








C.A.

-^^^

Center for Information Systems Research
Massachusetts Institute of Technology

Sloan School of Management
77 Massachusetts Avenue

Cambridge, Massachusetts, 02139





ENTERPRISE ;

A MARKET-LIKE TASK SCHEDULER FOR

DISTRIBUTED COMPUTING ENVIRONMENTS

Thomas W. Malone

Richard E. Fikes

Michael T. Howard

October 1983

CISR WP //111

Sloan WP #1537-84

© T. W. Malone, R. E. Fikes, M. T. Howard 1983

Also published as a working paper by the Intelligent
Systems Laboratory, Xerox Palo Alto Research Center,
October 1983.

Center for Information Systems Research

Sloan School of Management

Massachusetts Institute of Technology





Enterprise:

A Market-like Task Sciieduler for

Distributed Computing Environments

'l"homas VV. Malone*

Richard H. Kikes

Michael T. Howard*

Working Paper

Cognitive and Instructional Sciences Group

Xerox Palo Alio Research Center

October 1983

Abstract:

This paper describes a system for sharing tasks among processors on a network of personal

computers and presents an analysis of the problem of scheduling tasks on such a network. Ihc

system, called Enterprise, is based on the metaphor of a market: processors send out "requests for

bids" on tasks to be done and other processors respond with bids giving estimated completion limes

lliat reflect machine speed and ciirrcnijv loaded files. JTic s\stem includes a language independent

Distributed Scheduling Protocol (DSP), and an implemenuition of tJiis protocol for scheduling

remote processes in Interlisp-D. ihc Fnterprise implementation assigns processes to the best

machmc a\ailable at run-time (cither remote or local) and includes facilities for asynchronous

message passing among processes. In a scries of simulations of different load conditions and

network configurations, DSP was found to be substantially superior to both random assignment and

a more complex alternative that maintained detailed schedules of estimated start and finish times.

*Nnw at Massachusetts Institute of Technology.
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A Market-like Task Scheduler for Dislributcd Computing Environments

Introdudioii

Willi the rapid spread of personal compiiier networks and llic increasing a\ailabilii\ of low cost

VLSI processors, the opportunities for massive use ^i' parallel and distributed computing are

becoming more and more compelling. Parallel hardware can often increase overall program speed

by concurrently executing independent subparts of an algorithm on different processors [1]. In

some cases, parallel search algorithms can improve average execution time even more rapidly than

the increase in the number of processors ((24), [28], [47]). With their potential for multiple

redundancy, parallel systems can be made much more reliable than dicir single-processor

counterparts. There arc also important cases of inherently distributed problem solving where the

initial information and resulting actions necessary to solve a problem occur in widely distributed

locations (e.g., [3], (7], [39], [48]).

Providing appropriate programming facilities for specifying, controlling, and debugging parallel

computations involves a new set of problems. For example, Jones &. Schwarz [27] discuss three

main classes of problems in multiprocessing systems: (1) resource schcJuIing-how to allocate

processor time and memorj' space, (2) rcIlabilii}~-how to deal with various kinds of component

failures, and (3) s}'nchronizaiion"how to coordinate concurrent activities that depend on each other's

actions.

In diis paper we describe a prototype system called Enterprise that addresses those problems and

present the results of analyzing one aspect of the problem of resource scheduling, naincly the

scheduling of tasks on processors. This analysis was based on simulations of several alternative task

scheduling algorithms operating under various network configurations and load conditions.

Although we have fiKused on decentralized methods for scheduling tasks, our results on this topic

are applicable to many forms of parallel computation, regardless of whether or not the processors

are geographically separated and whether or not they share memory.

The Enterprise system schedules and nins processes on a local area network of high-performance

personal computers. It is implemented in Inlcrlisp-I) and runs on iJie Xerox 1100 (Dolphin), 1108

(Dandelion), and 1132 (Dorado) Scientific Information Processors connected witli an Ethernet.
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A new pliilosopli) for diMrihiitid processing

As sunun.in/cd in l.ihlc 1. the tr.idituuidl philosopin used in dosiiiiiing systems based on loc.il .irc.i

networks such as Hthcrncis |.M] is lo lia\c dedicated personal workstations which remain idle when

not used b> their owners, and dedicated special purpose servers such as file servers, print servers,

and various knids of data base servers. ,\ system like l-.nicrp;ise that schedules tasks on the best

pr(KCSsor available at run time (either remote or liKal) enables a new philosophy in designing such

distributed systems. In this new philosophy, personal workstations arc still dedicated to their

owners, but during the (often substantial) periods of the day when their owners are not using them,

tJiese personal workstations become general purpose servers, available to other users on the network.

"Server" functions can migrate and replicate as needed on otherwise unused machines (except for

those such as file servers and print servers that are required to run on specific machines). Thus

programs can be written lo take advantage of the maximum amount of processing power and

parallelism available on a network at any lime, with little extra cost when there are few extra

machines available.

System Architecture

In order to use this new philosophy, at least the following three facilities must be provided: (1) a

way of commuiiicaiing between processes on different machines, (2) a way of schcJuIing tasks on the

best available machines (either remote or local), and (3) programming language constructs for

dealing with remoteness.

As shown in Figure 1, the Enterprise system provides these facilities in three layers of software.

The first layer provides an Inter-Proccss Communication (IPC) facility by which different processes,

either on the same or different machines, can send messages to each other. When tlie different

processes are on different machines, the IPC protocol uses internetwork datagrams called PUPs (see

[4]) to provide reliable non-duplicated delivery of messages over a "best efforts" physical transport

medium such as an Ethernet [34]. Enterprise uses a pre-existing protocol that is highly optimized

for remote procedure calls ([2], [42]) in which messages are passed to remote machines as procedure

calls on the remote machines.

The next layer of the Enterprise system is the Distributed Scheduhng Protocol (DSP) which, using

the IPC, locates the best available machine to perform a task (even if Uic best machine for a task

turns out to be the one on which the request originated). Finally, tlie top layer is a Remote Process

Mechanism, which uses both die DSP and IPC to create processes on different machines that can

communicate with each other.
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A rii-n (iistrihutcd proccssin}> philosophy

1. I ruditional distrihutcd processing philosophy

a. dedicated personal workstations

b. unused workstations are idle

c. dedicated special purpose servers

2. New distributed processing philosophy

a. dedicated personal workstations

b. unused workstations arc general purpose servers

c. special purpose ser\crs only where required by hardware
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One (»(" llic rriDSt ob\i(His solutions lo the t.isk stiicdulinc problem is lo simpl\ jssign .1 i.isk lo ilic

first avi\ilahlc processor. This approach, or one similar to it is Liiken in many existing distributed

systems (e.g.. (2)). As we will see in more detail below, there are three important conditions under

which such a simple approach ma> be radically sub-optimal:

(1) when prix.essors have different capabilities (e.g.. different speeds or different files

loaded into virtual memory),

(2) when tasks have difTcrent priorities (e.g.. some subtasks in a search problem are more
promising that others), and

(3) when network-wide demand for processor lime is high.

The problem of scheduling tasks on processors is, of course, a well-known problem in traditional

operating systems and scheduling theory, and there are a number of mathematical and software

techniques for solving this problem in both single and multi-processor systems (e.g.. [5]. [8]. [9], [27],

129], (30]. |44]). Almost all tiie traditional work in Uiis area, however, deals with centralized

scheduling techniques, where all the information is brought to one place and the decisions are made

there. In highly parallel systems where the information used in scheduling and the resulting actions

are distributed over a number of difTcrent processors, there may be substantial benefits from

developing decentralized scheduling techniques [33]. For example, when a centralized scheduler

fails, the entire system is brought to a halt, but systems that use decentralized scheduling techniques

can continue to operate with all the remaining nodes. Furtliemiore. much of the information used

in scheduling is inherently distributed and rapidly changing (e.g., momentary system load). Thus,

decentralized scheduling techniques can "bring the decisions to the information" rather dian having

to constantly transmit the information to a centralized decision maker.

Overview of the Distributed Scheduling Protocol

Since many of the problems of coordinating concurrent computer systems arc isomorphic to

problems in coordinating human organizations ([7]. [13], [31]. [39]), we have explicitly drawn upon

organizational metaphors in the design of tlie Enterprise scheduling mechanism. In particular, the

system's Distributed Scheduling Protixrol (DSP) is based on the metapiior of a market (similar to

the contract net protocol of Smith and Davis [11], [38], [39] and the scheduler in the Distributed

Computing System ([12])). Wc use the term clients for the machines with tasks to be done and

contractors for the remote server machines (as in [13]). 'Ilie essential idea is that a client requests

bids on a task he wants done, contractors \\'ho can do the task respond with bids, and the client

selects a conu-actor from among the received bids. Figure 2 illustrates tlie messages used in tliis

scheduling process. In the standard case, the following steps occur:



Typical message sequence;

Client

MACHINE

Optional messages

Contractor

machine

Figure 2. Mcssaccs in ihc Disiribuicd Scheduling Protocol.



1. riic ilicni htihiilcitsis o "miiicM Jar bids", 'i'hc request lor bids iixludcs ilie piiority of

the uisk. ;iii\ special requirements, and a summary description of llie Uisk tii.it allows

coniraclors lo csiim.itc its processing lime.

2. Idle contractors respond with "bids" giving their esfinidird conplctioii times. Busy

contractors respond with "acknowledgements" and add the task to their queues (in order of

priority).

3. When a contractor becomes idle, ii submits a bid for the next task on its queue.

4. When the client receives a bid. it sends the task to the contractor who submitted the bid.

If a later bid is significantly better than the early one. ihe client cancels the task on the first

bidder and sends the task to the later bidder. If the later bid is not significantly better (or

if the task has side-effects and cannot be restarted), the client sends a cancel mcss;ige to ihe

later bidder.

5. When a contractor finishes a task, it returns the result to the client.

6. When a client receives the result of a task, it broadcasts a "cancel" message so that all

the contractors can remove the task from their queues.

If a task takes much longer tlian it was estimated to take, the contractor aborts the task and notifies

the client that it was "cut off." Tliis cutoff feature prevents the possibility of a few people or tasks

monopolizing an entire system.

Protection against processor failure. In addition to this bidding cycle, clients periodically query the

contractors to which they have sent tasks about the status of the tasks. If a contractor fails to

respond to a query (or any other message in the DSF), the client assumes the contractor has failed.

Failures might result from hardware or software malfunctions or from a person preempting a

machine for other uses. In any case, unless the task description specifically prohibits restarting

failed tasks, the client automatically rcv cdules the task on another machine. Similariy, if a

contraclcr fails to receive periodic queries from one of its clients, the contractor assumes the client

has failed and the contractor aborts that client's task.

The "remote or local" decision. In the protocol as described above, if the local machine submits

bids for its own tasks (i.e., the client machine offers to be its own contractor), then the local

machine would presumably always be the first bidder and uould therefore receive every task. To

prevent this from happening, the client waits for oilier bids during a specified interval before

processing its own bid. Since contractor machines arc assumed to be processing tasks for only one

user al a time, the client machine's own bid is also infiatcd by a factor that reflects the current load

on the client machine. (Human users of a processor can express their willingness to have tasks

scheduled locally by setting cither of these two parajneters.)



('ompiiiiMni Willi the ainlnni iiri invimi'l. I iko the conir.icl noi piolocitl (|11|. I-^S|. {M)]). i)SI> uses

;iii ".innoiiiiccmciu. bid. .iw.ird" scihicikc. This .illdws lor imiintil schciiDii of clients ;ind

conticiciors: (li.it is. coiitr.ielors clmosc wliicli clients to serve .md clients choose which coiur.iciors to

use. It also iiliows for ainmnwus iiiwouinii where programmers merely describe the requirements

of a task \siihoui specifying which processor is to perform the task.

The most imponant difference between DSP and contract nets is that DSI' restricts the basis for

mutual selection b\ clients <ind contractors to two primary dimensions: (1) contractors select

clients" tasks in the oider of numerical insk priorities, and (2) clients select contractors on the basis

of cMinmicJ coiiiplciion nines (from among the contractors that s.itisf\ the minimum requirements to

perfonn the job). As we will see below, this specialization of the contract net protcKol allows us,

among other things, to make some \ery nice connections with results from traditional scheduling

iJicory about optimality.

Remote Processes Rather Ihun Remote Procedures

One of the most important issues in designing a system for distributed parallel processing is the

choice of language constructs available to the programmer. Most of the proposals for such

constructs fall into one of two general classes [35]: (1) procedure-call constructs ([2], [35], [46]), and

(2) message-passing constnicts ([19]. [20], [25]). In most-but not all-cases, message passing systems

assume that the objects that receive and send messages arc concurrent processes with separate

"threads" of control, while procedure call systems include the notion of transfer of control from the

caller to the callee.

Though tlicre are certainly situations in which remote procedures are a useful programming

construct (e.g.. we used them as the basis for our message passing primitive), we believe that

processes are a more appropriate and powerful abstraction for programming many distributed

computations. First, rcnwleiiess is inherent!) parallel. Ilius. it is appropriate to use the same

language constructs for remoteness as for parallelism. For example, process mechanisms typically

provide facilities for interprocess communication and for user interaction with processes (e.g..

deleting a running process, querying the status of a process, providing input for a process, or

receiving output from a process). Those facilities, extended to include remote processes, are crucial

to the programmer's ability to specify, debug, and control distributed computations. In addition,

they allow a program to be designed without concern for the physical location of each prcKCSS

activation. Second, if a system provides remote processes, it is a trivial matter for users to

implement their own remote procedures on top of remote processes, but the reverse is certainly not

true. The primary argument in favor of remote procedures seems to be tliat their simplicity allows

them to be implemented more efficiently than remote processes. However, the control and

communication facilities available for remote prtKCSscs make them tlic construct of choice in most

situations.
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DSP is only one of a l.ircc class of potcnli.ill) ctrcLii\c t.isk scheduling proiocols. and it is not

immediately clear which ivf the possible schedulers is most desirable, l-or example, a protocol that

allows a contracti)r lo bid i)n one task wliile pcrfoniiinj: another »)ne niiglu be more elTicieni than

DSP. Or. random scheduling might be almost as good as a sophisticated scheduler in most

commonly occurinc situations. In tlie development of DSP wc analv/ed the objectives of ilie task

scheduler and used a simulation program to compare the performance of pi'imising alternative

scheduling proKxrols. In this section wc present the results of that study.

Global Scheduling Objectives

Traditional schedulers for cenirali/ed computing systems often use lisl scheduling as a basis for

layering the design of a system (e.g.. [8]). In lliis approach, one level of the system sequences jobs

according to their order in a priority lisl while the policy decisions about hov\ priorities are assigned

are made at a higher level in the system (see [30]). DSP allows precisely tlie same kind of

separation of policy and mechanism. The DSP protocol itself is concerned only wiili sequencing

jobs according to priorities assigned at some higher level. By assigning these priorities in different

ways, the designers of distributed systems can achieve different global objectives. For example, it is

well known that in systems of identical processors, tlie average waiting time of jobs is minimized by

doing the shortest jobs first [9]. Thus, by assigning priorities in order of job length, the completely

decentralized decisions based on priority result in a globally optimal sequencing of tasks on

processors.

Oplimality results for mean flow lime and maximum flow time. Traditional scheduling theory (e.g.,

[9]) has been primarily concerned with minimizing one of two objectives: (1) the average flow

time of jobs (F3^,^)"the average time from availability of a job until it is completed, and (2) the

maximum flow time of jobs (Fmax^"^'^ "'"'^ """' ^^ completion of the last job. Minimizing F^^^

also maximizes the utilization of the processors being scheduled [8]. (A third class of results from

scheduling theory, involving the "tardiness" of jobs in relation to their respective deadlines, appears

to be less useful in most computer system scheduling problems.) Tlie most general forms of both

these problems are NP-complcle ([6]. [23]), so much of tlie literature in this field has involved

comparing scheduling heuristics in terms of bounds on computational complexity and "goodness" of

the resulting sclicdulcs rcl.itive to optimal schedules (e.g.. [10]. [26]).

A number of results suggest the value of using two simple heuristics, shortest processing time first

(SPT) and longest processing time first (LPT), to achieve the objectives F^^^, and F^^,^, respectively.

First wc consider cases where all jobs are available at the same time and their processing limes are

known exactly. In these cases, if all the processors arc identical, then SPT exactly minimizes F^^^,

[9] and l.PT is guaranteed to produce an F^^^^^ that is no worse than 4/3 of the minimum possible

value [17]. If some processors arc uniformly faster than others, then tlie I.PI heuristic is guaranteed
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no worse th.m luicc the luM poNsihlc \;iliie |l()|. Next, wo consider c,ise> sphere

;ill jobs arc axail.ibic at ihc siirnc lime but iheir cx.icl processing times are not known in ad\ancc.

Instead llie processing limes lia\e certain random distributions (e.g.. exiionenti.il) with dilTercni

expected values for difl'crcnl jobs. In these cases, if the system contains identical processors on

wiiich prcemplions and sharing are allowed, ihen SIT and 1.1*1 exactly minimi/c the expected

values of K^^^, and \-„^^^- respectively. (|45J. |I5]). I'inailv. we consider cases where the jobs arc not

all available al the s;imc lime but instead arri\c randomly and have exponentially distributed

processing times. In these cases, if the processors are identical and allow preemption, then I PI

143).

Oilier scheduling objcciivcs. DSP can be used to achieve many other possible objectives besides die

iradilional ones of minimizing mean or maximum flow time for independent jobs. For example:

(1) Parallel heuristic search. Many artificial intelligence programs use various kinds of

heuristics for determining which of several aliernatives in a search space to explore next.

For example, in a traditional "best first" heuristic search, the single most promising

allcmalive al each point is always chosen lo be explored next [36]. By using ihc hcurisiic

evaluaiion function lo determine priorities for DSP, a system with n processors available can

be always exploring the ;/ most promising alternatives rather than only one. Furtliermore,

if the processors have different capabilities, each task will be executing on the best

processor available to it, given its priority.

(2) Arbitrary market with priority points. Another obvious use of DSP is lo assign each

human user of the system a fixed nuinbcr of priority points in each time period. Users (or

their programs) can then allocate these priority points to tasks in any way they choose in

order to obtain the response times they desire (see [41] for a similar-though non-

automated--scheme).

(3) Incentive market with priority points. If the personal computers on a network are

assigned to different people, then a slight modification of the arbitrary market in (2) can be

used to give people an incentive lo make tlicir personal computers available as contractors.

In this modified scheme, people accumulate additional priority points for their own later

use, every time their machine acts as a contractor for someone else's task.

Alternative Scheduling Protocols

For comparison purports, consider the follov^ing two alternative protocols. ITie first protocol is a

scheme designed to be the most logical extension of the traditional techniques from scheduling

theory (e.g., (9]). (In fact, it is the protocol we initially thought would provide the best

performance.) The second is a random assignment method that provides a comparison with designs

where no attention is given to the scheduling decision.
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The first .ilicrn;iti\c proUKol oncicoiucs the possible deficiency of DSP liiai no esiinuies of

complelion limcs arc pnnided by processors thai arc noi ready to st.irl immediately, ["hat is. clients

using DSP may start a task on a machine that is axailabic immediately (p(>ssibly their own local

machine), only to find that another much faster machine becomes available soon. If the task is

canceled and restarted, all the processing time on the first machine is wasted. If not, the job

finishes later than it could have. If reasonable estimates of complelion times on currently busy

machines could be made, then clients would know enough to wait for faster machines that were not

iininedialely available, ihese estimates might also be useful to the human users who. when DSP is

used, have no idea of when their tasks will finish until the tasks actually begin execution.

In this alternative, tasks are assigned to contractors as soon as possible after the tasks become

available and then reassigned as necessary when conditions change, in this way. each contractor

mainuins a schedule of tasks it is expected to do, along witli their estimated start and finish times.

and so the contractor can make estimates of when it could complete any new task that is submitted.

By analogy with "lazy" evaluation of variables ([14], [18]) the original DSP could be called "lazy

assignment" because clients defer assigning a task to a specific contractor until the contractor is

actually ready to start. This alternative protocol, therefore, will be called "eager assignment," since

it assigns tasks to contractors as soon as possible.

In this protocol, all contractors bid on all tasks even if they are currently busy. A contractor

estimates its starting time for a task by finding tlie first time in its schedule at which no task of

higher priority is scheduled. Then the client picks the best bid and sends the task to the contractor

who submitted it. When new tasks are added to a contractor's schedule, or when a task takes

longer than expected to complete, the contractor notifies the owners of later tasks in its schedule

that their reservations have been "bumped." Tlicsc clients may then try to reschedule their tasks on

other contractors.

It is important to note that even in cases where there is a lot of bumping, this scheduling process is

guaranteed to converge. Since tasks can only buinp the reser\ ations of other tasks of lower priority,

the scheduling of a new task can nc\ cr cause more than a finite number of bumps. To reduce the

finite (but possibly large) amount of rescheduling in rapidly changing situations, rescheduling can

occur only when a task is bumped by a large amount.

Random assignment

In the second alternative protocol, clients pick the first contractor who responds to their request for

bids and contractors pick the first tasks they receive after an idle period. Contractors do not bid at

all when they are executing a task, and they answer all requests for bids when they are idle. If a



cliciu dots luil receive .iii\ hulv U Ldiilliuies lo ivbro.idciisi ihe ivquesi fi>r luds peiKulicillv. V\ lien

coniniclois receive a task alter alre.uix heginninc execiiliDii dI" anotlii ; one. ihe new i.isk is rejecied

(with a "Ininip" message) and ihe clicni uho suliniiiicd it continues ining lo schedule it elsewhere.

In the siinulalions discussed beUm. the selection ol" the I'nsl bidders when more than one irtachinc is

a\ailablc. and of" the Ihsi task when more llian one task is waning, are boih modeled as r.indiv.n

choices since the dcla> times for message transmission and prwcssing are piesuinably random. (In

reality, fast contractor machines migli! often respond iikmc quicklv to requests for bids than slow

ones and so would be more likely to be the fiisi bidders, liuis the perfoniiance of this scheduling

mechanism in a real system miglit be somewhat belter tli.in the siinulaied perfoiinance.)

Simulution Results: Minimi/.ing Mean Flon Time

Since minimizing the mean flow tiine of independent jobs is likely to be the primary objective in

many real distributed scheduling cnvironmenLs, and since analytic results about this topic aic so

scarce, it is appropriate to use simulations lo compare alternative strategics for achieving this

objective. In this section we summarize the results of a series of simulation studies of tJie three

distributed scheduling alternatives outlined above: (1) lazy assis'in'enl (the original DSP), (2) eager

assignineni, and (3) random assignmetu. In both the eager and lazy alternatives, priorities arc

determined according to the shortest processing time first (SFT) heuristic. In the random

alternative, priorities arc not used. Iliese simulation studies are described in more detail by

Howard [21].

Method

To simulate the performance of the alternative scheduling strategies, most of the code for the

operational Enterprise systcrn was used, with some of the ftinctions (primarily those for sending

messages between machines) redefined so that a complete network was simulated on one machine.

ITie completion of jobs was simulated using elapsed time of the simulation clock, uitli faster

machines completing simulated jobs proportionally more quickly tlian slow ones.

Job loads. For all the simulations, "scripts" of random job submissions were created. All jobs were

assumed to be independent of each other and required to be run remotely. The job arrivals were

assumed to be a Poisson prcx:ess and the amount of processing in each job was assuincd to be

exponentially distributed. This means that, at every instant, there was a constant prob.ibiliiy that a

new job would arrive in the system, and also llial. for each job currently executing, thoie was a

constant probability that, at any instant, it would end. Hy varying the paiamctcrs of the random

number generators, we created scripts with average loads of 0.1, 0.5. and 0.9, where average load is

defined as the expected amount of pr(x:cssing requested per time interval divided by the total

ajnount of processing power in the system, llius, 0.1 represents a light load and 0.9 a heavy load.
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i'slinuiliiw errors. In addilion lo ihc ;icUi.il anuninl of processing in each job. ihc scripis also

incliuicd an c*-limatcd amomu of processing I'or each jtth (i.e.. die esiiniaie a user niigln ha\e made

of how long ihe job would lake). In order lo examine extreme cases, these estimates were either

perfect (0 percent error) or very inaccurate (± 100 percent error). In the case of inaccurate

estimates, the errors were uniformh random!) distributed o\er the range.

hhuhinc ainfi^umiions. Nine different configurations of machiiies on the network were defined, in

all configur.itions, a total of 8 units of prwessing power was available, but in different cases this was

achieved in different ways: a single machine of speed 8; or 8 machines of speed 1: or 1 machine of

speed 4 and 2 madiines of speed 2; etc.

C'onvnunlciUions. In order to simulate "pure" cases of the different scheduling meciianisins,

communication among machines was assumed to be perfectly reliable and instantaneous. In real

situations where communication delays arc negligible relative to job processing times, this

assumption of insuintaneoiis commimications is appropriate. In other cases, different assumptions

about communications delays might change the trade-offs among scheduling mechanisms.

Bumping, resiariing after laic bids, and rebroadcasiing. In keeping with the spirit of simulating

"pure" scheduling mediods. jobs in the eager simulations are rescheduled every lime their scheduled

start time is delayed at all. In a real system, jobs would ordinarily have lo be bumped by more

than some tolerance before being rescheduled. (After a job begins execution, it is not subject to

being bumped.) In the lazy simulations, jobs are never restarted when late bids are recci\ed from

fast contractors. In other words, the performance of the eager mctliod could only get worse if fewer

bumps were mad^. but the performance of the la/y method might improve if jobs were sometimes

resuirted after receiving late bids.

Similarly, in the random assignment simulations, clients rebroadcast their requests for bids in every

lime interval of the simulation until the job is successfliUy assigned lo a contractor. Thus, this

simulates the best scheduling performance the random method could achieve; if rebroadcasting

occurred less often, the performance could only get worse.

Replications. For each load average, five different random scripts of job submissions were

generated. Then tliesc same fi\c scripts were used for each of the three scheduling meUiods, each

of the two accuracies (0 and ± 100 percent), and each of the nine machine configurations. By

using tlie same scripts for all ihc different methods, accuracies, and configurations, we obtained a

much more powerful comparison of the differences due to the factors in which we were interested

than if the job submissions had been generated randomly in each different case.



I Ik- icsulls piCM-'iiicd holm^ .no .I'-cr.iycs nf nic.in n>iv\ liiiic lor job^ over Ihc scnpis .niJ o\i.M

several machine conngiiraiions in each case. ITiere arc three configiiralions of mulliple identical

machines. fi\c c^)n^lJUlrati;l^^ (if niiilliple nca-iJciuiL-.!) m.iLhinos. arJ one ci.nlkuration of a sinj-lc

machme. Strictly spi-akme. since the JiiTerent conliriLiratioas arc not rep!cs>:iMaii\e of any particular

p<^pulation anJ since there arc large differences between dilTercnt configurations in the same

catecorv. one should be hevii.inl aboiil a\or.fpinc tiicn; in this \\a). TluT.'rorc. wc ,ii'o normali/cd

the flow times t'or the la/y and eager methods in each conngiiration b\ di\iuing by tJie fiovs time of

the rand('m method. The averages of these noiTna!i/ed values showed exactly the saine relative

patterns as the averages of the original How times, so the original flow limes arc shown here.

i'ffeci of sclu'JuIing mellwd Somewhat surprisingly. Figure 3 shows that the "la/y" assignment

method is at least as good as, and in some cases, much better than the more compiieaicd and

expensive "eager" assignment method.

r/fixl ofsysiem load. With perfect estimates of processing amounts, botli eager assignment and lazy

assignment arc consistently better than random assignment. With heavy loads, these differences are

substantial (5%-50%). Even with light loads in the case of non-ideniical processors, there is

approxiinatel> .'. 'lO'J advantage for either of the two non-random assignment methods. This sizable

advantage under light loads appears to be because the two non-random assignment methods

consistently assign jobs to tJie faster machines while the random method does not. At light loads, a

fast machine is almost always available so this is a significant advantage. At moderate loads, fast

machines are often busy so this assignmeiu preference does not matter nearly as much.

Kffcct ofmachme configuration, llicre are three important effects of machine configuration: (1) As

just discussed, there is a sizable advantage of tlie non-mndom scheduling methods at lig!it loads

witli non-identical machines. (2) .^s Figure 4 shows, the benefits of non-random scheduling

(averaged over all loads) increase as the range of processor speeds in the network increases. (3)

There is a clear advantage at all load levels of having one fast m.xhinc rather than a combination of

slower machines with the same toLil processing power, lliis last result can also be derived

analytically (see [33]).

Effect of accuracy cf processing lime csiimates. The lazy assignment method is quite robust in the

face of poor processing lime csiimates. wiili iis "ver.ili pcrfonnanco degiadmc on);, a few percent

even when the csiimates are off by as much as 100 percent. The eager assignmeiu method, on the

other hand, often di)cs much worse wiiii bad estimates llian with good ones, and in some cases it

even does worse with bad estimates than purely random assignment.
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inidiinl (if mcssiii^r liiiffn. liciiic 5 shows ilic lumibcr dl dircciod and hro.idcMsl nioss.igcs used by

ilic iwn non-r.indoni stlicdiiling mciliods wiili pcrlcci piiH.ossiiig nine csiiin.iics loi jobs. While llic

hi/\ melliod icquires almost llic same mmiber of messages per job at boih hc.i\\ and liclu loads.

the eager method requires many more messages as loads increase. I hough lliey arc not shown here,

similar results were obtained (or poor estim.ites oljob processing linies (± 100% error), in ihcsc

"pure" simulations, communication was treated as instantaneous and free in order to maximi/c

scheduling perfomiancc. In designing an actual system, one would presumably sacrifice st)mc

scheduling performance in order to reduce the number of messages.

Discussion

The similarities of this scheduling problem to that of job shop scheduling might lead one to believe

that ob\ ious extensions of traditional scheduling theory algorithms such as the eager assignment

mediod would provide the best pcrfonn.ince for scheduling of distributed Lisks. Also, early

simulation results by Conway. Maxwell, and Miller [9] of a job shop environment showed that

schedules based on very inaccurate estimates performed almost as well as schedules based on perfect

estimates and much better than random schedules. Why, then, should the eager assignment method

do so poorly in our examples when it is given inaccurate processing lime estimates? Wc believe

that two primary factors account for this result:

(1) "Stable world illusion." In the eager assignment method, each job is assigned to the

machin; :'iat estimates the soonest completion time. But if jobs of higher priority arrive

later and are assigned to the same machine, then they will keep "bumping" the first job

back to later and later times, in other words, jobs are assigned to machines on the

assumption that no more jobs will arrive (i.e.. that the worid will remain stable). Hven

though in the simulation, jobs are rescheduled every time any new jobs arrive tliat delay

their estimated start time, by the time the job is rescheduled, it may already have missed a

chance to start on another machine that could have completed it before it will now be

completed.

In some of our simulations (not included here), the bids included an extra factor to correct

for this effect, that is, bids included an estimate of how long the starting time of the job

would be delayed by jobs that had not yet arrived, but could be expected to arrive before

the job began execution. (See [28] for the derivation of this correction factor.) Even

though the inclusion of this correction factor did improve the performance of the eager

assignment method somewhat, the changes were not substantial.

(2) Unexpected amilabiliiy. When a job takes longer than expected, or when higher

priority jobs arrive at a processor, all the clients who submitted jobs scheduled later on that



J*:
w
CO

I-
k-
(D
O.
^—

'

C
oo
(D
CD
CD
CO

o
C)
CO
L_
CD
><

Directed

Messages

Broadcast

Messages

Load Factor
EAGER PERFECT ESTIMATES
LAZY PERTECT ESTIMATES

Figure 5. Avcr.nsc number of broadcast and directed mesatcs used by eager and lazy assignment

mcLhods to schedule cdch lask under various loads.



15

pnKCssor ;irc noiillcd wiili "liimip" mcss;iccs .iiid ci\cn ;i cliiincc lo rcsclicdulc ihcir jobs.

When ;i job takes loss liiiic llian expected or when jobs seheduled on a piocessoi' arc

canceled, the processor may become a\ailable sooner than expected, but in these cases, the

clients who submitted jobs that were scheduled elsewhere but who might now want lo

rcschcdiiie on the ncwl> a\ailable machine .ire ne\er notified. I here can thus be situations

where fast processors are idle while high priority jobs wait in queues on slower pnxrcssors.

This appears to be a serious weakness of the eager assignment metJiod. Wc have specified,

but not implemented, an addition to the protocol that notifies all clients of such situations

and allows ihcm to reschedule llicir tiisks. !1ic cost of lliis addition would be even greater

message traffic and system complexity, and wc believe it unlikely that the resulting

perfoniijnce would be significantK better than tlie much simpler la/y assignment melliod.

Inipliaiiions. 'ITie most important and surprising result of these simulations is the superiority of the

lazy assignment method. F.vcn though ihe lazy method is simpler to implement and often requires

substantially less message traffic, it never perfonns much worse than the alternative meUiods, and it

usually performs much better.

There are two important qualifications on the generality of these results: First, the introduction of

communication delays might change the irade-ofFs among scheduling methods in a few cases. For

example, in heavily loaded systems witJi very long communication delays, the eager assignment

method transmits jobs lo contractors in advance and thus removes one communication lag from the

round trip fiow time. Also, these simulations were only attempting to minimize average flow time,

not any of the other possible global objectives. Nevertheless, we believe that the superiority of

deferring assignment of tasks to machines in multi-machine scheduling environments is a principle

that is likely to be very widely applicable, and dial is not yet widely known.

DISTRIBUTED SCHEDULING PROTOCOL DEFINITION

In this section, we present a detailed definition of tlie Distributed Scheduling Protocol (DSP) that is

used to implement the lazy assignment method. This protocol can be used by cooperating machines

in a network even when die machines use different programming languages and operating systems.

This section (and the Inioilisp implcmcnDiion of the proUKols) describe all the message formats as

lists of fields with no field widths or data types specified, lo use the protocol with other languages,

field widths and data types should be specified as well.

The message definitions in Figures 6 and 7 use a modified form of BNF specification. Nonterminal

symbols arc enclosed by angle brackets ("< >"), terminal symbols are written witliout delimiters,

ellipses (". . .") are used lo indicate lists containing an arbitrary number of or more terms, and

square brackets ("I ]") indicate comments.
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DSr Mi'ss;i};c lormals

<l)SI'incsvigc> - <rcquosif()rbids> |
<bid>

|
<;ickiu)wlcdi:cmcm> |

<task.>
|
<rcsiili>

|
<quci>>

|

<suiuis>
I
<bunip>

I
<canccl>

|
<cuU)t'l>

<rcqucMfi)rbids> - (RI-QLH-S 1 1 OKIMDS <t.iskll)> prioritv <c.irIicsiSiariTimo> <icquircmcnui>

<uiskSuminary>)

<bid> - (HlIXuisklDXstaiirinicXcomplclionTimc))

<ackn(mlcdgcmcnt> - (ACK <lasklD»

<lask> - ( lASK <taskll)> priorii-. <iaskSuinmary> laskDcscription)

<rcsult> - (RHSUl. 1 <taskll)> <av^..:;Siatiis> <runiimc> result)

<qucry> - (QUKRY <laskll)»

<siatus> -» (STATUS <taskstatiis> <siartTimc> <complctionTimc>)

<bump> -* (BUMP <siartTimc> <complciionTime>)

<cancel> -* (CANCF.l. <taskID>)

<cutoff> - (CUTOFF <taskID> <runtimc>)

<taskID> -» (hostNamc taskNamc taskCrcationTime lastMilcsloncTime)

<taskCreationTimc> -* systcmTime

<lastMilcstoneTime> -» systcmTime

<carlicstStartTimc> -» systcmTime

<startTimc> - systcmTime

<complctionTimc> - systcmTime

<resultStatiis> — NORMAL | ERROR

<runtime> -» (clapscdTimc machineType)

<taskstatus> — LOCAI . | BIDDING | SCHEDULED | DELIVERED 1 RUNNING | NORMAL
|

ERROR
I
DELETED | CUTOFF

<rcquircmcnls> -» (<rcquircmcnt> . . . <rcquirment>)

<rcquiremenL> -* REMOTE
|
(HOSTS <hostName>. . .<hosiName>)

|
[other terms to be added]

<taskSummary> -• (<summarytcrm> . . . <summaryterm>)

<summaryterm> - ( TIME timcEst)
|
(FILES <rjlcDescriptionList>)

|
[otJicr terms to be added]

<fiicDcscripiionList> -» <rileDescription> | <filcDcscription> <fileDescriptionList>

<nieDescription> - (fileName filcCreationDatc fileLoadTimcF^t)
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I)St* is based on an Inioi -Process Conmuinicaiion prolocol (li'C) for the transpon ol" niessaces.

Messages in the IPC are assinned to be reliably delivered without duplication. If the IPC

guarantees that messages arc received in the .irdcr ihc\ are scni. then some redundant procossiiij;

will be avoided, but the DSP does not icqinre ibis guarantee. As specified in Pigure 6. messages

arc assumed to contain at least the following information: sender, receiver, and body. The sender

and recetvcr Mc globally unique processlDs for the sending and receiving processes. I he body in.iy

be a DSP message, as denned below, or some other message. The mess<iges may also conuin other

IPC control information such as a message identifier, time sent, and inform. iiion about

acknowledgements and duplicates.

DSl* Message I'onnals

Figure 7 specifies the fonnats for tlic different DSP messages. The exact formats for the

laskDescripiian. laskSummary. prioriiy. requirements, and rcsuli fields arc implcmenialion dependent,

with the only restriction being that contractors thai rccogni/e and satisfy the requirements, must also

be able to recognize and deal with the specified priority and the descriptions in the laskSummary

and the taskDescnption. Roth the requirements and the laskSummary are intended to have new

terms added as the protocol is used for different types of machines and different types of tasks.

TasklDs are task idenlificrs that arc guaranteed to be unique across time and space. Since a given

task can be restarted during its lifetime (e.g.. because of a processor failure), it is also necessary to

distinguish between these different "incarnations" of the same process [35]. In order to do tliis. a

timestamp of the most recent "milestone event" in the life of the process is included in the lasklD.

Milestone events are the sending of citlier a request for bids or a task message concerning ihc task.

Doth these events render obsolete all previous DSP messages concerning the task. Before

responding to DSP messages about a particular task, therefore, both clients and contractors check to

be sure the message concerns the most recent incarnation of the task. (Ta^kliX serve the saine

purpose as die call identifiers used by Birrell and Nelson [2]). In Enterprise, both proccssIDs, and

lasklDs use the host's network address as the hosiName.

The sysicmTime is assumed to be the same (witliin sir.all limits) across machines. KhipsedTime is

measured in the same units as systcmTime, and machineType is an implementation dependent

encoding of tlie different types of machines on Uie netwoik. Bidders who are ready to start on a

task immediately indicate that fact by using the earlUsiSiuriTnnc spccifi'^d in the request for bids as

tlic suiriTimc in tlicir bid. even if lii.ii lime has already passed. Contractors indicate that they

cannot accept a task at all by returning a bump mess<i2C whose startTimc is or NIL. 'ITie

fileDcscripiions include a filcCreciioiiDaic so conuactors can dcienninc if the version of a file they

have loaded is the correct one.



19

/).S7* Missiii^c l'r(Hrs\iiii;

The ccncnil coiisiraints on mcssiigc processing in DSP arc described above in Uic oxerxiew of the

scheduling process. Contractors arc assiniicd lo bid on or acknowledge onl> tiisks whose

rcLiuircmcuis ihey satisfy . A contractor can only process one remote task at a time, hut once a task

has begun execution, it can create any number of other IcKal (or remote) liisks. Different

implcmeniaiions of DSP can use different policies for priority setting, estimating finish limes for

bids, canceling and restarting after late bids, evaluating a client's own hid, and culling off

excessively long tasks. The only restrictions on these policies stem from the fact that consistent

biases (e.g.. "lying") on the part of sonic clients or ctHitraclors in setting priorities or submitting bids

may lead lo radically siiboplimal schedules. Choices about restiining and cuU)tT policies also involve

tradeoffs between ihe amount of compulation and communication devoted to scheduling and ihe

efficiency of ihc schedules.

Scheduling in Knterprisc

The initial version of the Enterprise system makes the following choices in implementing the DSP:

(1) Tusk descripiions and results are character strings consisting of arbitrary Inierlisp forms

"dereferenced" to the "print names" of the forms.

(2) Task summaries consist of (a) the estimated processing time for the task on a

"standard" processor (in our case a Dolphin processor), and (b) the names and lengths of

the files that must be loaded before the processing can begin. ITie estimaied processing

times for a task are supplied by the programmer, or if no estimate is supplied, a default

value is used.

(3) Priorities arc simply tlie estimated processing time (including the esiimaied time to load

all files) on a standard processor, with low numbers signifying high priority.

(4) Requirements can include (a) "REMOTE" (as opposed to the default which is

"REMOTEORLOCAL") and/or (b) a list of acceptable contractors. Tasks that are required

to be local never use the DSP.

(5) Bids take into account tJie processor speed of the contractor submitting tlic bid (relative

to a "sLindard" processor) and die file loading lime for all required files not already loaded

on ihc contractor's machine. File loading time is estimated as being proportional to file

length.

(6) "Late" bids from bidders who were ready to start as soon as diey received the request

for bids are accepted (and the task is canceled on the early bidder's machine) if they are

better tlian the earlier bid by an amount greater Uian BidTolerance. All other late bids

arc rejected.
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(7) A cliciil ni.idnnc's hid on ils own l.isk is processed aflor .1 dcl.u of OwnBidDelay. As

in iiucrim nicisiirc. its own processing lime is inll.iied b\ .1 t'.icior egu.il lo ilie number of

other processes acii\e on the client mjichine.

(8) A liisk (and any siibtasks il has created) is cuioffii' it exceeds its estimated time b.\ a

factor grc.iier than CutoffFactor.

"Gaming" the sysicni. If people supply ihcir own estimates of prcxressing times for ihcir tasks and

llicsc time estimates arc .ilsi) used to determine priority, there is a clear incentive for people lo bias

Ihcir pnxrcssing linic estimates in order lo get higher priority. This incentive to give biased

estimates is counteracted in the current system by the possibility of a job being cutoff if it greatly

exceeds its estimated time. In general, this issue of "incentive compatibility" [22] is an important

one in designing any organization that involves human actors.

Conclusion

Wc believe that this paper has made three primary contributions:

First, any designer of a parallel processing computing system, whetiier the processors are

geographically distributed or not, must solve the problem of scheduling tasks on processors. Wc

presented a simple heuristic method for solving this problem, and demonstrated with simulation

studies its superiority to two plausible alternatives. The simulation studies highlighted the benefit of

deferring as long as possible tlie actual assignment of tasks to processors.

The scheduling hcuiistic wc presented has the additional advantage of lending itself very naturally

to a dcccntrali/cd implementation in which separate decisions made by a set of geographically

distributed processors lead to a globally coherent schedule. To aid fiiture implcmenters of such

distributed systems, wc formalized a language-independent protocol (the Distributed Scheduling

Protocol) for coordinating decentralized scheduling decisions.

Finally, whether scheduling decisions are centralized or decentralized, the Enterprise system points

the way toward a new generation of distributed computing environments in which programmers can

easily take advantage of the maximum amount of processing power and parallelism available on a

network at any time, with little extra cost when there are few extra machines available.
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