted lines represent the

branches that are singularly added to indicate the paths of the loop currents. Super-

imposing the loops with assigned directions on Fig. 37a gives Fig. 38a. The use of

the tree allows us to set up a set of independent variables. We can then pick out the

self-impedances, the mutual impedances, and the effective source voltage rises directly

from the network graph, and thus we are able to construct the flow graph directly. By

the first method, the flow graph of the network of Fig. 38a is given in Fig. 38b. By

using the second method and considering the numbers associated with the resistors of

Fig. 39a as conductances, the flow graph of Fig. 39b is drawn by inspection of the cut

set of Fig. 39a.

Both formulations have their advantages. The first has simple branch functions

and symmetry but a more complex structure than the second. The second is simple in

structure but has complex branch functions. It does have the advantage of being dimen-

sionally consistent. This consistency makes it possible to apply physical reasoning to

the formulation mechanics.

6.5 Conventional Loop Currents and Node-Pair Voltages. A very convenient degener-

ate case is that of conventional node-pair voltages and loop currents. The flow graph

corresponding to these loop currents is constructed of nodes placed in the same relative

position as the loop currents of the network graph. The flow graph then retains some of

the geometry of the network graph while representing the loop equations.

For node-pair voltages the degenerate case is the case in which the tree is such that

each branch extends from the same datum node to a network node. The flow graph

corresponding to this tree then retains the geometry of the network graph by placing the

nodes of the flow graph in the same relative position as the nodes of the network graph.

Both of the methods are formulated for these degenerate cases in such a way that

the sign of the mutual impedances and admittances will always be positive when the
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Fig. 37. (a) Tie-set example. (b) Network tree.
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Fig. 38. (a) Independent loop currents.
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Fig. 39. (a) Cut-set example. (b) Node-pair voltage flow graph.
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Fig. 40. (a) Conventional loop-current
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mulation of Fig. 40a.
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Fig. 41. (a) Combined use of loop cur-
rents and node-pair voltages.
(b) Flow graph for taking out
Z 6 or shorting out Y2 .

conventional loop currents and node-pair voltages are used. Placing the current nodes

in the same relative position as the loop currents rapidly produces a graph having

mutual impedance between the nodes equal to the mutual impedance between the corre-

sponding loop currents. The same is true for node-pair voltages. An example is given

in Fig. 40b, which represents the electrical network of Fig. 40a. Note that each loop

current can be considered as an independent current source in relation to the other loop

currents.

6. 6 Joint Cut Sets and Tie Sets. It is not always desirable to solve a whole network on

the basis of all node-pair voltages or all loop currents. By dividing the network into

sections it becomes possible to formulate any one section by either node-pair voltages

or loop currents. The other sections act on this section as though they are current or

voltage sources, depending upon their formulation. This type of reasoning works par-

ticularly well when applied to the conventional node-to-datum voltage and loop-current

formulation, since the node variables are placed in the same relative position as found

in the electrical network graph.

6. 7 Formulations Suitable for Approximations. Many times we are interested in for-

mulating the flow graph so that we can "short out" or take out different electrical ele-

ments of the network. For this situation it is convenient to have the element appear

alone in the flow graph and in such a form that the flow-graph branch becomes zero when
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the electrical element is shorted out or taken out.

To formulate a flow graph with these requirements for shorting out an electrical

element, formulate the element on the node-pair voltage basis and the rest of the sur-

rounding network on the loop-current basis, placing the datum voltage node at one end

of the element.

To take out an element, formulate the element on the loop-current basis and the

surrounding network on the node-pair voltage basis.

Figure 41b is an example of a formulation of Fig. 41a suitable for shorting out Y2

and taking out Z 6. When Y2 is shorted out, two branches of the flow graph are made

zero, so that e becomes a strictly independent source and can be made zero.

This type of formulation is quite important, since it leads to a solution of the flow

graph by which the effect of these elements can be separated from the rest of the solu-

tion. This separation is quite desirable in finding approximations and the effect of

approximations without having to reformulate the mathematics to recognize the effect.

That is, the flow graph of Fig. 41b could have been solved with Y2 very large or essen-

tially shorted out. The effect on the solution by this approximation that Y2 is large can

be investigated by replacing Y2 and adding its correction terms to the main solution.

This method of solution is discussed in the next section.

This section has presented a number of rapid methods of formulating the flow graph

of networks containing two-terminal bilateral elements. It is important to have a num-

ber of methods available in order to obtain a solution in a desired form and with a mini-

mum of complication. Since flow graphs exhibit the mathematical complexity, it is

possible to see in advance which formulations are best suited for the desired results.
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7. FLOW-GRAPH DETERMINANTS

Much of the work with linear sets of equations parallels the work with flow graphs.

The determinant of a linear set of equations is paralleled by the determinant of a flow

graph representing these equations.

This section shows that the determinant of a flow graph and the determinant of the

representative linear set of equations are equal except for a sign factor, (-1)n , where

n is the number of dependent variables

in the inversion. Subseauent development

deals with the loop rule (corresponding

to Cramer's rule), partitioning, and

expansion.

It is both interesting and profitable

to be able to calculate and understand

these flow-graph determinants. It is

profitable because the two determinants

are closely related. It is interesting
Fig. 42. Second-order set of equations.

because we can easily see how to expand

and factor a determinant. It is also

important because it permits the use of Cramer's rule in reducing the flow graph.

7. 1 Flow-Graph Equations. Flow graphs are the representation of algebraic sets of

equations in which the nodes represent the known and unknown sets of variables and the

branches represent the dependency among the variables. Drawing a flow graph is, in

effect, writing a set of equations in the following form:

allXl + ... + ajl x. + a xn + c = x

alj x1 + ax+...a.x + ac .=x. + x... (18)j ~JJ ' nj n ] j

anX + ... + an. + ... + a x + c = xIn1 Jn j nn n n n

A second-order set of equations in this notation would be that of Fig. 42. The order of

the subscripts was purposely chosen so that it indicates the direction of dependency.

The coefficient a 2 1 is associated with a branch from x2 to x l .

7. Z Loops and Ordered Sequences. The set of loops is an important geometric prop-

erty of a flow graph. Here, a loop is defined as an ordered sequence of the nodes cor-

responding to either known or unknown variables, no variable appearing more than once

in any one loop. The initial variable is immaterial as long as the order is preserved.
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Two disjoint loops are sequences that have no common elements. The loop product is

the product of the coefficients associated with the branches that go from one member

of the sequence to the next; for example, the loop x3 x 5 xgx 7 has the loop product

L = a35a59a97a73. The loop product associated with the loop xi is L = aii.. (When it

is not ambiguous it is customary to shorten the term "loop product" to "loop.")

7. 3 Coefficient Determinant. In the more conventional notation, Eq. 18 could have

been written as

(all- 1)x 1 . + ax + .. + ajlxn =-C1

aljXl + "'+ (a .i 1 +(ajjnj n = -1)xj (19)

alnxl +''' + ajnXJ + + (an I)xn = -cn

The coefficient determinant, D, is associated with the set of Eqs. 19.

all -1ajl ... a1 nl

D= al j .. . a (2 0)

aln .. ajn .. ann

In respect to standard mathematical manipulations it is important to know the rela-

tion between this coefficient determinant and the flow graph from which it was produced.

In relation to the representative flow graph the value of the coefficient determinant is

given by the equation

D = (-)n (-1)q L 1 L2 ' Lq(1 - i - aii) (21)

where each term of the summation is composed of disjoint loops and contains n and

only n coefficients. The summation is over all possible combinations of disjoint loops.

The factor L is a loop involving two or more variables, q being the number of such

loops in the particular term.

7. 4 General Validity of Determinant Equation. In order to show the general validity

of the determinant equation, Eq. 21, it is necessary to note that numbering of the

variables associated with the graph and determinant is immaterial as long as no two

variables have the same number. That is, the determinant permuted in the same order

of column and row has the value of the original determinant, and the loop products are

dependent only upon the geometry of the flow graph. By renumbering, any term of

Eq. 21 can be put in the form
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( 1)+q (a 2 a2 3... a s1+2 . .. as * )

(1 - a+s+l) ... (1 - ann) (22)

where the first set of coefficients refers to loop L1 , the second refers to L 2 , and so

forth, ending with the coefficients of the self-loops. The loop product Lj contains s.

coefficients, so that a total of

s = sl + s + ... + sq (23)

coefficients are involved in the part of the term not containing the self-loop coefficients.

The general term can be written in a slightly different form:

(1)s (a 1 2 a 2 3 ... a 1 )(as +1 S+23 a +ss2+l)

(as+ - 1)... (a - 1) (24)

The value of D can also be obtained from the coefficient determinant, Eq. 20, by

standard procedures (15, 16):

D= (-1)a a 2lr a2r2 (25)

where any diagonal term is (aii - 1) and the second subscripts r 1, r 2 , ... rn run through

all the n! possible permutations of the numbers 1, 2, .. ,n. The exponent d is the

number of permutations in the second subscript.

Any term of this evaluation will have certain convenient properties associated with

its subscripts. Starting with any off-diagonal coefficient aij (i j) of the general term,

it will be possible to find another coefficient ajk in the same general term. Since j has

already been used as a second subscript it is known that j k. Thus, it is possible to

find a sequence of coefficients that is such that the subscripts form a sequence of closed

ordered pairs, as aijajk... ami. You may be certain that it is closed, since i j, and

the number i must be used as a second subscript for some one of the coefficients.

Thus any term of this evaluation can be put in the form of Eq. 24 by properly renum-

bering the variables. The sign is correct, since the number of permutations of the

second subscript of each factor Li is s - 1 or a total of s - q permutations for the whole

term.

By virtue of the equality of Eqs. 22 and 24, each term of the flow-graph evaluation

of the determinant appears in the standard evaluation and vice versa. Each term in each

evaluation appears once and only once with a unity coefficient. Thus the general validity

of the determinant equation, Eq. 21 is established.

7. 5 Calculation of the Flow-graph Determinant. For convenience, a new quantity A,

which is called the flow-graph determinant, is defined:
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Usually both D and A are called the determinant. When a distinction between the two

meanings is necessary, the context will make the difference known.

The second subscript of the coefficients in each term of the determinant runs through

all of the n numbers of the unknown variables once and only once. On the representa-

tive flow graph the second subscript indicates the variable at the nose end of the branch.

Thus all of the unknown variables are associated once with each term of the determinant;

or, essentially, each term covers the set of unknown variables.

This idea of covering is useful in calculating the value of the determinant from the

flow graph; in order to be a complete term, each term which is written down must

cover the graph. This means that all of the nodes corresponding to unknown variables

must be involved in each term of the determinant.

Thus, the following equation is valid for the calculation of the flow-graph determi-

nant A:

a= 1 ·S Z2 3
A = 1 · S - L S + (27)

r r r r r r r r r

where Lm is the loop product of m disjoint loops of two or more variables, and S isr r
the product of one minus the self-loops disjoint from the loops in L m .

r
Equation 27 is a convenient one to use because it gives an orderly procedure of

writing down the loop products:

First, the product of one minus the self-loops.

Second, the sum of the loops taken one at a time, each multiplied by any disjoint

self-loops.

Third, the sum of the products of the disjoint loops taken two at a time, each multi-

plied by any disjoint self-loops; and so forth. (Note that the sign is changed from one

step to the next.)

The largest combination of disjoint loops of two or more variables will be no more

than n/2 and usually considerably less for practical problems.

For the special case of no loops in the graph, the determinant A is unity. A unity

self-loop on the unknown variable x introduces a zero factor into the terms in which

it appears. Since each term covers the graph, only terms which have a loop passing

through xj will be nonzero.

The determinant is zero when there is a node variable having a self-loop of unity

and no loops passing through the node. The determinant is also zero when there are

two nodes that have identical sets of either converging or diverging branch coefficients.

Since the determinant is directly dependent upon the loops of the system, the deter-

minant is independent of any variables which are not associated with any of the loops.

By expanding Eq. 21 for A we can obtain the form

A = 1 - z pl + p2 _ Z p3 + . (28)
rr r r r r
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where pm is the r possible combination of m disjoint loops. Each summation isr
over all possible combinations.

If all of the self-loops are zero, Eqs. 27 and 28 are identical.

7. 6 Examples of Determinant Calculation. By following the procedure outlined in the

previous section, the determinant associated with Fig. 42 is, by the first method,

=(1 - all)(1 - a2 2 ) - ala 21

or, by the second method, it is

A = 1 -22 all - a aa1 + alla22

A more practical example is offered by finding the determinant of a transistor oscil-

lator in order to investigate the frequency and requirements of oscillation. Consider

the transistor circuit driving a phasing network that drives the input of the transistor,

as in Fig. 43a. This circuit has the flow graph of Fig. 43b, where the phasing network
has been described in the same set of parameters as the transistor. By inspection of

the flow graph the determinant can be written as follows:

2 h Z hll Z1= + hha - h12a +Z + Z h1h Z h21h a + ZZ

Another common example is the standard current and voltage feedback amplifier

shown in Fig. 44a. Its representative flow graph is that of Fig. 44b. The determinant

of the system is then

=+ ( + 1) + + (r + Rf) + r +

R r / \Z 3/r 2 f r
+2 f +R Rr 1 ____ + r

Rk R2 lRl R 3 )Rk R 2

As a final example, consider the determinant of the following set of equations:

1
x 1 = -(Y - Pnxn)

x2 = (Y2 - Px l)

1
n =(Y - P1 X 1)

The representative flow graph is that of Fig. 45. From inspection of this flow graph
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Fig. 43. Transistor oscillator and flow graph.
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Fig. 44. Twin-triode feedback amplifier.
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Fig. 45. Flow graph of a set of equations.
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we find that the determinant is

n
11 p.

ni 1 (-) n i=l
n

[l qi
i=l

7. 7 Summary of Determinant Calculations. One of the chief advantages of the

calculation of determinants with flow graphs is that it gives us the ability to see

which determinants are going to be easy to calculate. This permits the generation

of examples for which the final results are simple enough to understand. For

instance, the last example refers to the input and output probabilities of a noisy

information channel. The determinant indicates that the solution will always exist

for n odd.

Many problems can be formulated directly in flow-graph notation without first writing

out the representative algebraic equations. Thus, the determinant of the system can be

produced by a one-step inspection process. In general, flow graphs represent another

way of looking at the mathematical system and producing its properties by noting the

characteristic interdependency of the variables.

The next sections deal with the application of flow-graph determinants. They

present the loop rule parallel to Cramer's rule. Also they show how a graph

may be partitioned in order to factor and expand the determinant into more desir-

able forms.

7. 8 The Loop Rule. S. J. Mason first formulated the loop rule and proved it from

purely flow-graph considerations (10). This section shows that the rule corresponds to

Cramer's rule.

A general flow graph graphically represents the algebraic equations

allXl + ... + ajlx + C = xl

alj Xl + ... + ajj xj + ... + anj x + cj =x. (29)

alnx+ ...+ajn x. +... +a x +c =xIn 1 n nn n n n

Adding to this set the equation

x. - x = (30)
the solution for xis obtained by application of Cramer's rule:

the solution for x. is obtained by application of Cramer's rule:
3

45

-



... anl -C1

(ajj -1)

jn

.. 

ajl

( jj -

a -c.nj j

... (ann - 1) -c n

... o (I-1)

... anl

1)

... ajn

1

anj

... (a - 1)

· . , 

0

0

0

-1

where A is the determinant of the flow graph, and A is the determinant of a modified

flow graph constructed by placing a self-loop of unity on x! and branches having a coef-
J

ficient of -c. from x! to each x..
1. I1

Due to the unity self-loop on xj, each nonzero term of the modified determinant

involves a loop passing through x!. Each loop passing through x! is associated with a
IJ

set of disjoint loops or essentially a disjoint determinant or cofactor of the variables

not included in the particular loop passing through xj.

Thus, the general loop rule for the reduction of a linear flow graph is

n

X! c T · ~·~- I (33)j Z r rj (33)
r=l

where

Trj
rj

Zk Lk . k .
rJ rj (34)

= (34)

and Lk is the k th path product of the path from node cr to the node x!. The quantity
rj

A is the determinant of the flow graph, and Ak is the cofactor of the path associated
rj
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0
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(a 11 - 1) . . . ajl
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Fig. 46. Second-order set of equations. Fig. 47. Loaded transistor and inverted
flow graph.

with the path product Lk The summation of k is over all possible paths from node
rj

Cr to x!. The quantity T . is usually called the "dependency" of x. on crr j rj 3 r
The solution of the flow graph of Fig. 46 corresponding to a second-order set of

equations is

l(l - a 2 2 )+ 2a21

X1 (1 - all)(1 - a ) a 1 2 21

cl1 2 + c 2 (1 - al 1 )
x 2 (1 - all)( - a2 1

It is interesting to note that the same dependency relation Trj is obtained between

x! and cr if all of the arrowheads are reversed and the dependency is calculated from
3 r

x! to c . Turning the arrowheads around only reverses the direction of the loops and
3 r

paths but does not change the path products.

7. 9 Special Cases of the Loop Rule. When there are no loops in the graph, the depend-

ency Trj becomes the sum of all of the path products between c and x.. Very often
r 3 r 3

it is possible to partially factor the dependency by breaking the dependency of a group

of paths passing through some intermediate node x. into two parts, Tri and Ti.. Thus
1 1J

we have the result that

T = T . T.. + T' . (35)rJ rl 1j rj

where T' is the sum of the path products that do not pass through node x.. Of course,

this partial factoring can be extended to a number of nodes or individual branches in

different combinations.

The loaded transistor, where the path between the input and output currents has

been inverted, is an example of a graph containing no loops (Fig. 47). By using the

individual branch -l/h21 in the expansion, the dependency is obtained in partially

factored form.
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i i2 {(1+hZ)( )( + hllY)+ h2ZY

The advantage of partially factoring the dependency is that the dependency is calcu-

lated in parts. These parts are easy to locate in the flow-graph structure.

7. 10 Determinant Expansions. Expansion of the flow-graph determinant offers a means

of writing down its expression in a variety of ways. From this variety it is possible to

select an expansion that will put the expression for the determinant in an easily under-

stood form.

For example, we may be interested in a particular constant, aij, associated with

one of the branches of the flow graph. Upon separating those terms of the determinant

which do and do not contain a.. and factoring out ai.. the following expansion is obtained

A = A - aij Zk Lk Ak (36)
i ji

where Ao is the determinant of the flow graph with the branch aij removed, and

-aij Zk Lk.' Ak. is the sum of all terms involving a loop containing a sequence of the
Ji Jx

form (...xi x .... ). That is, we calculate A with a..j removed and add to it that part

of A in which each term a.. forms part of a loop function.

This type of expansion can be extended to the removal of a number of branches. The

determinant is first calculated with the desired set of branches removed. To this cal-

culation is added that part of A involving the branches singularly (essentially singularly

replaced in the graph). That part of A involving all possible combinations of any two

branches of the set is next added, and so forth, with 3, 4, ... branches, until all com-

binations are treated.

A particular case of the loop rule occurs when the removed branches either all con-

verge on a node or all diverge from a node. The cross terms are then nonexistent.

For this special case

A=A -Z aij k Lk.i Ak} (37)

where the first summation is over i or j depending upon whether the removed branches

are convergent or divergent. This degenerate case corresponds to Laplace's expansion

of a determinant by minors. Summing over i is an expansion of the row; summing over

j is an expansion of the column. The self-term in Laplace's expansion is

(1 - aii) Ao (38)

Along this line of reasoning is the expansion about a loop product Li involving two

or more variables. For this situation

A = A L. (39)O 1 1
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where iA is the determinant calculated with the loop excluded, and A. is the cofactor of
O 1

L..

In a similar manner this type of expansion can be extended to the removal of several

loops. The degenerate case is where all of the removed loops are intersecting loops in

all combinations.

An important property of these expansions is that the removal of a set of branches

or loops may radically change the appearance of the graph and thus the way of looking

at the graph.

7. 11 Partitions. In practical applications, it will usually be found that the flow graph

of a problem has a tendency to "string out" and to run in parallel. Sometimes it will

be possible to partition the graph into smaller parts by drawing partition lines through

the graph. A partition line is any line drawn around part of the graph in such a manner

that all branches which cross the line are in the same direction, or a line drawn between

partition lines which does not cross any of the branches of the flow graph.

The set of nonzero loop products associated with a partitioned graph has the prop-

erty that each loop is entirely within a specific partition of the graph.

Subsequent calculation of the determinant of a graph divided into partitions shows

that the determinant is equal to the product of the determinants of the partitions; that is,

A = AA AB '''. N (40)

As an example, consider determining the dependency of e2 on e of the two-stage

vacuum-tube amplifier of Fig. 48. Since the graph for Fig. 48 can be divided into two

partitions, the dependency can be written immediately by making use of the partitioning

and the loop rule:

it 1 Z 9
e2 =e

7. 12 Partial Factoring. By using the ideas of expanding and factoring a determinant,

there exists an excellent means of working a problem in isolated parts and then adding

in the interaction of the parts.

By proper selection of the removed branches or loops in the expansion of a determi-

nant, it may be possible to get the graph broken up into a number of partitions. This

expansion can then take advantage of the partitions by expressing the A0 determinant as

the product of smaller determinants which are easier to see and to write out. The

expansion is especially profitable when there is a branch that is used in only one or two

loop functions and its removal would split the graph up into a number of partitions.

A graph can be artificially partitioned by drawing a line around part of it and

removing all the branches that cross the line in one direction. This artificial
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partitioning is a method of seeing how to expand the determinant. It permits working on

isolated parts of the graph and then adding in the interdependency of the parts.

A particular example might consist of finding the current gain of the loaded transistor

of Fig. 49. Removal of the backward voltage-gain branch, h1 2, partitions the graph so

that the gain is

-h 2 1

+h(1 + 2 h Z

7. 13 Parallel Partitions. In certain cases the dependency, Trj, between two nodes

will be made up of a number of paths through parallel partitions extending from one node

to the other. Parallel partitions between two nodes are partitions that extend from one

node to the other with no interconnecting branches between the partitions.

For two parallel partitions M and N extending from node cr to node x., the equiva-

lent dependency would be

k LkM kM N k LkN kN M
T- ~~ M MLN NT. -

rj AM A N

L Ak k Lk Ak
LkMk M kkN kN

AM N

= T . + T . (41)
r3M r3N

The important thing to notice is that the dependencies of parallel partitions are added

together to get the total dependency.

Consider finding the dependency of the input voltage upon the input current of the

base-loaded transistor. The circuit and flow graph are given in Fig. 50. In this

example the graph is divided into two parallel partitions. Taking advantage of the parti-

tioning, we can write the dependency as the sum of two terms:

1 l(1 + h21)(1 hZ + z - h12 h2 1 Z

= il 1 1 +Z 1 + 2

z 2z

7. 14 Isolated Partitions. Sometimes in the calculation of the dependency between two

variables cr and xj by the loop rule, none of the paths between the two nodes pass through

a given partition Q. This partition is then an isolated partition.

Applying the ideas of factoring a determinant to this situation produces Eq. 42.
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Fig. 48. Vacuum-tube amplifier and flow graph.
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Fig. 49. Loaded transistor and flow
graph.

Fig. 50. Base-loaded transistor and flow
graph.

e3

Fig. 51. Two vacuum tubes and a transistor.
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Z k Lk. Ak A Q
rj rj

T .

k Lk. A .
rj rj

T . = (42)
rj

where AQ is the determinant of the partition Q and A' and A'k are determinants of

the remaining part of the graph. rj

The point is that isolated partitions may be excluded from the calculation of depend-

ency between two nodes.

Consider the example in Fig. 51 of two vacuum tubes and a transistor, where the

voltage gains from e and e 2 to e 3 are of interest. In formulating the graph the back-

ward voltage gain of the transistor is assumed to be negligible. By making use of the

partitioning and the isolated partition for the gain from e 2 , the following results are

obtained directly from the flow graph.

L2

r2 + (1 2 + 1) Z22
1+ R

R 2

z2 2
-1 ( 2 + l)h 2 1 R1

e 3 =e 
rl l+ r 21 + 1) hll +2

7. 15 Multiplication by a Constant. Quite often it is desirable to change either the

numerical value or the sign of a number of branches in a flow graph. This section

describes a method of making these alterations in linear flow graphs.

The dependency through any given region of a flow graph is solely determined by

the paths and loops through the region and the loops within the region. Thus, a line

drawn around a region intersects all loops an even number of times and all paths an

even or odd number of times, dependent upon whether one or both of the end points of

the paths are inside or outside the region. Multiplying all of the incoming branches to

the region by a constant C and dividing all of the outgoing branches by C leaves the

dependency relations through the region unchanged. Dependency relations into the

region are multiplied by the constant C.

An important example is found in the application of flow graphs to reflection and

image transfer loss and phase in network theory (1). The representative flow graph,

Fig. 52b, of the network of Fig. 52a can be considerably simplified by eliminating all
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Fig. 52. Changing branches by a constant.
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but one of the impedance level changes. The regions are shown on the graph of Fig. 52b.

Modification then produces the simpler graph of Fig. 52c.

7. 16 Maximum Number of Unity Branches. In certain situations it is helpful to manipu-

late the flow graph in order to introduce as many unity branches as possible. For a

linear flow graph, where all of the branches have arbitrary constants, the largest num-

ber of branches that can be made unity

is the number of nodes in the graph

excluding those that are strictly inde-

oI ~pendent or dependent, provided there is

(o) at least one. Otherwise, it is one less

--,2Z + + + + + K,88 than the number of nodes. It has been
7, _T : b -assumed that dependencies are calculated

from strictly independent nodes to strictly
- from strictly independent nodes to strictly

+ + + + +

(b) dependent nodes. C. E. Shannon (11)

proved a very similar statement in a
Fig. 53. Reduction of branches to unity. paper on analog computers.

By considering the graph of branches

without arrowheads, it is seen that there exists a number of possible trees of branches.

A tree of branches is a connected set of branches which is just sufficient to connect all

of the nodes of the graph. For any tree all of the strictly independent and dependent

nodes are connected to the tree by at least one branch.

Starting at any strictly independent or dependent node and passing along the tree it

is possible to make each branch passed over equal to unity except those branches that

lead to strictly independent or dependent nodes. The number of such operations is the

number of nodes in the graph, excluding the strictly independent and dependent nodes.

The assumption that more than this number could be made unity implies that the

operation must be applied twice at some node to produce two unity branches. This is

a contradiction, since the branch constants are arbitrary. Thus the maximum is equal

to the number of nodes.

As an example, the flow graph of Fig. 52a indicates that eleven branches can be

made unity. A possible tree is that of Fig. 53a. Making the indicated alterations pro-

duces the graph of Fig. 53b.

7. 17 Summary of Expansions and Partitions. Expansions and partitions represent a

means of breaking the problem into its natural parts.- You are able to see the expan-

sions and partitions because you are able to see the structure of the mathematics. By

observing the paths and loops of the mathematical structure, the problem is solved

without the use of standard mathematical manipulation. Flow graphs solve the problem

in parts with interaction - all steps being performed upon inspection of the mathemati-

cal structure.
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8. SPECIAL TOPICS IN LINEAR EQUATIONS

Since linear flow graphs represent a method of solving linear sets of equations there

exists a good deal of material pointing out how well-known methods of linear analysis

are formulated in terms of flow graphs. This section deals first with the rank and posi-

tive definite properties of a determinant and then with the calculation of eigenvalues and

eigenvectors.

8. 1 Rank of a Determinant. The rank of a determinant is an indication of the largest

number of independent variables which a consistent system of equations can specify in

terms of the remaining independent and dependent variables.

The usual procedure in linear equation analysis is to start with a set of consistent

equations. A subset of these equations is then solved for the independent variables in

terms of the remaining independent and dependent variables. The largest number of

independent variables for which the solution exists corresponds to the rank of the origi-

nal set. Of course, the solution of a consistent set of linear equations exists when the

determinant is nonzero.

In flow-graph notation the original set of equations corresponds to a graph in which

all of the nodes are strictly dependent or independent. The solution is obtained by

inversion of some of the paths and flow-graph reduction. Thus the rank is indicated by

the largest number of inversions that can be performed without making the flow-graph

determinant zero.

8. 2 Positive Definite Determinants. For certain systems to be realizable it is neces-

sary that the determinant of the system have the property generally known as "positive

definite." Essentially this condition is that the quantity

Z x.a..x. (43)

ij

is greater than zero for any arbitrary set of x except when all x are zero. The deter-

minant is negative definite when the quantity is less than zero for all sets except the

zero set. It is well known that a real symmetric matrix is positive definite if each of

the discriminants A' (m = 1, 2, ... ,n) are positive (15).m
This requirement on the discriminants corresponds to the following flow-graph

requirement: For a flow graph in which each pair of variables is doubly connected with

branches having equal real coefficients and any arbitrary numbering, the quantities

(_l) m am (m = 1, 2, ... ,n) are all greater than zero. The quantity Am is the flow-graph

determinant of the system involving just the first m variables.

The sequence (1 A2' . . . An) is usually quite easy to calculate according to the

Laplace expansion in terms of flow graphs, Eq. 37.
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8. 3 Eigenvalues. In the process of setting up the normal coordinates of a linear system

it is first necessary to obtain the natural frequencies or eigenvalues of the system. The

characteristic equation

A - XII = 0 (44)

which leads to the eigenvalues can be formulated in terms of flow graphs by placing a

self-loop of -X on each dependent variable. Calculation and solution of the flow-graph

determinant

A = (45)

for the roots of X produces the eigenvalues X 1 X2 . .. kXn

8. 4 Eigenvectors. The eigenvectors are obtained under the condition that A = 0. This

condition is obtained by setting X equal to one of the eigenvalues.

Two sets of eigenvectors are possible, a right-hand and a left-hand system.

The right-hand system corresponds to the matrix equation in the form

Ax = Xx (46)

The left-hand system corresponds to the form

xA = Xx (47)

For an eigenvalue not equal to any of the others, the right-hand vectors are obtained

by ignoring all of the converging branches of one of the dependent nodes xi and calcu-

lating the dependency of the other nodes on this

one node x i . Thls set o dependencies is then

iX ~the eigenvector in terms of the arbitrary scale

factor x i . The left-hand vector is obtained by

ignoring all of the diverging branches of one of

the dependent nodes x i and calculating the

dependency of each of the other nodes to this

_A. one node x i . The dependencies represent the

eigenvector. Both of these calculations hinge

on the cofactor of the node x. being nonzero.
-1 2 -1

For an eigenvalue not equal to any of the others

3 0 there will be at least one dependent variable

which will have a nonzero cofactor.

Fig. 54. Flow graph of IA - X I I . If there are two identical eigenvalues, two

nodes x. and x. must be used to calculate the

dependency. Of course, the determinant of the system formed by ignoring both of these

nodes has to be nonzero. It will always be possible to find two such nodes for the case

of equal eigenvalues. For higher numbers of equal eigenvalues, corresponding num-

bers of variables are selected and the dependencies calculated.
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-X

-X

(a ) (b)

Right-hand eigenvector

x1 x2 X3

X1 0 1 2

1 1
- 12 2 2

1 1
-- 1 -3 2 2

Fig. 55. Eigenvectors:

Left-hand eigenvector

x1 X2 X3

X1 0 1 -2

3 1
22 2

3 1
3 2 2

(a) right-hand; (b) left-hand.

8. 5 An Example of Eigenvalues and Eigenvectors. The following matrix, A, provides

an example of the flow-graph manipulation involved in calculating eigenvalues and eigen-

vectors. The determinant IA - XII is obtained from Fig. 54. Equating the determinant

of the system

A = (X+1) (-2) (X+4)

to zero produces the 3 eigenvalues

,1' 2, X3 : -1, +2, -4

The right- and left-hand vectors are calculated from Figs. 55a and 55b, respec-

tively. Notice that it was not possible to use node x1 in calculating the eigenvector for

X = X1 because of its zero cofactor.
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9. SOLUTION OF MATRIX EQUATIONS

Flow graphs are ideal for working with a system of variables. This section deals

with the flow-graph application of solving for the system of variables involved in matrix

equations. The object is to set up a notation for

matrix equations, demonstrate some of the simpler

A properties, and then show how to solve a system

X o b Y directly from the flow graph. The solution process

will not be restricted to square matrices.
Fig. 56. Matrix equation.

P. C. Watson first recognized the application

and performed some of the initial work. The actual

mechanics was worked out by S. J. Mason and his graduate class. The material is

included here for completeness.

9. 1 The Left-Hand System. The left-hand notation for matrix equations is best suited

for flow-graph representation. In this notation the equation

xA =y

has the flow-graph representation of Fig. 56.

On the basis of the representative equations, the equivalent flow graph of a cascade

is the matrix product in the order of the cascade, Fig. 57a. Parallel branches are

additive, as in Fig. 57b.

The calculation which justifies the equivalence relations of Figs. 58a and 58b shows

that matrix equations are linear, so that superposition is applicable.

The solution of matrix equations rests on the solution of the equation

xA + yB = y

which has the flow graph of Fig. 59. This solution is

x A (l-B) - = y

or, in another notation,

A

where it is understood that quantities in the denominator are inverse-post-multiplied

to the quantity in the numerator.

The introduction of the new variable z in Fig. 59 provides a means of observing

the loop dependence as a dependence of z upon y when the unit matrix branch is

removed.

In order to calculate the equivalence relation of a path, the values of successive

variables are calculated on the basis of the previous variable in the path, as in Fig. 59.

In each succeeding calculation all of the paths through the previous variables are
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Cascade and its equivalence.
Parallel and its equivalence.

C
B
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(a)
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O

A cI

(b)

Fig. 58. (a) Distributive law of matrix equations.
(b) Multiplication by a constant.

B

X
or

B

X

Fig. 59. Basic matrix equation.

X2

, F Z

(b)

Fig. 60. (a) Matrix example. (b) and (c) Component matrix paths.
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ignored, since these variables are no longer dependent upon the succeeding variables.

Because of superposition, the equivalence relation between a strictly independent

variable and any dependent variable is the sum of the dependencies over all possible

paths between the two variables.

9. 2 Matrix Example. Consider the example of Fig. 60a. The two paths from x1 to

z are separated into Figs. 60b and 60c by superposition. The dependency of the path

x 1x2 x3 z is found by successively calculating x2, x 3 , and z on the basis of the immedi-

ately preceding variable in the path.

B x2 C = x 3* -x
' 1 - CF 2 x2

3D = z

Notice how the path to x2 is ignored when x 3 is calculated. The dependency is then

B
x 1 1 C D = z

- CF

The path x 1 x 3z has the dependency

E

1 - FCD z

By superposition the total dependency of z on xl is

1 - CF CD + - FC D = z

A more complicated example is that of Fig. 61, where the dependency of xl on xo

is of interest. The equivalent loop dependence is that of the last example, so that

A

o B E 1
1-CF CD- D1 - CF CD 1 - FC D

9. 3 Right-Hand System. It is unfortunate that most matrix equations are expressed in

a right-hand system. In this system all of the relations are essentially backwards. A

convenient method of getting around this awkward situation is to trace out the paths

backwards so that the expressions can be written in the customary left-to-right notation.

Essentially, we look for the points of the arrowheads instead of the tails. Here again

e i, i. '

X3 (a) (b)

Fig. 61. Matrix example. Fig. 62. Transfer network and flow-
graph representation.
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it is possible to use the notation that the inverse of the matrix in the denominator is to

be post-multiplied to that of the numerator.

An actual example encountered in noise figures is the connection of a Zn-terminal

transfer network to an n-terminal impedance network, Fig. 62a. The matrix equations

are

e = Zllil + Z 1 2 i

e 2 = Z21il + Z22i2

-1
i2 = -Z e2

which are represented by the flow graph of Fig. 62b. The new input impedance matrix

is then

12 1 + Z 1 1 i
22 -
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10. TRANSCENDENTAL FUNCTIONS

Included in this section are a number of elementary considerations dealing with the

exponential and logarithmic functions, and the group operation of multiplication. With

these elementary considerations it becomes possible to manipulate the flow graphs much

as the representative mathematics would be manipulated.

10. 1 Group Operation of Multiplication. In parallel with addition, multiplication of a

number of variables is a group operation. A small square in flow-graph notation seems

to be a good representation.

The equation Z = w x · y has the flow graph of Fig. 63. That is, convergence on

the square indicates multiplication. Divergence from the square indicates the direction

of dependency. Self-loops on the squares have no meaning.

A number of properties are of interest. A constant multiplier on any branch pre-

ceding the square can be slipped through the square to be multiplied into all of the

diverging branches. Figure 64 shows two equivalent flow graphs. Of course, the opera-

tion works in reverse: dividing all of the diverging branches from a square multiplies

any one of the converging branches by that constant.

Inversion of a path through a product square requires the same node-splitting ideas

of the first inversion method for the additive operation (sec. 4. 1). In contrast to the

use of subtraction for the inversion of the additive operation, division is used for the

inversion of the multiplication operation. Figure 65b represents the inversion of a

path through the flow graph of Fig. 65a.

In the degenerate case of the inversion of multiplication there is only one branch

entering or leaving the square.

10.2 Transcendental Functions. Transcendental functions, the exponential and

logarithmic, have a property similar to one of the linear properties. The dif-

ference is an interchange of the group operation of multiplication and addition.

This property is indicated in Fig. 66a for the exponential; in Fig. 66b, for the

logarithm.

These two properties are of interest because they provide a means of manipulating

a graph that involves transcendental functions and a means of deriving other flow-graph

operations. For example, they provide a means of slipping forward an exponential

function through a product square or slipping forward a logarithmic function through a

summation node - operations that are indicated in Figs. 67a and 67b. They are obtained

by introducing the unity operation of a logarithm cascaded with the exponential.

The slipping of an exponential function back through a summation node is indicated

in Fig. 68a; the slipping of the logarithm back through a product square, in Fig. 68b.

Two simple loop graphs that are easily reduced with these properties are those of

Figs. 69a and 69b.
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Fig. 63. Group multiplication.
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Fig. 65. (a) General multiplication square.
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Fig. 64. Slipping a constant.
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(b) Inversion of Fig. 65a.
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Fig. 66. (a) Equivalent exponential flow
graphs. (b) Equivalent loga-
rithmic flow graphs.
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Fig. 67. (a) Slipping the exponential func-
tion forward through a product
square. (b) Slipping the loga-
rithmic function forward through
a summation node.
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Fig. 68. (a) Slipping back the exponential. (b) Slipping back the logarithm.
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Fig. 69. Simple loop reduction.
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Fig. 70. Flow graphs of transcendental functions.

(0)

(b)

Fig. 71. Transcendental functions: (a) y = gl(x); (b) y = g2 (x).
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Fig. 72. Exponential amplifier.

10. 3 Complex Transcendental Functions. Most transcendental sets of equations are

not reduced as rapidly as those of Figs. 69a and 69b. However, the flow-graph notation

provides an improved means of seeing the manipulations that are necessary for reducing

the set to the desired properties.

Flow graphs also provide a means of specifying types of complex transcendental

functions in terms of the inherent equations from which they are produced. Two simple

functions, gl(x) and g(x), are those produced by the flow graphs of Figs. 70a and 70b.

Inversion of these graphs shows that gl(x) and g(x) are the inverse functions of

x = -e y + y and x = ln y - by

Typical plots of these functions are shown in Fig. 71.

It seems much easier to associate these functions with their flow graphs than with

the inverse relations that actually specify the functions. The following example illus-

trates this point.

10. 4 Exponential Amplifier. Consider the example of a cathode follower where the

" ?vg" of the tube varies exponentially with the grid voltage: vg = A exp v . A flow
g g g

graph of the circuit of Fig. 72a is shown in Fig. 72b. Placing the flow graph in standard

form produces the graph of Fig. 72c and the result

R+r R+r
P p

vo= g2 (vi) b
AR AR

This final section on flow-graph theory has introduced some of the simpler prop-

erties of the group operation of multiplication and the transcendental functions. Since

flow graphs are a means of depicting the functional dependency in sets of equations, they

represent a means of manipulating the mathematics in a pictorial form from which the

important properties of the dependency can be seen.
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II. STATISTICAL APPLICATIONS OF FLOW GRAPHS

1. INTRODUCTION

Pictorial graphs have long been used to demonstrate the structure of discrete sta-

tistical systems. The purpose of this part of the report is to show how this graphical

structure is directly related to the mathematical structure of various statistical prop-

erties of the system.

A number of people have felt that it should be possible to obtain the properties of a

Markov system directly from the graph which represents it. R. W. Sittler (17) demon-

strated that the generating function of the transitional probabilities can be obtained by

thinking of the system as a pulsed-data system.

Part II of this report treats the statistical graph as the mathematical structure of

the system. This structure corresponds closely to the mathematical structure involved

in deducing the probabilities of recurrent events, stationary distributions of recurrent

systems, transient occurrences and durations, sensitivity and variation, and generating

functions.

The mathematical structure of the statistical graph is the same mathematical struc-

ture found in flow-graph analysis. Much of the material of Part II is directed at showing

this correspondence and showing that the statistical properties are closely linked

together.

Part I dealt with the general theory of flow graphs and its applications to electrical

networks. Part II will use the ideas of drawing out flow-graph equations, the inversion

of dependencies, and the general reduction of linear graphs. The use of the flow graph

will be principally to solve the systems of equations associated with properties and to

display the interconnection between these properties.

1. 1 Summary of Part II. Much of the material of Part II is directed towards Markov

systems. The material is in the form of defining characteristic properties of the

statistical system and showing how these properties are simply related to the Markov

graph with the use of flow-graph techniques. This approach is important because it

shows how various properties are tied together and tied in with the structure of the

system.

The first section is an introduction to the general structure of Markov systems.

Here the basic structure and terminology is introduced for those unfamiliar with this

type of system. Many properties of a Markov system are the direct result of the first

occurrence probabilities based on particular starting conditions. The second section

shows that these probabilities, Pjk' can be calculated directly from the Markov graph

by making the event represented by a state sk strictly dependent and driving the graph

with a unit source at the initial starting state s.

With the first occurrence probabilities Pjk and Pkk it is then possible to cal-

culate the following probabilities of occurrence of the state sk for the system
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starting in state s:

Pjk(at least N)

Pjk(at most N)

Pjk(exactly N)

_P p N-l
jk kk

=- PjkP N

We also obtain the result that the mean, jk' and variance, Vjk, of occurrence are

given by the following formulas:

Pjk
O =

jk -
1Pkk

Pjk ( + Pkk Pjk)

Vjk =
jk

(1 - Pkk )

The first occurrence probability can also be used to calculate the probability of

entering a particular closed set by considering the probabilities of the different transi-

tions leading to the closed set.

The more interesting systems are those that run for a while and then stop. In the

mean, each state in the system will occur a number of times. This number is the mean

occurrence of the state and is identical with the definition of mean occurrence in the

section on recurrent events.

Section 3 (transient systems) shows that the mean occurrence, jk' is given by the

equation

00

jk = Pjk
n=O

where pnk is the nth step transition probability from state s to state s k. Through the

use of a recurrence relation it is then possible to obtain a set of equations that leads

to the solution of 0 jk. The flow graph of this set of equations corresponds exactly to

the Markov graph, so that the property is a direct result of the graph. The mean dura-

tion of a transient system is the sum of the mean occurrences of the transient states

m

Dj 0 jk
k=l

The report also shows how to obtain the mean duration to a particular

closed set and the variance of the duration for the whole transient system and
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to a particular closed set.

Irreducible recurrent Markov systems approach a stationary distribution irrespec-

tive of the initial state of the system. Section 4 presents four methods of using flow

graphs to find this distribution directly from the Markov graph. The fourth method is

particularly interesting in that it shows how this distribution is related to the recurrent

event theory and to the mean duration of a transient system, P(sk) = 1/Dk.

Engineers are usually quite interested in the effect of changes in the size of different

components or criterions. For a Markov system these changes result in changes in the

probabilities of the graph.

Because of the formulation of the Markov properties in flow-graph notation, prop-

erties are conveniently expressed in a bilinear form, which places the changing param-

eter in evidence. Since the denominator is the same for all terms of properties

involving a summation, the properties are usually easy to express in this form:

ap + 3
P, O, D =

P + 6

The bilinear form conveniently shows the variation of the property as the parameter

changes. The sensitivity is then given by the relation

(a6 - py)p
S=

(ap + )(yp + 6)

The material on variation and sensitivity is in Section 5.

R. W. Sittler's thesis (17) dealt essentially with generating functions by treating

the Markov system as a pulsed-data system with a corresponding delay function in each

transitional branch.

Section 6 on generating functions has been included for two reasons: to make the

material on Markov systems complete and to show the connection between generating

functions and the previous work in the report. Starting with the definition of the gener-

ating function

00

ojk(x) = Pjk .xn
n=O

Section 6 develops the connecting relations to previously derived parameters and prop-

erties. Some of the important relations involve the first and second derivatives of the

function. With the use of a recurrence relation it is shown that this generating function

can be calculated by the solution of the set of equations

m

Ojk(X) = jk + x Ojr() prk x (k = 1 m)
r=l
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The flow graph of this set of equations corresponds to the Markov graph

with each transitional probability multiplied by x. Thus, with a modification

of the graph, these generating functions can be obtained directly from the Markov

graph.

It is important to note that it is not as easy to calculate or to differentiate these

generating functions as it may at first seem. It is usually easier to obtain certain

desired properties directly from the graph rather than indirectly from the generating

functions.

A simple type of Markov system is the discrete information channel. Muroga (20)

posed and solved the problem of determining the optimum input distribution to the

channel. With the flow graphs given in Section 7 it becomes possible to see how this

solution comes about and to understand the treatment of exceptional cases in which

sizes of the input and output alphabet do not match or when certain solutions do not

exist. Being able to see the solution, we are in a good position to select examples that

are workable and can be interpreted.

Section 8 deals with the association of a measure of information to the statisti-

cal process. This measure is essentially an inverse measure of the deterministic

nature of the system. The treatment is carried out for transient and recurrent

systems.

1. 2 Discrete Markov Systems. Many statistical processes can be approximated by a

number of states and transitional probabilities of moving from one state to another.

This is a convenient representation because it permits us to follow the system as it

moves from state to state and to formulate and solve for various properties of the sys-

tem. Systems of this sort are commonly known as discrete Markov systems. This

type of system model is often used in describing the operation of discrete waiting lines,

reordering schemes, learning processes, component failure and test, discrete informa-

tion channels, and language structure.

Discrete Markov systems are defined by a discrete set of states (sl, s2 ... sm)

with an associated matrix of conditional probabilities [Pjk] of going from state sj to

state s k. Each of these conditional probabilities of going from one state to another is

restricted to being a function of only the two states.

The graph representing this system is a collection of nodes representing the states

(s, s2, . . ., sm) and branches representing the conditional transitions between the states.
Branches representing zero probability are usually omitted. Along with the initial

starting probabilities the system's statistical properties are completely determined in

the sense that they exist. Each transition is called one move or one step. The nth step
n

transitional probabilities, Pjk' are the probabilities of going from state sj to sk in

exactly n steps by any path between s and s k. Because of the particular assumed

independence of the system, the n t h step transitional probabilities satisfy the recurrence

relation of Eq. 1:
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m
0 kn = Yn-1 1)

Pjk = jk Pjk jr Prk (1)
r=l

where the summation is over the m states of the system and 6.k is the Kronecker delta.
th jk

Since n moves will put the system in some state, the n th-step probabilities also

satisfy the relation of certainty, Eq. 2.

m n
Pjk = 1 (2)

k= 1

1.3 Set Properties. Graphical representation of Markov processes usually leads to a

better insight into the mechanisms of the statistical operation of the system. From the

graph, certain properties of the states become evident upon inspection. Consider, for

example, the Markov graph of Fig. 73.

A IrclncpdIt saP of states (s ss ) or .
........ - -- `3' 4' 5' - -4' -5-

is a set of states out of which the process cannot

move, once it has moved into one of the states.

For the special case of a state sk being a closed

state, the state is called an "absorbing" state.

The whole system is "irreducible" if there is only
| . ~ . ._. , ,,_ l, _ __u 

P3, "one closed set or states corresponding to the set

of all states. A "decomposable" system refers
Fig. 73. Markov graph.

to a system which can be decomposed into a num-

ber of closed sets. "Transient" states (sl, S2, S3)

are states to which the system may never return. "Periodic" states are states that

can occur only at definite regular intervals. States s 4 and s5 of Fig. 73 can occur only

alternately. States s 1 and s2 are also periodic. A "recurrent" state (s 4 or s5) is a

state which, having occurred once, can always occur again. A special type of recurrent

state is the "null" state which has the characteristic that its nth-step transitional proba-

bility approaches zero.

0 n -Pkk °O n--o

All of these set properties except for the null state can usually be found by inspec-

tion of the Markov graph. They represent certain descriptive peculiarities about the

system which are convenient in describing the system's operation as it moves from

state to state.
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2. RECURRENT EVENTS

In any experimental science, the experimenter is usually quite interested in

observing events and the characteristic properties of their recurrence. This section

deals with the probabilities of first and repeated occurrences of events and their use

in calculating the mean and variance of occurrence.

2. 1 Probability of First and Repeated Occurrence. For a system containing transient

states it is of interest to know the probabilities associated with the occurrence of a

particular transient event (transition or state) occurring "at least," "at most," or

"exactly" N times before the system passes out of the transient states. These proba-

bilities are calculated from what are generally known as first-occurrence probabilities

of the particular event based on a specified initial starting distribution.

Let Pnk represent the probability of the first occurrence of the state sk on the nth
th

move based on the assumption that the system started in state s.. Since the n and the

n+ 1 events are mutually exclusive events, the probability of first occurrence on any

move, Pjk' is the infinite sum of the probability of first occurrence on the nth move.

00

Pjk Pn (3)

n=O

If this probability should happen to be unity, the event is called "certain" in contrast

to being called "uncertain" when the probability is less than unity.

The nth-step first-occurrence probabilities differ from the nth-step transitional

probabilities in that the first-occurrence probabilities are restricted to those paths that

do not pass through the event state s k. In the particular case of the initial state s being

the event state s k the probabilities are known as the nth-step recurrent probabilities.

A graphical model depicting the paths involved in the first-occurrence probabilities

can be constructed by splitting the event state sk into two states: one with all of the

branches diverging from Sk; the other, with all of the branches converging on s k.

In this type of system the n -step first-occurrence probabilities can be calculated

with the recurrence relation similar to Eq. 1 but different in the respect that paths do

not go through the event state sk.

pnjn-1 rk j= k m (4)
jk = Pjr Prk J = 1 ... ..

r=1
rfk

m
0 n n-(5)

Pj=S r = jr ji Pir r= 1 . ... (5)
i=l
ifk
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It may seem that it would be quite a task to perform the indicated calculations of

Eqs. 3, 4, and 5. However, by defining a quantity called the mean occurrence 0jr of

a state sr for the system starting in state sj, the calculations can be performed by

inspection of the statistical graph.

o00 n (6)
0 jr Pjr (6)

n=O

Substituting Eqs. 4 and 5 in Eqs. 3 and 6 and changing the order of summation produces

the following set of equations.

m

Pjk jrPk j= . k m (7)

r=l
rfk

m

0 jr = 6jr+ E 0jiPir r= l k, m (8)

i=l
ifk

The solution of these equations for Pjk gives the desired result. This solution can be

found by solving a flow graph representing the equations. Moreover, the representative

flow graph corresponds exactly to the modified statistical graph of the system where

the initial state s. is driven with a unit source. That is, the variable 0. is associated

with the state node sr and Pjk is associated with the event state s k. The statistical

graph is then the flow graph of Eqs. 7 and 8. Solution of the flow graph for Pjk gives

the probability of occurrence of state s k, the system having started in state sj.

2. 2 An Example. As a particular example consider the statistical system shown in

Fig. 74, where we are interested in finding the probability of occurrence of state sl

for the system having started in state s 2 , P21' and the probability of the recurrence of

state sl for the system starting in state sl, P l

The modified statistical graph is Fig. 75, which is used to find P 2 1 . Figure 78 is

used to find P11' Note how the variables of Eqs. 7 and 8 are associated with the state

0 6
~ I .~~onl ADI__

Fig. 74. A statistical system. Fig. 75. Probability of occurrence of
state sl from state s 2 .
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Fig. 76. Probability of occurrence Fig. 77. Probability of transition
of state s from state s . occurrence t 2 3 .

nodes of the modified graphs of Figs. 75 and 76. From these graphs the following

solution for P 2 1 and P 1 1 is obtained:

(0. 3)(0. 5)
P 2 1 =0.3 + =0.6

1-0.5

(0. 3)(0. 5)
P l l = 0.4 +0.6 0.3 + =0.76

1-0.5

2.3 Transitional Events. If the event to be observed is a particular transition, an

extra state can be introduced in the nose end of the branch that represents the particular

transition. For example, we may want to know the probability of the first and repeated

occurrences of the transition t 2 3 from s to s 3 in the statistical system shown in

Fig. 74. By introducing the extra state t23 and then splitting it, Fig. 77 is obtained,

and from it we obtain the following results:

0.5(1 - 0.4) 5

P(t23 Is2 ) = = 71 - 0.4- (0.3)(0.6)

(0. 3)(0. 6)(0. 5) 3
P(t23 t3) =t231t23')(1 - (1 1 - 0.4 -(0.3)(0.6))

The mechanics of finding these probabilities is then to isolate the desired event by

splitting its state node, to drive the initial state with a unit source, and then to calcu-

late the value of the isolated state node with flow-graph techniques.

In order to see how the probability of a particular event varies as the starting point

of the system varies, we merely "probe" the starting points with a unit source and

observe the probability of the event directly from the graph.

Where the system has an initial start distribution {Pj}, each node sj should be driven

with the source P instead of one node being driven with a unit source.

2. 4 Probability of Entering a Closed Set. The probability of entering a closed set

from a transient system is the sum of the probabilities of the transitions into the closed

set, since these events are mutually exclusive. The probabilities of entering the closed
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set Sa or Sb from state s of Fig. 74 are calculated on the basis of the probability of

occurrence of the transitions into the sets.

O. 2(1 - O.4)(1 - 0.5) 1

P(S 1s2) = 2
(1 - 0. 5)(1 - 0.4 - (0. 3)(0. 6)) - (0. 5)(0. 3)(0. 6)

(0.5)(0.2)(1 - 0.4) 1

Pb (1 - 0.5)(1 - 0.4 - (0. 3)(0.6)) - (0.5)(0.3)(0.6) 2

Of course, the system will eventually go into one of the closed states Sa or Sb, so

that the sum of the mutually exclusive events of entering the closed sets is unity, as is

indicated by the numerical calculations.

If the transient system has only one transition leading from the transient states, the

probability of the occurrence of the transition is unity. In the same manner, if there is

only one closed set, the probability of getting into this set is unity. These facts are a

consequence of the definition that the states considered are transient.

If the original graph was an irreducible recurrent graph instead of a transient graph,

the event to be observed will be the only closed set in the modified graph. Thus, events

in an irreducible recurrent graph, represented by states, have a probability of first

occurrence equal to unity.

2. 5 Probability of At Least, At Most, or Exactly N Times. In observing an event as

a recurrent event it is interesting to ask for the three probabilities of the event

happening "at least N times," "at most N times," or "exactly N times." Knowing the

probabilities of the first and repeated occurrences of the events Pjk and Pkk' it is then

possible to make the desired calculations as follows:

Pjk(at least N) = PjkPNk (9)

jkkk(10)

Pjk(at most N) = 1 - PjkPkk (10)

Pjk(exactly N) = Pjk Pkk ( - Pkk) (11)

The second equation comes from the fact that a particular event will occur at most N

times or at least N + 1 times with a probability of unity.

Pjk(at most N) + Pjk(at least N+1) = 1 (12)

The third equation represents the situation in which the event occurs at least N times

and then ceases to occur. The equation may also be obtained by recognizing the fact

that "at least N" is made up of the mutually exclusive events of "exactly N" and "at

least N+1."

Pjk(at least N) = Pjk(exactly N) + Pjk(at least N+1) (13)
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By putting Eqs. 12 and 13 together, the following relation becomes valid:

Pjk(at most N-l) + Pjk(exactly N) + Pjk(at least N+l) = 1 (14)

2. 6 Mean and Variance of Occurrence. With the probability for exactly N occurrences

of a particular event it is possible to define and calculate the mean occurrence and the

variance of the occurrence, as in Eqs. 15 and 16.

00 Pjk

Mjk = n Pjk(exactly n) =- (15)
n=O - Pkk

0 2 Pjk(l + Pkk - Pk )

Vjk = n k(exactly n) - Mik = 2 (16)
n=O (1 - Pkk )

To the person who is familiar with flow-graph calculations it will be quite evident

that the two definitions of mean occurrence given in Eqs. 6 and. 15 are the same. A

general proof of the identity is given in the next section.

A physical example is an oscillator which runs erratically and which can be approxi-

mated by a Markov process. Consider pulsing the oscillator to get it started and then

finding the probability that it will run through at least 10 cycles before it quits. The

material in this section shows how to calculate this probability, the probability that it

will stop running before it is pulsed again, and the mean and variance of the number of

cycles it goes through each time it is pulsed. More complex conditional events can be

treated by suitably modifying the structure of the graph.

The important idea is that these probabilities are obtainable directly from the

Markov graph by making a slight modification in its structure in order to observe the

desired event.
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3. TRANSIENT SYSTEMS

Statistical transients form an interesting field of study. There is interest in setting

up transient experiments and investigating the characteristic probabilities and running

durations. This section deals with the mean occurrence of a particular transient state

and with the mean and variance of the duration of the transient system. The objective

is to show how these properties can be calculated directly from the descriptive Markov

graph by the use of flow-graph techniques.

3. 1 Mean Occurrence. This section answers the question of how often a particular

transient event will occur before the system moves off into a closed set. Essentially,

we are interested in the mean occurrence of a particular state. The previous section

on recurrent events gave one method of treating this problem by calculating the occur-

rence probabilities and computing the mean occurrence directly from the standard

definition

oo

0 jk = n Prsk exactly n} (17)
n=l

We shall now present another convenient method for finding the mean occurrence.

Consider an ensemble of experiments of the transient system. The common sta-

tistical characteristic function n is used to indicate the success (5n = 1) or failure

n = o) the nth move in the r experiment. In each experiment the number of

occurrences of the particular state s k is given by the sum

o0

O°r : n (18)
n=0

This summation is essentially "counting" the number of occurrences. The mean occur-

rence is then

R R o

Ojk lim R = lim X n (19)
jk R-.00 R- rlnR-o0r=l r=l n=0

However, reversing the order of summations gives the result

o00 R o00

j E Roolim R E r n l P (20)
n=0 R--oo r=l n=0

where pnk is the transitional probability from s to s k in exactly n moves.wheePjkJ
Flow graphs provide a convenient method of computing this infinite sum directly

from the Markov graph. By introducing the recurrence relation
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m

Pjk = jk Pjk Pjr Prk (21)
r=l

into the derived definition of mean occurrence and changing the order of summation we

obtain the relation

m

0 jk = 6jk + O0 jrPrk (22)
r=l

This equation represents a set of equations for k = 1, 2, ... ,m corresponding to the

transient states. In flow-graph notation the set of equations corresponds exactly to the

transient part of the Markov diagram where the variable 0jk is associated with the state

Sk and the starting state sj is driven with a unit source. Solution of the graph for the

variable jk with flow-graph techniques then produces the mean occurrence of the state

Sk for the system having started in the state sj.

3. 2 An Example of Mean Occurrence. As an example consider the Markov system

shown in Fig. 78a, where the transient starts in state s 2. The flow graph for com-

puting the mean occurrence of the various states is then Fig. 78b, where the variable

Ojk has been associated with the state sk. From this graph the following quantities are

computed:

0. 8
0 zi 4°21 = =4

1 - (0. 4)(0. 8) - (0. 2)(0. 8) - (0. 5)(0. 8)(0. 8)

1

22= =5
1 - (0. 4)(0. 8) - (0. 2)(0. 8) - (0. 5)(0. 8)(0. 8)

0.2 + (0. 5)(0. 8)
023 = = 3

1 - (0. 4)(0. 8) - (0. 2)(0. 8) - (0. 5)(0. 8)(0. 8)

Usually the original Markov diagram is used as the flow graph by mentally driving

the initial state with a unit source and considering only the transient part of the graph.

S,

.8 0.8 0.8
0.4 0.4

(a) (b)

Fig. 78. (a) A Markov system. (b) Flow graph of Fig. 77a
for computing mean occurrence.
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3.3 Mean Occurrence to a Particular Closed Set. A conditional type of mean occur-

rence comes about by asking for the mean occurrence of a state sk when the transient

ends in a particular closed set. Here we define one closed set (s a) as being a first

entry state from the transient states. We are interested in the mean occurrence to the

state sk on the assumption that when the system moves out of the transient states it

moves directly to state s a .

This situation physically corresponds to an experimental setup. The experimenter

can observe that the system has been running only when it moves into a particular closed

set where it stops. The experimenter is interested in finding the average number of

occurrences of an event when he observes that the system stops.

By starting again with an ensemble of experiments, r = 1, 2, ... and observing the

conditional event on the nth move with a conditional characteristic function na, the

number of occurrences can be summed to give

oo

Ora z ra (23)
n=O

By taking the average over the ensemble and interchanging the order of summation the

following result is obtained:

o0 R o

0
E lim Z Y n Zpn pk O p (24)a R-oo ra ajk jkka (24)

n=0 r=l n=0

where pnk is the nt h -step transitional probability and Pka is the probability of the tran-

sient system terminating in the closed state s a . Thus, the conditional mean occurrence

has a simple relation to the actual mean occurrence and the probability of the closed

state for the system starting at the observed event.

For the transient conditionally terminating in a set of states {sa, sq}, the con-

ditional mean occurrence is given by a summation over these states.

q

0 jk E Pjk.k (25)
a.. .q =a

Summing over all first-entry closed states produces the obvious relation

0jk = 0 jk (26)
all states

As an example of these conditional mean occurrences consider the system shown

in Fig. 78a, where we are interested in the condition that the transient system stops

in the closed set S.

By using the methods of a preceding section the closed-set probabilities are
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0.084
Ps 0.2 = 042

a

0.08
P2s -0.2 = 040

a

O. 064
P3s - 0. 32

a

Thus, the conditional mean occurrences of the states for the system starting in state

s 2 and ending in the closed set Sa are

021 = 021 Ps = 1.68
a a

022 =022 P2s =2.00
a a

023 = 3 03 *P 3 = 0.96
a a

3.4 Unsolved Problem. The direct calculation of the variance of occurrence is an

unsolved problem. In a previous section we showed how to calculate the variance of

occurrence by considering the probabilities. Another approach through the character-

istic function leads to the summation over the correlation between the transitional

probabilities.

R

V lim R 02 -O2 (27)
jk R- R-oo jk

r=l

a) R

lim m n O (28)
mR-oo r j

m=0 r=l
n=0

0oo
oo

= Z 4(m, n) - Ojk (29)
m=0
n=0

This correlation function is simply the joint probability of a particular transition on the
th th

m and n step.

m n-m
Pjk Pkk n > m

q(m, n) = (30)
m

LPjk n = m

As yet, no simple method exists for computing this double infinite sum directly from

the graph. Possibly you can find a way of doing it. The simple expressions found in a

preceding section would lead us to suspect that it can be done.
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3.5 Transitional Events. The mean number of occurrences of a particular event is

a direct consequence of the system and can be computed directly from the graph. In

order to compute the mean occurrence of a particular transition, a state is introduced

into the latter part of the transition branch. The mean occurrence of this new state is

the desired result. A slightly easier procedure consists of calculating the mean occur-

rence of the state at the initial end of the branch and multiplying it by the probability

of the transition.

In the preceding example, Fig. 78a, the mean occurrence of the transition between

s l and s 3 would be

12t = °21 ' P 1 3
= 4 0.5 = 2

3. 6 Mean Duration. It takes a number of transitions for a system in a transient state

to move into any one of a number of closed sets of states. The average number of

moves involved in a transient system is generally known as the mean duration of the

transient system. Since it takes one move to get out of a transient state, the mean dura-

tion (average number of moves) is equal to the sum of the mean occurrences of the

transient states.

m

D. Z jk (31)

k=l

where D. is the mean duration of a system starting in state s..

This result can also be obtained from the characteristic function, nr described in

the preceding section or from the following consideration, which parallels Feller's

derivation (18). For the system starting in state s, let Pn be the probability that after
j, ]

n transitions the system is still in one of the transient states. Because of the mutually

exclusive nature of the transient states, Pn satisfies the relation

m

pnj= Pk (32)

k=l

where pjk is the nth-step transitional probability, and the summation is over all of the
jk

transient states.

Using the standard definition, the mean duration is defined as

co

D. = 7 n Pr{djn} (33)

n=l

where the probability that the duration will be n moves is

Prjd n n-l An (34)
-P.
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The mean duration is then

00 00 oc m m

D. Z n(Pn- - n n pn O (35)
Z j% = Z Oj k

n=l n=O n=O k=l k=l

where

00oo

° 0jk = k (36)
n=O

In the example worked out in the previous section on mean occurrences we find that

the mean duration of the system starting at state s 2 is 12 moves, which is the sum of

the mean occurrences of the transient states.

The mean duration can also be thought of as the average amount of time spent in the

transient states. Thus, we have a means of weighting the duration calculation for the

systems in which the time interval spent in the various states between transitions is

not uniform over the states. This produces a mean duration with the dimensions of

time.

m

Dj = Z Wk Ojk (37)
k=l

where Wk is the time spent by state sk.

3. 7 Mean Duration to a Particular Closed Set. In certain situations it is possible

to observe that a transient system has been in operation only when it terminates

in a particular closed set. Thus, it is of interest to determine the mean duration

of a transient system on the condition that the transient terminates in a particular

closed set.

By paralleling the reasoning for the mean duration that it takes one move to get out

of a transient state, the following can immediately be set down.

m m

Dja jka = jkPka (38)
k=1 k=l

where the summation is over all the transient states. A more convincing (and longer)

derivation is the following one.

The conditional mean duration is defined as

00

Dja = Z n Pr{dja =n} (39)

n=l
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where the probability of the conditional duration is given by the expression

m

Pr{dj = n = P Pka (40)

k=l

It has been assumed that the transient system starts in state s.j and ends in the closed

state s
a

If instead of one state s a, we allow the system to terminate conditionally in a num-

ber of states s a . . ., Sq' the conditional duration of the set is the sum of the conditional

durations of the individual states

q

Dj(a.. q) = Dj, (41)
,=a

This is a result of the fact that the states sa,. sq are mutually exclusive, so that the

probability of duration is given by the expression

q m
Prjd -1 4n-1Pr{dj(a. . . q) = n} =E Pjk Pk(42)

,=a k=1

By inserting Eq. 40 into Eq. 39 we obtain the flow-graph equation

m

Dja = Djk Pka (43)
k=l

where

oo

D n n-1 (44)
jk = nPjk (44)

n=l

The quantity Djk is given the name of mean duration of the state sk for the system

starting in state sj. This quantity will be encountered in subsequent sections.

By using the transitional probability recurrence relation, Eq. 21, another set of

flow-graph equations is obtained:

m

Djk = jk + Z Djr Prk (k = 1 ..... m) (45)
r=l

The equations indicated in Eqs. 43 and 45 represent a flow graph corresponding exactly

to the transient part of the Markov graph except that each node is driven by a source

equal to the mean occurrence of that node.

Another derivation shows that the quantity
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m

L 0 jr Ork
r=l

satisfies Eq. 45. Since this quantity and the conditional duration are unique, we have

the relation

m

Djk = jr rk (46)
r=l

or

m m

Dj = 70(47)D ja = Ojr Ork Pka (47)
r=l k=l

m

Dja = ~7 . P (48)
DJa Ojr Pra (48)

r=l

where Pra is the probability of the closed set sa for the system starting at state sr

Equation 38 is interesting because it leads us into the physical interpretation that

the conditional duration is equal to the sum over the transient states of the mean occur-

rences of the states times the probability of getting to the particular closed set s a

Summing Eq. 38 over all "a" then leads back to the relation

m

Dj= A jk (49)

k=l

3. 8 An Example of Mean Duration to a Closed Set. Consider as an example the Markov

diagram of Fig. 79. The flow graph corresponding to the conditional mean duration to

the closed set sa is given in Fig. 80. From this graph we have

15
la = 11

Subsequent calculation shows that

D -5 and D -4Dlb 11 1-11

Thus we have the consistent result that

Dla + Dlb = D1

3. 9 Possible Graph Modifications. In trying to find ways of calculating the conditional

duration we might suppose that it could be done by modifying the transitional probabili-

ties. A plausible modification is to have all the transitions either lead back into the
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Fig. 79. Markov diagram.
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Fig. 80. Mean-duration solution to a particular closed set.

transient states or directly to the closed set sa. This intuitive approach does not seem

to be justifiable. Possibly you can find a means of making the modification.

The mean duration of a transient system is a direct result of the mean occurrence

of all the transient states, while the conditional mean duration is the direct result of the

mean occurrence of the transient states and the probability of the closed set from the

various transient states.

3. 10 Second Moment of the Duration. The second moment of the duration of a transient

system represents a measure of the average spread in the duration averaged over a
2

number of experiments. With the second moment of the duration, D., it is then pos-
2

sible to calculate the variance 0- and standard deviation of the duration.

2 = D2- [D.]2 (50)

For a system starting at the state s the second moment of the duration is defined as

o00

D = n Pr{d. = n}(51)
J

n= 1

where the probability of the duration is defined, as before, in terms of the probability

that after n moves the system is still in a transient' state.

Pr{dj n= n= Pn- (52)
J 3

m

Prdj = n}= X (Pn- Pjk (53)
k= 1
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With this definition and a change of summation order we have the relation for the second

moment in terms of the mean occurrence and duration:

m

Dj = (Djk - jk) (54)
k= 1

An example is that of Fig. 79. The desired quantities are obtained from Fig. 80.

30 100
12 11 12 1

10 D 50
22 11 22 11

Thus, the second moment and standard deviation of the duration of the whole system

are

2 260 (1260)/2
D= 11 j= 11 3. 2

as compared to a mean of 3. 6 moves.

3. 11 Conditional Second Moment of the Duration. It is also possible to calculate a

conditional second moment of the duration to a particular closed set sa as was done for

the conditional mean duration. The conditional second moment is defined as

00oo

Dja = n Pr{dja = n} (55)
n= 1

where (as before) the conditional duration probability is defined as

m

Pr{dja= n} = jk Pka (56)
k= 1

As with conditional mean duration, the second moment of the system terminating in a

number of states satisfies the additive relation

q

D = DJ (57)

[=a

The Markov graph represents a flow graph from which this conditional moment can

be obtained. Using the definitions of Eqs. 55 and 56, we obtain the expression

m

D 2 D (58)
ja Djk Pka

k= 1

where
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o00

D2 = 2 n- 
Dik (59)

n= 1

Breaking this equation into parts and changing the order of summation produces the

flow-graph equation

m
2 2(60)Djk = (2Djk - k)+ X D jr Prk (60)

r=l

Drawing this equation out in flow-graph notation produces a graph corresponding to the

original Markov diagram, in which each state is driven with a source equal to the second

moment of that state.

It can be shown that the conditional second moment is given by the relation

m

D. = (2Djr - Ojr) Pra (61)

r= 1

where Pra is the probability of the closed set sa from the state sr

Thus you see the parallelism between finding the conditional second moment and

conditional mean duration.

In the example used in Fig 79, it was found that

170
2D11 11 11

902D - O90
12 12 11

The probabilities of the closed state sa from the transient states are

5P 
la 11

7P
2a 22

Thus the conditional second moment and standard deviation are

2 1165 (940)1/2
- a-. - ~2.8

ja 121 ja 11

Calculation of the second moment of the duration by these flow-graph methods is

limited to fairly simple graphs because of the necessity of a triple solution. However,

many problems must be simplified to fairly simple graphs in order to understand the

basis of the operation.

Transient systems are usually found in actual practice and are usually interesting

to work with. This section has shown how the mean occurrence of a particular state,

the mean duration of the system, and the second moment of the system can be calculated
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from the Markov graph by making use of flow-graph techniques. The important idea is

that the properties are a direct consequence of the representative graph from the stand-

point of existence and numerical calculation.
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4. STATIONARY STATE DISTRIBUTION

A recurrent Markov system is a system of recurrent states in which the process

continues without limit. The original starting transient effects are lost in the limiting

process, so that all that is left is a certain probability of finding the process in a given

state. The set of these probabilities is known as the stationary state distribution.

There are four methods of considering the process in order to be able to calculate

the distribution. Two of these methods result in identical calculations. In each of the

four methods the flow graph used to perform the calculations corresponds to the Markov

graph except for minor changes in structure. These methods are based on three well-

known equations:

m

Z P(Sj)pjk - P(sk) = 0 (62)
j=l

P(Sk)= 1 (63)
k= 1

m

Z Pjk= 1 (64)
k= 1

where P(sk) is the stationary state probability and Pjk is the one-step transitional proba-

bility from state sj to state sk. The system is assumed to be made up of aperiodic

recurrent states.

4. 1 Four Methods for Calculating Stationary Distributions. In the first method, m - 1

equations of Eq. 62 are solved with the use of a flow graph in terms of one state proba-

bility P(sj) to obtain the set of relations

P(sk) = jk P(sj) (65)

With the help of Eq. 63, the desired solution is obtained:

Ojr
P(sf) = (66)

m

E jk

The second method uses Eq. 63 and m- 1 equations of Eq. 62 in flow-graph form.

The state probabilities are obtained directly from the flow graph.

The third method essentially calculates the diagonal cofactors Ak of the transi-

tion matrix minus the unit matrix and uses Eq. 67 to calculate the desired proba-

bilities.
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(s ) m (67)P(Sk) =I

ZAk
k= 

Calculation of the cofactor Ak is performed directly from the Markov graph with flow-

graph techniques.

The fourth method is based on the duration Dk of the recurrent event of the state s k.

Since the stationary probability is really the average frequency of occurrence, it is

related to the duration of recurrence by the relation

P(s ) 1 =jk (68)
Sk) Dk Dj

The variance of the duration then gives an indication of the transient fluctuations around

the average occurrence of the particular state.

4. 2 An Example of the Four Methods. As an example, consider finding the stationary

state probabilities of the Markov system of Fig. 81a.

In using the first method, all branches converging on a single-state node s are

removed so as to represent the m- 1 equations of Eq. 62 as in Fig. 81b. The equiva-

lence relations 0jk from sj to s k are then calculated for k = 1, ... , m. Stationary state

probabilities result from the application of Eq. 66. In this example,

' 7 33
11' °12' O 13: 1, 8' 32

Thus the stationary state probabilities are

32 28 33
P(sl), P(s2 )' P(s3 ) : 93' 93' 93

The second method uses the m- 1 equations of Eq. 62 and Eq. 63 in flow-graph

form. All branches converging on a single-state node sj are first removed, so that the

Markov diagram represents Eq. 62. Equation 63 is represented by attaching a branch

having a coefficient of -1 from each state node to state node sj and driving-state node s

by a unit source as is done in Fig. 81c. The value of each state node as determined

0.2

(a) (b) (C)

Fig. 81. (a) Markov diagram. (b) First method for calculating stationary dis-
tribution. (c) Second method for calculating stationary distribution.
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by flow-graph manipulation is the state probability. From Fig. 80c the following cal-

culations are made:

32 28 33
P(sl)' P(s2)' P(s3) :9' 93' 93

The third method is based on properties of singular determinants having an eigen-

value of +1. Normally the solution of Eq. 62 is the cofactor of a row multiplied by an

arbitrary constant of the matrix (P-I).

P(l) , P() , P(s m ) : AjC A2 jC, . .. ,AmjC

However, in the calculation it is found that the row cofactors are equal to the diagonal

cofactors. This is due to Eq. 64. The cofactor and minor are related by Eq. 69.

A.. = (-1)1J M.. (69)

where Mij is the determinant (P-I) with the it h column and jth row removed. In the

determinant (P-I), the i row is reconstructed as the sum of all the rows in the minor
.th row an th

M... The new coefficient of the i th row and the r column will then be
1J

m

1 (Prk - 6rk) r=1,. m

k=l r i
k~j

which is equal to

(Prj - rj)

Changing the sign of the it h row and permuting the it h row into the jth row produces the

result

A..: ( 1 )J M.. = M.. = A.. (70)
13 ii 11 11

The cofactor A.. of the matrix (P-I) is then related to the disjoint determinant of the

node s i by the relation

11 1

Subsequent use of Eq. 63 then gives the desired result of Eq. 67. From Fig. 81 the

cofactors are determined.

A 1, A2 , A3 : 0.32, 0. 28, 0. 33

Applying Eq. 67 to these results then gives the state probabilities:

32 28 33
P(sl)' P(s 2 )' P(s 3) :9 3 93' 93

In applying the fourth method we find it to be identical with the first method. The
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duration of the recurrent event of the state sj is calculated by splitting the event state

sj and calculating the mean occurrence of each state, Ojk, k = 1 ... , m. (See

sec. 3.6.)

The state s.j is considered as occurring once - not twice, as some may think. The

sum of the mean occurrences represents the mean duration of the recurrent event, so

that the probability of the state is given by the relation

P(Sj)= m (72)

Z Ojkk= 

which is the same relation that was used in the first method. The mean occurrence,

0j., is unity. In the example

7 33 93
1 8 32 32

so that

1 32
P(sl) = D 1 93

1

A comparison of the four methods shows that each method has its advantages. The

first and fourth methods simplify the diagram. The second requires only one calculation

to obtain a single stationary probability. The third requires no modification of the

diagram. Of course, each method has its disadvantages. The first, third, and fourth

essentially require a solution for the whole set of probabilities before any one can be

found. The second method is practical only if a great number of the states have a finite

probability of moving to one state. It is hard to say that one method is better than the

other without specifying the system under study. Each method has a particular field of

application in which it works best.

4. 3 Two-State Statistical Servosystem. As a final example of stationary distributions

consider the two-state servosystem that has a unit delay in its reaction time. This is

a system that statistically oscillates between its two states. By observing the state,

the probabilities are biased so that the system tends to remain in permanent oscillation

.+S I

Fig. 82. Two-state servosystem. Fig. 83. Second-moment calculation of
the duration.
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in contrast to remaining in a particular state. As for most systems, a finite reaction

time is assumed. Here it is assumed to be the time of one move. The system is repre-

sented by Fig. 82, where the two states are zero and one. The number on the right

indicates the present state of the system. The probabilities are biased either large, L,

or small, S, depending upon the previous state.

If we use the third method, the cofactor determinants are

2 2 2 2
Ao, A1 A2 , A3 : L, L L

so that the probability of each state is

P(s) = - 4

From this calculation it would seem that the system operates independently of how

heavily the servosystem biases the probabilities. Use of the fourth method indicates

that though the average is independent of the servo weighting, the second moment is a

function of the weighting and indicates the best type of weighting to use.

Figure 83 is used to make the calculations of the mean occurrences.

0oo, 0 01' 0o2 0o3 : 1, 1, 1, 1

The duration is then 4, which gives the state probability of 1/4. With these mean

occurrences, the state durations are calculated from Fig. 83.

D = 1
oo

1 + ZS
D = 1+ ol L

3
D 1 + o2 L

2 + 2S
D =1+ o3 L

Thus the second moment is

D = 4 + e-L t L 1)

which has its minimum value at L = 1. Hence the most desirable situation is to have

as much biasing as possible, even though it is a unit of time late in being applied.
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5. SENSITIVITY AND VARIATION

The value of Markov systems stems from their correspondence to physical situations.

In these physical situations there is always the question of the effect of changing certain

standards and thus the corresponding probabilities of the system. For example, we may

be interested in knowing how the probability of an unserved customer will change in rela-

tion to a change in the ordering and servicing system.

5. 1 Bilinear Form. Having developed a method of solving for probabilities, mean

occurrences, and mean durations with flow graphs, it is convenient to write the results

in a standard form from which the variations can be observed. The standard form

depends upon the manner in which the transitional probabilities change. In order to

change one transitional probability from a state s k , another must also be changed from

the same state so that the divergent probabilities sum to unity.

For the special case of this second transitional probability going to a closed set, the

calculations of the probabilities and mean occurrences simplify to a bilinear form.

ap + P
P,O = (73)

Yp+ 6

The constants of Eq. 73 have simple interpretations in terms of loops and paths through

the graph. Discussion of these interpretations will be found in Part I.

Since the duration is the sum of the mean occurrences and since the denominator of

the mean occurrences will be the same, except in degenerate cases, the mean duration

can be conveniently calculated in the form

m

akP + Pk
D k= (74)

Yp+ 6

This bilinear form provides a convenient means for investigating the variations in the

properties as one of the transitional probabilities changes.

A criterion of measure often applied to this type of problem is that of sensitivity, S,

which is defined as the percentage incremental change in 0 by a percentage incremental

change in p.

AO
0 p dO

S =- ' -- (75)
P 0 dp

P

In terms of the bilinear constants

(a6 - By)p
S = (76)

(ap + )(yp + )(p + 
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Fig. 84. Markov system.

5. 2 Example. Consider the system in Fig. 84. This system could be a representation

of a holding pattern for landing airplanes at two different runways, Sa and Sb, or it

could be a representation of a switching system hunting for either of two pieces of equip-

ment, Sa or Sb. Here we are interested in the variation and sensitivity of the transition

probability p in relation to the mean occurrence and duration. By assuming that the

system starts in state s 2 , the following calculations are made.

Mean Occurrences:

0. 3 p + 0. 15

021 =
-0. 18p + 0.21

0.3
22 - -0. 18p + 0.21

0. 6 p

023 =
-0. 18p + 0.21

Mean Duration:

0. 9p + 0.45
D2

-0.18p + 0.21

The sensitivity of the duration is then

0. 2 7 p
S=

(0.9p + 0.45)(-0. 18p + 0.21)

5
S Ip=0.5 4

5. 3 Variation in General. In the more general situation the second probability returns

to the transient system. Here, the expressions for the probabilities, the mean occur-

rences, and the mean duration are bilinear expressions of the change in the transitional

probability, Ap.

aAp + A

P, O, D = (77)
yap + 6

This section has outlined an approach to calculating the variation and sensitivity of

94



Markov properties. These are interesting aspects of the theory because people are

usually interested in making changes in a system in order to see what improvements

can be obtained. Effect of a change can best be shown by calculating the properties in

a bilinear form, an operation that is easy to perform with flow-graph techniques.
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6. GENERATING FUNCTIONS

W. Feller (18) in his treatment of Markov systems and random walks introduces

the generating function which enables him to solve a number of problems. This function

is very much like the ones that are used to generate such functions as Legendre and

Bessel functions. In this case, the function generates the nth step transitional proba-

bilities.

R. W. Sittler (17) demonstrated that it was possible to obtain this function directly

from the Markov graph by thinking of it as a pulsed-data system. A substantial part of

his Sc. D. thesis was devoted to this subject. This section parallels Sittler's work in

that it presents the basis for being able to calculate the generating functions and gives

some of their uses.

6. 1 Definition of the Generating Function. Consider forming a function O.jk(x) as a
th n th

power series of x, where the nt h coefficient, Pjk, is the nstep transitional probability

of moving from state s to state sk in exactly n transitions.

00

Ojk(X) = P n (78)
n=0

Since the coefficients are bounded by unity, the series always converges for x < 1.

Moreover, where pn - 0, in the case of a transient state or a null state, the seriesjk
converges for x = 1.

For transient states the following relations are valid:

Mean Occurrence:

0 jk = Ojk(X) x 1 (79)

Mean Duration:

Djk = dx Ojk(X)lx=l + jk (80)

Second Moment of Duration:

k dZ 2 jk(X) x= + 3Djk - 20jk (81)jk- dx 2 jk(x)I x=l jk

With these relations and the preceding material using these constants it is easy to see

the versatility of the generating function.

6.2 Flow-Graph Calculations. For the general case, a convenient modification of the

transitional probabilities of the Markov graph provides a means of calculating these

generating functions directly from the graph with flow-graph techniques. By using the

recurrence relation
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0

Pjk = 6jk

m
n n-l

Pjk = Pjr Prk
r=l

(82)

it becomes possible to derive the following set of equations for calculating the generating

function.

m

Ojk(X) = 6jk + Z Ojr(X) Prk x
r=l

k = l,...,m

The flow graph that represents this set of equations corresponds to the Markov

graph where each transitional probability has been multiplied by x, and the initial state

is driven by a unit source. For example, consider the periodic Markov graph shown

0.8 0.5

Fig. 85. Markov process. Fig. 86. Flow graph of the generating
function Olk(x).

in Fig. 85. For the system starting in state sl, we have the corresponding flow graph

of Fig. 86.

Solution of the flow graph of Fig. 86 then produces the following generating functions:

1 - 0. 5x 2

1 - 0.7x2 - 0.3x 4

0. 8x

2 41 - O. 7x - 0. 3x

01 (X) =

0 1 4 (X) =

O. 2x(1 - 0. 5x ) + 0. 4x3

1 - 0.7x2 _ 0. 3x4

0. 8x2

1 - 0.7x2 - 0.3x4

6. 3 Another Method of Modification. A variation in the above procedure for finding the

generating function is provided by the equation of certainty.

m
n

k=1 jk

Multiplying by xn and summing over n produces the relation

m

Ok(X) 1 - xk=l 3k

(84)

(85)
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1/2 +1

1122>& /4 1/4/2x x

3/4 x

~~(a) ~(b)

I-I

+ O ,,(x I-

O., ) I 1/4xl2/ r I (x

-_ OzCx) 34 x

(c) (d)

Fig. 87. (a) Sittler's example. (b) Sittler's formulation. (c) Another
formulation. (d) Another formulation.

In setting up the flow graph for calculating the generating functions it is then possible

to use the equation

m

Oji(x) = - Ojk(X) (86)
k=l
kAi

as one of the flow-graph equations.

Consider the example that Sittler (17) used in his thesis, our Fig. 87a. Three pos-

sible formulations are shown in Fig. 87b, c, and d. Figure 87b is the one used by

Sittler. These graphs produce the relations

1 - 1/4x

01 1 (x) 
(l-x)(1 + 1/4x)

1/2x
0 1 2 (X)

(1-x)( + 1/4x)

Use of this variation somewhat simplifies the calculation when state s i is a central

return node and the process starts at state s i . This is the result of branch values being

changed to (-1) and the denominator of Oir(x) appearing partly factored.

6. 4 Transitional Probabilities. The generating function represents a storehouse of

information. All of the transitional probabilities can be obtained directly from it.

Essentially there are three methods of obtaining these probabilities.

The first method is that of differentiation and evaluation at x = 0:

n dn

1 dn (x~ix~o (87)Pjk n Ojk(X)x= (87)

In the second method, a long-hand division (in the right direction) is performed to
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produce the power series of x. By means of division the following series for O 1 4 (x)

of the example in Fig. 85 is obtained.

O1 4 (x) = 0. 8x Z + 0.56x 4 + 0.63Zx 6 +

Thus

P = 0 n odd

o 4
P 1 4 = P 1 4 = 0.56

2 6
P 14

= 0.8 P14 = 0. 632

Naturally, the even coefficients approach the stationary distribution probability

P(s 4 ) = 8/13 as n - oo. The even nature of the function makes all of the odd coefficients

zero, as might be expected from the periodic structure of the graph.

These first two methods are convenient for finding the low-order transitional proba-

bilities, but they quickly become laborious for the higher-order transitions.

The third method produces a general functional form for the transitional probabilities
n

Pjk. The procedure is to locate the roots of the denominator and then expand the gen-
erating function into a partial fraction expansion. Each term of the partial fraction

expansion is then expanded into a power series, so that the transitional probability

jkn is just the sum of the nth coefficients of the various terms:

k
k q

k = i{l+ aix + +ax) (88)
l 1 -a x

q

a.X= ki + a.x + (aix) + (89)

Pjk Z ki i (90)
i=0

The expanded generating function O 1 4 (x) of Fig. 85 in terms of x produces the

relations

8/13 -8/13
°14(x) -

1 - x 1 + 0. 3x 2

Thus
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0 1 4 (x) = 3 2 4 ... )

Zn 8 ( 0 3 )n )
P 14 - 13 -

0o 4
P 1 4 = P 14 =0.56

2 =0.8 6 2n 8
P 14 1 4 = 0.632 14 13

These relations correspond to those found by division.

6. 5 Limit Calculations with Generating Functions. Quite often in more complicated

problems it is not possible to determine the roots of the denominator of the generating

function. This failure to determine all of the roots certainly prevents us from finding
n n

a general expression for pjk. However, a desirable property of pjk is its behavior for

large values of n. This behavior can be obtained by finding the roots that have the

smallest magnitude I x . Some of the roots may be complex. With them, the partial

fraction terms can be found by finding the residues. Thus, a partial expansion is

obtained. Since the other roots are larger, the coefficients that correspond to the

larger roots in the series expansion die off faster and leave only the coefficients that

correspond to the roots with the smallest magnitude.

For transitions to recurrent states, this smallest root will be Ixl1 = 1. The next

largest root then tells how fast the system approaches the stationary distribution. For

transitions to transient states the root with the smallest magnitude will be greater than

one, so that p - 0 as n - oo.

By the first two methods we are able to determine how the probabilities start off;

by the third method we are able to determine the other extreme of the probabilities as

n goes to infinity. If the roots can be obtained, a general expression for the n -step

probability can be obtained.

The order of the denominator of the generating function for a Markov process that

consists of one set of recurrent states will be that of the number of states. In the gen-

eral case the order is equal to or less than the number of states. This fact is the

result of the correspondence between determinants of the flow graphs and the linear set

of equations. As an example, consider the generating function associated with the sys-

tems in Figs. 85 and 87a, where the order is respectively 4 and 2.

6. 6 Generating Functions of Recurrent Events. Generating functions provide a concise

formulation of a wide set of properties. Three properties that are tied together by the

generating function are the probability of first occurrence of the event state s k, the

mean duration to the event state s k, and the second moment of the duration to the event

state s k.

The object of this section is to calculate the generating function of P the
jk'th
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th
probability of first occurrence of the state sk on the n move for the system having

started at state s..

00

Pjk(x) P * n (91)jk
n=O

With this generating function it is easy to verify that: The probability of first occur-

rence is

Pjk= Pjk(x) x 1 (92)

The mean duration to the first occurrence is

00

Djk = n pjk d Pjk(x ) x=l(93)
n=l

And the second moment of the duration to the first occurrence is

00

27 2 n d2
Djk E nZ P.= d2 P.(x) I X= + Djk (94)

n=l

By following the ideas of section 2. 1 of calculating the transitional probabilities

having no paths through the event state s k, a set of equations involving the generating

function Pjk(x), similar to those of Eqs. 7 and 8, can be derived.

m

Pjk(x) = Ojr (x) Prk x (95)
r=l
rfk

0jr (X)= 5jr + I Oji(x) Pir x (96)
i=l
i*k

Formulating these equations as flow graphs produces the original Markov graph with

each transitional probability multiplied by x and the event state sk split into two states

of converging and diverging branches.

Thus, with flow-graph techniques and with a slight modification of the Markov

graph, it is possible to calculate the generating function Pjk(x) directly from the original

graphical formulation.

6. 7 An Example of Recurrent Events. As an example, consider calculating the gen-

erating function of the recurrent probabilities of the two-state servosystem described

in section 4. 3 and depicted in Figs. 82 and 83.

The recurrent generating function is given by the graph of Fig. 88, where the state
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°I

Fig. 88. Generating function of the two-state servosystem.

s has been split and the transitional probabilities have been multiplied by x. From

Fig. 88 we obtain the result

P0 xS 2 (L-S) x4 + Sx3

Poo',(X) = S + L 

S(S-L)x - Sx - Sx + 1

The probability of recurrence is

Poo' = Poo'(X)lx= = 1

which indicates that the recurrence is "certain." The mean duration is

D = d P (x)x = 400'- dx oo'()I x=l

which agrees with previous calculations made in section 4. 3. Also, the second moment

of the duration is

2 =d 2

oo' = 2 Poo'(X)Ix=1
+ Doo' 4( L )

6. 8 Correlation. R. W. Sittler (17) assigns a measure to each state and then shows

how to calculate a correlation function of the measure and how to obtain the power

spectrum by using the generating function concepts. His ideas correspond to a system

in which each state gives a particular magnitude output when the system is in that state,

Of course, his ideas are also applicable to the situation in which each state is observed,

as in the case of a number of binary outputs of different magnitudes.

More complex generating functions, based on the idea of assigning different varia-

bles to the transitional probabilities, are possible.

6. 9 A Direct Solution. The main reason for not always using a generating function in

solving for the statistical properties of a Markov system is that we may not want the

storehouse of information that the generating function contains. Sometimes all that we

want is the answer to a certain problem. The quickest approach is usually a direct

solution of the problem.

102



7. MUROGA'S PROBLEM

Flow graphs have an exceptional ability of making difficult systems problems quite

easy to see and understand. Muroga's problem is an example.

Muroga's problem deals with finding the optimum input probabilities of a noisy dis-

crete information channel. The problem has been formulated and solved, but in a form

that is quite hard to understand and to teach. However, with flow graphs and a simple

derivation, the mechanics of the solution become quite obvious. With the mechanics

displayed in graphical form it is possible to see which examples will be easy to solve

and which examples will not be easy to solve.

7. 1 Information Channel. An information channel is a transformation from an input

alphabet, x (x = 1, 2, ... ,m) to an output alphabet, y (y = 1, 2, ... ,n). In order to cut

down the bulk of the notation, the associated probabilities are indicated by x and y

instead of P(x) and P(y). Under stationary conditions there exists a matrix of transi-

tional probabilities Pxy from the input x to the output y.

Figure 89 is an example of a channel. The input is on the left; the output is on the

right. Branches indicate the transitional probabilities.

If we are given the input probabilities {x}, the output probabilities are given by the

formula

m

y = x Py (97)
x=l

The graph of the channel is a flow-graph representation of Eq. 97. A solution of

this equation is required in order to find the remaining probabilities when only a part of

the input and output probabilities are given. In flow-graph notation, the solution is

performed by first inverting the paths from unknown probabilities to known probabilities.

One method of inversion applicable for these channels consists of inverting the path

of interest, changing its value to the reciprocal, and multiplying any incoming branches

to the inverted path by (-1). For example, the input probabilities in terms of the output

probabilities of Fig. 89 are given by the flow graph of Fig. 90. From this figure

1
X1 qly 1

Pl 1
x2 - qqlq2 Y + q Y2

Of course such a simple solution will not, in general, guarantee that we started with
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p1 -p

X2 q2 2 q2 Y

2 -P2

X3 c ~Y 3 X3 Y 3

Fig. 89. Information channel. Fig. 90. Inverted channel.

a valid set of probabilities. An arbitrary specification can lead to requiring that some

of the probabilities be negative, as can be seen in the example above.

The only constraint that exists on the channel is the equation of certainty

n

Z Pxy=1 (98)
n=l 1

This equation, along with Eq. 97, assures us that the equation of certainty is valid for

x or y if it is valid for the other.

n m

y =E x =1 (99)

y=l x=l

Thus if we constrain the summation of the output probabilities to be unity we know that

the summation of the input probabilities is also constrained to equal unity.

7. 2 Channel Capacity. Most people feel that there is a best way of doing almost any-

thing. Thus it is interesting to investigate the best way to use the information channel

in order to get the most information through it. This maximum is called the channel

capacity, C. It may be obtained by a particular set of input probabilities.

The information between x and y is given by the equation

m n

I(x;y)= x log Pxy (100)Pxy y
x=l y=l

It is our object to find a set of probabilities {x} such that I(x;y) is maximized. A some-

what more convenient form for Eq. 100 is

n m

I(x;y) = Z y log Hxx (101)

y=l x=l

where

104

--- -- -- -·- ---- ·--- - --------



n

Hx = Z Pxy log p (102)
y=l xy

The set of quantities {Hx} is the conditional entropy of the channel and is completely

determined by the channel probabilities p xy. The only constraint that exists is that the

summation of the output probabilities equals unity.

n

+=Y-l= 0 (103)
= Z y - 1 0 (103)

y=l

7. 3 Maximization. A convenient method of maximization is Legendre's method of

undetermined multipliers. The function U is first constructed as

U = I(x;y) + Xo0

n m

y (log + X0 ) - E Hx x (104)
y=l x=l

where Xo is unspecified. The total derivative is then taken and set equal to zero.

n flA m
dU = dy og + + log - Hdx

y=l x=l

m n

dx P log - H -0 (105)

x=1 y=l

where

\ =log (106)

Thus for an arbitrary change dx we must have the maximization relations

n

Hx= Pxy log Xy x = 1, ... ,m (107)

y=l

in order to satisfy the relation

dU = 0 (108)

Use of the maximization relations, Eq. 107, in the original definition then produces

the simple relation

C = I(x;Y)ma x = log X (109)
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The fact that the second differential is negative shows that the solution actually is a

maximum point.

n

dgU = . - log e dy z

y=l

(110)

The solution for y and x are best obtained with flow-graph techniques. The method

of starting with the set {y} and obtaining the set {x} was outlined in section 7. 1.

The set {y} can be obtained by solving the maximization relations, Eq. 107. These

relations represent a flow graph; the inversion of the graph represents the solution.

I
log( X

H2

2

H3

Iog( ) 

loge( ) x
IN e

O y1

*0 Y2

-o Y3

Fig. 91. Maximization relations.

+ q 2- ) X
H, c I Iy

2-( ) I
+ p- >

H 3 ; o oY3H,~C-~~-~-~-F--~--~ ~~p

Fig. 92. Solution of the maximization.

I , ) I I

H, i_< x

H, + )' c _

Fig. 93. Complete maximization solution.

The graph of the relations is similar to the channel flow graph except that all of the

arrows are turned around. For example, the maximization relations for the channel

of Fig. 89 are given by the flow graph of Fig. 91. The inversion of this graph is then

the solution, Fig. 92.

Having the values of the y's we then solve another flow graph for the x's. By putting

these two solutions together we obtain the flow graph of Fig. 93. As we can see from

the flow graphs, the constant X is a scaling factor to get the sets {x} and {y} to sum to

unity. For this special example we have the relations

P ql
H 1 =- log P1 ql

P2 q2
H2 = - log P 2 q2

H3= 0
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By using these relations in the flow graph we obtain these results:

H 1 P1 H 2

1 ql q q 2
Xl Xql 2

_1
X P2/q Z2

HZ H 2Pl H 2 Z

1 q2 P1 ql ql q2
X q2Z q2

1 p P2/q2 / P.

1
x3 = P2 X2

The use of the relation

3

x= 1
x=l

gives a simple relation in X and thus the channel capacity.

7.4 Special Cases. The exceptions are usually difficult to understand and to treat.

But they are often the most interesting problems. By having the mechanics of the solu-

tion displayed in flow-graph form it is possible to get a better understanding of the

exceptions and an indication of how to treat them.

The next three sections treat the special cases of negative probabilities, unequal

input and output alphabets, and singular solutions.

7. 5 Negative Probabilities. Flow-graph reduction produces the exact mathematical

solution of the formulated problem. It is unfortunate that there is lacking a method of

requiring all the solutions to be positive - one of the two conditions sufficient for the

numbers to be probabilities.

The only means of knowing that the solution represents a bona fide probability dis-

tribution is to calculate the distribution and see if each probability is positive. All of

the output probabilities {y} will be positive, as shown by the maximization relation,

Eq. 107. The solution of the set of equations for log (1/Xy) may be positive or negative,
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but the inverse of the logarithm is always positive.

In the previous example the input probability x2 goes negative, where

P 2 /q 2
P > q2 P 2

Plotting this inequality gives Fig. 94.

In order to correct the situation of negative input probabilities we must systemati-

cally eliminate-members of the input alphabet, each time calculating the input proba-

bilities and the channel capacity. The optimum is the distribution that gives the

maximum channel capacity with a valid set of input probabilities. In the previous

example it is easy to see that the input member to be eliminated is x 2.

7.6 Unequal Input and Output Alphabets. Another special case is the one in which the

number of elements in the input and output are not equal. When the number of the input,

m, is smaller than the number of the output, n, all of the necessary inversions are not

possible. However, by performing the inversions that can be performed and repre-

senting the flow graph as in Fig. 95, the desired solution is obtained. The reduction of

the flow graph will, of course, be more difficult because of the transcendental loop

functions, but it will be exact and will indicate the solution procedure.

Eliminating x 2 (as is necessary when x 2 is negative) from the example given above

and setting up the flow-graph solution produces Fig. 95. Reduction of this transcendental

graph gives

1 1

Ti =1 1a

This result could also have been obtained by the fact that the channel separates upon

elimination of the element x2 .

The case in which there are more input symbols than output symbols indicates that

it is not possible to satisfy all of the maximization relations, Eq. 107. However, if

we solve the problem by ignoring the excess input symbols, the quantities

n

ZPxy log - Hx
y=l

for the excess input symbols may be negative, zero, r positive. If any of the quanti-

ties are positive, a new set of excess symbols must be chosen and the problem resolved.

A valid solution exists when the excess quantities are all negative or zero. This valid

set of excess symbols is then eliminated from the system.

In large complex systems, there is no end to the number of exceptions and counter-

exceptions to these procedures. However, the flow-graph representation will show us
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how to treat the simpler and more workable systems with an understanding far exceeding

that obtained by straight mathematical analysis.

7. 7 Singular Solutions. The third special case is the one in which, because of the

singular nature of the determinant, the inversion does not exist. We must not ignore

this situation. In the following example where the determinant is singular, the output is

thoroughly confused as to what the input is doing. This would correspond to a case of

zero channel capacity. Most engineers are looking for high capacity in their channels,

but a few would like a total "blackout." For example, consider the reception of noise,

and the problems of jamming and counter-measures.

An example of the singular determinant arises in the binary channel, Fig. 96a. The

complete solution to the maximization problem is given in Fig. 96b. The nonsingular

solution of this problem is

9ll 2
q2 - P2 2

x1

(q2 - P 1 ) 1 + 2

C = log (21 + 2r2)

q2 H1 - P1H 2

1 q2 - P

H -H 2

l -2 q2 - P1

These results correspond to those that R. A. Silverman (19) worked out.

On the other hand, the solution does not exist under the condition

1 P2

q q2

which is equivalent to the relations

ql = P2 qz2
= P

Using these relations in the original definition of information, we find

I(x;y) = 0

Thus if we are interested in shutting off a particular binary channel, we merely raise

the noise until the determinant is singular.

Muroga's problem is an interesting example of what flow graphs can do to simplify

a particular area so that further work can be performed. The advantage of the flow

graph comes about from being able to see how the solution is constructed and thus being

able to see where the exceptional cases are going to be and how to treat them.
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Fig. 94. Negative-input probabilities.
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Fig. 95. Elimination of the input x 2.
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Fig. 96. (a) Binary channel. (b) Max-
imization of Fig. 95a.

The results obtained in the general solution of a particular channel are usually very

complicated. It is almost imperative to work with simple structures in order to get

results that can be interpreted numerically. By using flow graphs we can see in advance

which structures are going to give the simpler results. Having the flow graph, we have

the mathematical tools for solving the problem.
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8. INFORMATION STRUCTURE

At each state of the Markov system the process must make a decision as to which

state will be next. It is interesting to apply a measure of information to this type of

decision-making in order to obtain an idea of how close the Markov system comes to

describing a completely deterministic system.

For transient systems like the structure of languages, the total average information

of the transient is calculated. In contrast, for recurrent systems (such as those that

are found in continuous source generators), the average information per move is calcu-

lated.

8. 1 Transient Information. For each transient state, s k, of a Markov system we

associate a measure of information H k that indicates the amount of decision that the

system must make, once it moves into the state s k.

m

Hk = Pks log p (111)
Sal Pkss=l

For the rth experiment of this transient system it is convenient to use the characteristic

function in order to keep track of how the system moves about.

( rth experiment in state s k

kr on the n move
0

Then for any one experiment the total information is the sum over all the states and

all the possible chances of being in these states.

m 

Ir Z k 'Hk (113)
k=l n=O

The average information over an ensemble of transient experiments would be

R

I= lim - Ir (114)
R-oo Rr=l

Since Hk is positive for all k, we can invert the order of summation and obtain the

simple result

m

I =Z 0 jk Hk (115)
k=l

where jk is the mean occurrence of the state sk for the system's having started in

state s..
J
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A preceding section showed how to calculate the mean occurrence directly from the

Markov graph. It is also possible to calculate the information directly from the graph

by inserting branches of value Hk from the state node s k to a common node I. However,

it is usually more efficient to use Eq. 115 rather than try to construct it in flow-graph

form.

As an example, the system of Fig. 97 has these parameters:

1
H =0 O = 1

1 ol p

1 1 1
H2 =p log + q log O = 

I = log1 + qlog 1
P P q

8. 2 Normalized Transient Information. Usually it is possible to make the duration of

the transient go to infinity faster than the information of the various states goes to zero.

For some calculations it is convenient to normalize the information:

m

k ji 0 k Hk
I' : (116)m

k=l

In the previous example the normalized information is

I' ={P log P + q log 1

8. 3 Recurrent Information. Recurrent systems lose their identity with the initial

starting state as the number of moves goes to infinity. Each state then obtains a certain

probability of occurrence, so that the amount of information associated with the system

is biased by the stationary probabilities.

In order to understand this reasoning consider the information associated with a
th th

recurrent system on the n move in the r experiment.

m

nr =
(117)r k 'Hk

k=l r

Averaging over the ensemble of experiments we obtain

R m

In = lim R I n j H (118)
R--oo k

r=l k=l

where pn is the nth-step transitional probability, sj to s k. In the limit, the averagewhere Pj
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information per move is then

m

I = lim In= Pk Hk
fnl-.x) k=l

(119)

where Pk is the stationary probability of state s k. This stationary probability is the

same one that was calculated in the section on stationary distributions.

As a simple example, the following parameters of Fig. 98 lead to the stationary

information:

1
1 3

2
2 3

Note that

since Pjk
jk

H 11

H =2 3 -log 3

I = - 1 log 3

this type of development would not have much meaning for a transient system,

- O , so that in the transient case we have In O0
n--oo n-oo

q

rq"\ P+qI

+ S. I S2 a 

Fig. 97. Simple information structure.

$1 /4~ ~ 3/4

Fig. 98. Recurrent system.

The object of this section has been to show how a measure of information can be

associated with a Markov system and then to show that it can be calculated by using an

information entropy Hk and the state properties. The state properties are those that

can be calculated directly from the system diagram.
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