
Building Dependability Arguments for Software

Intensive Systems

by

Robert Morrison Seater

B.S., Haverford College (2002)
M.S., Massachusetts Institute of Technology (2005)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

-7-

Author ..
Department of Electrical Engineering and Computer Science

Jan 15, 2009

Certified by
Daniel Jackson

Professor
Thesis Supervisor

Accepted by.../
Professor Terry P. Orlando

Chairman, Department Committee on Graduate Students

ARCHIVES

SASA(CH, S INS FTUTE

jMAR 0 5 2009

LIBRARIES

Building Dependability Arguments for Software Intensive

Systems

by

Robert Morrison Seater

Submitted to the Department of Electrical Engineering and Computer Science
on Jan 15, 2009. in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

A method is introduced for structuring and guiding the development of end-to-end
dependability arguments. The goal is to establish high-level requirements of complex
software-intensive systems, especially properties that cross-cut normal functional
decomposition. The resulting argument documents and validates the justification
of system-level claims by tracing them down to component-level substantiation, such
as automatic code analysis or cryptographic proofs. The method is evaluated on case
studies drawn from the Burr Proton Therapy Center, operating at Massachusetts
General Hospital, and on the Fret a Voter cryptographic voting system, developed
at the University of Newcastle.

Thesis Supervisor: Daniel Jackson
Title: Professor

Acknowledgments

This research was supported, in part, by

- grants 0086154 ('Design Conformant Software') and 6895566 ('Safety
Mechanisnis for Medical Software'), from the ITR, program of the National
Science Foundation.

- NSF grant 0438897 ('Sod Collaborative Research: Constraint-based
Architecture Evaluation').

- the Toshiba Corporation, as part of a collaboration between Toshiba's
Corporate Research and Development Center and the Software Design Group
of MIT's Computer Science and Artificial Intelligence Lab. We especially thank
Takeo Imia.

This work is part of an ongoing collaboration between the Software Design Group

at MIIT and the Burr Proton Therapy Center (BPTC) of the Massachusetts General

Hospital. We especially appreciate the assistance of Jay Flanz and Doug Miller of

the BPTC for devoting so much of their time to the project.

I am thankful for the many people who contributed ideas and encouragement for

this work. Specifically, Daniel Jackson's advising was insightful and inspiring; without

it I would have abandoned my line of work many times over. I am also indebted to

my thesis committee members, Rob Miller and Ed Crawley, for their insight and

proofreading skills. Many other researchers have made intellectual contributions to

this work, of whom I would like to especially thank Peter Ryan, Eunsuk Kang, Lucy

Mendel. Derek Ravside, John Hall, Rohit Gheyi, and Michael Jackson (not the singer).

I would also like to thank the organizers and attendees of IWAAPF'06 (a workshop

devoted to Problemn Frames research) for their warm welcome and insightful feedback.

No acknowledgement would be complete without a predictable, but justified, thank

you to my wife (Jessica) for putting up with my graduate student stipend (low) and

lifestyle (I got more sleep than she did). Lastly, thanks to Terry Nation for creating

the Daleks, who played a starring role in my thesis defense.

Contents

1 Motivation 13

1.1 Introduction: System Failure 13

1.1.1 Software Intensive Systems 14

1.1.2 Dependability, Auditability, and Traceability 15

1.2 Contributions 17

1.2.1 Hypothesis 18

2 Synthesis Technique: CDAD 21

2.1 Dependability Arguments 21

2.1.1 Granularities 23

2.1.2 The Space of Arguments 24

2.1.3 Sample Arguments 26

2.1.4 Existing Techniques 28

2.1.5 Dependability Arguments 30

2.1.6 Composition 32

2.2 Structuring a Dependability Argument 35

3 Requirement Progression 39

3.1 Overall Approach 39

3.1.1 The Need for Progression 39

3.1.2 Our Approach 40

3.2 Problem Frames 41

3.2.1 More Detail 42

7

3.3 Requirement Progression

3.3.1 Available Transformations 47

3.4 Two-Way Traffic Light 50

3.4.1 Basic Declarations 51

3.4.2 The Requirement 56

3.4.3 Step 1: from Cars to Light Units 56

3.4.4 Step 2: From Light Unit to Control Unit 58

3.4.5 Lessons Learnt 60

3.5 Proton Therapy Logging 61

3.5.1 System Requirements 62

3.5.2 Logging Subproblem 63

3.5.3 The Phenomena 67

3.5.4 Matching Problem Frames 69

3.5.5 The Requirement 73

3.5.6 Transformation and Derivation 74

3.6 Handling Time: Automatic Door Controller 78

3.6.1 Designations and Context 78

3.6.2 Formalizing the Requirement (s) 81

3.6.3 Lessons Learnt 85

3.7 Encoding Problem Diagrams in Alloy 90

3.7.1 Sets and Relations 90

3.7.2 Well Formedness 91

3.8 Encoding Requirement Progression in Alloy 93

3.8.1 Requirement Progression Invariant 94

3.8.2 The Transformations 94

3.8.3 Well Formedness Preservation 95

3.9 Discussion 96

3.9.1 Role of the Analyst 96

3.9.2 Source of Breadcrumbs 97

3.9.3 Progression Mistakes 98

. . . 46

3.9.4 Reacting to Rejected Breadcruinbs

3.9.5 Progression Uniqueness 100

3.9.6 Automatic Analysis 102

3.9.7 Are These Examples Too Small? 103

3.9.8 Related Techniques 103

4 Case Study: BPTC Dose Delivery 105

4.1 The Burr Proton Therapy Center 105

4.2 BPTC Hazard Analysis 107

4.3 Dose Delivery Argument 110

4.3.1 Designations 110

4.3.2 Problem Diagram 119

4.3.3 Flow Diagram 119

4.3.4 Argument Diagram. 119

4.3.5 Argument Validation 120

4.3.6 Breadcrumb Interpretation 120

4.3.7 Breadcrumb Assumptions & Hazards 120

4.3.8 Arc Assumptions & Hazards 131

4.4 Translation to Forge 135

4.4.1 Sample Procedure Translation 136

4.4.2 Original C Code 138

4.4.3 Condensed C Code 141

4.4.4 Abstracted C Code 141

4.4.5 Java Code to Generate Forge Code from C Code 146

4.4.6 Generated Forge Code 146

4.4.7 Human Burden: Abstraction & Translation 148

4.4.8 Forge Analysis of Specification 148

4.4.9 development process 150

4.5 Discoveries 152

4.5.1 Effort 156

5 Case Study: Voting Auditability

5.1 Verifiable Voting

5.1.1 Overview of the System

5.1.2 Flow of a Vote

5.2 Representing the Problem

5.3 Fidelity Goal

5.3.1 Formalization of the Requirement .

5.3.2 Requirement Progression for Fidelity

5.4 Secrecy Goal

5.4.1 Modeling Information

5.4.2 Modeling Initial Data

5.4.3 Modeling Incognito Data

5.4.4 Modeling Inferences

5.4.5 Identifying an Attack

5.4.6 Interpreting the Solutions

5.5 Auditability Goal

5.5.1 Types of Audits

5.5.2 A Precise Formulation

5.5.3 Identifying Necessary Audits

5.6 Deriving Inferences from Breadcrumbs . . .

5.6.1 Derivation Process

5.6.2 Sample Derivation

5.6.3 Another Example

5.6.4 Validation via Multiplicities

5.7 Achievements

5.7.1 Clean Division

5.7.2

5.7.3

5.7.4

Leveraging Fidelity for Secrecy and

Discoveries

Effort

Goal . . .

uditability

157

.. . . . 158

159

159

161

167

167

168

184

185

186

187

188

189

190

199

199

200

201

203

205

206

207

208

214

214

214

215

215: : : : : :

6 Related Work 219

6.1 Related Work 219

6.1.1 Requirement Decomposition 219

6.1.2 Problem Frames 221

6.1.3 Analysis of the BPTC 222

7 Conclusions 225

7.1 Contributions and Achievements 225

7.2 Limitations 226

7.2.1 Vulnerabilities Versus Errors 227

7.2.2 Human Domains 227

7.2.3 Support from Domain Specialists 228

7.2.4 Analyst Expertise 229

7.2.5 Code Analysis 231

7.3 Experience and Reflections 233

7.3.1 Types of Personnel 233

7.3.2 Mediums of Communication 234

7.3.3 Styles of Thinking 235

7.3.4 BPTC Safety Culture 236

7.3.5 BPTC Conceptual Mistakes 237

7.4 Future Work 239

7.4.1 Tool Support for Progression 239

7.4.2 Code Analysis 240

7.4.3 Integration with STAMP 240

7.4.4 Lightweight Techniques 241

7.5 Waterglass Model of Budget Allocation 241

7.5.1 Representing Component Techniques 241

7.5.2 Classifying Mistakes 243

7.5.3 Shaped Glasses 245

8 Appendix: Automatic Door Model 249

9 Appendix: BPTC Case Study History

10 Appendix: Requirement Progression Model

11 Appendix: Voting Fidelity Model

12 Appendix: Voting Secrecy Model

253

257

265

275

Chapter 1

Motivation

1.1 Introduction: System Failure

It is widely understood that system failures often result not from component failures

but from inadequate component specifications - the components behaved according

to their specifications but the system failed as a whole due to unforeseen component

interaction [7, 16, 29, 33, 35, 49, 50, 51]. Even when a system failure can be tracked

back to a bad decision made by a particular component, usually the component made

that decision in accordance with its specification. That specification, in conjunction

with other component specifications, was not sufficiently strong to enforce correct

system behavior. It is the system as a whole, not any one component, that produced

the failure.

For example, a chemical engineer might provide a specification to a software

engineer writing code to control an automatic valve, but omit assumptions that all

chemical engineers take for granted (e.g. that input valves should always be closed

before output valves). The software engineer then provides a piece of software in

accordance with the written spec, but which violates the implicit intention of the

chemical engineer [49].

Specification inconsistencies stein from two sources: a shortcoming on the

part of the system engineer to decompose the system requirement into component

specifications, and a failure to unambiguously communicate the specification to the

engineers and specialists for each component. Our work strives to address both

concerns, especially as they arise in software-intensive systems.

1.1.1 Software Intensive Systems

Software components differ from electro-mechanical components in ways that

intensify the burden put on system-level analysis and requirements engineering.

As software is increasingly deployed in contexts in which it controls multiple,

complex physical devices, this issue is likely to grow in importance. Systems

incorporating software components are likely to become increasingly resistant to

traditional methods of analysis, such as testing, manual inspection, redundancy, and

functional decomposition.

Software components do not break. Current practices, such as FMEA [6, 59], focus

solely on component failure. While such a focus is appropriate for electro-mechanical

systems, where parts wear out and must be replaced, it does not address the concerns

of software components. Software does not wear out or break. Any error in a software

component is present from installation. 1

Software engineers are more vulnerable to omitted assumptions. The more

different types of engineers involved in a system, the greater the chance of

misconmmunication. The inclusion of software engineers, whose training is often

disjoint from other engineering professions, exacerbates the issue and increases the

risk of miscommunication and omitted assumptions. Software engineering education

programs that share common coursework with other engineering disciplines are only

5-10 years old [63, 62].

Software is given more complex tasks. Software components are often given

1One could consider memory leaks or caches filling up as examples of software wearout, although
those concerns are more analogous to a physical motor overheating. The part has not worn out
and broken, but rather it requires a reset or idle time. If it overheats more than is acceptable for
the current application, then one faces a design problem not a component failure. A self-modifying
computer system which is never reset or rebooted (such as a self-configuring network) could indeed
have failures in the traditional sense - over the course of auto-configuring and maintaining caches, the
system might evolve itself into a bad state, and effectively have broken - requiring a full replacement.
For most software systems, this scenario is a stretch of the imagination, and the primary concern
lies with logic errors in the design, not decay over the system's lifespan.

the most complex and subtle specifications on the grounds that software is flexible

and cheap to update. This means that the software components are more likely

to be sensitive to subtlies of the system architecture, and thus more vulnerable to

incomplete analysis and documentation.

Software is complex and non-continuous. A computer program can behave

completely different on one set of inputs than on a similar set of inputs, reducing

the confidence gained from past performance and testing. Furthermore, because of

the size and complexity of most software, it thwarts manual verification at the source

level. The result is a components which is hard to verify statically or empirically.

1.1.2 Dependability, Auditability, and Traceability

To be confident that a system meets its requirements, we need something more than

skilled engineers and good process. We need an argument that is founded on concrete,

reproducible evidence that documents why the system should be trusted.

A dependability argument [19] is one that justifies the use of a particular

component for a particular role in a particular system. It is not an argument about

absolute correctness, and it is not about preventing component failures. Rather, it is

about understanding the interaction of components, and encurring that the individual

component specifications are adequate to prevent system-level failure.

Building a correct argument is not enough; the argument must also be auditable.

It might be reviewed by a certification authority (such as the FDA [61], FAA [2], or

NRC [3]), a system engineer deciding if the system is suitable for a. slightly different

operating context, an engineer wanting to make a change to the system, or even

an engineer new to the project. As the system evolves, the dependability argument

must be maintainable, as reconstructing a thorough dependability argument after

each change to the system is impractical.

A key part of making an argument auditable and maintainable is providing

traceability. Traceability takes two forms: upward and downward. Downward

traceability answers the question "Which components and what properties of those

components ensure that system requirement X is enforced?", and provide confidence

that the system operates as desired. Upward traceability answers the question "Which

system requirements does component X help enforce, and upon what properties of X

do those requirements rely?", and allows the system to be more safely modified.

An argument that provides both forms of traceability is termed end-to-end; it

connects the high level system concerns down to the low level component properties,

based on an explicit description of the structure of the intervening layers.

The research community has approached dependability along four, largely

independent routes. Individually, these styles of approach provide insufficient

breadth, depth, confidence and/or are not economical on complex systems. Our

approach brings together techniques developed in these different academic fields to

build a composite argument with an appropriate tradeoff of those factors.

Requirements Engineering (RE) focuses on the task of factoring system

requirements into component specifications. RE techniques typically considers

the interactions of the components, but rarely validate the assumptions made

about those components. Roughly speaking, arguments developed in the RE

community are broad but not deep.

Program Analysis (PA) focuses on establishing specifications of individual

software components. PA techniques typically do not consider why those

specifications are important, just whether or not they might be violated.

Roughly speaking, arguments developed in the PA communities are deep but

not broad.

Testing can provide the breadth of requirements engineering and the depth of

program analysis, but fundamentally cannot provide the coverage needed to

build a dependability argument. Testing a software-intensive system assures

that the system operates correctly in the tested scenarios, but provides no

guarantees about scenarios not specifically tested - not even if those scenarios

are similar to those that were tested.

Formal Methods (FM) have the potential to provide ample coverage, but are too

costly to economically apply to large legacy system. FM have only scaled to

large systems when the systems have been built from scratch in a controlled

manner by specially trained developers [25, 56]. Applied to an existing complex

system, they do not scale adequately to build end-to-end arguments. As a

result, the tend to be used in a manner that provides depth but not breadth, if

they are used at all.

Unfortunately, while requirements engineering and program analysis each provide

sufficient confidence at acceptable cost, the specifications generated by requirements

engineering techniques often do not match up with the types of properties that

program analysis techniques can validate. The two halves are typically connected

only informally by a intuition that certain properties about the code (such as the lack

of buffer overruns) will correspond to system properties (such as the system being

protected from security attacks). There is not a systematic, auditable argument

for why the properties checkable by program analysis are sufficient to ensure the

properties called for by requirements engineering.

Our approach is to combined techniques from requirements engineering and

program analysis to harness the best of both worlds. To connect them, we draw

heavily upon techniques from both those fields and from formal methods.

1.2 Contributions

This research is organized around four interworven contributions.

CDAD Framework - We have developed Composite Dependability Argument

Diagrams (CDAD), a framework for constructing end-to-end dependability

arguments by smoothly integrating a collection of component arguments.

Chain of Techniques - We have identified a set of techniques for building pieces

of a dependability argument. We fit these techniques together using CDAD,

producing a composite technique suitable for building dependability arguments

for a particular class of software-intensive system properties.

Requirement Progression - Where necessary, we have developed techniques to

connect existing techniques and thereby completing the end-to-end argument.

Most prominently, we developed Requirement Progression, a technique used to

connect problem diagrams with code specifications. Requirement progression

became a central part of all our dependability arguments.

Case Studies - We have applied that technique to two systems: (a) The Burr

Proton Therapy Center (BPTC), a medical system currently being used to treat

cancer patients as Massachusetts General Hospital (MGH). The BPTC analysis

shows how we use CDADs to integrate requirement preogression with automatic

code analysis of software components. (b) The Pret a Voter cryptographic

voting system developed at the University of Newcastle. The voting analysis

shows how using requirement progression to build a fidelity argument make the

construction of secrecy and auditability arguments for the same system easier,

more thorough, and more transparent to review.

For each of the two case studies, we contribute the following:

* A safety case for the dependability of the system with respect to mission-
critical requirements. This involves both a description of the assumptions and
conditions under which the software is suitably dependable, and a verifiable
argument for why those conditions and assumptions are sufficient.

* A list of undocumented dependencies, assumptions, and vulnerabilities of the
system, and an analysis of their effect on safety. These assumptions will
hopefully be added to the official documentation for the system, making the
it easier and safer to maintain.

* A description of our experience building the dependability argument, including
analysis of which parts worked well, which need improvement, and at what stage
during the process different problems were discovered.

1.2.1 Hypothesis

In this thesis, we will motivate and substantiate our belief that requirement

progression and CDADs are effective and cost-effective techniques for guiding

and structuring end-to-end dependability arguments. CDADs provide a means

for showing the overall structure of a dependability argument, and requirement

progression provides a key link in that argument, providing confidence that the

component specifications do indeed enforce the system requirements.

20

Chapter 2

Synthesis Technique: CDAD

Given a collection of techniques, each of which provides a narrow piece of a

dependability argugment, how does one connect them together to build a single end-

to-end argument? To answer this question, we first show how to classify component

techniques according to the breadth of the claim they support and the depth of the

evidence they provide. We will then show now that classification guides composition,

and demonstrate one such composition that we have found to be effective.

2.1 Dependability Arguments

In this section, we introduce the Composite Dependability Argument Diagram

(CDAD), a structured classification of argument styles used to analyze and document

system dependability. This classification shows what approaches are appropriate

for addressing different types of concerns about the system at different levels of

granularity. More importantly, it shows how different approaches can be connected

together to build a unified dependability argument for an end-to-end system concern.

select_patient procedure
snd msg I (module level) pack

message
check data

consistency msg unpacking
Investors code fragment

Graphical querry (block level)
User Interface database for a = m[i] get_next I

patient id

i i

Figure 2-1: Granularities at which one can view a system: the context of the surrounding world, the system under analysis,
and components of that system. A software component can be viewed as an entire component, as procedure modules, linear
blocks of code, or as individual lines of code. Each granularity provides a different level of abstraction, hiding some details while
revealing broader patterns and connections.

2.1.1 Granularities

The first part of understanding Composite Dependability Argument Diagrams

(CDADs) is to understand the axes. Both axes use the same scale - a hierarchy

of granularities at which one can view the system.

An artifact at one granularity comprises finer grained black boxes plus additional

information about the structure of those pieces. For example, a aan rchitecturc is a

collection of components plus an organization of the interactions of those components,

and each of those components is, in turn, a collection of modules plus an organization

of the interaction of those modules.

Figure 2-1 shows a classic decomposition of a system description, accompanied by

examples drawn from the BPTC.

Context - The coarsest granularity regards the system architecture as a black box

interacting with the surrounding world and stakeholders.

For the BPTC, the world contains domains such as investors, doctors, and FDA

regulators, as well as the delivery system itself. The internals of the architecture

are hidden from view, but their interactions, communications, and goals are

shown. Legal and financial concerns are expressed at this granularity, although

our work focuses solely on safety concerns.

System - The next finer granularity regards the components of the system

architecture as black boxes, and examines how those components communicate

and interact.

Refining our view of the BPTC architecture reveals components such as

operators, prescriptions, and the treatment manager. It is at this granularity

that we state safety concerns, such as accurate dose delivery, consistent logging,

and safe shutdown.

Component - At the next granularity, we regard modules within a components as

black boxes, and examine how those modules interact. In the case of a software

components, the modules might correspond to procedures that are connected

by function calls and shared data.

The BPTC treatment manager component contains modules such as messaging

procedures and data structure definitions.

Module - At an even finer granularity, blocks within a module are treated as black

boxes, but the structure within the module that links together those blocks is

exposed. For a software module, the blocks might be linear fragments of code,

linked together by conditionals and other non-linear control flow.

For example, the "set equipment" procedure includes a block that initializes

some variables, the code inside the loop that constructs an array of data, and

a block that constructs a message from the array and sends it to the hardware

device driver.

Block - The finest granularity we consider for a software component is the block

level: individual statements in the code are considered to be black boxes, and

we consider the structure of those statements (according to the the semantics

of the programming language).

2.1.2 The Space of Arguments

In system analysis, a claim is often stated at one granularity but established at a

lower granularity. For example, a performance goal might be stated at the world

(highest) granularity but established by examining the reliability of interactions at

the component (middle) granularity. An argument relates a claim at the stated level

with a collection of claims at the established level. An argument justifies the belief

that enforcing the finer grained properties will be sufficient to enforce the coarser

grained property.

An argument's breadth, is the granularity of the stated goal, while its depth is

the granularity into which it recasts that goal. For example, a system refinement

argument might state a claim about the system architecture as a whole and recast

narrow broad

tated'

established

argument

Figure 2-2: An argument states a property at a certain breadth and establishes it. by
examining the system at a certain depth.

that claim into a set of assumptions about the components of the system. As we

will see later, a collection of arguments can be strung together to build a composite

argument with greater breadth (further to the right) and greater depth (further down)

than any one of the components.

x-axis: The x-axis position of an argument is its breadth. The narrowest (left-most)
arguments deal with goals stated about code blocks, such as assertions and
invariants. The broadest arguments deal with goals stated about the context in
which the system operates, such as safety requirements imposed by regulatory
agencies.

y-axis: The y-axis position of an argument is its depth. The shallowest arguments
are established at the world granularity, looking at the interactions between
the system and its stakeholders, but without considering the architecture of the
system. The deepest arguments are established at the code block granularity,
looking at the full semantics of the software.

statements: An <x, x> point on the main diagonal is a statement about the
granularity x. A <system, system> point is a statement about the system
- a requirement. A <component, component> point is a statement about a
component of the system - a domain assumption.

arguments: An <x, y> point below the main diagonal is an a'rgulment that the
statement at <y, y> holds as long as a certain set of statements at <x. x> hold.
For example, <system. component> is an argument that a system requirement
is enforced by a set of component assumptions.

0
CD
O0)

com
a
CUU)CE
0 ,

stated as property on...

CI 0
context

system

Iponen-

arguments
module

block ,
IIa

Figure 2-3: Points on the main diagonal represent statements about the system
at a particular granularity. Points below the main diagonal represent arguments
that establish one statement based on a set of statements (assumptions) at a lower
granularity.

invalid points: The upper-lefthand triangle of the diagram is empty breadth is
always greater than or equal to depth. A property cannot be established at
a higher granularity than it is stated. For example, one cannot show that
a component obeys its specification by noting that the system has a certain
requirement, whereas one can do the reverse - argue that a system has a
requirement because a component obeys its specification.

2.1.3 Sample Arguments

Consider two particular points in this diagram: design refinement, at <world,

system>, and whole program verification, at <component, block>.

Arguments at <world, system> are design refinement arguments; they recast

claims/goals stated about the world surrounding the system into claims/goals stated

about the system under analysis (treated as a black box) and claims/goals stated

about other systems interacting with the system under analysis.

For example, a high level hazard analysis for a chemical tank would be a design

regfinerment argument. It recasts safety constraints (that the tank does not harm

surrounding equipment) into constraints about the chemical tank (that it does

00

breadth stated

-0 system
(D design

.- refinement
Co

.4

c,

c-0
V1

block

Figure 2-4: The breadth and depth of two sample argument styles.

not vent more than X grams of corrosive gas per day) and constraints about the

surrounding equipment (that they will not be damaged by exposure to X grams

of corrosive gas per day). A world goal (damage to surrounding assets) has been

decomposed into system goals (how many grams of gas can be vented per day).

In contrast, at < component, block> we have whole program veri7fication arguments,

which recast goals about an entire software component and establish them in terms

of the semantic of individual block of code.

For example, a thorough manual review of the software that controls a chemical

valve would be whole program verification. It would take a property stated about the

system as a whole, that it correctly send signals to the value according to a prescribed

pattern, and recasts it as properties about the semantics of the language used (e.g.

that the send_opensignal does indeed send an open signal to the value, and that a

wait_l_second really does pause for 1 second). Of course, manual exhaustive review

might be too costly or too error prone to be suitable for a particular analysis, but it

certainly fits the mould of a whole program verification argument.

whole
program

verification

stated as property on...

ell (9

JML, Z, "
VDM, B

0

U)CnUML,
.z OCL, design

Javadoc design
O module .v.

drge, arun, ESC,
/code re iew,

block / algorith ic proof Astre
code statements,
abstracted calls

pattern,
review

e e

/S.

Figure 2-5: Program Analysis (PA) techniques reside in the lower lefthand region,
providing depth but not much breadth.

2.1.4 Existing Techniques

CDADs do not directly represent the cost (both human and computational) of

building the different kinds of arguments, although we discuss extensions of the CDAD

notation to express such information in Chapter 7. In general, moving deeper (down)

and broader (right) raises cost and/or lowers confidence.

The fields of program analysis (PA), requirements engineering (RE), and testing

are represented by clusters of argument types in the CDAD.

PA: Program analysis techniques (PA) occupy the lower-left-hand region, as shown in
Figure 2.1.3 -- the properties are stated and established at a low granularity. PA
techniques rarely address properties stated at or above the system granularity, as
such properties are too broadly stated to be amenable to automatic analysis. We

context i

0
(D
C)

1 - - L- - - 9-

--

sysemI I I41VI-

stated as property on...
oS-

STAIP diagram,,
custor er intervipfi

DFDs, OPM, /
pro lem diagram, ,

O system use cases

. - hazard analy s,
Q- J4 aper prototypi g

CL state charts f
O component
. , fault trees, KAOS

0 v event trees,
C/ MEA, FMECA

CO0 module
0)

blockl,/

Figure 2-6: Requirements Engineering (RE) techniques reside in the top right corner,
with great breadth but limited depth.

indicate this obstacle with the vertical system complexity barrier in Figure 2.1.3.

RE: Requirements engineering techniques (RE) occupy the upper-right-hand region,
as shown in Figure refcdad-RE - the properties are stated and established at
a high granularity. RE techniques rarely establish properties below the system
gTanularity, as doing so produces descriptions that are too large and complex
to be reasoned about. We indicate this obstacle with the horizontal component
complexity barrier in Figure 2.1.3.

Testing: Testing techniques occupy the bottom row; they provide deep analysis at
various breadths, as shown in Figure 2.1.3. Testing can provide the breadth
of RE and the depth of PA, but fundamentally cannot provide the confidence
needed to build a dependability argument. Testing assures that the system
operates correctly in the tested scenarios, but provides no guarantees about
scenarios not specifically tested.

The ultimate of software engineering is to develop a high-confidence economical

narrow (> broad

component
complexity

barrier

system
,complexity

barrier
__________________ __________________ __________________

Figure 2-7: Requirements engineering techniques tend to stay above the component
complexity barrier, to avoid introducing too much detail about the operation of
the underlying system. Program analysis techniques tend to stay left of the
system complexty barrier, to avoid introducing the details of too many interacting
components of the system.

technique at the lower-right-hand-most corner - one that states a property at the

highest (world) granularity and establishes it at the lowest (block) granularity.

Unfortunately. getting anywhere near that goal requires crossing both complexity

barriers.

2.1.5 Dependability Arguments

Most tasks do not require the holy grail and can make do with more modest

approaches. For example, verifying that libraries obey their contracts requires

only a <module, block> style argument, and can be established using program

analysis techniques such as Greg Dennis's Forge [23] or Patrick Lam's HOB [46].

Similarly, determining if a given software specification is sufficient to enforce a given

system requirement requires only <system, comrponernt> or better, and can thus be

satisfied by requirement progression [81]. However, the important class of end-to-end

dependability arguments lies outside the ranges of conventional PA and RE techniques.

Dependability arguments for software intensive systems should state properties

stated as

0
context

C-
0 system
CO
a)
I-

CD
CL
L component

CL
U)4--

U)

block

property on...

)
cLo

/

d regression ests, usability testing,
-, full compo ent tests integration testing

unit tests deployment testing

Figure 2-8: Testing techniques reside on the bottom row, establishing properties at

the depest level and a variety of breadths. However, testing alone does not provide

the confidence needed for a dependability argument.

at the system granularity (or higher) and establish those properties at the module

granularity (or lower). For example, part of the BPTC dependability argument

(described in Chapter 4) is to establish that patients do not receive more radiation

than their prescriptions indicate. Such an argument should be grounded in the code,

so that if the requirement is changed (e.g. to say that the patient cannot receive

less than their prescription either) or if the system is changed (e.g. to include an

additional firing mode), one can determine which parts of the code need updating, if

any.

Figure 2.1.4 shows the space of solutions that. are appropriate for building this

kind of dependability argument. While we do not necessarily need to achieve the

I ' -- -- ~ II I

stated as property on...

2 component

0 module

Figure 2-9: Neither requirements engineering (top right) nor program analysis
(bottom left) techniques have enough breadth and depth to reach the lower right
area, where dependability arguments reside. However, composition of RE and PA
techniques can get us there.

bottom-right corner to build dependability arguments, we do need something more

than we have - neither PA nor RE techniques have sufficient breadth and depth to
land in the target region. We can, however, compose existing PA and RE techniques,

together with some additional work, to create a composite technique that falls within

the target region, as shown in Figure 2.1.4. The challenge of building composite
techniques is to keep the cost from rising too high without letting the confidence

drop too low.

2.1.6 Composition

Building composite arguments take more than picking two techniques that, between

them, have sufficient breadth and depth.

(a) The techniques must match up.

We can't reach the bottom right corner (<world, block>) with just hazard
analysis (<context, system>) and a code review (<module, block>). While
those arguments have sufficient breadth and depth between them, they do not

stated as property on...

a"~B~g

O system

CL
O component

oz module0

Figure 2-10: A composite argument built out of smaller arguments can reach the
bottom right position (max breadth, max depth), even when no individual technique
can reach that point.

connect together. An additional argument is needed to connect the system
statements used to establish the hazard analysis with the module statements
established by the code review.

(b) There needs to be glue between the techniques.

We can't reach <system, block> with just KAOS [21, 22, 18, 8] (<system,
component>) and Astree [9, 10] (<component, block>). The claims generated
by KAOS are at the right level to be established by an Astree analysis, but
they may not be in the right form. In order to connect up the two arguments,
a glue argument may be needed - an argument that actually rests on the main
diagonal, and serves only to rephrase a statement within the same granularity.
In this case, we need glue at <component, component>) to recast the claims
generated by KAOS into claims that can be established by the Astree.

(c) The component techniques must provide sufficient confidence and coverage at
acceptable cost.

We could reach the bottom right corner (< world, block>) using just deployment
testing (<world, block>), but doing so will not provide sufficient confidence.
While it has sufficient breadth and depth, testing the entire system on real
patients and observing the results does not give us the confidence needed to
certify the system as dependable. Testing fundamentally cannot provide the
level of coverage needed to certify a complex system with confidence. We discuss
ways to add confidence and cost information to CDADs as future work, in
Chapter 7.

stated as property on...

0
U)

a),
0L
0

U)Cz
4--j

U)0
a,-1

component

Figure 2-11: A composite technique used to analyze the BPTC.

2.2 Structuring a Dependability Argument

Our general approach to constructing composite arguments can be applied to the

BPTC case study by instantiating it with a particular set of component techniques.

Figure 2.1.6 shows the techniques we combine, as arguments and statements, to form

the composite technique we use in Chapter 4.

Hospital Needs : An informal discussion with hospital administrators about the
role of the BPTC at MGH.

This statement is at <context, context>.

Hazard Analysis : A characterization of dangerous states that could be induced
by the system, including a classification of each hazard's danger level (low,
medium, high) [49].

This argument is at <context, system>.

Designations : A list of formal terms, both domains and phenomena, which will
be relevant to the argument. Each term is mapped to an informal description,
serving to ground our formality in the real world.

This statement is at <system, system>.

Problem Diagram : The system requirement is initially expressed with a problem
diagram, from the Problem Frames approach [40, 38]. This step recasts the
requirement from its original (possibly informal) statement into a form that is
be amenable to requirement progression. It identifies the domains relevant to
the subsystem under consideration, and the phenomena through which those
domains interact, using the formal terms introduced by the designations.

This statement is at <system. systerr>.

Requirement Progression : The system requirement is transformed into a
software specification using requirement progression [81]. The resulting diagram
is called an argument diagram, which is the problem diagram annotated with a
collection of domain assumptions (breadcrumbs) sufficient to enforce the original
system requirement. Domain assumptions about software components can be
used as specifications for those components.

This argument is at <system, component>.

Argument Validation : Along with the argument diagram is an Alloy [30] model
which mechanically confirms that the breadcrumbs do indeed enforce the desired
system property.

This argument is at <system. compornent>.

Breadcrumb Assumption Interpretation : The domain properties inferred by
Requirement Progression are interpreted back into the languages of their
domains, using the designations, and decomposed into component assumptions
about its domain. Each component assumption is classified as software
correctness (c). software separability (s), or non-software properties (x). The
decomposed assumptions are now amenable to domain specific analysis.

This statement is at <component, component>.

Phenomenon Assumption Interpretation : Problem diagrams contain implicit
assumptions, such as atomicity and inter-domain consistency. These
assumptions are also interpreted, decomposed, and classified as (c), (s), or

This argument is at <component. component>.

Specification for TM : A specification of the correct behavior of the Treatment
manager, resulting from interpreting one of the breadcrumbs derived during
requirement progression. It is now phrased in terms of code terminology, and
is thus amenable to analysis.

This statement is at <component, component>.

Trace Extraction : The process of identifying the subset of the code relevant to
the TM specification. It is identifying by using a Flow Diagram, an informal
annotation of the problem diagram, indicating the flow of information through
the system. The flow diagram is used to label (and thus implicitly order) the
domains and the letters assigned to arcs. These labels are purely for the sake
of bookkeeping and help us to systematically develop the argument.

This argument is at <component, module>.

Specification for Trace : A specification of what it means for the identified subset
to be correct. In this case, it is the same claim as the specification for the
treatment manager, but now applied to a small chunk of code.

This statement is at <module, module>.

Forge Analysis : The individual pieces are discharged using existing analysis
techniques. Separability assumptions are addressed with impact analysis, and
correctness properties are addressed using a combination of manual inspection
and automatic analysis via the Forge framework.

This argument is at <module, block>.

Code Statements : Individual lines of code in the code base, and the assumption
that they have the semantics assigned to them by Forge.

This statement is at <block, block>.

Together, these component techniques provide an argument at <context, block>,

well within our the zone for Dependability Arguments. The component techniques

provide sufficient confidence to allow the overall argument to be used to certify the

svstem.

38

Chapter 3

Requirement Progression

3.1 Overall Approach

The pr'oblem frames approach offers a framework for describing the interactions

amongst software and other system components [38, 40]. It helps the developer

understand the context in which the software problem resides, and which of its

aspects are relevant to the design of a solution [31, 39, 44 7]. In this approach,

a requirement is an end-to-end constraint on phenomena from the problem world,

which are not necessarily controlled or observed by the machine. During subsequent

development, the requirement is typically factored into a specification (of a machine

to be implemented) and a set of domain assumptions (about the behavior of physical

devices and operators that interact directly or indirectly with the machine).

3.1.1 The Need for Progression

A key advantage of the problem frames approach is that it makes explicit the

argument that connects these elements. In general, this argument takes a simple

form: That the specification of the machine, in combination with the properties

of the enviromnent, establishes the desired requirement. When the environment

comprises multiple domains, however, the argument may take a more complicated

form. The problem frames representation allows the argument to be shown in an

argmet diagrarm the problem diagram embellished with the argument.

In the problem frames book [40], a strategy for constructing such arguments, called

problem progression, is described. But, since each step in a problem progression

involves deletion of domains from the diagram, the strategy does not result in an

argument diagram; rather, it produces a series of diagram fragments. The approach

described in this paper, which we call requirement progressiorn, likewise aims to

produce an argument diagram. Its steps produce accretions to the diagram, never

deletions, and the diagram resulting from the final step is an argument diagram in

the expected form.

Often, the problem diagram fits a well established pattern (a problem frame),

and the argument required will be an instantiation of an archetypal argument. As

our logging example will illustrate, not all problems match existing frames, and an

argument diagram must be specially constructed using progression.

3.1.2 Our Approach

Our approach relies upon the analyst's ability to accurately distill, disambiguate,

and formalize the requirement. One of the benefits of problem oriented software

engineering [44], of which problem frames is an example, is that the analyst

is permitted to formulate the requirement in terms of whatever phenomena are

convenient for describing the actual system requirement. For example, a designer

of a traffic light might write a requirement saying "cars going different directions

are never in the intersection at the same time". The analyst then methodically

transforms the requirement so that it constrains only controllable phenomena, making

sure that the new version is sufficiently strong to enforce the original requirement.

For example, the traffic light designer might reformulate the requirement to say "the

control unit sends signals to the traffic lights in the following pattern...", and justify

the reformulation by appealing to known properties about how cars and traffic lights

behave. Attempting to write the reformulated version froln scratch is error prone.

As with other progression techniques (e.g. [70]), our goal is to provide support for

performing that transformation systematically and accurately. Our technique is most

appropriate when the requirement can be phrased in a formal language, although the

methods we describe could also guide reasoning about informal requirements.

We demonstrate our technique on two examples. The first example is of a two-

way traffic light similar to the one described in the problem frames book [40]. It

demonstrates the use of our technique to specialize the correctness argument of

the problem frame that matches the problem diagram. The second example is a

simplified view of the logging facility used in a radiation therapy medical system. It

demonstrates the use of our technique when no single existing problem frame matches

the entire problem. These examples are perhaps not sufficiently complex to properly

demonstrate the need for systematic requirement progression, but they do illustrate

the key elements of our approach and indicate its strong and weak points.

In both examples, the various constraints are formalized in the Alloy modeling

language, and the Alloy Analyzer [30. 34. 37] is used to check that the resulting

specification and domain assumptions do indeed establish the desired system-level

properties. The Alloy Analyzer can check the validity of a transformation with a

bounded, exhaustive analysis. Our transformation technique is not tied to Alloy;

we chose Alloy because it is simple, was familiar to us, provides automatic analysis,

and allows a fairly natural expression of the kinds of requirements and assumptions

involved in these examples.

In Chapters 4 and 5 we apply requirement progression to reals systems,

demonstrating its applicability to complex system. There, we see that these

techniques scale to reals systems, and are not actually much more difficult to use

there than on the toy examples shown in this chapter.

3.2 Problem Frames

Before one can establish a system requirement, one must articulate it.

The Problem Frames approach is a technique for describing and analyzing desired

system properties. The Problem Frames approach offers a framework for describing

the interactions amongst software and other system components [38, 40]. It helps the

developer understand the context in which the software problem resides, and which of

its aspects are relevant to the design of a solution [31, 39, 47]. Once the requirement

is articulated as a problem diagram, it becomes amenable to more systematic analysis

(Section 3.3).

The problem frames approach is an example of problem oriented software

engineering [44], meaning that it focuses on the context in which a system operates

rather than the internal architecture of the system. It emphasizes the distinction

between phenomena one wishes to indirectly constrain (the system requirement)

and phenomena the software can directly control (the component specifications and

domain assumptions). System analysis is a matter of understanding the indirect links

between those two sets of phenomena.

One benefit of this approach is that the analyst formulates the system requirement

in terms of whatever phenomena are most appropriate and convenient. As a result, we

have a higher confidence that the written requirements accurately reflect the intended

requirements. Attempting to directly write the requirement in terms of controllable

phenomena can be subtle and error prone. The problem frames approach separates

the articulation of the requirement from the transformation of that requirement into

a form usable as a specification.

In this chapter, we will describe Requirement Progression, a technique for

systematically decomposing a system requirement (written in terms of the phenomena

to be controlled) into a set of specifications (written in terms of controllable

phenomena). First. however, we will examine Problem Frames in a bit more detail.

3.2.1 More Detail

An analyst has. in hand or in mind, an end-to-end requirement on the world that

some machine is to enforce. In order to implement or verify the nachine, one needs

a specification at the machine's interface. Since the requirement typically references

phenomena not shared by the machine, it cannot serve as a specification. The Problem

Frame notation expresses this disconnect as shown in Figure 3-1. 1

ITchin interface Problem _ referenced - -Requemphenomena World phenomena Requremen

Figure 3-1: A generic problem frames description showing the disconnect between
the phenomena controlled by the machine (the interface phenomena) and those
constrained by the requirement (the referenced phenomena).

The analyst has written a requirement (right) describing a desired end-to-end

constraint on the problem world (center). The requirement references some subset of

the phenomena from the problem world (right arc). A machine (left) is to enforce

that requirement by interacting with the problem world via interface phenomena (left

arc).

For example, in a traffic light system, the problem world might consist of the

physical apparatus (lights and sensors) and external components (cars and drivers),

the requirement might be that cars do not collide, and the specification would be

the protocol by which the machine generates control signals in response to the

monitoring signals it receives. Tile machine and its specification only have access to

the phenomena pertaining to control and feedback signals, whereas the requirement

is a constraint on the directions and positions of the cars.

The problem world is broken into multiple domains, each with its own

assumptions. Here, for example, there may be one domain for the cars and drivers

(whose assumptions include drivers obeying traffic laws), and another for the physical

control apparatus (whose assumptions describe the reaction of the lights to control

signals received, and the relationship between car behavior and monitoring signals

generated). A problem diagram shows the structure of the domains and phenomena

involved in a particular situation. One possible problem diagram for the traffic light

1We deviate slightly from the standard problem frames notation when drawing an arc indicating
that domain D controls phenomenon p. Rather than labeling the arc D! p, we label it p and place an
arrow head pointing away from D. When not all phenomena shared by two domains are controlled
by the same domain, separate arcs are used. Most of our diagrams omit indications of control
altogether, as it is not currently relevant to our approach.

system is shown in Figure 3-2.

observ Cars and location
signals ations Drivers position NoCollisions

Figure 3-2: A problem diagram describing the domains and phenomena for a two-way
traffic light. The arc connecting two domains is labeled by the phenomena shared by
those domains - those phenomena that both domains involve. The arc connecting
the requirement to a domain is labeled by the phenomen referenced (constrained) by
the requirement.

To ensure that the system will indeed enforce the requirement, it is not sufficient to

verify that the machine satisfies its specification. In addition, the developer must show

that the combination of the specification and assumptions about the problem world

imply the requirement. To argue that the machine, when obeying the specification,

will enforce the requirement, we must appeal to assumptions about how the domains

act and interact - how lights respond to control signals, how monitoring signals are

generated, how drivers react to lights, and how cars respond to driver reactions. Those

behaviors are recorded as domain assumptions, as shown in Figure 3-3.

observ- Cars and location<No CoisionController signals ghts ations Drivers position

sigrnals observations
signals observations location

position

Assumption Assumption

Figure 3-3: Assumptions about the intervening domains are expressed as partial
domain descriptions in the form of constraints on their behaviors. These assumptions
help us relate the machine specification to the system requirement. As with a
requirement, the arc connecting an assumption or specification to its domain is labeled
with the phenomena referenced by that assumption.

A problem diagram serves to structure the domains and their relationships to the

machine and the requirement, and is accompanied by a frame concern that structures

the argument behind this implication. The traffic light system, for example, matches

the required behavior shown in Figure 3-4 [40].

commands

commands

Specification
on

commands

The Machine
generates
commands

according to the
Specification, so...

Device - - - behaviors - - - Requirement
!on behaviors

commands
behaviors

commands -

...because the
Device exhibits ...the Requirement

behaviors based on on behaviors will
commands like hold..

this...

Figure 3-4: An informal argument diagram for the required behavior frame.

Because the required behavior frame concern is general enough to match many

situations, it only gives an outline of the correctness argument and serves primarily

to focus attention on the kinds of domain properties upon which the completed

correctness argument is likely to rely. Applying it to the traffic light problem diagram

suggests the argument structure shown in Figure 3-12.

This information is a valuable aid in building the full argument, but would greatly

benefit from a systematic approach for determining exactly which properties of the

domains are relevant, deriving an appropriate specification for the machine, and

providing a guarantee that the specification and domain properties are sufficient to

establish the requirement. This chapter describes such an approach.

I)

Controller signals Lights obse Cars and location / Collisionsations Drivers position

signals observations
signals observations location

position

Specification I Lights Cars
onsignals i Assumption Assumption

The Controller ...the requirement on
ontrols the signal ...because the ...and because light

puolstes according to signal pulses relate observations relate car locations and
pulses according to to light observations to car locations and positions will hold,
this Specification, like this... positions like this... preventing cars from

so... colliding.

Figure 3-5: The informal argument diagram that results from applying the required
behavior frame to the two-way traffic light problem diagram. It provides an outline
for arguing that the specification enforces the requirement, and it indicates what sort
of domain assumptions will be needed to build that argument.

3.3 Requirement Progression

In this section, we introduce an incremental way of deriving a specification from a

requirement via requirement progression. A byproduct of the progression is a trail of

domain assumptions, called breadcrumbs, that justify the progression and record the

line of reasoning that lead to the specification.

Requirements, specifications, and breadcrumbs are three instances of domain

constraints. Requirements can touch any set of domains but usually touch only

non-machine domains; specifications touch only the machine domain; and each

breadcrumb touches only a single non-machine domain. The only thing barring

the requirement from serving as a specification is that it mentions the wrong set of

phenomena. Unfortunately, altering it to mention the right set of phenomena (those

at the interface of the machine domain) is no easy matter and requires appealing

to properties of the intervening domains. The transformation process we describe is

an incremental method for achieving such an alteration and recording the necessary

domain properties. 2

3.3.1 Available Transformations

There are three types of steps in the transformation process: adding a breadcrumb

permits the requirement to be rephrased, which in turn enables a push to change

which domains it touches. Figure 3-6 shows an archetype of how these steps can turn

a requirement into a specification. In that example, there is one interface phenomenon

controlled by the machine (pl) and one phenomenon mentioned by the requirement

(p2). The intervening domain involves both of those phenomena,.

(a) Add a breadcrumb constraint, representing an assumption about a domain
in the problem world. The breadcrumb must touch a single domain that is
currently touched by the requirement (and no other domains), and therefore
only mention phenomena from that domain (e.g. pl and p2). It is chosen so
as to enable a useful rephrasing (step b). The breadcrumb must be validated by
a domain expert to ensure that it is a valid characterization of the constrained
domain.

(b) Rephrase the requirement so that it represents a different constraint. The new
version of the requirement must touch the same domains, but it may mention

(and thereby constrain) a different subset of the phenomena of those domains

(e.g. mention pl instead of p2). The rephrasing is chosen so as to enable a
useful push (step c).

The analyst must verify that existing breadcrumbs are sufficiently strong to
permit the rephrasing by establishing the implication

(breadcrumb A new requirement) -= prior requirement

2During the progression, the requirement will undergo a sequence of changes until it has become
a specification. It is useful to distinguish the initial version of the requirement (that the system
designers actually want enforced) from the intermediate versions of the requirement (that are
only meaningful within the progression process). We will thus use the term goal to denote an
intermediate version of the requirement, and reserve the term requirement to refer to the original
system requirement. At any given point in the process, there is exactly one goal; the goal is initially
the requirement and will eventually be a specification.

3The phenomena mentioned by a breadcrumb might be shared amongst several domains, but
there must be a single domlain that involves all of them. It is this domain that the breadcrumb
touches.

The means of establishing this implication will depend on the language used to
express the breadcrumb and requirement constraints.

(c) Ptush the requirement so that it touches a different set of domains but still
represents the same constraint over the same phenomena. A push is only
permitted if it will preserve the fact that each phenomenon mentioned by the
requirement is involved in some domain touched by the requirement, and that
every domain touched by the requirement involves some phenomenon mentioned
by the requirement.

Typically, a push changes the requirement to touch some domain d' (e.g. the
machine) instead of some domain d (e.g. the non-machine domain) such that
all the phenomena of d mentioned by the requirement are also phenomena of
d' (e.g. pl). Diagramatically, this means that only one of the arcs emanating
from the requirement is altered, and the phenomena labeling that are must be
shared between d and d'. 4

The analyst continues to perform these transformations (in any order) until the

requirement touches only the machine domain. At that point, it only mentions

phenomena at the interface of the machine and is thus a valid specification.

In theory, one might want to express an assumption that mentions phenomena that

are not involved in any single domain - the constraint representing such an assumption

would necessarily touch two or more domains and would therefore be an invalid

breadcrumb. Such assumptions inhibit local reasoning and are hard to validate, as

there may not be any single domain expert who can certify them. In practice, we have

not found (or been able to construct) an example where such an assumption is needed.

We therefore only allow assumptions about intra-domain properties; inter-domain

properties must be factored into several intra-domain properties (and incorporated

as a set of breadcrumbs).

4If a requirement mentions a phenomenon that is shared between domains, we consider the
diagram to be well formed as long as the requirement touches either of those two domains. It is
good style, but not necessary, for the requirement to touch the domain that controls the mentioned
phenomenon. A push transformation will violate that good style but leave the diagram well formed.
Note that the problem frames notation, as given in the problemn franes book [40]. is ambiguous
about this issue.

Machine pl Doman -p2 - Requirement

(b)

Machine pl Domain - p2 - Requirement

pl
p2

,Breadcrumb

(c)

p1 p°ma ! --- 4 RequirementMachine pl Domain - Requirement I
(Rephrased)

pl
p2

Breadcrumb

(d)
- p1..

Machine pl Domain
Requirement

1 (Specification)

p2

Breadcrumb I

Figure 3-6: An archetypal requirement progression: (a) Prior to the transformation
(b) A breadcrumb constraint is added, representing an assumption about how the
domain relates phenomena pl and p2. (c) That breadcrumb permits the requirement
to be rephrased to reference pl instead of p2. (d) The rephrasing enables a push,
moving the requirement from the problem-world domain onto the machine.

=~ _____

3.4 Two-Way Traffic Light

Our first example is of a two-way traffic light, similar to the one described in the

problem frames book [40]. A cartoon of this situation is shown in Figure 3-7. A

two late road has been reduced to 1 lane for a short stretch, perhaps because of

construction on one of tile lanes or because of a narrow bridge. A red-green light has

been placed at either end of the stretch, with a computer system synchronizing the

two units. The task is to provide a specification to the computer control unit that will

prevent head-on collisions from occurring on the road segment. Of course, to provide

that spec, we will have to make some assumptions about how the light units behave

(in response to signal pulses sent to them) and how the cars behave (in response to

the red and green lights displayed by the light units). Requirement progression will

guide and validate the discovery of those assumptions and specification.

This scenario is a good example of a problem frame with a linear topology: the

machine and requirement are on opposite ends of a linear sequence of domains.

Requirement progression is simply a matter of shifting the requirement down that

sequence and onto the machine. Later, in Section 3.5, we will see how requirement

progression works on a branching topology.

The two-way traffic light is also instructive because it is a prototypical instance of

the required behavior frame, one of the five problem frames presented in the problem

frames book [40]. It is thus a good example of how to use our requirement progression

technique to specialize the correctness argunent suggested by that frame.

The two-way traffic light problem frame is shown in more detail in Figure 3-9.

along with the requirement we will focus on in this example. To make sense of the

phenomena names used in that diagram, consult the designations, given in Figure 3-8.

The Light Unit has four physical lights: a red light and a green light in each

direction. The control unit sends signal pulses to the light unit to individually toggle

the four lights on and off. The cars moving in each direction observe those traffic

signals, and then decide whether or not to enter the road segment. The requirement

is that cars do not collide, which we will interpret to mean that no two cars are ever

Aa4
AE

'i..1 -

A A
m B

Figure 3-7: A cartoon diagram of the traffic light problem. Cars forced to share
a common lane of traffic with oncoming traffic are controlled by a set of red-green
lights, synchronized by a computer control unit.

on the road segment at the same time going opposite directions. However, the control

unit has no knowledge of, or control over, the cars; it can only send signal pulses to

the light units and observe the history of what signals it previously sent.

3.4.1 Basic Declarations

For completeness, we shall include, in addition to the constraints, the Alloy [30, 34, 37]

declarations needed to complete the model.

There is a set of cars and two relations about cars: onSeg is a binary relation

mapping each car to the set of times at which that car is on the road segment. That

relation is wrapped by the predicate CarOnSegment Ec, t], which determines if a

__

~ L22

NRpulse [t]

NGpulse [t]

SRpulse [t]

SGpulse [t]

NRobserve [t]

NGobserve [t]

SRobserve [t]

SGobserve [t]

CarDirection [c, t]

CarDirection [c]
CarDirection [c]

= North

= South

+ A red signal pulse is sent to the north
light unit at time t.

= A green signal pulse is sent to the nortl
light unit at time t.

o A red signal pulse is sent to the south
light unit at time t.

: A green signal pulse is sent to the sout
light unit at time t.

= The northward red light is lit up and
can be observed by cars.

o The northward green light is lit up and
can be observed by cars.

= The southward red light is lit up and
can be observed by cars.

= The southward green light is lit up and
can be observed by cars.

= Car c is on the shared road segment at
time t.

: Car c is moving northward at time t
= Car c is moving southward at time t

h

h

Figure 3-8: Designations for a two-way traffic light.

NRpulse
NGpulse
SRpulse
SGpulse

NRobserve
NGobserve
SRobserve
SGobserve

CarDirection
CarOnSegment

.1

/ no t: time I some cl, c2 : Cars I
CarDirection(cl, t) = north and
CarDirection(c2, t) = south and
CarOnSegment(cl, t) and
CarOnSegment(c2, t)

)
Figure 3-9: A more detailed problem diagram for the two-way traffic light problem.
The constraint has been formalized and expressed using the Alloy language, a
relational first-order logic.

I~~~ ~31~11~1~L _

car c is on the segment at time t. dir is a ternary relation mapping each car and

direction to the set of times at which that car is moving in that direction. This

relation is wrapped in the function CarDirection [c, t] which returns the direction

a given car is moving at a given time. For the rest of this example, we will use the

predicate and the function, rather than their equivalent relations, in order to give

our constraints a more natural syntax for readers who are not familiar with relational

logic.

1 sig Cars {
2 onSeg: set Time,
3 dir: Direction -i Time }
4 pred CarOnSegnment [c Cars . t: Time] { t in c. onSeg }
5 fun CarDirection [c: Cars, t: Time] : Direction { [c. dir].t }
6 abstract sig Direction { }
7 one sig north extends Direction { }
S one sig south extends Direction { }

There is a set of times, divided into 8 non-exclusive subsets. For example, NRO

represents the subset of times at which the northern red light is observed, and NRP

represents the set of times at which a signal pulse is sent to the northern red light.

These 8 subsets are wrapped by 8 predicates. For example, NRobserve [t] determines

whether or not the northern red light is observed at time t, and NRpulse [t]

determines whether or not there was a signal pulse sent to the northern red light

at time t. From now on, we will use the predicates, rather than the subsets, to make

our constraints more readable.

1 sig Time { }
2
3 sig NGO). SGO, NRO, SRO in Time {)
4 pred NGobserve t: Time] { t in NGO}
5 pred SGobserve[t: Time] {t in SGO}
6 pred NRobserve [t Time] { t in NRO}
7 pred SRobserve [t: Time] { t in SRO}
8

9 sig NGP, SGP, NRP, SRP in Time { }
10 pred NGpulse[t: Time] {t in NGP}
11 pred SGpulse[t: Time] {t in SGP}
12 pred NRpulse [t: Time] { t in NRP}
13 pred SRpulse[t: Time] {t in SRP}

(a)
NRpulse I NRobserve

Unit ts nt Cars
Control NGpulse NGobserve

Unit SRputse L SRobserve
SGpulse SGobserve

/ CarDirection
CarDirection CarOnSegment

CarOnSegment NGobsorve
• SGobserve

- - ' -- ---- ------ I -- ---erve ----=

/ no t time I some cl, c2 Cars I all t time NGobserve(t) =>
I CarDirection(cl, t) = north and I no c Cars I

CarDirection(c2, t) = south and 5 CarDirection(c, t = north
\ CarOnSegment(cl, t) and Iand CarOnSement(ct

CarOnSegment(c2, t) e SGobser
_ all time I SG observe(t) =
i no c Cars i

CarDirection(c, t) = south
and CarOnSegment(c t)

(b)

f Ct NRpulse I NRobserve
Control NGpulse NGobserve

Unit SRpulse . i i SRobserve Cars

SGpulse SGobserve -

/
riot time

NGobserve(t) and
SGobserve(t taC

/ CarDirection
NGobserve CarOnSegment
SGobserve NGobserve

SGobserve

r----- ---- ------ --- ----- ------;
i all t time I I NGobserve(t) =>

no c Cars I
CarDirection(c, t) = north
and CarOnSegment(c,t)

i all t time I I SGobserve(t) =>
no c Cars I

CarDirection(c, t) = south
_and CarOnSegment(c, t)

%

(c)
III NRpulse f NRobserve
Control NGpulse NGobserve

UII n [SRpulse LightUni SRobserve Cars

qSGpulse SGobserve

NGobserve
SGobserve

I

no t time i N

NGobserv(lt ard i
SGobserveit)\ f-~~-as-

CarDirection
CarOnSegment

NGobserve
SGobserve

all t time I I NGobserve(t) =>
noc Cars I

CarDirection(c, t) = north
and CarOnSegment(c,t)

all t time Ii SGobserve(t) =>
no c Cars I

CarDirection(c, t) = south
and CarOnSegment(c, t)

Figure 3-10: The first transformation: (a) A breadcrumb constraint is added to the
Cars domain, representing the assumption that car behavior can be determined by
knowing what traffic signals were observed. (b) Taking advantage of that assumption,
the requirement is rephrased so that it refers to observations instead of car behaviors.
(c) Because the requirement refers only to phenonmena shared between the Cars and
Light Unit domains, it can be pushed from one to the other.

(a)
N oNRpulse 1 NRobserve

NControl NGpulse NGobserve
SLight Unit SRobserveCars

Une SRpuNsel SRobserve
SGpulse SGobserve

NGobserve NGobserve CarDirection
SGobserve SGobserve CarOnSegment

NGpulse NGobserve
SGpulse SGobserve

r------------------------------ ---------
not time I all t time I I NGobserve(t) =>

NGobserve(t) and no c Cars I
Gobserve(t) CarDirectilon(c, t)= north

SGobserve(t) and CarOnSegment(c,t)

-- .---- ----- -- ----------- - . . all t time I I SGobserve(t) =>
all t time I no c Cars I

NGobserve(t) <=> odd(NGpulse t) and i CarDirection(c, t)= south
SGobserve(t) <=> odd(SGpulse, t) and CarOnSegment(c, t)

(b)

III NRpulse II NRobserve
Control NGpulse Light Unit NGobserve Cars

Unit SRpulse Light Ut SRobserve
SGpulse SGobserve

NGpulIse NGobserve
SGpulse SGobserve

NGpulse
SGpulse

no titme
1 odd(NGpulse i) and t

r--odd(Sipulse, t)
all t time I

NGobserve(t) <=> odd(NGpulse, t) and
SSGobserve(t) <=> odd(SGpulse, t)

NRpulse NRobserve
Control NGpulse NGobserve

Unit SRpalse Light Unit SRobserveJSRpulse " J -- SRobserveSGpulse
SGobserve

NGpulse NGobserve
SGpuIse SGobserve

NGpulse
SGpulse

I not time I
t odd(NGpulse, t) and
" odd(SGpulse t) .

.............. -... .. - .----
all t time I

NGobserve(t) <=> odd(NGpulse, t) and
SGobserve(t) <=> odd(SGpulse, t)

CarDirection
CarOnSegment

NGobserve
SGobserve

all t time I I NGobserve(t) =>
noc Cars Il

CarDirection(c, t)= north
and CarOnSegment(c,t)

Iall t time I I SGobserve(t) =>
no c Cars I

CarDirection(c, t) = south
and CarOnSegment(c, t)

cars
CarDirection

CarOnSegment
NGobserve
SGobserve

--------------------- -------- ;-- --- ---

and CarDirecton(c, Segment)c= north

Sall t time I I SGobserve(t) =>
i no c Cars I

CarDirection(c, t) = south
and CarOnSegment(c, t)

Figure 3-11: The second transformation: (a) a breadcrumb constraint is added to
the Light Unit domain, representing the assumption that signal pulses completely
determine how the cars observe the traffic light. (b) Taking advantage of that
assumption, the requirement is rephrased so that it refers to signal pulses instead of
observations. (c) Because the requirement refers only to phenomena shared between
the Light Unit and Control Unit domains, it can be pushed from one to the other.
The problem diagram is now an argument diagram.

3.4.2 The Requirement

The initial requirement that cars do not collide can now be expressed as follows:

pred Requirement1 [
no t: Time some

CarDirection [cl ,
CarDirection [c2 ,
CarOnSegment [cl ,
CarOnSegment [c2 ,

] {
cl,c2: Cars

t] = north and
t] = south and
t] and
t]

The initial problem diagram with this requirement is shown in Figure 3-9.

Coni troller signals

signals

observ-
Lights ations

signals
observations

location CNo Collisions
position

observations
location
position

The Controllertroler ...because thecontrols the signal se
to signal pulses relatepulses according to to light observations

this Specification, like this...
so...

...the requirement on
car locations and
positions will hold,

preventing cars from
colliding.

Figure 3-12: The informal argument diagram that results from applying the required
behavior frame to the two-way traffic light problem diagram. It provides an outline
for arguing that the specification enforces the requirement, and it indicates what sort
of domain assumptions will be needed to build that argument.

3.4.3 Step 1: from Cars to Light Units

The first thing we would like to do is to push the requirement from the Cars domain

onto the Light Unit domain, following the heuristic of trying to shift the requirement

closer to the Control Unit. In order to justify such a push, we will add a breadcrumb

-L

constraint on Cars which permits us to rephrase the requirement so that the only

phenomena it mentions are NRobserve, NGobserve, SRobserve, and SGobserve. We

will then be able to push the requirement from Cars onto Light Unit. These three

tasks are illustrated in Figure 3-10 and narrated below.

(A) Add a Breadcrumb

The frame, shown in Figure 3-12, suggests that we characterize how the Cars domain

relates CarDirection and CaronSegment with the four observation phenomena.

We do so by adding the following breadcrumnb constraint to Cars, expressing the

assumption that cars never disobey red lights. In Alloy, we represent each breadcrumb

as a predicate.

1 pred CarsBreadcrumb [] {
2 all t : Time | not NGobserve [t]
3 - no c: Cars CarDirection[c,t] = north and CarOnSegment[c,t]
4 all t : Time not SGobserve[t]
5 4 no c: Cars CarDirection[c,t] = south and CarOnSegment[c,t]
6 }

This constraint further characterizes the Car domain: at any given time. if a car does

not observe a green light in its direction, then it cannot be on the road segment. "

We discuss later why red lights do not appear in this assumption - see Section 3.4.5.

The result of this addition is shown in Figure 3-10a.

(B) Rephrase the Requirement

Instead of requiring that no two cars be in the intersection moving in opposite

directions at the same time, we can instead require that opposing green lights are

never both observed to be green at the same time.

5For the sake of simplicity, we will ignore the delays between when a light observation is made and
when car positions change in response to that change. There is no time allowed for the intersection
to clear, and there is no yellow light. These assumptions are more reasonable, if one considered a
time t to represent a period of time, rather than a moment in time. A signal at time t means that
the signal is sent at the beginning of time period t. A car moving northward at time t means that
the card is moving northward at any point during time period t. Of course, a car that changes
direction would be considered to be moving both north and south during that time period.

1 pred Requirement2 [] {
2 no t: Time NGobserve [t] and SGobserve [t]
3 }

The result of this rephrasing is shown in Figure 3-10b.

To validate the rewrite, we are obliged to show that the new requirement,

conjoined with the new breadcrumb, implies the prior requirement.

1 assert Step1 {
2 Requirement2 and CarsBreadcrumb j Requiremetl
3 }
4 check Step1 for 10

In general, how such implications are discharged will depend on the problem

domain and the level of confidence needed in the requirement. Since our constraints

are written in first-order relational logic, we used the Alloy Analyzer to perform a

bounded, exhaustive check [37, 30]. The check passed for a scope of 10, meaning that

the property is not violated by any situation with up to 10 cars and up to 10 points

in time6.

(C) Push the Requirement

The only phenomena mentioned by the new requirement are NGobserve and

SGobserve. Since those phenomena are shared by both the Cars and Light Unit

domains, we are permitted to push the requirement from one to the other. The result

of this push is shown in Figure 3-10c.

3.4.4 Step 2: From Light Unit to Control Unit

The requirement is now one step away from being a specification. We repeat the

process to shift the requirement the rest of the way onto the Control Unit domain

(the machine). In order to do so, we will need add another breadcrumb and perform

another rephrasing of the requirement. This process is illustrated in Figure 3-11 and

narrated below.

6Each execution of the Alloy model was solved in under 1 second on a 133MHz G4 PowerMac
with 800Mb of RAM, using the freely available version of Alloy 4 [30]

(A) Add a Breadcrumb

Once again, we appeal to the frame (Figure 3-12) for guidance on what breadcrumb

to add. This time, we need to make an assumption about the Light Unit domain

that will help us reconcile the observation and signal pulse phenomena. If we assume

that the parity of signal pulses determines how the lights are observed, then we can

substitute mentions of signal pulses for mentions of observations. We do so by adding

the following breadcrumb constraint to Light Unit about the electrical wiring of the

unit and about the reliability of observations:

1 pred LightUnitBreadcrumb [] {
2 all t: Time
3 NGobserve [t] = odd [NGpulse, t] and
4 SGobserve [t] 4 odd [SGpulse, t]

5 }

where odd is a function that determines the parity of the number of occurrences of

the given phenomenon up to the given time. The most recent breadcrumb therefore

says that, at any point in time, if an odd number of signal pulses have been sent to

a particular light, then that light is on and will be observed. If an even number have

been sent, then it is off and will not be observed. The result of this addition is shown

in Figure 3-11a.

(B) Rephrase the Requirement

In light of that breadcrumb. we rephrase the requirement to mention signal pulses

instead of light observations:

1 pred Requirement3 [] {
2 no t: Time odd[NGpulse . t] and odd[SGpulse , t]
3 }
4 assert Step2 {
5 Requirement3 and LightUnitBreadcrunb - Requirement2
6 }
7 check Step2 for 10

We use tile Alloy Analyzer to verify that the new requirement plus the breadcrumb

imply the prior requirement. It passes for a scope of 10. so the breadcrumb is strong

enough to justify the rephrasing. The result of this rephrasing is shown in Figure 3-

l1b.

(C) Push the Requirement

The requirement now mentions only phenomena shared by both the Light Unit and

Control Unit domains, so we can push it from one to the other. The result of this

push is shown in Figure 3-11c.

Now that the requirement has been pushed all the way onto the machine domain,

it only mentions phenomena known about by the machine and is a legal specification

for that machine. We have derived a specification for the control unit (the final

version of the requirement), a correctness argument for why it enforces the original

requirement, and a set of assumptions about the world upon which we are relying

(the breadcrunibs). The designer can hand that specification off to an engineer

to guide or validate an implementation, knowing that (as long as the breadcrumnb

assumptions hold) the specification is, by construction, sufficient to enforce the

original requirement.

3.4.5 Lessons Learnt

One of the primary benefits of problem frames is that it forces the designer to be

explicit about what assumptions are being made. Those assumptions can then be

checked by domain experts, rather than being left hidden inside of the designer's

head. In fact, there is a possible mistake in this example, which might have escaped

attention had the breadcrumbs not been explicitly recorded in a formal language as

part of our technique.

Recall that the first breadcrumb (CarsBreadcrumb) states that a, car will not enter

the road segment if the green light in its direction is off. Upon closer inspection,

suppose the designer realized that this is not true - if neither the red nor the green

lights are on, then cars might assume that the system is off and enter the road

segment. That breadcrunmb needs to be strengthened to mention red observations as

well as green ones. The corrected breadcrumb and resulting specification is shown in

Figure 3-13.

NRpulse
Control NGpulse

Unit SRpulse
SGpulse

Robsere
NRobserve
NGobserve
SRobserve
SGobserve

S-- - - -
not time I

odd(NGpulse, t) and
even(NRpulse, t) and
odd(SGpulse, t) and
even(SRpulse, t)

S---

NRobserve
NGobserve
SRobserve
SGobserve

NRpulse
NGpulse
SRpulse
SGpulse

--------------------------------- -------- --

all t time I
NGobserve(t) <=> odd(NGpulse, t) and
NRobserve(t) <=> odd(NRpulse, t) and
SGobserve(t) <=> odd(SGpulse, t) and
SRobserve(t) <=> odd(SRpulse, t)

Figure 3-13: The argument diagram that results if we change the breadcrumb on the
Car domain to permit cars to enter the intersection when neither a red nor a green
light shows. In this version of the argument, both red and green lights are relevant.

If, however, the designer decides that the cars breadcrumb is reasonable, then we

have learned something about the system: red lights do not play a role in establishing

the original safety requirement. Had we gone straight to writing a specification, rather

than deriving it incrementally, we would probably have missed this insight and have

written an over-constrained specification - we would probably have written one that

requires both red and green lights to be turned on and off in a certain pattern, rather

than one that just constrains green lights. While sufficient to enforce the original

requirement, such a specification would needlessly restrict the design of the control

unit.

3.5 Proton Therapy Logging

Our second example is a simplified version of the logging system used in the BPTC

system. It is a good example of a problem frame with a branching topology:

NRobserve
NGobserve
SRobserve
SGobserve

Cars

CarDirection
CarOnSegment

NRobserve
NGobserve
SRobserve
SGobserve

all t time I
I NGobserve(t) and NRobserve(t)
=> no c Cars I

CarDirection(c,t) = north
and CarOnSegment(c, t)

all t time I
I SGobserve(t) ^ SRobserve(t)
=> no c Cars I

CarDirection(c,t) = south
and CarOnSegment(c, t)

k_

the

requirement connects to two different problem-world domains, which in turn connect

(either directly or indirectly) to the machine. Requirement progression will involve

shifting both of the requirement's arcs onto the machine. Each of the arcs is progressed

in a manner similar to what we saw in the traffic light example (Section 3.4), and will

be handled independently.

The logging problem is also an instructive example because it does not match

any single standard problem frame; one part matches the info'rrnation display frame,

and another part matches the required behavior frame [40]. While those frames will

still provide us with some guidance, neither of them captures the full essence of

the logging requirement. Requirement progression can still be used to construct a

correctness argument for the system, and will still ensure that we are not relying on

implicit domain assumptions. However, we will not be able to rely on existing frames

to guide our choice of domain assumptions and will instead introduce assumptions

based on existing domain knowledge provided by the BPTC engineers.

3.5.1 System Requirements

The BPTC system is considered to be safety critical primarily due to the potential for

overdose - treating the patient with radiation of excessive strength or duration. The

International Atomic Energy Agency lists 80 separate accidents involving radiation

therapy in the United States over the past fifty years [72]. The most infamous of

these accidents are those involving the Thcrac-25 machine [49, 53]., in whose failures

faulty software was a primary cause. More recently, software appears to have been

the main factor in similar accidents in Panama, in 2001 [26].

The BPTC system was developed in the context of a sophisticated safety program

including a detailed risk analvsis. Unlike the Therac-25, the BPTC system makes

extensive use of hardware interlocks, monitors, and redundancies. The software itself

is instrumented with abundant runtime checks, heavily tested, and manually reviewed.

There are two top-priority requirements in the BPTC svstem: overdose avoidance

and logging.

Overdose Avoidance: At no time should the radiation received by any part
the patient's body exceed the dose stipulated in the treatment plan.

Logging: The system should write a log that accurately reflects the dose
delivered to the patient.

Without an accurate log, clinicians cannot resume an interrupted treatment without

risking an overdose.

Each such requirement is handled, in the problem franies approach, as a distinct

subproblem. The proton therapy development involves several other subproblems,

such as that of positioning the patient accurately [36]. We shall consider only the

logging subproblem in this chapter, although we consider other other BPTC concerns

in Chapter 4.

3.5.2 Logging Subproblem

The BPTC provides us with some knowledge about the domains that, together with

the two partially-relevant frames, suggest some domain properties that are likely

to be relevant to our argument (and that will therefore manifest themselves as

breadcrunlbs).

The challenge presented by the logging problem is that neither the physical

machine producing thie beam nor the logging disk are completely reliable. For

example, the beam equipment could be shut off by a hardware interlock, or the

logging database might reach its capacity or its disk might crash. If the log cannot

be written, the treatment must be halted.

We assume, however, that the Treatment Control System (TCS) is a reliable

component and will therefore be given the responsibility of enforcing the requirement

in tile face of known unreliabilities of the other components. If the TCS is found to

be unreliable in ways that prevent it from fulfilling the derived specification, then the

process nmust be repeated to find a looser specification. Doing so is likely to entail

stronger assumptions about the reliability of other components, or weakening the

requirement we are able to guarantee.

We assume a standard failure model for the disk subsystem and the network.

Disk writes are atomic - they either complete successfully, or fail, leaving the disk

unaffected. Messages sent on the network may be dropped, delayed, or reordered,

but are never corrupted or duplicated.

The radiation hardware may fail like a disk, but presents a harder challenge. A

disk write can be made atomic, by regarding it as not having occurred until a single

commit bit is flipped, until which point the write can be revoked. The delivery of

radiation, in contrast, is irrevocable.

...then, because
sensors obey this

.assumption, they
will generate

signals like this...

------------------- It
physical

phenom ~
signals

physical phenom
sensor signals

sinalI r
- J- -- r

Machine

command

Display

signals -Icommands a command phenom
display phenom

commands ~
display
values

... and generate

)hysical phenom

display value

When the state of
the world is such-

and-such....

Display

'),,,Z nsor

these commands,
according to its
specification, ...

...so the display wi
have these values
because it obeys

[this assumption...

Figure 3-14: AR informal argument diagram for the information display frame.

- I

d = #DoseUnit

e = #Entry

b in DelivBurst

b in ReqBurst

b in AckBurst

b in ReqWrite

b in AckWrite

o Upon the completion of treatment,
the patient's body has exactly d units of radiation.

W Upon the completion of treatment,
there are exactly e entries in the log.

w At some point during the treatment,
a burst of radiation was delivered,
associated with the burst b.

= At some point during the treatment,
a request was made for burst b to be delivered.

= At some point during the treatment,
an acknowledgement was made that burst b was delivered.

= At some point during the treatment,
there was a request for burst b to be written.

= At some point during the treatment,
there was an acknowledgement that burst b was written.

Figure 3-15: Designations for the dose logging problem diagram.

The strategy, therefore, is to deliver the beam in short bursts, logging each burst

as it is occurs. If the disk fails, no further bursts are delivered. If the delivery

mechanism fails, no further log entries are written. Although the log might not

match the treatment exactly, we are assured that they deviate by at most a single

burst.

The analysis we perform shows how this approach is justified, and how it reveals

a distribution of small but subtle assumptions across the various components of the

system.

3.5.3 The Phenomena

Figure 3-16 shows a problem diagram for the logging sub-problem. In it, the

informal logging requirement has been formalized using the Alloy language [30, 34, 37].

Designations7 for the phenomena used in that diagram are given in Figure 3-15.

A Patient is prepared to receive radiation from the Beam Equipment. The

Treatment Control System (TCS) issues a series of ReqBurst requests to the Beam

Equipment." Each ReqBurst instructs the equipment to deliver a single burst of

radiation to the patient, DelivBurst, which in turn raises the total radiation delivered

to the patient by one DoseUnit. After a successful DelivBurst, the Beam Equipment

sends an AckBurst acknowledgement back to the TCS.

Whenever the TCS issues a ReqBurst, it attempts to write a record of that dose to

the Log by issuing a ReqWrite request. The Log may then create an Entry recording

that a DoseUnit has been delivered to the patient. Upon successfully creating an

Entry, the Log sends an AckWrite acknowledgement back to the TCS.

Both the Beam Equipment and the Log are known to be partially unreliable. The

Beam Equipment will never perform a DelivBurst without first receiving a ReqBurst,

but it may ignore some ReqBursts. Similarly, the Log will never write erroneous

7A designation is an association between formal terms in some description and informal
properties of the real world. This is in contrast to a definition, which relates formal terms to
other formal terms. [40]

8The number of such requests is based on the patient's treatment plan. The treatment plan has
thus omitted from the p)roblem diagrarm, since it is not relevant to the logging requirement. It would
be included in the problem diagram for the overdose avoidance requirement.

/ Requirement:
The deviation between the number
of entries recorded in the log and
the number of dose units delivered
to the patient is at most one.

#Entry = #DoseUnit or
#Entry = #DoseUnit + 1 or
#Entry = #DoseUnit - 1

IIl
I 1

DoseUnit
/

Entry

* ReqBurst

AckBurst -

Figure 3-16: The problem diagram for the logging requirement. At any point in time,
the doses recorded in the log entries should match the total dose actually delivered to
patient, up to a known margin or error.

Entries, but it may ignore some ReqWrite requests (if, for example, the log has

reached its capacity or the disk crashes).

This knowledge about the domains is not initially represented in the problem

diagram, as we are not yet sure which parts of it will be relevant to the progression.

We will not actually add any of this information into the diagram until it is needed

I)

for the progression. Rather, these informal descriptions are used to help the analyst

know what domain properties are available for introduction as a breadcrumb.

In this way, the breadcrumbs are only those domain properties relevant to the

argument that the derived specification enforces the original requirement, and they are

uncluttered by unnecessary (albeit correct) domain assumptions. If the domains are

later changed in ways that do not affect the breadcrumbs we used, then the argument

represented by the requirement progression will still hold. Including unnecessary, but

true, assumptions increases the chance that changes to the domain will require the

progression to be reworked.

3.5.4 Matching Problem Frames

No single existing problem frame matches the logging subproblem, although we can

draw some insight from two frames that match pieces of the problem.

Logging partly matches the information display frame, shown in Figure 3-14.

In an information display frame, a Machine resides between Sensors that detect

phenomena in the physical world and a Display that encodes some representation

of those phenomena. The requirement is that the display values correspond, in some

prescribed way, to the state of the physical world. The frame concern focuses our

attention on the following characteristics of the three domains: how the Sensor domain

relates physical phenomena to signals sent to the machine; how the Mlachine reacts

to those signals by issuing commands to the Display; and how the Display reacts to

those commands by rendering display values. The correctness argument will follow

this chain to argue that any physical world phenomenon will result in the appropriate

display values.

The Logging facility is an information display problem in the following sense: The

DoseUnits are the physical phenomena that we are attempting to represent. The

Patient and Beam Equipment together constitute the Sensor, which detects increases

in DoseUnits and sends AckBurst signals to the TCS. The TCS is the Machine, which

receives AckBurst signals and generates ReqWrite commands. The Log is tile Display,

responding to ReqWrite commands and generating Entries. Our requirement is that

Breadcrumb 2:
The number of bursts delivered by the
beam equipment is the same as the
number of dose units received by the
patient. That is, each burst delivers one
unit of radiation, and the patient receives
no radiation from other sources.

#DoseUnit = #DelivBurst

DoseUnit
DelivBurst

Breadcrumb 3a:
Every acknowledged burst is
also a delivered burst. That
is, only acknowledged bursts
are delivered, but some
delivered bursts are never
acknowledged.

AckBurst in DelivBurst

DelivBurst
AckBurst

DelivBurst
ReqBurst

Breadcrumb 3b:
Every delivered burst is also a
requested burst. That is, only
requested bursts are delivered,
but some requested bursts are
never delivered.

DelivBurst in ReqBurst

ReqBurst

AckBurst

ReqWrite
AckWnite
ReqBurst
AckBurst

----------------- ---- f--------

Specification:
The bursts that are requested to be delivered are the
same as the the bursts requested to be written to the
log. That is, the two kinds of requests are always
issued in tandem.

There is at most one unacknowledged write request,
and at most one unrequested delivery request. That
is, a new write request cannot be issued unless all
prior write requests have accompanying write
acknowledgements. Similarly, a new burst request
cannot be issued unless all prior burst requests have

€

accompanying burst acknowledgments.

ReqWrite = ReqBurst
lone ReqWrite - AckWrite 9
lone ReqBurst - AckBurst

Figure 3-17: The argument diagram that results from transforming the requirement
into a specification. Each breadcrumb constraint has a formal description of a partial
domain property and an informal interpretation of that formula. The conjunction of
the breadcrumb formulae and the specification formula logically imply the requirement
formula. The Alloy keyword lone, used in the TCS specification, indicates that a set has
a cardinality of zero or one.

Breadcrumb la:
The number of write acknowledgements
received from the TCS cannot exceed the
number of entries in the log. That is, each
entry written generates at most one write
acknowledgement, but some entries may
never be acknowledged.

#Entry >= #AckWrite

Breadcrumb lb:
The number of entries in the log cannot
exceed the number of write requests
received from the TCS. That is, each
write request creates at least one entry,
but some write requests may never be
enacted.

#Entry =< #ReqWrite

Entry
AckWrite

Entry
ReqWrite

Entries correspond to DoseUnits.

The TCS does not just passively watch the patient and react to changes in

DoseUnits by updating the Log, as suggested by the information display frame. The

TCS is also permitted to write a log entry and then deliver a burst of radiation

to match it. (Stopping the TCS once the prescribed dose of radiation has been

delivered and ensuring that it eventually delivers a sufficient dose is part of the

overdose requirement, not the logging requirement.)

The failure to match is also apparent from the diagrams by taking note of the arrow

heads on the requirement arcs. A requirement arc with an arrow head indicates that

the phenomena labeling that arc are the ones that should change in order to satisfy the

requirement. Requirement arcs without arrow heads indicate that those phenomena

should not be changed. In the information display frame, only the arc to the Display

has an arrow head, indicating that only the Sensor's phenomena will not be changed.

In contrast, the logging problem diagram has arrow heads on both the Log and the

Patient domains, as both entries and dose units can be changed in order to satisfy

the requirement.

Logging also partly matches the required behavior frame, shown in Figure 3-4. In

a required behavior frame, a Machine issues commands to a Device domain, which

in turn exhibits certain behaviors. There is a requirement on what sorts of behaviors

should occur. The frame concern focuses our attention on characterizing how the

behaviors exhibited by the Device domain depend on the commands issued by the

Machine.

The Logging facility is a required behavior problem in the following sense: The

TCS is the Machine, which issues ReqWrite and ReqBurst commands. The Log, Beam

Equipment, and Patient together constitute the Device domain, whose exhibited

behaviors are DoseUnit and Entries. The requirement on valid behaviors exhibited

by the Device domain is that the DoseUnits match the Entries.

The TCS also does not control a single Device domain, as suggested by the required

behavior frame. The controlled device is really three different domains, one of which

(the Log) has no direct connection to the other two (the Beam Equipment and the

Patient). Lumping those three domains together into a single Device domain hides

the very trait that makes the problem hard - the fact that the Log and Patient cannot

directly communicate with one another. It suggests that we could introduce a domain

assumption that says '"the Device keeps the Entries and DoseUnits the same", nmissing

the key challenge of the Logging problem.

Neither frame alone captures the nature of the pro-active logging problem that

we are analyzing. One might argue that the system ought to be designed so that

one machine delivers successive doses (required behavior) and a separate machine

passively maintains the log (information display). However, with an unreliable

log, there needs to be a communication channel between the log and the delivery

mechanism, as each needs to react to the acknowledgements of the other. Eliminating

that dependence would require changes to the system itself, a luxury not available

when the system is already in place, and forcing the system into a mold that fits

poorly will only produce a correctness argument that fits equally poorly. Rather, we

must approach the system anew.

3.5.5 The Requirement

From the user's perspective, there are two fundamental sets a set of radiation dose

units and a set of log entries.

1 sig DoseUnit { }
2 sig Entry { }

The initial requirement is that the number of dose units delivered to the patient

matches the number of entries in the log, with a margin of error of one unit.

1 pred Requirementl [] {
2 #Entry = #DoseUnit or

3 #Entry = #DoscUnit + 1 or
4 #Entry = #DoseUnit - 1

5 }

This requirement is loose enough to permit behaviors in which a burst is both delivered

and logged (first line), logged but not delivered (second line), or delivered but not

logged (third line). However, in either of the latter two cases, further logging and

treatment cannot continue until the imbalance has been corrected.

The essence of the interaction is that various messages are exchanged about bursts

delivered by the beam machine (or requested of it). Since each message is about a

particular burst, there is no need to introduce a separate notion of a message. Rather,

we simply introduce a set of bursts

1 sig Burst { }

and a classification into a collection of (possibly overlapping) sets, consisting of bursts

that are delivered, requested, and acknowledged, and bursts associated with log

entries that are requested and acknowledged.

1 sig DelivBurst , ReqBurst , AckBurst , ReqWrite . AckWrite in Burst { }

That is, a burst in the ReqWrite set is one for which a, write request has been issued.

If a write acknowledgement has been issued for that burst, then it will also be in the

set AckWrite.

Our task is to establish a relationship between Entries and DoseUnits, as per

the requirement. We will introduce domain assumptions about the Patient and Beam

Equipment to relate DoseUnit to ReqBurst. Domain assumptions about the Log will

be added to relate Entries to ReqWrite. The TCS specification will then constrain

ReqBurst and ReqWrite requests, thus indirectly enforcing the original requirement.

Figure 3-16 shows the problem diagram before requirement progression begins, and

Figure 3-17 shows the same diagram at upon completion.

3.5.6 Transformation and Derivation

We begin with the requirement we want to enforce. The derivation happens in three

stages: First, we push the requirement from the Log to the TCS, and add a breadcrumb

and rephrase the requirement as needed to permit that push. Second, we push the

requirement from the Patient to the Beam Equipment. adding another breadcrumb

and performing another rephrasing. Finally, we push the requirement from the Beam

Equipment to the TCS, adding a third breadcrumb and performing a third rephrasing.

At that point, the requirement only touches (only mentions phenomena involved in)

the machine domain, and has thus been transformed into a specification. Figure 3-

17 shows the final state of the Problem Frame description, after the transformation

process is complete.

Step 1: from Log to TCS

Our first task is to piush the requirement from the Log domain onto the TCS domain.

We cannot do so because the requirement mentions the Entry phenomenon, which is

not involved in the TCS. We will thus need to rephrase the requirement to reference

phenomena shared with the TCS (ReqWrite, AckWrite) instead of those known only to

the Log (Entries). However, we first need to introduce a breadcrumb, characterizing

the log, to justify such a rephrasing. That breadcrumb needs to relate the phenomena

that the requirement constraint currently mentions to those that we would like it to

reference. To that end, we add the following breadcrumb representing our domain

assumptions about Log:

1 pred LogBreadcrumb [] {
2 #Entry >= #AckWrite

3 #Entry =< #ReqWrite

4 }

The first constraint says that the number of entries written is greater than or equal

to the number of write acknowledgments; it allows entries to be written without

corresponding acknowledgments. The second constraint says that the number of

entries written is less than or equal to the number of write requests; it allows write

requests to be ignored. With this assumption in hand, we rephrase the requirement

as follows:

1 pred Requirement2 [] {
2 lone ReqWrite - AckWrite and
3 (#ReqWrite = #DoseUnit or #ReqWrite = #DoseUnit + 1)
4 }

The Alloy keyword lone indicates that the following expression has a cardinality of

zero or one. Thus, the formula lone ReqWrite - AckWrite means that there can be

at mnost one write request for which there is no write acknowledgement.

To confirm that the new breadcrumb and the new requirement together imply the

prior requirement (the original requirement), this is presented to the Alloy Analyzer

as an assertion to be checked:

1 assert Stepi {
2 LogBreadcrumb and Requirernent2 = Requirementl
3 }
4 check Stepi for 10

Now that the requirement only mentions phenomena from the recipient domain, it

can be pushed from Log to TCS.

Step 2: from Patient to Equipment

We repeat the process to push the requirement from Patient to Beam Equipment by

characterizing the Patient domain. First, we add the following breadcrumb:

1 pred PatientBreadcrumb [] {
2 #DoseUnit = #DelivBurst
3 }

which is motivated by the fact that each DelivBurst event delivers exactly one

DoseUnit to the patient, and that the patient receives no DoseUnits of radiation

from other sources. The breadcrumb permits the requirement to be rephrased as

follows:

1 pred Requirement3 [] {
2 lone ReqWrite - AckWrite and
3 (#ReqWrite = #DelivBurst or #ReqWrite = #DelivBurst + 1)
4 }

To confirm that the new breadcrumb and the new requirement together imply the

prior requirement, we present the Alloy Analyzer with the following assertion to check:

1 assert Step2 {
2 PatientBreadcrumb and Requirement3 # Requirement2
3 }
4 check Step2 for 10

We can now push the requirement from Patient to Beam Equipment.

Step 3: from Equipment to TCS

We repeat the process a third time to push the requirement from Beam Equipment

to TCS. First add the following breadcrumb:

1 pred EquipBreadcrumb [] {
2 AckBurst in DelivBurst
3 DelivBurst in ReqBurst

4 }

which says that an acknowledgement must be sent only when a burst is delivered,

and that a burst may only be delivered when it is requested. Limited unreliability

is permitted; some requests have no matching delivery and some deliveries have no

matching acknowledgement. The requirement can now be rephrased as follows:

1 pred Requirement4 [I {
2 ReqWrite = ReqBurst
3 lone ReqWrite - AckWrite
4 lone ReqBurst - AckBurst

5 }

The first line of the derived specification says that a write must be requested of the

log whenever the beam equipment is requested to deliver a burst and vice versa. The

second line says that no new write requests can be made if any write request remains

unacknowledged. The third says that no new burst request can be made if any burst

request remains unacknowledged. The machine must wait for both acknowledgements

before issuing another pair of requests.

We present the Alloy Analyzer with the following assertion to check that the final

rephrasing was justified by the following breadcrumb:

1 assert Step3 {
2 EquipBreadcrumb and Requirement4 ~> Requirement3

3 }
4 check Step3 for 10

Finally, we push the requirement from Beam Equipment to TCS. At this point, the

requirement mentions only phenomena from TCS and has become a specification. If

the TCS issues requests according to this specification, and the other three domains

satisfy their domain assumptions, then the original requirement will be preserved.

The problem diagram resulting from the entire is shown in Figure 3-17.

3.6 Handling Time: Automatic Door Controller

In this section. we demonstrate requirement progression on a system with highly

temporal aspects an automatic door, as one might find in a. supermarket. Here is

the Door Controller problem, as defined by Nick Ourusoff [64]:

We wish to specify a software system to control an automatic door.
The automatic door contains a motor, which may either be ON or OFF
and has a polarity, which is either OPEN (indicating that the door will
move to the OPEN position if the motor is ON) or CLOSE (indicating
that the door will move to the CLOSED position if the motor is ON).
The door also contains two sensors: one registers OPEN, when the door
is within 3 cm. of being fully open; the other registers CLOSED, when the
door is within 3 cm. of being fully closed. In addition, there is a motion
sensor. It sends a signal to the controller if the sensor detects motion 6
feet away from door. It isn't important how it works.

We wish to write a Door Controller to open the door whenever a person
wishes to walk though it; and to keep the door closed when someone isn't
passing through it.

3.6.1 Designations and Context

First., we build a context diagram describing the automatic door situation (Figure 3-

20) and an accompanying set of designations for the domains and phenomena

(Figures 3-19 and 3-18).

Time W A moment in time, and the associated state of
the world at that time. Measured in seconds.

DistanceToDoor <- The distance (in feet) between the door and
the person closest to the door at a given
point in time. If there is no person, the
distance is considered to be infinite.

DistanceToSensor @ The distance (in feet) between the motion
sensor and the person closest to the motion
sensor (at a given point in time). If there
is no person, the distance is considered to
be infinite.

DoorGap a The percentage the sliding door is open at
a given point in time.

MotionDetected a The presence of a signal generated by the
Motion Sensor indicating that it has detected
nearby motion. This variable has the value
"Motion" when the sensor is sending a
signal indicating motion and the value "NoMotion"
when no signal is being sent.

MotorPolarity € The direction in which the motor has been
instructed to run. It either has the value
"Opening" or "Closing".

MotorPower a Whether or not the motor has been instructed
It either has the value "MotorOn" or
"MotorOff".

DoorGapMeasure a A value reported by the Position Sensor. A value
of "AlmostOpen" means that the door is
90 percent open or more. A value of "almostClosed" means
that the door is 10 percent open or less. In all other
cases, the sensor reports a value of "UnknownGap".

AppliedForce < The force currently being applied to the doors,
directly causing them to open or close.
It either has the value "OpeningForce"
or "ClosingForce".

MotorSpeed a The percentage that the motor can open/close
the sliding doors in 1 second, measures in
increments of 10 percent per second.

Figure 3-18: Designations for an automatic door controller.

4=o A pair of sliding doors that the automatic door
system is in place to control.

Position Sensor = A sensor on the doors that reports on the status
of the door.

Motor = A machine that applies force the door.
People = Humans and other moving objects in the vicinity

of the door.
Motion Sensor
Controller

n A sensor that detects and reports on nearby motion.
= The component we are designing to coordinate

the system.

Figure 3-19: Domains for an automatic door controller.

MotorPolarity E {Opening, Closing}
MotorPower e {PowerOn, PowerOff}
MotionDetected E {Motion, NoMotion}
DoorGapStatus e {AlmostOpen, AlmostClosed, UnknownGap}
AppliledForce e {OpeningForce, ClosingForce, NoForce}
DistanceDoor, DistanceDensor, DoorGap E Integer
WalkingSpeed, MotorSpeed a Integer

DistanceDoor
DistanceSensor
WalkingSpeed

Applied Force
MotorPolarity

SMotorPower
MotorSpeed

foorGap
Applied Force

MotorPower

MotionDetected

- AppliedForce -

DoorGapMeasure

DistanceSensor
MotionDetected

MotorPolarity
MotorPower
MotionDetected
DoorGapMeasure

Figure 3-20: Context diagram for an automatic door.

I - _ -- - _ _ ---

Door

DoorGapMeasure
DoorGap

3.6.2 Formalizing the Requirement(s)

As is often the case when writing requirements, a number of subtleties arise in the

course of simply writing down what it means for the system to operate properly.

There are actually 3 requirements here, which should be addressed independently.

Informally, they are as follows:

(1) Service Provided The door must be open when a person is close enough to
walk through, or at least open far enough to allow someone through. The door
remains closed the rest of the time.

(2) No Motor Damage The motor does not try to close the door when it is fully
closed or open the door when it is fully open.

(3) No Door Damage The door must not be forced open when already open, or
forced closed when already closed.'

Formally, we interpret and encode those requirements in the Alloy language as follows:

(1) Service Provided Whenever someone is within 1 foot of the door, the door
must be at least 90% open. If nobody is within 11 feet of the door, then the
door must be at most 10% open. Otherwise, the door can be any amount open.

1 all t: Time (DistanceDoor [t] =< 1) 4 (DoorGap[t] >= 9)
2 all t: Time (DistanceDoor [t] >= 11) = (DoorGap[t] =< 1)

Filling in specific values is necessary to build a working model, but those details
must be confirmed or provided by a domain expert. This is a case where the act
of formalization revealed an important omission in the design requirement. It
turns out that the details of what it means for the door to be mostly open/closed
and what it means for a person to be near/far are not details that can be left
for later; they are relevant to high level design. In the absence of an expert, we
have provided plausible placeholder values.

(2) No Motor Damage The Motor is never on and opening when the door is
completely open. The Motor is never on and closing when the door is completely
closed.

9Note that the second and third requirements are subtly different. Door damage and motor
damage are only the same if the motor gets damaged under exactly the same circumstances that
the door is damaged. That assumed both (a) that force is only applied to the door as a result of the
motor running and (b) that the motor only serves to open/close the door. While those properties
may be true, they are ri not inherent in the problem context, and would need to be introduced as
domilainl assunmptions.

1 no t : Time |
2 MotorPower [t] MotorOn
3 and MotorPolarity[t] = Opening
4 and DoorGap[t] >= 10
5 no t : Time
6 MotorPower [t] = MotorOn
7 and MotorPolarity[t] = Closing
8 and DoorGap[t] =< 0

(3) No Door Damage The door is never forced open when it is 100%, open or
forced closed when it is 0% open.

1 no t : Time 1
2 AppliedForce[t] = OpeningForce
3 and DoorGap[t] >= 10
4 no t : Time 1
5 AppliedForce[t] = ClosingForce
6 and DoorGap[t] =< 0

These formal requirements. when added to the context diagram, form the problem

diagram shown in Figure 3-21.

The No Door Damage requirement only mentions phenomena from the Door

domain. According to requirement progression, there is nothing to be done here, as

the requirement is already a domain assumption.

The No Motor Damage and Service Provided requirements each reference

phenomena from multiple domains. The service requirement refences phenomena from

People and Door, and the motor requirement references phenomena from Motor and

Door. lWe then use requirement progression on both requirements to decompose them

into localized domain assumptions. We have omitted the intervening steps for brevity.

The resulting argument diagram is given in Figure 3-22.

No Motor Damage:
Snot:Timel I

MotorPower[t] = MotorOn
and MotorPolarity[t] = Opening
and DoorGap[t] >= 10

no t: Time I
MotorPower[t] = MotorOn
and MotorPolarity[t] = Closing
and DoorGap[t] =< 0

Service Provided: M
all t: Time I M

(DistanceDoor[t] =< 1) => (DoorGap[t] >= 9)
all t: Time I

Distance

People

DistanceSensor Mo
M

Motion Sensor -- MotionDetected

I
otorPolarity
otorPower

I--

No Door Damage:
/ no t: Time I

AppliedForce[t] = OpeningForce
and DoorGap[t] >= 10

no t: Time I
AppliedForce[t] = ClosingForce

Sand DoorGap[t] =< 0

DoorGap

DoorGap

AppliedForce

otorPower

DoorGapMeasure

Figure 3-21: Problem diagram for an automatic door.

IL

//the sensor is located on top of the door
all t Time I DistanceDoor[t]= DistanceSensor[t]

//max walking speed is a constant between 0 and 2 feet per second
all tn Time I WalklngSpeed[t] = WalkingSpeed[f]
WalklngSpeed[first] >- 0
WalkingSpeed[first] =< 2

//people move up to their max walking speed
allt Time, V tnext(

(DistanceSensor[t] >= DistanceSensor[t] - WalkingSpeed[t]
and
DistanceSensor[t] --< DistanceSensor[t] + WakingSpeed[t])

DistanceSensor
DistanceDoor
WalkingSpeed

MotorPolanty
MotorPower
AppliedForce

. - -- --------------
IT he applied force on the door bounds how the gap can change, as limited by motor speed
all t Time, t' t next {

AppliedForcet] = OpeningForce => (DoorGap(t] = Int[DoorGap[t]] + nt[MotorSpeed[t]])

all t Time, t' t next{
(AppliedForce[t]= ClosingForce) => (DoorGapt'] = int[DoorGap[t]] - int[MotorSpeed[t]])

all t Time, tt next{
(ApplhedForce[t] = NoForce) => (DoorGap[t] = DoorGap[t])

AppliedForce
DoorGap

MotionDetected

DistanceSensor
MotionDetected

Sthe sensor has a detecton range of 6 feet
all t Time I MotlonDetected[t] = Motion <= DlstanceSensor[t] =-< 6

MotionDetected

SetPolantyOpen
SetPolarityClose

SetMotorOn
SetMotorOff

DoorGapStatus

all t Time I
DoorGapMeasure[t]= AlmostOpen <=> DoorGap(t] >=9

allt Time I
i DoorGapMeasureft] = AlmostClosed <=> DoorGap[t] =< 1I -

---------------------------- ---------------------

all t Time {
(MotionDetected[t] = Motion and DoorGapMeasure[t] I= AlmostOpen)

(MotorPower[t] = MotorOn and MotorPolanty[t] = Opening)

all t Time
(MotionDetected[t] = NoMoton and DoorGapMeasure[t] i= AlmostClosed)

(MotorPower[t] = MotorOn and MotorPolanrty[t] = Closing)

all t Time I
(MotionDetected[t] = Motion and DoorGapMeasuret] = AlmostOpen)

=> MotorPower[t] = MotorOff
all t Time I

(MotionDetected[t] = NoMoton and DoorGapMeasure[t] = AlmostClosed)
=> MotorPower[t]= MotorOff

Figure 3-22: The argument diagram generated by applying requirement progression
to service and safety requirements for an automatic door controller.

84

//motor speed is 50% per second, and remains constant over time
all t,t Time I MotorSpeed[t] = MotorSpeed[t]
MotorSpeed[first]= 5

I The motor's power and polarity determine the force applied to the door
allt Time I

MotorPowert]= MotorOff <=> AppliedForce[t]= NoForce
allt Time I

(MotorPower[t] = MotorOn and MotorPolanty[t] = Opening) <=> AppliedForce[t] = OpeningForce
all t Time I

(MotorPower[t]= MotorOn and MotorPolarlty[t] = Closing) <=> ApplledForce[t] = ClosingForce

3.6.3 Lessons Learnt

Simply writing down the problem in the PF framework and using a formal language

(in this case, Alloy) revealed a number of subtleties. We later worked through the

progression and checked it with the Alloy Analyzer, and discovered another set

of complexities. Only the analysis and consistency checking of an automatic tool

revealed the full depth of the problem, and provided us with a verifiable argument for

correctness. This experience is what Daniel Jackson refers to as the humbling nature

of analysis [35].

Designation Documentation

When writing down all of the designations (shown in Figure 3-18), we discovered that

there were really 2 distances that had been conflated in our original conception: the

distance from a person to the door and the distance from a person to the sensor. The

system requirement is that the door opens and closes according to the distance to the

door, however, our feedback system (the motion sensor) only reports on distance to

the sensor. There is an implicit assumption (which we made explicit) that the two

distances are the same (e.g. that the sensor is located on top of the door). Without

this explicit assumption, one could place the sensor far from the door (e.g. on the

ceiling above it) - doing so would satisfy the domain assumptions but violate the

service requirement.

Building the Problem Diagram

Building the problem diagram, showing which phenomena the requirement referenced,

revealed the fact that there were really 3 separate requirements, each with a different

set of phenomena. By separating the requirements, each one became much more

manageable, and the resulting argument was more structured.

Performing Requirement Progression

Our initial attempt at formalizing the requirement was not enforcible by a motor that

was not infinitely fast. We discovered this during attempted progression, when we

were unable to push the requirement across certain arcs without adding unacceptable

domain assumptions.

Initially, we allowed time for the motor to open the door while a person walked

towards it - the sensor detects them at distance 6 but isn't required to have opened

until distance 1. However, we did not allow time for the motor to close the door as

they walked away - the sensor detects their absence when they are at distance 6,

but we required the door to be closed when distance was 6. We needed to loosen

the requirement to only have the door closed when the closest person is 11 or more

distance units away. thus providing the same margin for response.

Automatic Alloy Analysis

The initial (unchecked) controller specification was too weak. It allowed (but did not

require) that the door oscillate open and closed when nobody was nearby. This error

escaped simulation (since the correct behavior was permitted and often occurred) but

was caught by the automatic check. The incorrect version looked like this:

pred ControllerBC [] {
all t: Time {

(MotionDetected[t] = Motion and DoorGapMeasure[t] != AlmostOpen)

(MotorPower [t] = MotorOn and MotorPolarity [t] = Opening)
}

all t: Time {
(MotionDetected [t] = NoMotion and DoorGapMeasurc [t] != Almost Closed)

(MotorPower [t] = MotorOn and MotorPolarityt] [= Closing)

all t: Time {
DoorGapMeasure[t] = AlmostClosed 4

!(MotorPower [t] = MotorOn and MotorPolarity [t] = Closing)

all t: Time {
DoorGapMeasure [t] = AlmostOpen 4

!(MotorPower[t] = MotorOn and MotorPolarity[t] = Opening)}

The corrected specification is more tightly constrained and looks like this:

1 pred ControllerBC [] {
2 all t : Time {
3 (MotionDetected [t] = Motion and DoorGapMeasure[t] != AlmostOpen)
4
5 (MotorPower [t] = MotorOn and MotorPolarity [t] = Opening)

6 }
7 all t : Time {
8 (MotionDetected [t] = NoMotion and DoorGapMeasure[t] != AlmostClosed)
9

10 (MotorPower [t] = MotorOn and MotorPolarity[t] = Closing)
11 }
12 all t: Time
13 (MotionDetected[t] = Motion and DoorGapMeasure [t] = AlmostOpen)
14 4 MotorPower [t] = MotorOff
15 all t: Time
16 (MotionDetected[t] = NoMotion and DoorGapMeasure[t] = AlmostClosed)

17 4 MotorPower[t] = MotorOff
18 }

The difference lies in the second two constraints, which more tightly constrain the

acceptable behaviors when the door is already in the desired position. The incorrect

version allows the door to do anything when it is in the correct position, and only

requires it to correct itself once in the wrong position. It can thus close when it is

open (and should be) as long as, in the next time step, it opens again.

The initial (unchecked) formalization of the problem contained an inconsistent

representation of motor speed. When we had to make the model pass automatic

tests, we discovered that they were nonsensical and had to be reworked.

The initial (unchecked) formalization of the motor breadcrumnb had a conditional

where it needed a bi-conditional l o. The weaker version permitted the system to

violate the service requirement while satisfying the domain assumptions. The intent

of the original phrasing was right, but the actual written constraint was incorrect.

The modeler had 5 years of experience with logical modeling (and Alloy in particular),

but still needed the automatic analysis to get the constraints right.

10A conditional is of the form "A holds if B hold" or "A hold only if B hold". A bi-conditional is
the stronger statement 'A hold if and only if B holds"

During Assumption Confirmation

Suppose that the domain expert on doors tells us that the Door Damage requirement

is not enforceable, since the door domain cannot control whether or not force is

applied to the door at the wrong time. However. no other domain involves both

of the phenomena referenced by the requirement (AppliedForce and DoorGap). As

things stand, it is impossible to generate local domain assumptions to enforce the

requirement. In terms of the problem diagram, this difficulty corresponds to the fact

that the AppliedForce phenomenon is mentioned, but not controlled, by the Door

domain.

This reveals the need for an additional shared phenomenon between the Motor

and Door domains. The phenomenon would represent feedback from the door to

the Motor, and would be controllable by the Door. This way, the Door Damage

requirement can be decomposed into two modular assumptions; that the feedback is

generated correctly (assumption about the Door) and that the feedback is reacted to

accordingly (assumption about the Motor).

Constant Phenomena

In the case where WalkingSpeed and MotorSpeed are known constants, the context

diagram shown in Figure 3-20 is an accurate description of the problem context. The

assumptions about their (constant) values appear as domain assumptions on their

controlling domains (People and Motor), as is done in the Alloy model given in

Appendix 8. However, suppose we want to replace our constant-valued assumptions

with a relative-value assumption, such as the following:

1 MotorSpeed >= WalkingSpeed

Doing this might be desirable to permit the same argument to apply to automatic

door controllers used in different contexts. However, we cannot simply add this new

assumption as a breadcrumb, since it is non-local - it references phenomena from

both the Motor and People domains and is thus not a valid breadcrumb.

When we attempt to use progression to decompose that assumption into

breadcruinbs, we hit a blockade; there is not an appropriate information

channel between the Motor and People domains to synchronize MotorSpeed and

WalkingSpeed. Furthermore, it is clearly the case that people and motors do not

directly share either of those phenomena between them - people walking through an

automatic door do not communicate with the motor controlling that door! Thus we

cannot simply add another arc to the context diagram linking those domains. What

we can add to solve the problem is a calibration domain, as shown in Figure 3-23.

MotionDetected

- AppliedForce -

DoorGapMeasure

Figure 3-23: Context diagram for an automatic door with a Calibration domain.

Such a domain represents the fact that, in order to enforce the relation between

WalkingSpeed and MotorSpeed, someone has has to observe the walking speeds of

people and provide adequate speed to the motor. This is a domain that can support

our desired breadcrumb, and thus provides an avenue for progression - we would push

the requirement from People to Calibration and then on to the Motor, leaving the

breadcrumb behind on the calibration domain. Of course, adding a domain to the

problem diagram is not something that can be done merely to ease progression; it

d

must be confirmed with the system experts and is likely to require a significantly

different implementation.

3.7 Encoding Problem Diagrams in Alloy

In this section, we describe an Alloy model of problem diagrams, and define what it

means for a problem diagram to be well formed. In Section 3.8, we extend the model

to describe our method for requirement progression (adding breadcrumbs, rephrasing

goals, and pushing goals). Key parts of the model are introduced in these sections,

and the entire model (including all referenced predicates) is shown as a single unit in

the Appendix. "

3.7.1 Sets and Relations

The key sets and relations that define a problem diagram are shown in object model

notation [75] in Figure 3-24. Each constraint mentions a set of phenomena and touches

a set of domains. Each domain involves a set of phenomena and connects to a set

of domains. There is a special machine domain and two special kinds of constraints,

specifications and requirements.

To express the anatomy of a problem diagram in Alloy, we start by defining three

sets: the set of phenomena, the set of domain, and the set of constraints. These are

the building blocks of problem diagrams.

1 sig Phenomenon, Domain, Constraint { }

Next we define set Diagram, each element of which represents a complete problem

diagram.

1 sig Diagram {
2 phenomena: set Phenomenon,
3 domains, machines: set Domain.

" e use Alloy to formalize problem diagrams and the effect of our transformations on them
(Sections 3.7 and 3.8) and also to express the constraints in particular examples (Sections 3.4
and 3.5). XWe use the same language only to reduce the number of logics that the reader must
keep track of, not to suggest a connection between the two uses. The two kinds of models are not
currently put together, and need not be written in the same language.

4 constraints, requirements , specifications: set Constraint,
5 connects Domain -+ Domain,
6 involves: Domain Phenomenon,
7 touches: Constraint -- Domain,
8 mentions: Constraint -+ Phenomenon

9 }

A problem diagram comprises a set of domains, a set of phenomena, and a set of

constraints. There is a special kind of domain called a machine, and two special

kinds of constraints, called requirements and specifications. The first three lines

encode these as relations. For example, if x is a Diagram, then the expression

x.domains denotes a set of Domains.

Problem diagrams structure their domains, phenomena, and constraints. Each

domain in a diagram involves a set of phenomena and connects to a set of other

domains. Each constraint in a diagram mentions a set of phenomena and touches

a, set of domains. The last four lines encode these as relations. For example,

if x is a Diagram, then the expression x.mentions denotes a binary relation that

maps Constraints to Phenomena. More generally, we can get the set of phenomena

mentioned by a constraint c in a diagram x by writing c. (x.mentions) or by the

equivalent expression x. mentions [c].

3.7.2 Well Formedness

Not any collection of domains, phenomena, and constraints constitute a meaningful

description. If the predicate wellFormedDiagram holds on a diagramn, then we know

that the diagram has a meaningful structure. Later, we will use this predicate to

check whether or not certain transformations preserve well formedness.

I pred wellFormedDiagram [x: Diagram] {
2 selfContained [x]
3 one x. machines
4 connectIffShare [x]
5 nonTrivial [x]
6 all c: x. constraints wI ellFormedConstraint [c ,x]

7

A well formed diagram satisfies five properties.

1..n

involves

1..n

1..n

mentions

1..n - touches

Figure 3-24: A metamodel of problem diagrams, expressed using standard object
model notation.

(1) Diagrams must be self contained. For example, the domains in a diagram cannot
connect to domains in a different diagram. Full definitions of all predicates can
be found in the Appendix.

(2) There must be exactly one machine.

(3) Every domain must be reachable from every other domain by following the
connects relation zero or more times.

(4) Trivial diagrams are forbidden, such as disconnected diagrams or domains that
contain no phenomena. Non-triviality is not technically a requirement of a
problem diagram, but we include it for the sake of not having to worry about
uninteresting corner cases.

(5) Every constraint must be well formed.

-"

P~T

1 pred wellFormedConstraint [c: Constraint . x: Diagram] {
2 c in x. constraints
3 all p: x. mentions[c] some d: x.touches[c] p in x.involves [d]
4 all d: x.touches[c] i some (x. involves [d] & x.mentions[c])
5 c in x.specifications ++ x.touches[c] in x.machines
6 x.touches[c] in x.domains
7 x. mentions[c] in x.phenomena
8

A well formed constraint satisfies four properties.

(1) Any phenomenon mentioned by the constraint must be involved in at least one
of the domains touched by the constraint. That is, every phenomenon used in
a constraint must come from somewhere.

(2) Any domain touched by the constraint must involve at least one phenomenon
mentioned by the constraint. That is, a constraint cannot touch a domain for
no reason.

(3) A constraint is a specification if it touches only the machine.

(4) A constraint must be completely contained within the diagram. For example, it
cannot touch domains that are not in its own diagram or mention phenomena
that are not it its own diagram.

The Alloy Analyzer can automatically generate sample solutions to the above

constraints by executing a run command:

1 run wellFormedDiagram for 4

The "for 4" specifies a scope for the execution. It tells the Alloy Analyzer to only

consider solutions in which each signature has 4 or fewer elements. That is, we will

only generate solutions with up to 4 diagrams, up to 4 domains, up to 4 phenomena,

and up to 4 constraints.

3.8 Encoding Requirement Progression in Alloy

Now that we have laid the groundwork with a description of well formed problem

diagrams, we will formalize what it means to perform requirement progression on

such diagrams. We do so by extending our previous model to include descriptions of

add, rephrase, and push operations.

Since we will be talking about sequences of problem diagrams, we use one of Alloy's

library modules to impose a total ordering on Diagrams. We can write first [] to

denote the first Diagram in the ordering and next [x] to denote the next Diagram

after a Diagram x.

1 open util/ordering[Diagram] as ord

3.8.1 Requirement Progression Invariant

In requirement progression, only constraints change: the underlying structure of the

domains and phenomena remains constant. We express this invariant as a predicate.

1 pred structureEquivalent [x,y: Diagram] {
2 x.donmains = y.donaiins
3 x.machines = v. machines
4 x. phenomena = v.phenomena
5 x.connects = v.connects
6 x.involves = y.involves

7

Two diagrams are structurally equivalent if and only if their domains. machines,

and phenomena are the same, as well as the connections between domains and

the phenomena involved in each domain. No restriction is placed on constraints,

requirements, or specification, nor on the touches and mentions relations.

3.8.2 The Transformations

The addition of a breadcrunmb to a diagram is modeled as a predicate. The only

change to the diagram is the addition of a single constraint. That constraint touches

a single domain, is well formed, but is neither a requirement nor a specification. The

domain structure remains the same, as do all other constraints.

1 pred addBreadcrumb [before, after: Diagram] {
2 structureEquivalent [before , after]
3 some bc: Constraint {
4 addConstraint [bc, before , after]
5 one after.touches[bc]
6 wellFormedConstraint [bc . after]
7 bc ! in after . requirements + after . specifications
s }
9 }

The rephrasing of a requirement is modeled as another predicate. The only change

to the diagram is the replacement of one requirement (r) by another (r'). The

new requirement must be well formed, mention at least one different phenomenon

than the only one, and touch the same phenomena. The constraints in the final

diagram (comprising the new requirement and the old non-requirement constraints)

must logically imply the old requirement.

1 pred rephraseRequirement [before , after : Diagram] {
2 structureEquivalent [before , after]
3 some r: before .requirements , rafter. requirements {
4 wellFormedConstraint [r' , after]
5 replace [r , r',before , after]
6 onlyChanges [r , r .touches [r', before , after]
7 before .mentions [r] != after mentions [r']
8 before . touches [r] = after . touches [r ']
9 implication [after constraints , r, after]

10 1

A third predicate defines a requirement push. The only change to the diagram is

that one requirement changes what it touches but remains well formed.

1 pred pushRequirement [before, after: Diagram] {
2 structurcEquivalent [before , after]
3 onlvTouchesChanges [before , after]
4 some r: before . requirements & after . requirements {
5 before . touches [r] != after . touches [r]
6 before . touches - (r -+ univ) = after . touches - (r -, univ)
7 wellFormedConstraint [r , after]
8 }
9 }

3.8.3 Well Formedness Preservation

With formal descriptions of the transformations in hand, we can check our belief that

these transformations preserve well formedness. WVe write an assertion that, if any of

the three operations is performed on a well formed diagram, the resulting diagram

will also be well formed.

1 pred someTransformation [x,y: Diagram] {
2 addBreadcrumb [x,y] or
3 rephraseRequirement [xy] or
4 pushRequirement [x,y] or
5 commonTransformation [xy]
6 }
7
8 assert wellFormednessPreservation {
9 all x,y: Diagram I

10 wellFormedDiagram [x] and someTransfornation [x.y]
11 4 wellFornmedDiagram [y]
12 }
13 check wellFormednessPreservation for 4

The check passes for a scope of 4, so we know that the transformations preserve the

well formedness invariant for all small problem diagrams.

3.9 Discussion

3.9.1 Role of the Analyst

The transformation process is systematic but not automatic. The decisions of what

breadcrumbs to add, how to rephrase the requirement, and which enabled pushes

to enact are subjective assessments by the analyst based on experience or a related

frame concern.

This approach is incremental, and justified by assertions that involve, in any step,

assumptions about a single domain and its interface. While the process involves

mostly local reasoning, the resulting guarantee is a global one - that the specification

together with all the domain assumptions together imply the requirement.

Perhaps the biggest shortcoiming of requirement progression is the burden placed

on the analyst to come up with breadcrumbs that are both useful for moving forward

with the progression but also consistent with existing knowledge of the domains. The

task of deciding what responsibilities to assign to each domainll is a fundamentally a.

judgement call and thus not autonmatable. However, we envision the analyst being

aided by a catalogue of common transformation patterns to help guide her in the right

directions. That is, given the local structure of a problem diagram and a desired push,

what are the right kinds of breadcrumbs and rephrasings to perform? Such heuristics

are likely to take into account which domains control which phenomena and the type

of each domain (biddable, causal, lexical) - information which we currently ignore.

Such heuristics can only be properly developed over the course of many applications,

although we will allude to some potential guides as we discussion the BPTC and

Voting case studies in later chapters.

3.9.2 Source of Breadcrumbs

Central to this approach is the introduction of breadcrumnb constraints representing

assumptions about the domain behaviors. However, coming tip with domain

characterizations that are both usefull in moving the progression forward and which

will be certified by an expert can be quite an onerous task. We have considered four

potential sources of breadcrumbs:

analyst's intuition : The analyst introduces whatever breadcrumbs are useful to
the progression, as long as they seem reasonable. They are later checked by a
domain expert and hopefully validated. If not, the progression will have to be
reworked with a substitute assumption. For this method to be practical, the
analyst must usually generate correct assumptions, as may be the case if the
analyst is one of tile system experts or if the system is simple.

explicit list : In a safety critical system, it is may be reasonable to explicitly list all
of the available assumptions for each domain. Such a list might already exist,
or it might be cost effective to generate. The analyst can then browse the list
for useful breadcrumbs. If the list is very large, this method will not be much
different from the first.

implicit encoding : Even if the explicit list of all domain assumptions is large,
there may be a compact encoding of those properties. For example, a state
machine might be an effective way to describe a domain, as opposed to explicitly
describing all of the properties of that state machine. The analyst could use the
compact encoding both as a source of inspiration and as a means of verifying
desired assumptions without consulting the actual domain expert.

informal description : Full formal encodings of each of the domains is often an
unfulfilled wish. Rather, the analyst faces an informal, although perhaps very
detailed and precise, description of the system components. These informal
descriptions might be in the form of natural language documentation or expert
interviews. They suggest to the analyst what sorts of domain assumptions are
likely to be validated by tile experts, although, due to their informality, they
will still produce some false positives.

Any of these options can be appropriate depending on the type of component in

question. Cutting edge designs are most amenable to using analysts intuition, as they

are not nailed down and can be adapted to fit different sets of assumptions. Simple

mechanical components are likely to be amenable to explicit lists, as they have a

short but well-understood set of relevant properties. Mode-based components (such

as a car's gearshift) are best described with implicit state machine encodings that

reflect the modal nature of the domain. Human operators are best. suited to informal

descriptions, since formal statements about human behavior are deceptively certain.

Our experience has been primarily with the fourth case informal descriptions based

on expert interviews - and that is how we will present the examples in this thesis.

3.9.3 Progression Mistakes

The power and limitations of our technique can be appreciated by considering some

mistakes an analyst might make while performing the transformations. How each

mistake manifests itself reveals both strengths of our current work and indicates

challenges for future work.

(1) A breadcrumb might be added that is insufficient to permit the desired
rephrasing. In such a case, the analyst would be unable to discharge the required
implication and the rephrasing would riot be permnitted.

(2) A breadcrumb might be added that represents an invalid assumption. At the
very least, stating that assumption explicitly will increase the likelihood that it
will be corrected by a domain expert.

(3) A breadcrumb might be added that is correct but which is stronger than necessary
to justify tile rephrasing. There will be no ill effect on the specification, but a
stronger breadcrumnb places additional burden on the domain expert attempting
to validate it.

(4) A breadcrumb might be added that is weaker than necessary, forcing the
rephrased requirement to be stronger than necessary. The resulting specification
will be stronger than it could have been, making it harder (or impossible)
to implement. The analyst would review the trail of breadcrumbs to find
opportunities for weakening the requirement by strengthening the breadcrumbs.

(5) The original requirement might be too strong to be enforced by any (realistically)
implementable specification. In such a case. the analyst will derive an

unreasonably (but necessarily) strong specification, and the requirement will
have to be rethought.

Points 3 and 4 get at the fundamental tradeoff between the strength of the domain

assumptions and tile strength of the specification. If a domain assumption is weakened

(thus permitting more behaviors), then typically the specification will have to be

strengthened (thus permitting fewer behaviors). Conversely. weaking the specification

typically requires strengthening the domain assumptions.

3.9.4 Reacting to Rejected Breadcrumbs

If a domain assumption (including a specification that resulted from progressing a

requirement) is rejected by domain experts, there are four actions that might be

taken:

rework system : An extreme option is to drop the assumption entirely and re-
negotiate the requirement so that a different assumption is made upon the
domain in question. This option is typically unavailable as it is costly and
probably exceeds the authority of the analyst and scope of the system project.

alter assumption : The best case is that a similar assumption can be written
that will satisfy the domain expert and still provide the needed guarantee for
the argument. This might happen because the domain assumption was too
prescriptive and not sufficient general. Loosening the constraint may allow it to
play the needed role in the argument but to still be consistent with the current
implementation of the domain. This option is often too optimistic and there
really is a fundamental clash between the assumption made and the capabilities
of the domain.

shift assumption : It may be that the assumption in question is enforceable, just
not by the domain to which it connects. In that case, requirement progression
canll be used to shift the assumption to another domain. In doing so a new

(weaker) breadcrumb will be added to the old domain, the old breadcrunb
will be rephrased, and the rephrased breadcrumnb will be pushed onto another
(adjacent) domain.

For example, this is the case in the traffic light example given earlier in this
chapter, in Figure 3-9. The requirement states that cars will not collide -
an assumption which connects only to the Cars domain. According to our
progression rules, no more need be done since the requirement already is in
the form of a domain assumnption. However, the expert on the Cars domain

will tell us that the cars domain cannot enforce the non-collision assumption.
In response, we shift the offending assumption over to the Light Unit domain

(using requirement progression, as shown in Figure 3-10). In doing so, we
leave behind a new breadcrumb that is much weaker and is confirmed by the
domain expert. However, now the Light Unit expert tells us that the rephrased
requirement is not enforceable by the Light Unit domain. We repeat the process,
adding a weaker breadcrumb to the Light Unit and shifting the requirement on
to the Control Unit. Finally, the Control Unit expert tells us that the Control
Unit can enforce that constraint, so we can stop.

By shifting the assumption to a different domain, we have satisfied the domain
experts but we have increased the traceability footprint of the requirement. Our
argument now shows that the correctness of the requirement depends on three
domains (Cars, Light Unit, Control Unit). If the system cannot be altered, then
this sort of sacrifice must be made.

change domain : If the domain is a designed or machine domain (in the problem
frames notation) then there is a possibility of changing the domain to match
the requirement, rather than the other way around. This can be the right
option if the requirement is a safety- or mission-critical property, and thus it
is especially important that it have a simple and concise argument (one with a
small traceability footprint). In this case, one may wish to redesign the domain
rather than expand the footprint by shifting the property elsewhere.

For example, back in our traffic light example, we might decide that we cannot
afford to have a footprint that includes all three domains, and that we are willing
to redesign the Cars domain to keep the argument simple. We might install
computer chips into the cars that prevent them from entering an intersection
at the same time. We have increased the complexity of the cars domain and
required that it be redesigned, but we have kept the requirement's traceability
footprint contained to a single domain.

3.9.5 Progression Uniqueness

One consequence of a human-guided process is that not all humans will produce the

same argument when applying the process. Roughly speaking, deviations can happen

through the selection of different breadcrunibs or through the selection of different

global heuristics.

Adding Different Breadcrumbs

Requirement progression guarantees that the derived breadcrumbs will be suficient to

enforce the original requirement, but it does not guarantee that they will be necessary

100

or m ntial. In the course of performing progression. it is legal to add breadcrumbs

that are stronger than what is necessary to proceed. Doing so does not violate the

guarantee that the breaderumbs are strong enough, but it can introduce undesired

implementation bias and more expensive validation.

It is important that a human be permitted to add assumptions that are stronger

than needed, as a slightly stronger assumption might be much simpler to express and

therefore easier to interpret by a domain specialist. A logically minimal constraint

may not be minimal in complexity or length, and may not form a coherent statement

to a human reader. Our assumptions are only as good as our ability to discharge

them, so it is acceptable to sacrifice minimality in order to improve clarity.

However, within the set of clear and meaningful assumptions, it is better to

pick the weakest, as that incurs less validation work and less implementation bias.

Requirement progression encourages more minimal statements, even though it permits

stronger ones. When adding a breadcrumb, the analyst is not asking '"What do I know

about this domain?" but rather "What would let me push the requirement onward?".

In general, one should assunme that a human will apply as little (intellectual) effort

as possible to complete the argument. If the task is phrased as listing facts that are

true of the domain, then it is less effort to just list everything known. If the task

is phrased as making progress pushing the goal towards the machine, then it is less

effort to just list the facts needed to make one more step.

We saw this happen in the traffic light example. The first time through, we omitted

assumptions about the red lights, since we found that we only needed assumptions

about green lights in order to make progress. If one believes the assumptions

we introduced (challenged in Section 3.4.5), then the reduced assumptions only

mentioning green lights are easier to enforce, understand, and validate.

Choosing Different Targets Domains

In this chapter, we have guided progression with the heuristic of shifting the

requirement towards the imachine domain. The correct execution of progressions

does not rely on that heuristic. There need not be a (unique) machine domain, and

101

one could pick any target domain to guide progression. For example, in the BPTC

logging example, we chose the TCS as the target. We could instead have chosen any

of the other domains as the target and still have performed progression.

Having a target articulates the task in the form ""Make assumptions that these

domains will handle the parts of the requirement that the target domain cannot

handle", thus helping to determine what sorts of domain assumptions are likely to be

helpful. Different choices of targets will not change what steps are legal but may affect

which ones are selected by the analyst. From a logical standpoint, given any target,

it is possible to produce the same set of breadcrurrmbs on the domains. However, from

a process standpoint, different targets may bias humans towards introducing different

assumptions and performing different rephrasings.

Our experience is that it is best to target the domain under design, especially

if it is a software dornain. One tends to produce relatively weak breadcrumrnbs, and

leave much of the strength of the requireement in the goal itself. Breadcrumibs are

often equivalence claims of the form "phenomenon p carries the same information as

phenomenon q if interpreted in this manner...". Such breadcrumbs lends themselves

to easy rephrasings - just replace references to p in the goal with references to the

indicated interpretation of q. The breadcrumbs introduced in this chapter and in our

later case studies are almost entirely equivalence statements.

Because of this tendency, the harder and more complex parts of the requirement

end up being left over in the final specification constraint (on our target domain).

rather than being spun off as breadcrumbs. This works well if the target is the

domain under design, so that we can ensure the tricky parts are enforced, while only

making weak assumiptions about the external environment.

3.9.6 Automatic Analysis

It is not necessary to combine this approach with automatic analysis tools (such

as Alloy), although in practice it is extremely difficult to construct valid arguments

without tool support. The same process could be performed using informal reasoning

or a different formal logic and still be helpfull for structuring the argument, making

102

domain assumptions explicit, and providing a trace of the analyst's reasoning. The

language for representing domain properties and the method for discharging the

rephrasing implications should be chosen based on the analyst's experience, the type

of requirement being analyzed, and the level of confidence desired.

3.9.7 Are These Examples Too Small?

One might think that requirement progression will only work on small examples such

as the ones shown in this section. Our experience is that most problems, even very

complex ones, can be represented by relatively simple problem diagrams but that

those diagrams do not quite fit existing frames and frame concerns. For example, in

our work with the BPTC, we have never needed a problem diagram with more than

a dozen domains. As we will see in Chapters 4 and 5, even very complex systems

can have small problem frame diagrams for critical cross-cutting concerns. While

these technique may well scale to more complex diagrams, our experience is that

simple diagrams are preferable and provide sufficient detail to build dependability

arguments.

3.9.8 Related Techniques

Central to our efforts to build dependability cases is the use of problem progression

to derive checkable specifications from system requirements. While progression

has proved to be the right technique in the context of the other techniques we

are composing, other techniques might better fill that gap in the context of other

component techniques. In a different context, one might use similar work that has

been done on synthesizing problem frames with assurance cases [83, 58, 57]. That

work does not integrate as well with relational code analysis tools (like Forge [23]),

and we find it to permit less intuitively phrased requirements (during elicitation and

designation). As such, it does not fill the niche we need filled in our end-to-end

argument.

103

104

Chapter 4

Case Study: BPTC Dose Delivery

4.1 The Burr Proton Therapy Center

The Burr Proton Therapy Center (BPTC) is a radiation therapy facility associated

with the Massachusetts General Hospital (MGH). In this section, we demonstrate our

techniques on a key concern of the BPTC radiation delivery stystem. Background of

the BPTC and our collaboration with it are given in Appendix 9.

105

Exposure of Humans to Life Threatening Conditions
General Exposure

Physical Danger from Moving/Mechanical Parts
swinging parts (dangling control pad) --------------------- (Low)
pinching parts (nozzle joints) ---------------------------- (Medium)
crushing force (gantry rotation) -------------------------- (High)

Uncontrolled Electrical Current ------------------------------ (High)
Patient Exposure

Radiation Overdose

major overdose (relative to absolute limit) --------------- (High)
minor overdose (relative to prescription) ----------------- (Medium)
locational overdose (wrong focus or shape) ---------------- (High)
collateral overdose (surrounding organs) ------------------ (Medium)

Patient Not Fully Treated

aware of a certain underdose ------------------------------ (Low)
aware of an uncertain underdose --------------------------- (Medium)
unaware of an underdose ----------------------------------- (High)
treatment visit cancelled --------------------------------- (Low)
many treatment visit cancellations ------------------------ (Medium)
all treatment visits cancelled ---------------------------- (High)

Non-Patient Exposure (staff, maintenance crew, neighbors)

Radiation Exposure

major one-time dose --------------------------------------- (High)
accumulation of minor doses: adult ------------------------ (Low)
accumulation of minor doses: child/fetus ------------------ (High)

Exposure of Critical Machinery to Destructive Conditions

Camera and Sensor Wearout / Accumulated Radiation --------------- (Low)
Physical Mechanisms (e.g. gantry, nozzle arm)

Stress and Wear -- (Low)
Broken or Inoperable --- (Medium)

Permanent Damage to Cyclotron ----------------------------------- (High)

Figure 4-1: High level hazards for the BPTC radiation therapy system. The
hazards are organized according to what assets they endanger and the sources of
that endangerment. Each hazard is assigned a severity rating of High, Medium, or
Low.

106

4.2 BPTC Hazard Analysis

Before we can analyze the syterm, we must examine the system's context. We will

first perform a high level hazard analysis of the BPTC system, and then focus on one

of those hazards and apply our technique to it.

A Hazard is the exposure of an asset to a dangerous situation, although not

necessarily the realization of the dangers of that situation. Hazards are not the ways

that the particular system may fail, but rather ways that any system filling the role

might put valuable assets in danger. Figure 4-1 gives a high level hazard analysis for

the Burr Proton Therapy Center. Each hazard is assigned a severity (High, Mediumn,

Low) based on its worst case realistic outcome. The severity levels are interpreted as

follows:

High - loss of human life, complete failure to treat life a threatening condition,

damage to irreplaceable equipment

Medium - human harmed non-fatally, damage to expensive but replaceable

equipment, reduction in effectiveness of treatment, significant treatment delays

Low - minor reduction in effectiveness of treatment, increased but tolerable

maintenance costs, minor treatment delays

We organize the hazards into two broad categories: exposure of humans to life

threatening conditions, and exposure of critical machinery to destructive conditions.

The hazards to humans are classified into general risks to all hunians, risks that

pertain only to patients, a.nd risks that pertain only to non-patients (such as

therapists, support staff, or personnel in adjoining buildings). The severities for

some hazards are a bit tricky to assess, and are discussed below. 1

Types of Underdose

Delivering an underdose to a patient - less radiation than prescribed - is not

immeni diately harmful to the patient. However, the severity can range from Low to

1Our assessments are based on our discussion with BPTC personIel, but have not bee('n certified
by them.

107

High depending on two factors: (a) how aware the therapists are that an underdose

occurred, and (b) how certain the therapists are of the intensity of the underdose. If

the patient is massively underdosed but the therapists are not aware of the problem,

then that patient's cancer will go untreated (High severity). If the therapist is aware

that the patient was underdosed, but doesn't know by how much, then treatment

must be interrupted, to avoid overdosing the patient by repeating a dose (Medium

severity). If the patient is underdosed and the therapists are certain of the intensity

delivered, then the remaining dose can be accurately delivered (Low severity).

certain of uncertain of
intensity intensity

aware of Low Medium
underdose Severity Severity

unaware of
underdose

Figure 4-2: The severity of a treatment underdose depends on whether or not the
therapist is aware of the underdose, and, of so, whether or not the intensity of the
underdose is certain.

Severity of Interrupted Treatments

Physical machinery is threatened by the accumulation of radiation over time. In

contrast, human tissue is threatened by single high doses of radiation, but is largely

resilient to many low doses.

Suppose human tissue will regenerate from radiation damage (and a patient can be

safely treated again) after X days, and suppose that BPTC cancer patients typically

108

__I

have Y days remaining until the cancer becomes untreatable. The increased risk to

the patient of receiving an interrupted (partial) treatment depends on the ratio of X

to Y. If X is much smaller than Y, then preventing interrupted treatments are of

Low or Medium severity. If X and Y are close in value, then interrupted treatments

are High Severity.

If a patient can be retreated after 1 week (X = 7) and the patient needs treatment

within 2 years (Y = 730), then the increased risk of an interrupted treatment to the

patient's life is 7/730 m 1% (Medium Severity). In contrast, if the patient cannot

be safely retreated for 6 weeks after an interrupted session, and the patient must be

treated within 4 months, then the increased risk to the patient's life is 42/120 e 30%

(High Severity).

Separation of Equipment and Patient Hazards

The hazards in Figure 4-1 concerning equipment damage are evaluated based on the

cost of repairing or replacing the equipment. The increased risk to the patient's well

being of operating with damaged components is captured in separate patient hazards.

These are separated both because they have different severities and because they are

often mitigated in different ways.

For example, a broken gantry might fail to stop rotating when instructed, and end

up crushing a patient. The "Broken or Inoperable" hazard has a medium severity, as

gantries are expensive but replaceable. The "Crushing Force" hazard to patients is

high severity, as it can be fatal.

These hazards are kept separate, as the mitigation tactics are likely to be quite

different for the two concerns. Avoiding damage to the gantry might be achieved by

building in bracers so that the gantry motor is not powerful enough to damage the

rotational mechanism. Doing so will protect the gantry, but not the patient. The

patient hazard might be addressed by ensuring that the patient is not in the line of

rotation of the extended nozzle. Doing so will keep the patient out of harm's way,

but will not stop the machinery from damaging itself by hitting some other surface.

109

4.3 Dose Delivery Argument

Our technique is best explained by application to a real problem. Consider the dose

delivery subproblem:

If the therapist instructs the proton beam to fire. and no explicit error
message is presented to the therapist, then the patient under the nozzle
of the beam will receive the prescription stored in the database for that
patient.

This is a concern about matching the identity of the patient to the prescription

in the database, and then delivering that dose to the patient. Safe error handling,

database initialization, and unsafe prescriptions are separate subproblems and will

not be addressed here. This argument is focused on the problem of coordinating the

therapist's instructions (entered via a GUI), the database values, and the hardware

device drivers. As a result, we focus primarily on the treatment manager software at

the center of this coordination.

The dose delivery subproblem addresses a medium to high severity hazard; it is

potentially life threatening to the patient. Delivering a random dose of radiation can

be instantly fatal to a patient (high severity). Delivering one patient the prescription

for a different patient could result in minor overdoses (medium severity, since

treatment will have to be delayed). Doing so repeatedly could result in a systematic

unknown underdose (high severity, since the patient's cancer will unknowingly remain

untreated).

4.3.1 Designations

The designations of a subproblem relate the formal terms used in the argument to

their informal counterparts in the real world and/or code base.

Domains

Patient - The person who has been positioned under the beam nozzle. This is

the person who will be receiving the bulk of the radiation generated by the

110

device, but it is not necessarily the patient who should be receiving it and is

not necessarily the only person receiving it. We assume that there is exactly

one person under the nozzle, and the wording of the other designations reflects

that assumption.

Therapist - The hospital employee who identifies the patient, confirms his or her

prescription, operates the positioning mechanisms, and initiates delivery. The

therapist spends part of the time in the treatment room with the patient and

part of the time in the adjoining treatment control room.

GUI Interface - The graphical user interface used by the therapist to select the

patient, read back the patient's prescription, and instruct the device to deliver

the selected treatment to the patient under the nozzle. The source code for this

software is in the "hei" directory of the code hierarchy.

TM Treatment Manager - The software that receives GUI commands and

requests, and which sets the beam equipment device drivers to deliver a certain

intensity of radiation for a certain amount of time. The source code for this

software is in the "app/treatmentmgr" directory in the code hierarchy.

Messages on Network - The communication channel between the GUI and the

TM. Communication is handled by atomic messages packed by the sender,

sent via RTworks, and unpacked/interpreted by the receiver. RTworks is third

party software, and provides certain (commercial, not formal) guarantees about

message ordering and persistence. RTworks is no longer an active product.

although it was a reputable one.

DB Prescription Database - The database containing patient information.

Each patient entry includes an identifier (patient id), the patient name, and

information about the prescription. For our purposes, we use the following

relational abstraction for the database:

111

DBinarmesIn ffo : id --+ string - the name and personal information for the
patient with this id

DBdoses : id - vLalue - the dose value(s) for the patient with this id. An
abstraction of all prescription information.2

inactive E names - the subset of the names mapping for those patients
who are currently active

HW Beam Equipment - The electrical and mechanical systems which generate

and deliver radiation to the patient under the nozzle. This domain ncludes

devices such as the cyclotron (which generates the proton beam) and gantry

(which rotates the nozzle into position above the patient).

Phenomena

nameInfo - Name and personal information of the patient under the nozzle. It is

assumed that any two patients can be distinguished by the personal information

included in namelnfo, such as admission date and home address.

patientDose - The sum total of radiation that is delivered to the patient during the

course of the treatment session. Dose does not include location and distribution,

which are not relevant to this subproblem.

selection - The patient selected by the therapist from the list displayed by the

GUI, with the intention of matching the patient's name. The mechanism for

selection is not specified in this diagram. Currently, the therapist uses a mouse

and keyboard to select a patient tname from a list of active patients displayed

on a terminal.

Actually, a therapist makes several sequential selections to pull up treatment

data for a delivery. The therapists selects a patient, then a treatment, then

a component of that treatment (if it is compound). For the purposes of this

analysis, we abstract all of those selections into the act of selecting a single
2W1e use the following naming convention in our designations: a singular phenomenon corresponds

to a single piece of data; e.g. dose refers to a single dose. Plural phenomnenon names correspIond
to a mnapping: e.g. doses is a mapping from each dose to somne id. More lucid names are perhaps
desirable in the future, but consistent namning conventions are essential.

112

treatment entry for the patient under the nozzle. There is really another

subproblem here about selecting the wrong treatment for the right patient.

This subproblem considers the possibility of getting the wrong patient.

read id msg - The execution of code that receives a message, interprets it as

containing information about the selected patient, extracts a patient id from

the message, and stores that id.

send id msg - The execution of code that encodes information about the id of the

selected patient into a message and sends that message.

send list msg - The execution of code that encodes the mapping from each active

patient's nameInfo to that patient's id. and then sends over the network.

read list msg - The execution of code that receives a message, interprets it as

containing a mapping from patient namelnfo to patient id's, and stores that

mapping.

query doses - A query formulated, submitted, and answered by the database. A

query has two parts: the request and the response. In this case, tile query is

given a patient id and returns the dose prescribed for that patient.

query list - A query as before, but in this case it is a query requesting the set of

active patients, and their name/id mapping. This list only includes the patients

who have an active status flag in the database.

settings - The execution of the code that sets device drivers for the beam equipment.

Among other things, those settings determine tile intensity and duration of the

delivery.

interpretation - A function that maps machine settings to dose delivered by a

machine with those settings. This is really just a unit conversion. The HW

embodies this interpretation, and the TM explicitly encodes it in a translation

routine.

113

DBdoses - A mapping from id numbers to prescription dose information.

We abstract all prescription information stored in the database into this

phenomenon. This map is stored in the database, and is intended to describe

the dose that the patient's physician wants to have delivered to the patient.

DBnamesInfo - A mapping from id numbers to names and personal information

of patients as recorded in the database. We abstract all patient identification

information (e.g. name, address, admission date) into this phenomenon. Names

are not necessarily unique, but personal information is assumed to be so.

Requirement

The requirement given in Figure 4-3 is an interpretation of the informal requirement

that patients receive their prescribed doses, within a certain safe margin of error.

114

selection

settings
interpretation

HW
dose Beam settings

quien interpretation
Equipment

/ I

I dose -

namelnfo

- dose delivery
(name s info. na me nlnfo).do ses n

dose -_ namesinfo

The patient receives the doses

dose that is associated with
the patient's name in the
prescription database.

selection
map
sendlDmsg
readLISTmsg

sendlDmsg
readLISTmsg
readlDmsg
sendLISTmsg

readlDmsg
sendLISTmsg
queryDosesRequest
queryDosesResult
queryListResult
interpretation
settings

nameslnfo
doses
inactive
queryDosesRequest
queryDosesResult
queryistResult

Figure 4-3: Problem Frames problem diagram for the patient identity subproblem.

115

selection
namelnfo

namelnfo
dose
margin

__

nameinfo - - .

ThI selection GUI

sendlDmsg
readLISTmsg

f IS namInfo Messages on

active
names id

readlDmsg
Q sendLISTmsg

Equipment interpretation Manager

-.- .- - -- " dose . I
1

, queryDosesRequest
I dose e-- \ queryDosesResult

nam queryLis t

dose de1ery

(names.name).doses = dose -_. s
names.

The patient receives the doses aprep

Figure 4-4: Flow diagram for the patient identity subproblem.

116

dose

I dose (6) HW operation | -

namelnfo queryDosesRequest (4c) queried dot
\ settings.interpretation = dose queryDosesResult to set equipmer

Sall n: Number querystResut settings.interpret
one n.interpretation queryDosesResL

(0) dose delivery

(nameslnfo.namelnfo).doses -- - -.... namesinfo DB
dose doses - - - - - Prescription (5a) queries reflect d

.) s Database . queryListResult
Seach name nameslnfo -inactive

all n: String I one namesinfo.n queryDosesResult =
queryDosesRequest.d

Figure 4-5: Argument diagram for the patient identity subproblem.

117

a

sig String {}
sig Number { interpretation: set Number }
sig ID {
map, namesInfo, inactive, queryListResult, sendLISTmsg, readLISTmsg: set String,
doses: set Number

}{inactive in namesInfo}

one sig nameInfo, selection in String {}
one sig settings, dose, queryDosesResult in Number {}
one sig sendIDmsg, readIDmsg, queryDosesRequest in ID {}

pred Requirement [] { (namesInfo.nameInfo).doses = dose }
pred allBreadcrumbs [] {

Therapist[]l and GUI[] and Network[] and TM[] and DB[] and HW[] }

pred Therapist [] {
nameInfo = selection }

pred GUI[] {
map = readLISTmsg

map.selection = sendIDmsg }
pred Network[] {

sendLISTmsg = readLISTmsg
sendlDmsg = readIDmsg }

pred TM[] {
queryDosesRequest = readIDmsg
queryListResult = sendLISTmsg
settings.interpretation = queryDosesResult }

pred DB[] {
queryListResult = namesInfo - inactive

queryDosesResult = queryDosesRequest.doses
all n: String I one namesInfo.n }

pred HW[] {
settings.interpretation = dose
all n: Number I one n.interpretation }

assert end2end {allBreadcrumbs[] => Requirement[]}
check end2end for 6

Figure 4-6: An Alloy model verifying that the argument diagram is consistent; if the
breadcrumbs hold, then the requirement will hold.

118

4.3.2 Problem Diagram

Figure 4-3 shows the problem diagram for the dose delivery subproblem. It shows

the cross-cutting slice of the BPTC system relevant to the dose delivery concern, lists

the relevant phenomena for each domain involved, and indicates how the domains

interact via shared phenomena.

The Dose Delivery concern relates the names and doses stored in the database

to the name of the Patient under the beam and the dose delivered to that Patient.

Using the Alloy Language formal notation, it specifies that the patient receives the

dose associated with that patient in the prescription database.

4.3.3 Flow Diagram

Figure 4-4 indicates the pattern of information flow through tile system with an

annotated version of the problem diagram. The diagram's semantics are informal,

but it guides the construction of the dependability argument in later stages.

Identifying information about the Patient (nanmeInfo) flows from the Patient to

the GUI interface via the Therapist. The mapping between names and id's for active

patients is passes from the database to the GUI via the Treatment Manager and

messaging Network. Those two pieces of information are reconciled to select the

Patient's id, which is send back to the database via the messaging Network and

Treatment Manager. The database maps the id into a dose, which is transferred to

the patient via the Treatment Manager and Beam Equipment.

4.3.4 Argument Diagram

Figure 4-5 shows the argument diagram derived from the application of requirement

progression to the problem diagram. The cross cutting dose delivery property has

been decomposed into a collection of breadcrurmb assumptions, each of which only

references phenomena from a single domain. These domain assumptions can be

handed off to dormain experts and independently validated. In our work, we focus on

the software-related assumptions made about the Treatment Manager.

119

4.3.5 Argument Validation

Figure 4-6 gives an Alloy model used to validate the decomposition depicted in

the argument diagram (Figure 4-5). It verifies that, within the given bounds, the

breadcrumb domain assumptions are sufficiently strong to enforce the dose delivery

requirement.

4.3.6 Breadcrumb Interpretation

;We then examine each breadcrumb assumption in turn: we interpet each using the

designations relevant to its domain, thus allowing domain-specific tools and experts

to be applied to validating them. For example. breadcrumb 4b is interpreted as the

following post-condition for the code:

pred patient_id_storage [] {

data.data__msg.mixed_array_index [0] == SCR_A1_PATIENT_SELECTION

data.data__msg.mixed_array_index [1] == W_PATIENT_SELECT_BTN

current_id_patient

== arg.scrCrtPatientData.dbs_patient_type__idpatient

This property is checked against the code base using the Forge framework [23],

along with some accompanying liveness checks to mitigate the chance of

overconstraint. In order to perform these analyses, the C sourcecode must be

translated into the Forge Intermediate Language. This translation is currently

performed manually, but much of it could be automated, by programns such as

Tochiba's CForge and Dennis's JForge [23].

4.3.7 Breadcrumb Assumptions & Hazards

VWe now examine each breadcrunmb assumption in the argument diagram (thle result

of requirement progression). We interpet each using the designations relevant to its

domain, thus allowing domain-specific tools and experts to be applied to validating

120

them. As show in Figure 4.3.7, we are essentially reversing our earlier designations.

The designations carried us from the world into the formalism, but we now use them

to carry us back.

world formalism

Problem
designations Frame

Context Description

requirement
progression

Decomposed . Derived
Breadcrumbs interpretation Breadcrumbs

Figure 4-7: Designations carry us from the world into the formalism, where techniques
such as requirement progression can manipulate the problem. The result of such
manipulation is carried back into the world via interpretation.

In doing so, we decompose the breadcrumbs into component claims and classify

those claims in terms of how they should be discharged.

Assumption Types

Each hazard is either entrusted to a domain expert or translated (using the

designations/abstractions) into terms that can be check directly against the code.

Code concerns are either correctness (the things that should happen will happen

correctly) or separability (things that shouldn't happen won't happen).

(u) user interface - claims that humans understand and correctly interact with the
mechanized portions of the system. We analyze such properties through an
informal but systematic examination of the human domains, in an attempt to
classify the failure modes.

(c) software correctness - claims that the portions of code that should provide
a given function do provide that function. We analyze software correctness
properties using the Forge program analysis.

121

(s) software separability Claims that other portions of code do not interfere with
that function. We analyze separability claims with memory safety and data
flow analyses. 3

(x) non-software - All other claims. We delegate the validation of non-software
properties to domain experts. Because the claims have been mapped into the
language of their domains. domain experts should be able to independently
validate or decline them.

Domain Types

It is in this stage of the analysis that classification of Problem Frame domains

into biddable (human), lexical (data), and causal (machine) are relevant, as those

categories suggest how to substantiate each type of assumption. For example, many

domains serve as data transformers; data passes through them and changes form,

but does not change the piece of information it is representing. Data transforming

domains often contain the following pair of assumptions:

(c) The data is correctly transformed between when it is received and when it is
transmitted.

transmitted data =
desired transformation (received data)

(s) The temporary, internal representations of the data are not corrupted during
between reception and transmission. For example, they might be write-once.

data stored = data recalled

In a causal or lexical domain, the second assumption means that the temporary

intermediate variables are not overwritten and are passed along in a variable.

In a biddable (human) domain, this means that the human does not forget or

garble information and correctly/honestly/unambiguously writes down what was

remembered.
3 0f course, in a memory-unsafe language like C, this is not strictly possible without a much more

heavyweight analysis than we are willing to apply. However. we can still perform lightweight scans
of the code. to at least identify which poritions of the code are accessing certain globals. For a more
thorough separability analysis, one would either need to use a safer language, or apply a much more
heavyweight analysis, such as Astree [10].

122

The Breadcrumbs

Therapist: (1) "patient is correctly selected"

namelnfo = selection

(x) There is one patient on the table.

The machinery is configured to treat one patient at a time, as patients have

unique treatment plans. We do not consider multiple, simultaneous treatments.

example: We do not allow a parent to hold a child during treatment. We do not

allow a pregnant woman to be treated, as the mother and fetus would be two

patients under the nozzle.

(c) There is one selection made in the GUI. It is not possible for a therapist to select

more or less than exactly one entry and still proceed to treatment.

note: Some prescriptions are compound, and are delivered over the course of several

visits to the center or with several firings of the beam. In such a case, we

consider the delivery to be restarted from the beginning, including selection of

the treatment. Since we are considering a single firing of the beam, we require

that a single entry be selected for that firing.

example: If the therapist does not select an entry from the list, then the GUI must

not permit the therapist to move on to the next stage of treatment. If the

therapist selects a second entry, the GUI must either de-select the old entry, or

deny the new selection. In either case, the therapist must be made aware that

the selection did (or did not) actually change.

(u) The selection made in the GUI matches the patient.

The identity of the patient (nameInfo) is the identity selected from the GUI.

The therapist selects exactly one patient from the list, and that patient is the

one under the nozzle.

123

example: The therapist must not identify the patient as "Fred Smith" but select

"Fred Smyth" in the GUI. One might address this concern by holding the patient

tag up next to the screen. rather than remembering it as one walks across the

room from the patient (and tag) to the GUI screen. Such a routine would require

that the therapist always correctly returns the tag to the patient, and that there

are no other tags lying around that could be confused with the patient tag.

(x) The patient matches at least one entry.

example: As long as a patient is under treatment, she must have an entry in the

database indicating her prescription. If a patient does not have an entry, she

should not be in the treatment room.

(u) The patient matches at most one entry.

If there are two similar entries, then (1) they must be for different patients, (2)

there must be sufficient additional information to disambiguate the entries, (3) it

must be apparent that disambiguation is necessary, and (4) it must be apparent

when disambiguation has been sufficiently established. It is technically ok for a

patient to have several identical entries, but we will establish the stronger claim

that there is only one. Multiple entries would increase the likelihood of errors

being introduced through dual maintenance.

example 1: If a patient is evaluated by two physicians, he must still only have one

prescription in the database. and thus only one entry in the GUI list. If the

patient's prescription is updated, the old one is overwritten, deleted, or made

inactive. As an invariant on the database, each patient has at most one active

entry. To avoid maintenance risks, it is best if the patient has at most one entry

total, be it active or inactive.

example 2: If there are two "Fred Smith" patients, we assume that they have

distinguishing personal information, and that the therapist is aware of that

information.

124

The therapist might not be permitted to select one without explicitly turning

the other down. If one is visible on the screen, the other must not be hidden

off the screen by a scrollable list or buried in a long unsorted list. If one of the

entries is selected, perhaps all similar entries should be brought to the attention

of the therapist for comparison.

example 3: Consider the case where two names are identical in the primary list

(that just displays names), so additional information is manually pulled up on

each. In the current GUI. this is in an overlaid window showing home addresses

and admission dates. When the extra info window is closed, and the therapist

returns to the primary list after determining the desired patient, he/she must

not accidentally select the other one (since on the primarily list, they are still

identical). For example, the therapist might be allowed to select a patient from

that patient's expanded info window. Or when the therapist returns from the

expanded info window for a patient, that patient's entry in the primary (name

only) list is highlighted.

example 4: Two patients with the same name and the same admission data are

active, and one is currently being treated. If the other is first on the list, the

therapist will pull up its disambiguating information (admission date) and see

that it matches, and select. If the therapist does not also look at the other

patient's data, it will remain hidden that they have the same admission date

and thus require further disambiguation. In this case, being able to select a

patient from that patient's expanded info window would exacerbate the issue.

Better to identify potential ambiguities and force the therapist to explicitly

eliminate them.

(2a) GUI: "interpretation reflects msg"

map = readLISTmsg

(c) The map from patient namelnfo's to patient id's is received in a message from

the database and is correctly stored and accessed

125

example: The locally stored map might use a data structure that resolves

ambiguities differently than the database. For example, if there are duplicate

entries in the database, the local map might choose one of them arbitrarily,

rather than reflecting the ambiguity.

(s) The map is not corrupted while stored.

Ideally. the map should never be altered unless completely replaced by a new

list from a more recent message.

violation: In the current system, a therapist can override the data held in the

treatment manager, for example to override an angle based on image feedback.

This violates our assumptions about synchronization with the database dose

information. The argument presented here holds as long as the therapist does

not use the override feature.

(2b) GUI: "id is interpreted and sent"

map.selection = SendlDmsg

(c) The selected entry is stored into some temporary representation, which must be

the same variable used to retrieve the patient id from the name-id mapping.

(s) The temporary representation of the selected entry is not corrupted between when

it is written and when it is read. The simplest case is when it is write-once.

(c) The selected entry is the entry used to lookup the patient id in th name-id

mapping. The mapping has exactly one id for that entry, and that is the id

that is returned.

(s) The temporary representation of the id extracted from the map is not corrupted.

Preferably, it is write-once.

(c) The id is packed into a mnsg accurately.

(s) The message is not modified between when it is packed and when it is sent. It

might be write-once, or it might only be modified after transmission.

126

(3) Network: "message are transmitted authentically"

sendLISTmsg = readLISTmsg

sendIDmsg = readIDmsg

(x/s) Messages are transmitted without corruption; their contents when they leave

are the same as their contents when they arrive. At this level of description, we

abstract away any mechanism for detecting corruption and resending messages,

and just consider the entire message transmission (and re-transmission) process

to be a, single event.

(c) Messages eventually get to their destinations. This might subsume a re-send

process to account for dropped messages, and refers to the eventual effect of a

send command.

sample problem All patient selection messages from the GUI to the TM are

dropped, preventing treatment from progressing.

(s) Messages do not get sent to other destinations.

sample problem Patient data from the TM is sent to each treatment room, and

two concurrent patients in two treatment rooms receive the prescription for one

of them.

(s) Messages are not corrupted in transit.

sample problem A patient is identified correctly in the GUI. but the message to

the TM is corrupted and the wrong patient is selected.

aside: One might want to make some claim that messages get to their destinations

within a certain acceptable delay. However, for the patient id subproblem,

there is no timing requirement, and the domain assumption we derived for the

messaging domain is simply that messages eventually reach their destinations.

contradiction: In validating this assumption, we learned that this is not how the

BPTC network operates. Here, we modeled it as a send-to-destination system.

127

Actually, it is a publish-subscribe system, using shared variables stored on

the network and duplicated in the subsystems. There are additional relevant

assumptions that we must introduce when viewing the full complexity of the

messaging system, which are abstracted away in the representation here. For

example, can several subsystems publish to the same shared variable? How

often do readers of the shared variables update their local values?

(4a) TM: "list info is sent"

queryListResult = sendLISTmsg

(c) The result of the querry is stored into some internal representation.

(s) The internal representation is not overwritten between its creation and its use

(c) The internal representation is encoded into a message and sent onto the network.

TM: (4b) "id from message is sent to db"

queryDosesRequest = readIDmsg

elaboration: In order to describe the connection between the id read from the

message and the id sent in a query to the database, we are forced to expose

the fact that there is redundancy in the storage of the id value. It is stored

in 3 places. One is only local to the message unpacking, and does not escape.

Another escapes (it is a write to a pointer) but does not appear to ever be read.

The third escapes and is used to form tile database query. The dual maintenance

of the two escaping representations does not appear to be necessary, but does

complicate the correctness argument. It does not appear to represent a fault

in the current system, but is certainly a vulnerability: if the code is later

modified, it would be easy to read/write one but not both of the escaped id

representations, creating a potential for stale or inconsistent data.

(c) The message is constructed correctly from intermediate representation(s) of id.

128

This has 2 parts: (a) that the message is stripped and stored in variables, and

(b) that the variables are read and used to build a message.

We can check properties of that code using the Forge Analyzer.

(s) The message, and the data being put into it, are both write-once; all

representations of id are consistent whenever read.

(4c) TM: "queried dose is used to set equipment"

settings.interpretation = queryDosesResult

(c) The dose value is translated and used correctly to set the machine.

(s) the temporary rep of dose is not overwritten

(s) The equipment settings aren't overridden.

(5a) DB: "queries reflects db"

queryListResult = namesInfo - inactive

queryDosesResult = queryDosesRequest.doses

(s/x) The database itself is not corrupted, and remains constant throughout the

treatment.

example: A query contains an sql injection, either intentional or accidental, might

overwrite patient prescription data. Garbage values for a dose would almost

certainly result in a massive overdose, as most (32 bit) integers correspond to

dangerous levels of radiation (a high severity hazard). Even an error value that

is safe on an absolute scale is still likely to cause a systematic underdose (High

severity).

(x) The result returned by a query is the answer to that query, according to the

information stored in the database at the time.

(x) The subset of the map sent to the GUI correctly reflects the subset of patients

who are currentlv active in the actual database.

129

example: If there is one patient with the name "Fred Smith". the patient is active,

but the active flag is mistakenly off, then things are not so bad. The patient will

not show up on the list, and the therapist will realize that there is a problem.

The patient's treatment will be delayed, but not misdelivered (a low severity

hazard).

example: Similarly, if there is one patient with the name "Fred Smith", the patient

is no longer active, but the active flag is mistakenly on. the patient will just be

a dead entry in the list. The risk that the therapist will accidentally select this

name instead of the correct one is no greater than the risk that the therapist

will accidentally select another active patient. The only added risk is that the

list will become very long and diluted.

example: However, consider the case where there are two active patients with the

same name (Fred Smith) but different personal information (addresses and

admission dates). If one of them is correctly flagged as active but the other

is incorrectly flagged as inactive, then the therapist will almost certainly select

the wrong one. On the primary list (with just names), there will be just one Fred

Smith, so the therapist will not see a need to consult/confirmi the elaborated

entry (with addresses). Both patients will receive the dose prescribed to the

Fred Smith with the active flag on. Worse. they might each receive half of

the treatment segments, causing both to receive systematic underdoses (a high

severity hazard).

(5b) DB: "there is only one id for each name"

all n: String I one namesInfo.n

(c) As an invariant on the database, every name in the database maps to exactly

one id under the names mapping.

(6) HW Beam Equipment: "HW operation"

settings.interpretation = dose

all n: Number I one n.interpretation

130

(x) If the machine changes settings into doses according to the interpretation

mapping, then the settings made by the TM will produce the desired dose

for the patient.

violation: This assumption is not quite correct, as there is a margin of error. The

current model does not represent error margins in the machine, and permissible

error margins in the dose delivery, as doing so does not affect patient identity.

Really, interpretation maps a number to a range of numbers, and the claim is

that any of the range of numbers mapped from the machine settings would be

within the error margin of the patient's dose.

4.3.8 Arc Assumptions & Hazards

Every problem diagram contains implicit assumptions that phenomena arcs are

atomic (non-interruptible) and accurate (non-corruptible). When we say that two

domains share a phenomenon, we are assuming that they really are viewing the same

phenomenon and that their two different views of that phenomenon are consistent.

Here, we make such assumptions explicit.

A: Therapist -- Patient

Therapist.namelnfo = Patient.nameInfo

The namelnfo that the therapist uses to make GUI selections is the same namelnfo

that the patient has.

(u/x) That patient has one nameInfo, the therapist uses exactly one namelnfo, and

the two match. The nameInfo the patient and therapist use must match the

nameInfo the patient has been using for identification in the hospital. The

namcInfo must pass from the patient domain to the therapist domain without

corruption.

sample problem: The therapist might ask the patient for his or her name to double

check, but should not rely on the patient's answer. The patient might not be

131

ientally acute enough to answer such a question accurately many alzheimer's

patients will answer "yes" to any question, so asking "Is your name Fred Smith"

is not adequate.

sample problem: A patient might have multiple names, and give you a different

one than he or she gave to the hospital upon admission. Fred George Smith

might normal go by George, and tells you that his name is George Smith. If the

hospital uses the name "Fred Smith" to identify him, then the wrong treatment

may be delivered.

sample procedure: The therapist might scan a bar code on the patient's ID tag,

and check the photo on the tag matches the patient's appearance. We assume

that a photo is sufficient to match an ID with a patient, and that the barcode

system and database are accurate. We assume that the patient's appearance

has not changed since the photo was taken e.g. the patient might have gained

or lost weight or hair as a result of hospitalization.

B: Therapist - GUI

Therapist.selection = GUI.selection

(u/c) The therapist selects exactly one entry from the GUI. The GUI records exactly

one patient id. Tile label on the itemn selected by thle therapist is the patient id

that is recorded.

sample problem: The therapist might select an entry labeled "Fred Smith", but

the GUI erroneously stores "Sally Queue" as the selected patient.

sample problem: The therapist might change his or her selection. In such a case

the prior selection must be de-selected, and the GUI's record must reflect the

new selection.

samiple problem: If the therapist has not yet made a selection, then the GUI should

be unable to proceed until a selection is made. The GUI must not have a default

recorded value that it could interpret as a, patient id.

132

C,D: GUI -- Network, TM -- Network

(s) Messages sent to the network end up on the network with the same content.

Messages taken off the network were on the network and have the same content.

implication: In particular, this assumption entails the following requirements:

messages are not created on the network except when a message is sent, and

messages are not destroyed on the network except when a message is received.

Two distinct messages have distinct labels. Messages are unambiguously

identified; when a message is received, the receiver knows what type of message

it is, who sent it, and for what purpose. Two messages are never confused for

each other.

sample problem: The GUI sends a message to the TM indicating the current

patient. This message is delayed on the network. The GUI resends the message,

and the TM receives it this time, selecting the correct patient. The TM is now

waiting to hear from the GUI when it should begin firing the beam. The original

selection message now arrives, and the TM interprets it to be a "fire now"

command, and begins treatment while the therapist is still in the treatment

room.

sample problem: The GUI sends a message to the tM indicating the current

patient. The message is delayed on the network, and is resent by the GUI.

Later, another patient is brought in. Tihe previous patient-selection message

arrives, and the TM loads the wrong patient data.

aside: This assumption does not include corruption that occurs during network

transmission, which is a domain assumption about the network message domain.

These assumptions are concerned with message creation and reception.

(c) When unpacked into a datastructure, the data has the same format as when

packed into a message. That is, the unpacked nmessage is correctly interpreted.

sample problem: If the id packed into a message is stored in a different kind of

133

struct than the one it is unpacked into, then erroneous values could be read for

the id. Because the messages are not type safe (they are treated as bits, not as

strings and integers), there is no way to a przori know that a garbage value is

not a valid id.

This concern can be checked at any given point by examining the data structures

used on both ends. but such checks are not very robust across maintenance.

E: TM -- DB

TM.queryDoseRequest = DB.queryDoseRequest

TM.queryListRequest = DB.queryListRequest

(c) Queries constructed in the treatment manager C code are the same as the queries

interpreted by the database.

sample problem: The compilation step that translates queries written in C into the

database query language (SQL?) might introduce errors.

(x) The queries made by the treatment manager are authentically transmitted to the

database.

sample problem: The queries might be constructed using one set of semantics but

interpreteed by the database using different semantics.

F: TM -- HW

TM.settings = HW.settings

TM.interpretation - HW.interpretation

(x/s) The hardware device driver settings made by the software are conferred to the

hardware without corruption.

(c) The interpretation implicitly embodied by the hardware is the reverse of the

interpretation explicitly applied by the treatment manager. That is, the

treatment manager has been calibrated correctly to reflect the current behavior

of the hardware.

134

G: HW -- Patient

HW.dose = Patient.dose

(x) The HW beam equipment completely determines the dose of radiation that the

patient receives. There are no barriers or other sources of radiation that could

make the dose that ends up in the patient different from what would be induced

by the radiation from the beam equipment.

sample problems: Ambient radiation in the room raises the total intensity of the

dose received, so the patient receives an overdose. Lead in the patient's clothing

dissipates the beam, resulting in an underdose.

contradiction: Actually, this assumption will never hold. The real assumption is

that the radiation received is within a known small margin of error of the

radiation expected to be received. A further assumption is then needed that

the sum of all possible accumulated errors will not produce a treatment that is

too much above or below the prescribed treatment.

4.4 Translation to Forge

To demonstrate our end-to-end synthesis, we use the Forge framework [23] to check

our software properties against the BPTC code base. For this analysis, we only

consider correctness properties, not separability properties. Our translation of the

sourcecode into Forge is done manually, but much of it could be automated. The

purposes of this section is not to propose this technique as the ideal method of code

analysis, but rather to demonstrate how a code analysis technique can be smoothly

intergrated into the larger dependability argument the relational claims generated

by requirement progression can be fed directly into the Forge analysis engine.

135

4.4.1 Sample Procedure Translation

In the Patient Identity subproblem, the relevant software fragments were manually

abstracted and translated into Forge via a Java API. The translation process is fairly

systematic, and part or all of it could be automated. In this section, we examine

a single procedure from the Patient Identity case study, and follow it through the

translation process.

The 'non-trivial lines column ignores blank lines, comment lines, and lines that

contain just a curly brace. It gives a rough sense of the human cost of performing

the manual translation, and of the efficiency of the encoding.

136

version lines non-trivial lines

original C code 62 30

reformatted C code 27 26

abstracted C code 17 14

Java API calls 52 41

Forge code 13 12

* tpcrInSelectPatient
* PSEUDO-CODE :

* Extracts groups of information in array

* Checks value of property field.

* Checks value of widgetGroupId field.

* Checks value of widgetId field

* Extracts patient id and copies to structure scrCrtPatientData.

* Calls function eventsTPCRSelectPatient.

BOOLEAN tpcrInSelectPatient(

/* IN */ T_INT4 screenId,

/* IN */ TINT4 sizeofList,

/* IN */ DATAMSG_GROUP_ARRAY msgList,

/* IN_OUT */ DBASCR_SCR DATA_PTRTYPE pscrData)

T_INT4 num;

/* Process list of message */

for(num = 0; num < sizeofList; num++){

If(msgList[num] .property = PDEF_CONTENTS_PROPERTY) {

SW_ERROR_MSG(ERR_APP WRONG_PROPERTYTYPE),

return FALSE;

swltch(msgList[num].widgetGroupId) {

case WGPATIENT:

switch(msgList[num] .wdgetId) {
case W PATIENTID:

If(strlen(msgList[num] value) > DBA_PATIENTIDLEN) {

SW_ERRORMSG(ERR_APP_WRONGSTR_VALUE);

return FALSE;
}
strcpy(pscrData -> scrCrtPatientData idpatient, msgList[num] .value);
break;

default- /* Error happens */

SW ERRORMSG(ERRAPPWRONG_WIDGET_ID);

return FALSE;

} /* widgetId */

break;

default- /* Error happens */

SW_ERRORMSG(ERR_APP_WRONG_WIDGET GROUP_ID);

return FALSE;

} /* widgetGroupld */

/* call events function correspond to 'Select Patient" button */

If('eventsTPCRSelectPatlent(screenId, pscrData)) { /* Error happens */

TRACE_ERROR_MSG();
return FALSE,

return TRUE,

Figure 4-8: Original C source code for the Patient Selection routine, exactly as it
apears in the BPTC code base. 62 lines, 30 of which are non-trivial.

137

4.4.2 Original C Code

Figure 4-8 shows the tpcrInSelectPatient procedure, shown verbatim from the

BPTC code base. This code displays a number of conventions that are persistent

throughout the BPTC code base.

Comments

The style of comment provided for the procedure is typical for the code base - it gives

an overview of what the procedure does, but does not describe why it does it (and

thus is of limited value for the purposes of traceability).

Exception Mechanism

Almost every called procedure returns a boolean, indicating whether or not it

encountered an error If a procedure has information to return (that would normally

be in a return value), then a pointer is passed in which is mutated by the procedure.

In some cases, one of the parameters is mutated to contain information about why

the error occurred, which is only read if false is returned.

In most cases, if a called procedure returns an error, then the calling procedure

returns ain error. At the top level, the system handles the error and (typically) halts

the system with an error message. In some cases, the caller ignores the error and tries

something different. These decisions do not appear to be documented in any single

repository, or justified in the code comments.

This technique is a common convention for getting the effect of exception handling

in C. It is not in itself a good or bad coding style. However, consistent and clear use

of this (or any other) style is important if the code is to be trusted and accurately

updated and maintained.

Paranieter Annotations

Each parameter to a function is annotated (with a comment), with the following

interpretation:

138

IN This parameter contains information passed in by the caller. It will not be read

after this procedure returns, and any mutations to it are irrelevant.

OUT This parameter contains no information initially, and is a pointer reference. It

will possibly be read after this procedure returns, so mutations to it are relevant.

IN_OUT This parameter contains information passed in by the caller. It will possibly

be read after this procedure returns, so any mutations to it are relevant.

There is no check to verify if these comments are correct.

139

BOOLEAN tpcrInSelectPatient(T_INT4 screenId, T_INT4 sizeofList,
DATA_MSG_GROUP_ARRAY msgList,
DBASCR_SCR_DATA_PTR_TYPE pscrData) {

T_INT4 num;
for(num = 0; num < sizeofList; num++) {

if(msgList[num].property != PDEF_CONTENTS_PROPERTY) {
SW_ERROR_MSG(ERR_APP_WRONG_PROPERTYTY PE);
return FALSE; }

switch(msgList [num] .widgetGroupId) {
case WG_PATIENT:

switch(msgList[num] .widgetId) {
case WPATIENTID:

if(strlen(msgList[num] .value) > DBA_PATIENT_ID_LEN) {
SW_ERROR_MSG(ERR_APP_WRONG_STR_VALUE);

return FALSE; }
strcpy(pscrData -> scrCrtPatientData.id_patient,

msgList[num].value);

break;

default:

SW_ERROR_MSG(ERR_APP_WRONG_WIDGET_ID);

return FALSE; }

break;

default:

SW_ERROR_MSG(ERR_APP_WRONG_WIDGET_GROUPID);

return FALSE; } }
if(!eventsTPCRSelectPatient(screenId, pscrData)) {

TRACE_ERROR MSG();

return FALSE; }

return TRUE;

Figure 4-9: A condensed (but semantically identical) version of the C code for the
patient selection procedure. 27 lines, 26 of which are non-trivial.

140

4.4.3 Condensed C Code

Figure 4-9 shows the C source code condensed to eliminate all conunents, blank lines,

and unnecessary line breaks. This code listing is used only to provide a better baseline

for comparing the lengths of the different versions and translations of this procedure.

void tpcrInSelectPatient (
T_INT4 screenId,
T_INT4 sizeofList,
DATA_MSG_GROUP_ARRAY msgList,
DBASCR_SCR_DATA_PTR_TYPE pscrData)

{
T_INT4 num;

for(num = 0; num < sizeofList; num++) {
if (msgList[numl.widgetGroupId = WG_PATIENT)

if (msgList[num] .widgetId = W_PATIENT_ID)

if (strlen(msgList[num] .value) > DBA_PATIENT_ID_LEN)
ERROR;

else

strcpy(pscrData -> scrCrtPatientData. id_patient,
msgList [num] .value);

eventsTPCRSelectPatient(screenId, pscrData);

Figure 4-10: An abstracted version of the C code for the patient selection procedure.

17 lines, 14 of which are non-trivial.

4.4.4 Abstracted C Code

Figure 4-10 shows the C code after it has been manually abstracted.

The purpose of abstraction is to eliminate parts of the code base that are not

relevant to the current concern. In doing so, we make the model simpler, increases

the ability of humans to understand it and machines to automatically analyze it.

Our abstraction includes two parts: eliminating parts of the code not relevant to any

analysis (replacing calls to a trusted code with specifications) and eliminating parts

of the code not relevant to this particular concern (focusing on a particular path

through the code).

141

Focusing

Recall that the Patient ID requirement is that the prescribed dose is delivered to the

patient when no explicit errors are returned. As such, our analysis is not concerned

with what happens when explicit errors are generated, so we abstract away such

occurrences. In most cases, we simply assume that no error is generated. In some

cases, we model the code as setting an error flag, but we declare in our analysis that

we are only interested in seeing bad traces in which the error flag was not set. The

end effect is that our analysis will only reveal paths through the code in which the

stated property is violated but no error was raised. A separate analysis (for a different

subproblem) is needed to ensure that error cases are handled safely and properly.

This abstraction was partly done to reduce the branching complexity of the

code, thus improving the scalabilitv of the analysis, and partly done to the aid the

manual translation process. With proper automatic support, this abstraction might

be unnecessary or might be itself automatable.

Called Procedures

For scalability of analysis, and feasibility of the manual translation, we cannot fully

model the behavior of every called procedure. At a certain depth in the call hierarchy,

the human analyst must decide to cut off the translation, and replace the called

procedures with an appropriate (partial) specification. There are a few common

reasons to cut off the translation of a procedure:

trusted code base Calls into trusted code bases are a prime candidate for

replacement with appropriate partial specification. For example, low level

calls, language features. and trusted libraries needn't be translated. Some of

these can be handled automatically with proper infrastructure (e.g. language

features), the rest might be added manually (e.g. user provided specifications

for trusted/in-house libraries).

For example, the codebase contains calls to a native C function that compute

the length of a string, strlen. We have supplied a full specification for that

142

function, rather than modeling the details of how it executes. We trust that

code base enough to leave it out, thus reducing the total number of lines that

Forge must analyze directly.

We also assume that correctness of a pre-compilation pass that is performed on

the BPTC code. This pre-compilation pass is used to extend the C syntax to

include simple calls into an SQL database. Rather than building up a full SQL

query by hand each time, it permits the programmer to write a simple "SQL

EXEC querytext" command. We did not have access to this precompilation

code, and are thus forced to assume that all SQL EXEC commands do indeed

send the given query to the SQL database and receive the answer correctly.

In general, the analyst may decide to make a judgement call about what

called procedures to trust, and provide a simple specification for them. Such

assumptions must be documented, but are often appropriate (for modularity)

or simply unavoidable (when correctness cannot be directly evaluated). In such

a case, the important thing is that the assumption be recognized, documented,

and consciously accepted.

irrelevant A called procedure might be irrelevant to the property being checked, in

which case it can be replaced with an unconstrained spec or simply removed.

For example, a call to a procedure "state = get_currentstate() " might be

replaced with a constant "state = 'reading_data'", if the property being

check is only relevant when data is being read. Similarly, a call to

"'checkmessage_content_consistency()" might be omitted if the property

being check is about message timings, not content. In both cases, we are

essentially replacing a called procedure with a partial specification based on

our calling context and target property. Such assumptions must be recorded

and documented as part of the code analysis argument.4

In the running example illustrated in this section, we have performed 2 (related)

4Ideally, one nlight want to use some sort of automatic iterative refinenlent, in the style of
Taghdiri [84, 85].

143

abstractions that are more elaborate than simply replacing procedure calls with

partial specifications.

The property we are checking is that the correct dose is delivered if no explicit

errors are generated. The behavior of explicit error handling code is not relevant

to this property. We replace all error code with tile flag "ERROR", which we

interpret to mean that a global error flag is set to true. When we check our

property, we check that the dose is correctly set as long as the error flag is

false. Abstracting away explicit error handling code greatly simplifies much of

the code base. We document our assumption that error handling code always

results in an explicit error reaching the user. Whether or not the system behaves

safely in the presence of an explicit error is a separate (but important) safety

concern.

On a related note, the procedure's Boolean return value is only used as a

mechanism for propagating errors up to the top level control loop. Since we

have abstracted away tile error handling code, we can drop the boolean return

values. This abstraction is not strictly necessary. but helps to clean up tlhe code

and enable manual translation. An automatical translation might not need this

abstraction, and dropping it would reduce the nmber of assumptions being

made about the code base.

144

void define__tpcrInSelectPatient() {

//slgnature

final LocalVariable

screenId = program.newLocalVarlable("screenId'', T_INT4),

slzeofList = program.newLocalVariable('slizeofList'', T_INT4),

msgList = program.newLocalVarlable(CmsgList'', DATA_MSG_GROUP ARRAY),

pscrData = program.newLocalVariable(''pscrData
l'

, DBASCR_SCRDATA_PTR_TYPE);

tpcrInSelectPatient = program.newProcedure(
"tpcrInSelectPatient'',

Arrays.<LocalVariable>asList(screenId, sizeofList, msgList, pscrData),
Arrays.<LocalVariable>asList(pscrData));

//body

final LocalVarlable num = program.newLocalVariable('num'', T_INT4),

final AssignStmt Initializenum = tpcrInSelectPatient newAssign(num, zero);

final BranchNode loop_head_conditlon = tpcrInSelectPatient newBranch(num.lt(sizeofList));

final LocalVariable current = program newLocalVariable(' 'current'', DATA_MSG_GROUP);

final AssignStmt assigncurrent = tpcrInSelectPatient newAssign(current, num join(msgList.join(msg grparray_index)));

final BranchNode check_widgetGroupId = tpcrInSelectPatient.newBranch(current.join(widgetGroupId-_feld).eq(WGPATIENT));

final BranchNode checkwldgetId = tpcrInSelectPatient.newBranch(current join(widgetId_fleld).eq(W_PATIENTID));

final BranchNode check_length = tpcrlnSelectPatlent.newBranch(((current. oin(value_foeld)).joln(strlen)) gt(DBA_PATIENT_ID_LEN));

final AssignStmt flag_error
=

tpcrInSelectPatlent.newAssign(error has occurred, program trueLiteral());

final AssignStmt assign__d_patient = tpcrInSelectPatlent .newAsslgn(dba_patlent_type__idpatlent, dba_patient_type__ idpatlent.override(

(pscrData.joln(scrCrtPatientData)).product(current join(valueflield))));

final AssignStmt loopend_num_increment
=
tpcrInSelectPatient newAssign(num, num.plus(one));

final CallStmt calleventsTPCRSelectPatlent = tpcrInSelectPatient newCall(

eventsTPCRSelectPatient,

Arrays <ForgeExpression>asList(screenId, pscrData),

Arrays <ForgeVariable>asList()),

//llnkups

initializenum.setEntry(),

inltializenum.setNext(loop_head_condtlton);

loop_head_condition setThen(assign_current);

assign current.setNext(check_widgetGroupld);

check widgetGroupId.setThen(check_widgetId);

check_widgetId setThen(check_length);

checklength.setThen(flag_error);

flagerror.setNext(loop_end_num_increment),

check length.setElse(assign__id_patient);

assign__idpatient.setNext(loop_end_num_increment);

check_wldgetId.setElse(loop_end_num_increment);

check_widgetGroupld setElse(loopend num_increment);

loop_end num increment.setNext(loop-headcondition),
loop_head_condltion setElse(call_eventsTPCRSelectPatient);

call_eventsTPCRSelectPatient.setNext(tpcrInSelectPatient exit());

Figure 4-11: A Java program that generates a Forge program that emulates the C
procedure for patient selection. 52 lines, 41 of which are non-trivial.

145

4.4.5 Java Code to Generate Forge Code from C Code

Figure 4-11 shows the Java code that was manually written to generate API calls to

the Forge framework that will generate a Forge program that imitates the abstracted

C code.

proc tpcrInSelectPatient (screenId, sizeofList, msgList, pscrData) : (pscrData) {
Node55: num := 0 goto Node56

Node56: if (num < sizeofList) then Node57 else Node64
Node57: current := (num . (msgList . msg_grp_array_index)) goto Node58
Node58: if ((current . widgetGroupId_field) = WG_PATIENT) then Node59 else Node63
Node59: if ((current . widgetId_field) = W_PATIENT_ID) then Node60 else Node63
Node60: if (((current . value_field) . strlen) > DBA_PATIENT_ID_LEN) then Node61 else \

Node61: error_has_occurred := true goto Node63
Node63: num := (num plus 1) goto Node56
Node62: dba_patient_type__id_patient :=

(dba_patient_type__id_patient
++ ((pscrData . scrCrtPatientData) -> (current . value_field))) goto Node63

Node64: eventsTPCRSelectPatient(screenId, pscrData) : () goto Node54
Node54: terminate

Figure 4-12: The analyzable forge program written based on the C procedure for
patient selection. 13 lines, 12 of which are non-trivial.

4.4.6 Generated Forge Code

Figure 4-12 shows tile Forge code generated by the above Java code. Forge represents a

program as a collection of nodes, each representing an atomic program statement (e.g.

a condition, assignment or procedure call). When connected together with control

flow edges, a Forge description compactly represents the set of all valid program

executions, in a form that can be queried and constrainted using the Forge relational

logic. Figure 4-13 shows a control flow view of the Forge program, indicating how the

program nodes are linked together to represent legal execution paths.

146

Figure 4-13: A diagramatic view of the resulting Forge program, showing the control
flow between program nodes.

147

4.4.7 Human Burden: Abstraction & Translation

You cannot treat the software as a complete black box. If you know nothing about

how your software works, then you simply cannot build a safety case for it.

In particular, the user must provide the analysis with abstraction information

on what called procedures to include. A taghdiri-style refinement [84, 85] would

remove the need to manually provide abstractions for some functions, but not all.

Sometimes you need the human's high level understanding of the property being check

to make that decision such as ignoring error handling code or replacing function

calls with constant return values to check behavior under specific contexts. The

user may also provide global abstractions, such as eliminating boolean returns and

conflating different integer types, which could not be inferred by a taghdiri-style

iterative refinement.

Of course, an analysis that scale much better than the current Forge could analyze

the software without any help from the human. However, such an analysis is not

possible in the foreseeable future, so we are restricted to only analyzing programs

that we can abstract - i.e. that we have a cursory understanding for.

4.4.8 Forge Analysis of Specification

Next we examine how one checks a constrain against a Forge encoding of a program.

The fragment translated above is one pieces of the code relevant to the dose delivery

concern, but is too small to be of interest by itself. That fragment, together with

about a dozen other procedure definitions, describe the subset of the code related

to how patient identity is received in a message from the GUI and stored in the

Treatment Manager's heap.

In the language of the problem diagram, our constraint is as follows:

If the patient select button has been pressed on the patient selection
screen, then the id stored in the GUI is communicated to the treatment
manager.

148

Before we can automatically check this claim, we need to map it into the language

of the code base.

Guided by our original set of designations, we interpret this claim in the context

of the treatment manager software. First, let's be precise about how the information

is received, and what it means for the patient id to be correctly extracted from that

information.

A message is received as a pair of parameters, data and ary. The data
parameter contains a message which is an array of identifiers. The 0 th slot
of that array indicates the screen that was displayed when the message
was generated. The 1th slot indicates the button that was pressed to
trigger the message. The arg parameter is a lump of data containing
state information about the gui. Part of that lump of data is the identity
of the patient being treated.

This spec is not yet precise enough for automatic analysis, but it is now expressed

in the language of the program code base. In order to analyze the spec, we must now

formalize it. Because the code manipulates a lot of structured data (pointers and

objects), a relational logic is a good match for formally and intuitively expressing

code properties. Using the Alloy language, the spec looks like this:

pred patient_id_storage [] {

data.data__msg.mixed_array_index [O] == SCR_A1_PATIENT_SELECTION

data.data__msg.mixed_array_index [11 == W_PATIENT_SELECT_BTN

current_id_patient

-- arg.scrCrtPatientData.dbs_patient_type__idpatient

Figures 4-14 gives Java code that generates a forge expression equivalent to that

Alloy expression. As written, that code performs a liveness check, not a safety check.

It verifies that safe traces can occur, and generates sample safe traces, but does not

check if all traces will be safe. Safety checks can also be performed, in anll analogous

manner. Liveness checks increase the confidence that the formal model matches the

149

actual system. Safety checks increase confidence that the formal model has a desired

property. Both are necessary to gain confidence that the actual system has a desired

property.

Here is the safety check (the java that generates the forge that looks for bad

behaviors). The analysis returns no counter-examples, increasing our confidence that

the code obeys the desired assumption.

callingContext .newAssume (

no_error.and(

correct_result.not()).and(

sensible_result)

It tells forge to solve for an execution in which no error message is generated, an

incorrect result is returned, and the result is in a form that could be processed by the

system. This represents a dangerous situation in which the machine invisibly delivers

the wrong dose to a patient.

4.4.9 development process

A human developing a. Forge model can follow the counterexample driven precondition

dzscovery process check the desired property against the Forge encoding of the code,

find a counterexample. add a precondition (assumption about the problem context)

to remove counterexample, repeat. All assumptions must then be verified by an

appropriate specialist.

We followed this process and eventually found a set of reasonable (but

undocumented) assumptions that made the checks pass. Most pertained to the format

of received messages, the initial values of certain global variables defining the system

mode, and the behavior of functions that are not defined in the code to which we

had access. These assumptions were true of the current system, but since they were

undocumented they could easily have been violated as changed were made to the

system.

150

final ForgeExpression correct_result =
current_id_patient

.eq(arg.join(scrCrtPatientData)

.join(dba_patient_type__id_patient))

//arg screen data contains the final patient id

.and(
one.join(data.join(data__msg)

.join(mixed_array_index))

.eq(W_PATIENT_SELECT_BTN)

) //data input contains correct button id

.and(

zero.join(data.join(data__msg)

.join(mixed_arrayindex))

.eq(SCR_A _PATIENT_SELECTION)

) //data input contains correct screen id

final ForgeExpression sensible_result =

(current_id_patient). one()
.and(original_id_patient

.eq(current_id_patient).not());

final ForgeExpression no_error =

error_has_occurred.eq(program.falseLiteral());

final SpecStmt postconditions =

callingContext.newAssume(

noerror

.and(correct_result)

.and(sensibleresult)

Figure 4-14: A Java program that generates a Forge spec to check that patient id's
are correctly extracted from the patient selection message sent by the GUI.

151

4.5 Discoveries

In the course of our analysis, we identified both current and future vulnerabilities

undocumented assumptions that are critical to system safety. Some of these were

discovered directly by our analysis, and other were discovered simply through the

act of articulating the system architecture and requirements. Our experience is that

much of the safety gains from building a dependability argument come from the mere

act of building the argument, apart from the actual results of the analysis itself. Here,

we make a more general assessment of the primary vulnerabilities of the system.

C'urrent v'ultnerabditzes represent assumptions made in the dependability argument

which are not properly enforced by the relevant components. The major current

vulnerabilities we discovered for the BPTC are the following:

SQL injection: While performing separability analysis on the dose information
stored in the database, we discovered that the system is vulnerable to SQL-
injection attacks. The comment field of a patient entry in the database is
permitted to contain arbitrary text, and provides a place for doctors and other
hospital personnel to write free-form comments about the prescribed treatment.
If the comment field contains fragments of SQL syntax, those fragments will be
executed when a query is made on the patient, in turn causing arbitrary changes
to the prescription database.

Such ani attack is unlikely, since the system is on a closed network, does not
have public terminals or access points, and is operated by non-malicious users.
Were a hospital employee malicious, there would be easier forms of sabotage.
An attack could be accidentally introduced if a progranmmner used the patient
comment field to jot down a note about how to query that patient. However,
the existence of such ain attack is more of a concern because it indicates a
lack of care in checking the effects of queries before they are executed. For
example, one might want to include access control to the database, so that
only certain employces can overwrite prescriptions. Doing so would protect
against the scenario in which the treatment manager generates a bad query
that overwrites prescriptions, as the treatment manager would not have write
access and thus could not corrupt the database.

network delays: If a message is delayed on the network and delivered an hour or
more later, then it might arrive during a different treatment session. If this
happens to a message carrying the current patient's ID, then the system might
deliver the last patient's dose to the next patient.

WVe were not able to ascertain from the nietwork documentation whether or not
it guaranteed timely delivery of rmessages: The network is proprietary, so we

152

cannot directly analyze its sourcecode. The network is no longer commercially
supported, so we cannot ask the network providers. The race conditions and
cache heuristics present in networks make blackbox testing of the system of
limited value.

One could address this concern by adding additional information to each
message, so that old messages can be discarded by the receiver. For example,
messages could include the session ID, and recipients would discard any message
from a prior session. Simply having messages expire after a short time on the
network would help, but would provide less confidence than a direct check -
it would not, for example, protect against expert operators who can send and
resend messages very rapidly.

patient identification: Our largest concern lies in the process by which the human
therapist identifies a patient and selects that patient from a list displayed by
the GUI. As described earlier in this chapter, there are a number of scenarios
whereby a therapist might select the wrong patient, especially if there are many
active patients and several have similar names.

Protecting against such errors is difficult, but there are safeguards that could be
added to the GUI itself. For example, the GUI might recognize similar patient
names (especially ones that are currently not visible on screen), and raise a
warning to the therapist to double check the selection. Alternatively, one might
have an automatic scan of a barcode on the patient ID tag, in parallel to the
human identification process, and halt if the two do not agree.

Future vulnerabilities represent assumptions made in the dependability argument that

were not previously documented, but which turned out to hold when inspected. They

represent properties that might be violated when the system is modified, and thus

should be properly documented in order to permit safe maintenance. For example:

network: We assume that the network does not drop messages, or that it detects
and resends dropped messages. We assume that the network does not corrupt
messages, or that it has error detecting codes to catch corruptions and resend the
data. The current network infrastructure (RTworks) provides these guarantees
in its documentation.

database: Queries generated about the database make assumptions about the
format and organization of information in the prescription database. It makes
assumptions about the names and orders of columns, and that dose information
is stored in certain units (e.g. joules versus rads). Changing the database
format, even slightly, would require changes to many portions of the treatment
manager code involved in sending, receiving, and processing queries and network
messages pertaining to queries.

153

GUI: The GUI was automatically generated with a commercial tool. If it were re-
generated, it would need to be re-evaluated (unless the generation tool itself
were proven correct). Specifically, we rely heavily on the authenticity of the
information shown to the therapist and the influence of mouse and keyboard
clicks upon the messages the GUI sends to the treatment manager.

code structure: The code is overall poorly structured and lacks useful
documentation. As a result. the code is much less transparent than it could
have been, limiting the value of manual code reviews.

The code is written in C and manipulates memory references directly. C is not a
memory safe language, although there are subsets and coding styles that reduce
the risk of memory conflicts.

The code makes extensive use of global variables that are shared between
portions of the code with widely varying functions. There is no access control
to the globals, so non-critical portions of the software can corrupt the data used
by critical portions. As such, the entire code base must be considered critical.

The code has unnecessary redundancy in its data and algorithms. For example,
some data about patient dose is stored in two different global variables, one of
which is used in some procedures and other of which is used in other procedures.
They are currently kept in synch, but such redundancy is a recipe for introducing
errors during modification. Similarly, portions of the algorithmic code are
repeated in different locations, producing a dual-maintenance problem if the
algorithm is updated.

Future vulnerabilities would be a minor concern if the system were never modified.

However, there are a couple of likely scenarios in which the system will be significantly

modified.

discontinued systems: The network infrastructure currently used (RTworks) has
not been commercially supported for about 5 years. At the time that it was
installed, it was a reputable system that provided the necessary guarantees
for safe operation. However, if new functionality is needed, or if an error is
discovered, an entirely new network infrastructure might need to be added. At
that time, it will be essential to know what guarantees about message delivery
are important to system safety.

hospital additions: The BPTC has plans to add a new firing mode to the system.
Under current firing modes, the beam is fired in a broad and fairly low-
intensity pattern, bathing the tumnor in radiation. The proposed mode, called
pencil beamt scanning, would rapidly sweep a narrow, high-intensity beam back
and forth across the tumor. Pencil beam scanning provides a more precise
boundary around the tumor and thus causes less collateral damage. Apart
from adding new failure modes to the system (the beam moving too slowly or

154

halting in place), adding a new firing mode would involve significant changes
to the Treatment Manager and other components in the system. When such a
change is implemented, it will be vital know the set of assumptions that must
be maintained as the components are altered.

In the long term, the BPTC plans to add new treatment rooms, to accommodate
the high demand for proton therapy. Doing so requires changes to the software
running in the master control room and to the shared database. These changes
would be less pervasive than adding a new firing mode, but would still require a
clear set of assumptions, lest those assumptions be inadvertently violated during
modification. The last time that a room was added (room number three), it
violated the emergency stop button's ability to halt the beam [68].

Further reflections on our analysis of the BPTC are described in Chapter 7.

stated as property on...
Interviews to " .+

Q 9 understand system
overview and needs

context 3 days

Iterative revision of problem
diagram and formalism "

t2 days, 100 lines prose, i
(.. i 35 loc Alloy

O system

O component translating/abstracting C
to Forge Intermed Rep requirement
20 (2) days, 1 Kloc C, progression

) 1 Kloc Java, 700 loc FIR 1 day,
140 loc Alloy

Forge analysis code understanding,
or5 sec per run programmer Interviews

"). 5 days, 200 lines prose,
u code base: 2.5 Moc C

or o e t r a Iterative ly running Forgeblock' and adding assumptions
-" 22 days, 100 loc Java

Figure 4-15: Time spent building the BPTC dependability argument for dose delivery.

155

4.5.1 Effort

Our analysis required about two months of person-time, counting both the time spent

by our research group and the time spend by NIGH employees. Figure 4.5 uses the

BPTC CDAD to break this time down, and reveals that almost half of this time

(three of the eight weeks) was spent on manual translation tasks that have since been

rendered obsolete by automation such as CForge and JForge [23]. Of the remaining

five weeks, one was spent gathering a basic understanding of the system - work that

can be re-used on future dependability arguments for the BPTC. The remaining time

is one person-month of work. and we estimate that matching dependability arguments

could be built for the other high priority concerns for the BPTC in about one month

each, adding up to around a year of work. This cost is a bit high, but is a fraction of

the cost of building and testing the system. Less critical systems would justify using

lighter weight analyses, as they could tolerate dependability arguments with lower

confidence.

156

Chapter 5

Case Study: Voting Auditability

The previous case study, and indeed requirement progressions in general, focuses on

a traditional engineering notion of correctness - that the system generates correct

values. However, many systems have additional types of correctness to consider

besides fidelity, such as secrecy and auditability.

* A fidelity argument establishes a conventional engineering notion of correctness
- that the system will generate well formed outputs and behaviors under normal
operating conditions, and that it will fail safely and gracefully under abnormal
conditions.

* A secrecy argument addresses security and anonymity concerns. It assures that
the system protects sensative information from outsiders, even outsiders who
know the design and implementation of the system.

* An auditability argument ensures that the working system is demonstrably
correct in implementation, not just that the system is correct in theory. It
provides a means by which outsiders can be confident that the system is
operating correctly, and has not been replaced by a malicious or careless
imitation.

In applications such as medical databases and political elections, secrecy and

auditability are often considered to be of equal importance as fidelity. Legally, medical

physicians are obliged not only to provide effective treatment but also to protect the

patient's privacy, and technical systems involved in patient treatment and data must

be certified by federal agencies, such as the FDA [61]. A voting system must not

157

only count votes correctly, but it must also protect the anonymity of voters (to avoid

coercion) and provide auditability (to avoid corrupted systems being installed in place

of real ones).

Conventionally, these three types of arguments are built independently. In

this Chapter, we describe a framework in which one can build these three types

of arguments in tandem, which makes the overall analysis more systematic, less

vulnerable to omissions, and less time-consuming to perform. The key to this

framework is to build the fidelity and secrecy arguments using compatible lexicons,

and then to build the auditability argument based on the intersection of those lexicons.

We illustrate our integrated approach on a the Pret a Voter cryptographic voting

system developed at the Universities of Surrey of Newcastle [76].

5.1 Verifiable Voting

It is not enough for a voting system to be correct in a classic engineering sense of

matching its specification at build-time. A leading concern in political voting systems

is that of auditability [14, 82, 69] - the ability for users of the system (voters) to

determine if the system works, rather than having to trust the system provider.

Even if individual voters are not technically competent enough to assess the system,

auditability allows them to choose whom they trust enlist a trusted auditor.

For simple systems, auditability is simply a matter of publishing the design

documents for the system. A user can examine the design and confirm that the

operating machine matches that design. However, secrecy concerns complicate this

process. If certain information in the system is to be kept secret from users, then it

becomes hard (or impossible) for users to assess if that system is operating according

to its design. For example, in an non-secret election, auditability is simply a matter

of making all voter's votes public, so that anyone can count them. However. once we

decide that votes should be anonymous, such an audit is impossible without a much

more sophisticated methodology.

We apply our technique to a cryptographic voting system proposed by Peter

158

Ryan in 2004, and currently being developed at the Universities of Surrey and

Newcastle [76]. The system is called Pret a Voter - literally, "ready to vote" - and

stands out among voting systems for providing auditability without compromising

secrecy. It allows us to illustrate the suitability of our approach to the construction of

fidelity arguments that integrate smoothly with secrecy and auditability arguments.

The rest of this section describes the existing system and the intuition for why it

should work. In the following sections, we apply our technique to building compatible

fidelity, secrecy, and auditability arguments. In the last section of the chapter, we

describe a method for leveraging the fidelity argument to help build a compatible

secrecy argument.

5.1.1 Overview of the System

Prior to our analysis, the system designers had mathematically validated

cryptographic properties about particular components and had an intuition for why

those properties should collectively provide fidelity, secrecy, and auditability. There

was no unifying system argument, and there were not precise definitions for what

fidelity, secrecy, and auditability meant. The designers' intuitions proved to be very

helpful in building the dependability argument, and the proven properties were indeed

necessary to establish that argument. Our analysis confirms their intuition about the

system, documents that intuition in precise and re-usabled fashion. and reveals some

unstated (but reasonable) assumptions necessary for system correctness.

5.1.2 Flow of a Vote

Figure 5-1 shows a sample ballot that has been used to cast a vote for Candidate B. 1

Figure 5-2 illustrates the path of a vote through the system, and is narrated below.

A voter receives a ballot and takes it to a private voting booth. The ballot displays

a. list of candidates, with check boxes next to them. The voter checks the box next

to one of the candidates. then tears off the list of boxes (along a perforation). The

'The system also works for ranked and Inultiple-vote voting systemns, but for simpllicity we have
describe it as applied to a single-approval election (e.g. a presidential election in the U.S.).

159

Arrangement Receipt

Candidate E

Candidate D

Candidate F

Candidate B Marking

Candidate C

Candidate A

0000EDFBCA0000 Onion

Figure 5-1: What the ballot looks like to a voter, who has just cast a vote for
Candidate B.

list of candidates is discarded, and the voter turns in just the "receipt"' - the list

of check boxes, one of which is marked. At the bottom of the receipt is an "onion"

which encodes the order in which the candidate names appeared on the ballot. It's

encrypted, so no one without the private key can tell who the voter voted for.

The receipt is turned into the Voting Board, along with everyone else's votes for

the dlay. The ballot receipt that a voter carries over to the ballot box is just a check

on a blank page. Since different ballots used different candiate orderings, there is no

indication which candidate the check corresponds to. The onion at the bottom of

the page encodes that information, but it can only be deciphered with a private key.

which is not available to observers.

The receipts then undergo a series of re-encryption steps, each of which changes

the onion on each receipt to look different to the eye but to still represent the same

ordering of candidate names. The vote recorded on the receipt is not changed, but

voter anonymity is preserved without the secret key. it is impossible to tell which

record coming out of the machine corresponds to which receipt going into the machine.

The re-encrypted receipts are then decrypted into voting records. Each voting record

160

Stack of Ballots

Candidate E c

Candidate D CD

Candidate F Ci
Candidate B l

Candidate C C

Candidate A

Decrypted Record

CandidateE c)
Candidate D)
Candidate F)
Candidate B

Candidate C

CandidateA

Used Ballot

Candidate E

CandidateD

Candidate F I

Candidate B

Candidate C l)

CandidateA I

Receipt

0
CD

[

Scrambled
Receipt

CD

0000EDFBCA0000 8888EDFBCA8888 4444EDFBCA4444

Figure 5-2: The flow of a vote through the system.

indicates the candidate ordering (from the decrypted onion) and the checked box next

to one of them (from the voter). The voting records can be read by a human or a

machine and tallied to determine the winning candidate.

5.2 Representing the Problem

The first step to building a dependability argument is to provide a set of desigantions,

domains, and definitions. These artifacts serve to bridge the inescapable gap

between the informal world of the actual system and the formal world of documented

requirements [40]. Designations connecting our formalism to the informal problem

domain are given in Figure 5-4. Supporting definitions are given in Figure 5-5, and

supporting domains are given in Figure 5-3. Figure 5-6 gives an Alloy model that

precisely records the structure of those phenomena and domains, and that model is

narrated in Figure 5-7. 2

2An elaboration of that model, with more extensive comments, is integrated into the fidelity
model, which is given in Appendix 11 and introduced in Section 5.3.

161

Scrambled
Receipt

0CD

CD

CD
o

The Alloy model declares sets and relations to represent the relevant phenomena.

At this point, the constraints and assumptions about how these phenomena relate

are not represented, just the problem structure. Using these phenomena (as they

are formalized in the Alloy model), we build the Problem Frame context diagram

shown in Figure 5-8. It shows how the phenomena relate to the domains and which

phenomena are shared between which domains.

c E Candidate = c is a person running in this election.
v E Voter = v is a person who is capable of voting.
b E Ballot = b is a ballot - a piece of paper with a list of candidate

names, attached to a receipt.
r E Receipt = r is a receipt - a list of checkboxes attached to a ballot.
o E Onion o is an onion - a cryptographic string representing an

ordering of candidates.
r E Record = r is a record - a piece of paper with a list of candidates

and a check next to one of them.
vb E Board @ vb is the voting board - the device that re-encrypts

receipts, and then decrypts them into records.

Figure 5-3: Domains for verifiable voting

162

(c -+ i) c score

(v) E RegisteredVoter
(b -+ p -* c) E ballotArrangement

r) EC
b) E
c) E
p) E
o) E
p -+

ballotReceipt
voterBallot
intention

receiptMarked
receiptOnion

c) E onionArrangement

(d - p - c) E recordArrangement

(r -+ p) recordMarked

(r - d) c mix

Candidate c has been assigned i votes.
The candidate with the most votes wins.

<= Voter v is authorized to vote in this election.
= On ballot b, candidate c's name appears at

position p.
M Receipt r was originally attached to ballot b.
= Voter v was given ballot b to use to vote.

H Voter v wants candidate c to win the election.
= Receipt r is marked at position p.
= Onion o is written at the bottom of receipt r.
= According to onion o, candidate c's name

appears at position p.
= On record d, candidate c's name appears

at position p.
w Record d is marked at position p.
= Record d is generated by the voting board

as the result of re-encrypting receipt r.

Figure 5-4: Designations for verifiable voting

(b c) E ballotCandidate

(r - c) E receiptCandidate

(d -* c) E recordCandidate

= Ballot b indicates a vote for candidate c,
according to the arrangement of candidates
on b and the marking on b's receipt.

= Receipt r indicates a vote for candidate c,
according to the arrangement of candidates
defined by r's onion and r's marking.

= Record d indicates a vote for candidate x,
according to the arrangement of candidates
on d and d's marking.

Figure 5-5: Definitions for verifiable voting.

163

(b-
(' --

(' -- *

(r --+

(o --

1 sig Candidate { score: one Int }
2 sig Voter {
3 intention : lone Candidate.
4 voterBallot: set Ballot
5}
6 sig RegisteredVoter extends Voter {}
7 sig Ballot {
8 ballotArrangement : Position one one Candidate,
9 ballotReceipt: one Receipt,

10 ballot Candidate: lone Candidate,
11 }{ ballotCandidate = ballotReceipt . receipt Marked. ballotArrangement }
12 sig Position {}
13 sig Receipt {
14 receiptOnion: one Onion,
15 receiptMarked: lone Position ,
16 receiptCandidate: lone Candidate
17 }{ receiptCandidate = receiptMarked.(receiptOnion .onionArrangement) }
18 sig Onion { onionArrangement: Position one -- one Candidate }
19 sig Record {
20 recordArrangement: Position one -- one Candidate,
21 recordMarked: lone Position ,
22 recordCandidate: lone Candidate
23 } { recordCandidate = record Marked. record Arrangement }
24 one sig Board { scramble: Receipt lone --+ lone Record }
25 fun mix [] : Receipt - Record { Board. scramble }

Figure 5-6: An Alloy model formalizing the designations, definitions, and domains
defining the problem context for a voting system. This model is narrated in Figure 5-
7.

164

Line 1: There is a set of candidates. Each Candidate has an (integer) score,
representing that candidate's score at the end of the election process.

Lines 2-6: Each Voter has an intention to vote for zero or one Candidate

and is given a set of zero or more Ballots. A subset of the Voters are
RegisteredVoters.

Lines 7-11: Each Ballot has an arrangement that determines an ordering on
candidate nanmes (a imapping from each Position to one Candidate and
vice versa). A Ballot is attached to a single Receipt. The relation
ballotCandidate is constrained to match the definition given in Figure 5-5,
and represents the intended interpretation of the ballot.

Lines 12-17: Each Receipt is marked at zero or one positions. It also bears an
Onion. The relation receiptCandidate is constrained (in ain appended fact)
to rmatch the definition given in Figure 5-5.

Line 18: Each Onion encodes ain arrangement - an ordering of candidate names.
Like the arrangement on a ballot, it is represented as a bijection between
Positions and Candidates.

Lines 19-23: Each Record has an arrangement and is marked, just like Onions
and Receipts. The relation recordCandidate is constrainted to match the
definition given in Figure 5-5.

Lines 24-25: The voting Board relates each receipt with zero or one Records, and
vice versa. The mix function nmirrors that relation, in a formr that is more
convenient for modeling.

Figure 5-7: A narration of the Alloy model given in Figure 5-6.

165

ballotCandidate
ballotArrangement
ballotReceipt
receiptMarked
receiptCandidate
receiptOnion
onionArrangement

ballotReceipt
receiptCandidate
receiptMarked
receiptOnion
mix
recordArrangement
recordMarked
recordCandidate
onionArrangement
receiptCandidate

ballotReceipt
receiptCandidate

receiptMarked
receiptOnion

onionArrangement

ballotCandidate
ballotArrangement

ballotReceipt
receiptMarked

ballotCandidate
ballotArrangement
ballotReceipt
receiptMarked
RegisteredVoter
intention
voterBallot

mix
recordArrangement

recordMarked
recordCandidate

mix
recordArrangement
recordMarked
recordCandidate
score

11 1-1 11--1

Figure 5-8: Context diagram for the voting example, showing the phenomena known
to each domain, and thus which phenomena are shared between each domain.

166

- I i --

stated as property on...

O0
I)

40
CL

c)

-U)

component I

Figure 5-9: A CDAD showing how requirement progression and cryptographic proofs
link together to build a composite argument.

5.3 Fidelity Goal

We approach the fidelity goal with requirement progression, as seen in our previous

examples. The resulting breadcrumbs were discharged (by Peter Ryan and his

collegues) using cryptographic proofs. The CDAD for this (quite simple) composition

is shown in Figure 5.2.

5.3.1 Formalization of the Requirement

We begin by translating the informal fidelity requirement into precise language and

then into a formal language (Alloy).

167

informal

The public record reflects the ballots cast.

precise

For each candidate, the number of votes the public records shows for
that candidate is the same as the number of registered voters who marked
their ballots for that candidate.

formal

1 all c: Candidate
2 c. score = #(RegisteredVoter & intention . c)

For each candidate c, c's score should be the number of voters who are
both registered and intended to vote for c.

5.3.2 Requirement Progression for Fidelity Goal

First, we sketch out the shape we expect the argument to take, as shown in Figure 5-

10. This sketch guides progression, suggesting what breadcrumbs and pushes will be

helpful. With that intuitive argument flow in mind, we begin requirement progression

formally. Figure 5-11 shows the problem diagram with the formal constraint, ready

for requirement progression to begin.

The initial goal is the requirement that the public record reflect the number of

candidates who intended to vote for each candidate. It references phenomena from

both the Voters and Public Record domains, although those domains are only

indirectly related to each other. As such, progression is needed to decompose the

requirement into localized domain assumptions. s Figures 5-12 to 5-21 show the steps

of the requirement progression. Initially, the requirement connects to both the Voters

and Public Record Domains. In a series of transformations, we shift the left arc from

Voters to Stack of Ballots to Voting Board and finally to Public Record.

168

The onion on each
receipt faithfully encodes
the arrangement of
candidates on that
receipt's ballot.

Every receipt
corresponds to
one record that
indicates the
same candidate.

)rd

receipts and onions

ballots and receipt

Each registered voter
marks her ballot's
receipt next to the
candidate that she
wants to win.

Thus each candidate's score
is the number of registered
voters who wanted that
candidate to win.

Figure 5-10: An informal sketch of how we expect the argument diagam to look, what
sorts of breadcrumbs will be helpful, and how the argument will flow.

169

I -~ --- -

4

ballotReceipt
receiptCandidate

receiptMarked
receiptOnion

onionArrangement

ballotCandidate
ballotArrangement

ballotReceipt
receiptMarked

intention
RegisteredVoter

-

mix
recordArrangement

recordMarked

score
/

M - MM ,/

Goal #0
all c: Candidate I

c.score = #(Registered Voter & intention.c)

Figure 5-11: Problem diagram for the voting example, showing the fidelity
requirement (GoalO), which relates the Voters and Public Record domains.

170

~CII~(i-- lip. ' F N IMMI.Ow-,

h

ballotReceipt
receiptCandidate

receiptMarked
receiptOnion

onionArrangement

ballotArrangement
ballotReceipt recordArrangement

recordMarked

intention
RegisteredVoter

//..

Goal #0
all c: Candidate I

c.score = #(RegisteredVoter &

RegisteredVoter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

Figure 5-12: Step 1, Part 1. Adding a breadcrumb to the Voters domain.

171

score
/

intention.c)

r--- ----------------------------

all b: Ballot - Voter.voterBallot I
no b.ballotReceipt.receiptMarked

all v: RegisteredVoter I one v.voterBallot
all v: Voter - RegisteredVoter I no v.voterBallot
all b: Ballot I lone voterBallot.b
all v: RegisteredVoter I let b = v.voterBallot I

b.ballotReceipt.receiptMarked.(b.ballotArrangement) = v.intention
all b: Ballot I

(b.ballotCandidate) = (b.ballotReceipt).receiptMarked.(b.ballotArrangement)
k .

I -C

~IILI-clC~

ballotReceipt
receiptCandidate

receiptMarked
receiptOnion

onionArrangement

ballotArrangement
ballotReceipt

BallotCandidate

recordArrangement
recordMarked

score

Goal #1
all c: Candidate I

c.score = #(ballotCandidate.c & Ballot)

RegisteredVoter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

Figure 5-13: Step 1, Part 2. Rewriting the goal to reference different phenomena.

172

all b: Ballot - Voter.voterBallot I
no b.ballotReceipt.receiptMarked

all v: RegisteredVoter I one v.voterBallot
all v: Voter - RegisteredVoter I no v.voterBallot
all b: Ballot I lone voterBallot.b
all v: RegisteredVoter I let b = v.voterBallot I

b.ballotReceipt.receiptMarked.(b.ballotArrangement) = v.intention
all b: Ballot I

(b.ballotCandidate) = (b.ballotReceipt).receiptMarked.(b.ballotArrangement)
------------..1

~ C

ballotReceipt
receiptCandidate

receiptMarked
receiptOnion

onionArrangement

ballotArrangement
ballotReceipt

receiptMarked

mix
recordArrangement

recordMarked

Ballot.BallotCandidate

-I'

\ /
\ /
\ /

score
\ /

/

S Goal #1
all c: Candid

c.score

RegisteredVoter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

ate I
S= #(ballotCandidate.c & Ballot)

Figure 5-14: Step 1, Part 3. Pushing the goal from the Voters domain to the Stack
of Ballots domain.

173

2

all b: Ballot - Voter.voterBallot I
no b.ballotReceipt.receiptMarked

all v: RegisteredVoter I one v.voterBallot
all v: Voter - RegisteredVoter I no v.voterBallot
all b: Ballot I lone voterBallot.b
all v: RegisteredVoter I let b = v.voterBallot I

b.ballotReceipt.receiptMarked.(b.ballotArrangement) = v.intention
all b: Ballot I

(b.ballotCandidate) = (b.ballotReceipt).receiptMarked.(b.ballotArrangement)
- . .- .- - --

-- - - -

_ d

P lhl~ ~ ~-

all disj b,b': Ballot I
b.ballotReceipt != b'.ballotReceipt

all b: Ballot I
b.ballotArrangement =
b.ballotReceipt.receiptOnion.onionArrangement

all r: Receipt I
r.receiptCandidate =
(r.receiptMarked).(r.receiptOnion.onionArrangement)

ballotReceipt
ballotArrangement

receiptMarked
receiptOnion

onionArrangement

ballotReceipt
Stack of receiptCandidate
Ballots recelptMarked

receiptOnion
onionArrangement

ballotReceipt % recordArrangement
receiptMarked % recordMarked

\ recordCandidate

Ballot.BallotCandidate

Voters Public Record

score

Goal #1
all c: Candidate I

c.score = #(ballotCandidate.c & Ballot)

Regist redVbter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

all b: Ballot - Voter.voterBallot I
no b.ballotReceipt.receiptMarked

all v: RegisteredVoter I one v.voterBallot
all v: Voter - RegisteredVoter I no v.voterBallot
all b: Ballot I lone voterBallot.b
all v: RegisteredVoter I let b = v.voterBallot I

b.ballotReceipt.receiptMarked.(b.ballotArrangement) = vintention
all b: Ballot I

(b.ballotCandidate) = (b.ballotReceipt).receiptMarked.(b.ballotArrangement)'W " 6 -- II W M F-\

Figure 5-15: Step 2, Part 1. Adding a breadcrumb to the Stack of Ballots domain.

174

Sall disj b,b': Ballot I
b.ballotReceipt = b'.ballotReceipt

all b: Ballot I
b.ballotArrangement =
b.ballotReceipt.receiptOnion.onionArrangement

all r: Receipt I
r.receiptCandidate =
(r. receiptMarked).(r.receiptOnion.onionArrangement)

ballotReceipt
ballotArrangement

receiptMarked
receiptOnion

onionArrangement

ballotReceipt
receiptCandidate
receiptMarked Voting Board

Ballots receiptOnion

onionArrangement

ballotCandidate \
ballotArrangement mix

ballotReceipt recordArrangement
receiptMarked recordMarked

recordCandidate

ballotReceipt
receiptCandidate

Votrs Public Record

score

\ L /

Goal #2
Sall c: Candidate I

c.score #(B= #(Balot.balotReceipt & receiptCandidate.c)

RegisteredVoter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

all b: Ballot - Voter.voterBallot I
no b.ballotReceipt.receiptMarked

all v: RegisteredVoter I one v.voterBallot
all v: Voter - RegisteredVoter I no v.voterBallot
all b: Ballot I lone voterBallot.b
all v: RegisteredVoter I let b = v.voterBallot I

b.ballotReceipt.receiptMarked.(b.ballotArrangement) = vintention
all b: Ballot I

(b.ballotCandidate) = (b.ballotReceipt).receiptMarked.(b.ballotArrangement)

Figure 5-16: Step 2, Part 2. Rewriting the goal to reference different phenomena.

175

--- I a ---

all disj b,b': Ballot I
b.ballotReceipt 1= b'.ballotReceipt

all b: Ballot I
b.ballotArrangement =
b.ballotReceipt.receiptOnion.onionArrangement

all r: Receipt I
r.receiptCandidate =
(r.receiptMarked).(r.receiptOnion.onionArrangement)

ballotReceipt
ballotArrangement

receiptMarked
receiptOnion

onionArrangement

ballotReceipt
Stack of receiptCandidate
Ballots receiptMarked

receiptOnion
onionArrangement

ballotCandidate
ballotArrangement

ballotReceipt
receiptMarked

ballotReceipt
receiptCandidate

Voters

recordArrangement
recordMarked

recordCandidate

Pueic Record

score
/

Goal #2
all c: Candidate I

c.score = #(Ballot.ballotReceipt & receiptCandidate.c)

RegisteredVoter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

Figure 5-17: Step 2, Part 3. Pushing the goal frrom the Stack of Ballots domain
to the Voting Board domain.

176

all b: Ballot - Voter.voterBallot I
no b.ballotReceipt.receiptMarked

all v: RegisteredVoter I one v.voterBallot
all v: Voter - RegisteredVoter I no v.voterBallot
all b: Ballot I lone voterBallot.b
all v: RegisteredVoter I let b = v.voterBallot I

b.ballotReceipt.receiptMarked.(b.ballotArrangement) = v.intention
all b: Ballot I

(b.ballotCandidate) = (b.ballotReceipt).receiptMarked.(b.ballotArrangement)

-------- -r rrr~d

Ib-
;i

ballotReceipt
ballotArrangement

receiptMarked
receiptOnion

onionArrangement

Stack ot
Ballots

ballotCandidate
ballotArrangement

ballotReceipt
receiptMarked

Goal #2
: all c: Cancl

angement) mix

ballotReceipt
receiptOnion

receiptMarking
recordMarking

recordArrangement
onionArrangement

ballotReceipt
receiptCandidate

- receiptMarked Voting Board
receiptOnion

onionArrangement

mix
recordArrangement

recordMarked

ballotReceipt
recrecordCanptandidate

Public Record

score

_,,-J,

date I
e = #(Ballot.ballotReceipt & receiptCandidate.c) -

qm - - 72 ,.-,

RegisteredVoter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

all b: Ballot- Voter.voterBallot I
no b. ballotReceipt.receiptMarked

all v: RegisteredVoter I one v.voterBallot
all v: Voter - RegisteredVoter I no v.voterBallot
all b: Ballot I lone voterBallotb
all v: RegisteredVoter I let b = v.voterBallot I

b.ballotReceipt.receiptMarked.(b.ballotArrangement) = v.itention
all b: Ballot I

(b.ballotCandidate) = (b. ballotReceipt).receiptMarked.(b.ballotArrangement)

Figure 5-18: Step 3, Part 1. Adding a breadcrumb to the Voting Board domain.

177

all disj b,b': Ballot I
b.ballotReceipt != b.ballotReceipt

all b: Ballot I
b.ballotArrangement =
b.ballotReceipt.receiptOnion.onionArrangement

all r: Receipt I

(r receiptMarked) (r.receiptOnion.onionArra

all input Ballot ballotReceipt i one input.mix
all output: Receipt.mix I one mix.output
all b: Ballot I b.ballotReceipt in mix Record
all r: mix. Record I r in Ballot. ballotReceipt
all input: mix. Record I let output = input.mix {

input receiptOnion. arrangement= output recordArrangement
input.receiptMarked = output recordMarked

all d: Record I
S drecordCandidate = rd.recordMarked).(d recordArrangement)

_ __ -- I I

all input: Ballot.ballotReceipt I one input.mix
all output: Receipt.mix I one mix.output

a disj b.b': Ballot I ai b: Ballot I b.ballotReceipt in mix.Recordb.ballotReceip cept all r: mix.Record I rin BallotbalotReceiptj b.balotRecept = baloteeipt [all input: mix.Record Ilet output = inputmix

all b: Ballot I input.receiptOnion.arrangement = output.recordArrangement
b.ballotArrangement = input receiptMarked= output.recordMarked
b.ballotReceiptreceiptOnion.onionArrangement all d: Record

all r: Receipt I d.recordCandidate = (d.recordMarked).(d.recordArrangement)
r.receiptCandidate =
(r.receiptMarked).(r.receiptOnion.onionArrangement)

mix
ballotReceipt

ballotReceipt receiptOnion
bellotArrangernent receiptMarldng

receiptMarked recordMarking
receiptOnion recordArrangement

onionArrangement onionArrangement

ballotReceipt

Stack of receiptCandidate
receiptMarked Voting Board
receiptOnion

onionArrangement

ballotCandidate
baliotArrangement mix

ballotReceipt i recordArrangement
receiptMarked I recordMarked

mix recordCandidate
recordCandidate

recordArrangment
recordMarked

ErPubiRecord

score
I/

S Goal #3
all c: Candidate I

c-oe #(VReceipt. mix & recordCand idate c)

RegisteredVoter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

all b: Ballot - Voter.voterBallot I
no b.ballotReceipt.reciptMarked

all v: RegisteredVoter I one v.voterBallot
all v: Voter - RegisteredVoter I no v.voterBallot
all b: Ballot I lone voterBantotb
all v: RegisteredVoter I let b = v.oterBallot I

b.balotReceiptrecelptMarked.(b.ballotArrangement) = vintention
all b: Ballot I

(b.ballotCandidate) = (b.ballotReceipt).receiptMarked.(b.ballotArrangement)

Figure 5-19: Step 3, Part 2. Rewriting the goal to reference different phenomena.

178

all disj b,b': Ballot I
b ballotReceipt != b'.ballotReceipt

all b: Ballot I
b.ballotArrangement =
b.ballotReceipt.receiptOnion.onionArrangement

all r: Receipt I
tC nddt

(r receiptMarked).(r.receiptOnion.onionArrangement) j mix
mix

ballotReceipt

ballotReceipt receiptOnion
ballotArrangement receiptMarking

receiptMarked recordMarking

receiptOnion recordArrangement
onionArrangement onionArrangement

ballotReceipt
Stack oreceiptCandidate

ts receiptMarked Voting Board
receiptOnion

onionArrangement

ballotCandidate
ballotArrangement mix

ballotReceipt \ recordArrangement
receiptMarked \ recordMarked

S recordCandidate

mix

recordCandidate
recordArrangment

recordMarked

Voters Public Record

score
I //

/ Goal #3

-w- c .. re= #(Receipt.mix & recordCandidate.c)

RegisteredVoter
intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

all b: Ballot - Voter.voterBallot I
t no b.ballotReceipt.receiptMarked
all v: RegisteredVoter I one v.voterBallot
all v: Voter - RegisteredVoter I no v.voterBallot
all b: Ballot I lone voterBallot.b

b.ballotReceipt.receiptMarked. (b. ballotArrangement) =v.intention
all b: Ballot I

(b.ballotCandidate) = (b.ballotReceipt).receiptMarked..ballotArrangement)

Figure 5-20: Step 3, Part 3. Pushing the goal from the Voting Board domain to the
Public Record domain.

179

all input: Ballot.ballotReceipt I one input.mix
all output: Receipt.mix I one mix.output
all b: Ballot I b.ballotReceipt in mix.Record
all r: mix.Record I r in Ballot.ballotReceipt
all input: mix.Record I let output = input.mix {

input.receiptOnion.arrangement = output.recordArrangement
input.receiptMarked = output.recordMarked

all d: Record I
d recordCandidate = (d.recordMarked).(d recordArrangement)

- -- ~- I ~ L

ballotRecelpt
ballotArrangement

recelptMarked
receiptOnlon

onlonArrangement

ballotRecell

Stack of receiptCandid
Ballots recelptMarc

recelptOnlo
onionArranger

ballotCandidate
ballotArrangement

balotReceipt
receiptMarked

RegisteredVoter
Intention

voterBallot
ballotArrangement

BallotReceipt
receiptMarked

ballotReceipt
receiptOnlon

recelptMarkilng
recordMarking

recordArrangement
onionArrangement

score
mix

recordCandidate

---- &
al l c : C an d ida te I

r(Recelpt.mix& recordCandidate.c)

all b: Ballot - Voter.voterBallot I
no b.ballotRecelpt.receptMarked

all v: RegisteredVoter I one v.voterBallot
all v: Voter - RegisteredVoter I no v.voterBallot
all b: Ballot I lone voterBallot.b
all v: RegisteredVoter I let b = v.voterBallot I

b.ballotRecelpt.recelptMarked.(b.ballotArrangement) = vintention
all b: Ballot I

(b.ballotCandidate) = (b.ballotReceipt).recelptMarked.(b.ballotArrangement)

Figure 5-21: Cleaning up the final argument diagram. Each assumption references
only a single domain, so progression is complete.

180

all disj b,b': Ballot I
b.ballotRecelpt != b'.ballotRecelpt

all b: Ballot I
b.ballotArrangement =
b.ballotReceipt.receiptOnion.onlonArrangement

all r: Receipt I
r.recelptCandidate =
(r.receiptMarked).(r.recelptOnlon.onionArrangement)

all input: Ballot.ballotRecelpt I one input.mix
all output: Receipt.mix I one mix.output
all b: Ballot I b.ballotRecelpt in mix.Record
all r: mix.Record I r in BallotballotReceipt
all Input: mix.Record I let output = input.mix {

Input.receiptOnion.arrangement = output.recordArrangement
input.receiptMarked = output.recordMarked

all d: Record I
d.recordCandidate = (d.recordMarked).(d.recordArrangement)

'' .' ! -

We extend the earlier Alloy model to check the requirement progression rewrite

steps. The initial goal is the system requirement; each candidate's final score is equal

to the number of registered voters who intended to vote for that candidate.

pred GoalO [] {
all c: Candidate

c. score = #(RegisteredVoter & intnttion .c)

Our first rewrite replaces the expression "registered voters who intended to vote for

that candidate"' to instead say "candidates marked on the ballots".

pred Goall [] {
all c: Candidate

c.score = #(ballotCandidate . c & Ballot)

T

To justify this rewrite, we have to justify the fact that the markings on the ballots

reflect the intentions of the registered voters (and only registered voters). These

constraints are added as a breadcrumb on Voters.

pred VoterBreadcrumb [] {
all b: Ballot - Voter. voterBallot no b. ballotReceipt . receiptMarked
all v: RegisteredVoter | one v. voterBallot
all v: Voter- RegisteredVoter no v. voterBallot
all b: Ballot lone voterBallot.b
all v: RegisteredVoter let b v. voterBallot

b. ballotReceipt . receiptMarked.(b. ballotArrangement) = v. intention

}

These constraints can be interpreted as follows:

Line 2: ballots not given to voters are not marked,

Line 3: every registered voter gets exactly one ballot,

Line 4: non-registered voters get no ballots,

Line 5: each ballot is given to only one voter, and

Lines 6-7: the ballots given to registered voters are marked to reflect that voter's
intention.

We check that this breadcrumb is sufficiently strong to enforce the rewrite, by showing

that the breadcrumb conjoined with the new goal logically imply the prior goal.

1 assert partialClaiml {
2 VoterBreadcrumb and Goall 4 GoalO
3
4 check partialClaiml expect 0

The check passes, so we proceed to the next rewrite. The second rewrite replaces the

expression "candidates marked on the ballots" to instead say "candidates marked on

the receipts of the ballots".

1 pred Goal2 [] {
2 all c: Candidate
3 c.score = #(Ballot. ballotReceipt & receiptCandidate.c)
4 }

To justify this rewrite, we add a breadcrumb to Ballots. It articulates why it is ok to

refer to ballot receipts instead of the ballots themselves.

1 pred BallotBreadcrumb [] {
2 all disj b.b: Ballot
3 b. ballotReceipt != b'. ballot Receipt
4 all b: Ballot
5 b.ballotArrangement = b. ballot Receipt. receiptOnion . onionArrangement
6

These constraints can be interpreted as follows:

Lines 2-3: no two ballots have the same receipt, and

Line 4-5: the arrangement or candidate names on each ballot is the same as the
arrangement encoded in the onion on that ballot's receipt.

VWe check that this breadcrumb is sufficiently strong to enforce the rewrite, by showing

that the breadcrumb conjoined with the new goal logically imply the prior goal.

1 assert partialClaim2 {
2 BallotBreadcruinb and Goal2 4 Goall
3 }
4 check partialClaim2 expect 0

The check passes, so we proceed to the next rewrite. The third rewrite replaces

the expression "candidates marked on the receipts of the ballots" to instead say

"candidates marked on the records that result from feeding the ballot receipts into

the voting board scrambler".

182

pred Goal3 [] {
all c: Candidate

c. score = #(Receipt .mix & recordCandidate .c)

To justify referencing processed records instead of unprocessed receipts, we add a

breadcrumb to the Voting Board.

pred BoardBreadcrumb [] {
all input : Ballot . ballot Receipt I one input.mix
all output: Receipt .mix I one mix.output
all b: Ballot I b. ballotReceipt in mix. Record
all r: mix. Record | r in Ballot. ballotReceipt
all input: mix. Record let output = input .mi

input . receiptOnion . onionArrangement = outpu
input. receipt Marked = output . recordMarked

x {
t . recordArrangement

These constraints can be interpreted as follows:

Line 2: no records are created except those that correspond to receipts,

Line 3: one record is generated for each receipt sent into the voting board.

Line 4: all receipts from ballots are sent to the voting board,

Line 5: only receipts from ballots are sent to the voting board, and

Lines 6-8: the record that result from a receipt indicates the same candidate (has
the same arrangement and marking).

We check that this breadcrumb is sufficiently strong to enforce the rewrite, by showing

that the breadcrumb conjoined with the new goal logically imply the prior goal.

assert partialClaimn3 {
BoardBreadcrumb and Goal3 - Goal2

}
check partialClaim3 expect 0

The check passes, so we are done. Together, the breadcrumbs are sufficiently strong

to justify replacing the original goal (goalO) with the final goal (goal3).

The full Alloy model, with additional liveness simulations and inlined comments,

is given in the Appendix 11.

183

5.4 Secrecy Goal

It is not enough for a voting system to correctly tally votes. It must also provide

anonymity to the voters; an outsider should not be able to deduce for whom a

given voter cast a vote (and thereby influence that voter with threats or bribes). To

represent an attack on the system's secret information, we build upon our previous

model of the system to create a model of what information can be known by an

adversary and how an adversary might deduce that information. A secrecy model

has four components:

Information - A description of what is knowable about the system. For example,
it represents the fact that a candidate has a score and a receipt is attached to
a ballot.

Initial Data - A list of the information that is initially available to an adversary. For
example, it includes the fact that the adversary is permitted to initially know
how records are marked but not permitted to (initially) know voter intentions.

Incognito Data A list of the information that ought to be kept hidden from an
adversary. It specifies that the adversary should not be able to deduce how
voters marked their ballots.

Inferences - Rules describing the conditions underwhich pieces of information can
be learned by an adversary. For example, they include the fact that one can
deduce a candidate's score from the set of records, or that one can deduce a
voter's intention by examining that voter's ballot.

Put together, these four parts allow us to automatically answer the question

"Given the initial information made available, can an adversary infer incognito

information?". The rest of this section describes how we model each of these four

pieces in Alloy, thus permitting automatic detection of secrecy vulnerabilities. The

full text of the model is given in Appendix 12.

Our goal here is not to provide a method capable of performing new analyses, but

rather to perform existing analyses in a manner that integrates smoothly with the

fidelity and auditability goals. As we will see in Section 5.5, if the secrecy model is

built using the same phenomena as the fidelity model, then the auditability argument

is easy to structure.

184

(c - -i t)
E known_score

(v t)

E known_RegisteredVoter

(b - p - c - t)

E known_ballotArrangement

(b - r --- t)
E known_ballotReceipt

(v -- b - t)

C known_voterBallot

(v-- c --+ t)

E known_intention

(r -+ p -- t)
E knownreceiptMarked

(r- o --+ t)
E knownreceiptOnion

(o - p - c - t)

E known_onionArrangement

(d p - -c - -t)

E known_recordArrangement
(d p)

C knownrecordMarked
(r -d)

E known_mix

Figure 5-22: Designations for describing
the voting system. For each relation in

As of inference step t, candidate c is known
to have score i.

o As of inference step t, voter is known to
be a registered voter.

t As of inference step t, candidate c is
known to be at position p on ballob b.

+ As of inference step t, receipt r is known
to have been attached to ballot b.

o As of inference step t, ballot b is known
to have been given to voter v.

o As of inference step t, voter v is known
to want candidate c to win.

4=t As of inference step t, receipt r is
known to be marked as potision p.

t As of inference step t, onion o is known
to be written on receipt r.

W As of inference step t, candidate c is
known to be at position p on the ordering
encoded by onion o.

= As of inference step t, candidate c is known
to be at position p on record d.

o As of inference step t, record d is known
to be marked at position p.

o As of inference step t, record d is known
to have derived from the re-encryption of
receipt r.

an adversary's inferrable knowledge about
the fidelity model, there is an additional

knowledge relation in the secrecy model with the same type signature but an extra
time column at the end. A knowledge relation records the subset of the corresponding
relation that the adversary has inferred at a given point in time.

5.4.1 Modeling Information

We build upon the designated phenomena used in the fidelity model (and given

in Figure 5-4). We augment those designations with a parallel set of knowledge

phenomena, shown in Figure 5-22.

Each relation in the prior model is mirrored with a copy that has the same type

signature but which has an extra time column. The old relations represent the actual

185

state of the world (how each voter voted, how the receipts were encrypted, who won

the election, and so on). The knowledge relations represent knowledge the adversary

has learned about the true world (the fact that voter X marked candidate Y on her

ballot, the fact that Candidate Q has 10 votes, the fact that ballot A was attached

to receipt B, and so on).

In our model, time represents steps during the inference process. The election (and

all of the relations from the fidelity model) is a static model - it remains constant

throughout the inference process. However, the knowledge relations are dynamic -

they vary over time, as the adversary uses inferences to expand them.

For example, we expand the Voter signature as shown in Figure 5-23. The

intention relation (line 2) maps a voter to a candidate, and has the same

interpretation (designation) as in the fidelity model. The known_intention relation

(line 3) maps a voter to a candidate to a time, representing the set of times at which

the adversary knows that voter intended to vote for that candidate.

5.4.2 Modeling Initial Data

Line 13 of Figure 5-23 says that initial knowledge is never erroneous. It may be

incomplete (and indeed we expect it to be), but it must not contradict the actual

world. The keyword first refers to the first point in time, so an expression such

as known_intention. first gives the set of known intentions at the beginning of the

attack.

Lines 24-26 prevent the adversary from initially knowing any defined variables.

Defined variables are derived properties of the world, and are not directly observable,

so it would not make sense for the adversary to be able to intuit them. However,

there are inferences provided in the model that permit the adversary to infer defined

variables according to their definitions (as shown in Appendix 12).

For example, ballotCandidate represents the candidate indicated by a ballot -

if you know how to interpret it by looking at the arrangement of namnes and how its

receipt is marked. One cannot directly observe what candidate a ballot indicates (a

defined phenomenon), but one can observe the arrangement, receipt, and receipt

186

marking (designated phenomena) and from that infer the meaning of the ballot.

The information about how to interpret a ballot to deduce its candidate is not a

priori apparent from the world, and the extra knowledge required to make that

interpretation is encoded in the inference. We discuss inferences in greater depth in

Section 5.4.4.

Lines 29-32 prevent the adversary froin knowing some crucial pieces of information.

These are designated phenomena, so we have to justify the claim that an adversary

cannot directly observe them (by appealing to domain experts).

Line 29: voter intentions cannot be observed because they are hidden inside of
the voters' heads. We assume that the adversary cannot forcibly extract
that knowledge from a voter (and be confident of its accuracy). A bribed or
threatened voter might lie.

Line 30: the ordering of names on a ballot cannot be observed, because the ballot
(with that list) is torn off of the receipt before the voter leaves the voting
booth. The booth might be equipped with a stack of different half-ballots
(without receipts), so a voter could carry out a different one than the one
actually attached to the receipt used.

Line 31: the ordering of names encoded in an onion cannot be observed, since they
are encrypted with public key cryptography (and the private key is kept secret).

Line 32: the link between receipts going into the voting board and records coming
out of it is obscured by the re-encryption process. This line is commented out
since it was omitted fronm an early version of the model, and doing so permits
the attack described in Section 5.4.5.

5.4.3 Modeling Incognito Data

First, we consider the informal secrecy requirement, as described to us by the system

designers. Then we restate it precisely and rewrite it formally in Alloy.

informal

Do not allow an outside observer to deduce how an individual voter
voted.

187

precise

An outside observer making reasonable inferences and observations
mlust not be able to deduce (with certainty) for whom a particular voter
voted.

formal

1 no v: Voter
2 some v. (known_voterBallot. last).(known_ballotCandidate. last)

There must not be anyv voter whose ballot is known if the candidate
indicated by that ballot is decipherable. Appears as line 35 in Figure 5-23.

5.4.4 Modeling Inferences

The model uses a variation on the event-based idiom [34]. Each inference is reified

in its own signature, which allows us to write constraints about inferences as first

class objects. For example, we can easily write a constraint that says that only one

inference is made each time step, that a particular inference is never made, or that

a particular inference is only made under certain conditions. Figure 5-24 shows a

typical inference signature written as a reified event.

The event based idiom allows us to build history and.prophecy variables, as shown

in Figure 5-25 , which make counterexamples much easier to interpret. A history

variable maps a point in time to the inference that leads to that point ill time (Line

2). A prophecy variable maps a point in time to the inference that will lead it to the

next point in time (Line 3).

The event-based idiom also eases our use of the the j'ustified-change idiom. Rather

than writing constraints of the form "if inference X is used then (only) information

Y is learned" (enforced-change idiom), we write them in the form "if information Y

is learned then inference X must have been used"' (justified-change idiom).

Lines 22-26 of Figure 5-25 show how we enforce the justified change idiom in

Alloy. In order for the adversary to learn a new tuple of known_intention, he must

satisfy the constraints given ill at least one of the inference rules for intention. One

188

such inference rule is shown in Figure 5-24, which says that the adversary can use

information from a fully marked ballot to infer a voter's intention.

This pattern permits us to have several inferences trigger in the same time step,

without having their frame conditions interfere with each other. Under the enforced-

change idiom, an inference X1 cannot allow the adversary to learn information Y1 in

the same time step that inference X2 allows the adversary to learn information Y2,

because the frame condition on inference X1 says that only information Y1 is learned. 3

However, the justified-change idiom allows any number of pieces of information to be

learned as long as each addition is justified by some inference. The benefit of this

is that it allows complex attacks to be made in fewer time steps, meaning that an

analysis in a given scope provides a stronger guarantee and thus greater confidence

in the secrecy of the system. When examining counterexamples, it is helpful to

prevent simultaneous inferences rule (Lines 14-17 of Figure 5-25), but when checking

assertions we relax that constraint to provide a stronger guarantee.

5.4.5 Identifying an Attack

Lines 19-38 of Figure 5-23 instruct Alloy to find a sequence of inferences that

successfully attack the system's secret data.

Lines 20-21 import some predicates that constrain how learning happens and

which make the resulting solutions easier to interpret. All but one have been elided

from this excerpt; the remaining constraint says that only one inference is made

each time step (which makes counterexamples easier to interpret). Lines 23-32 define

restrictions on the adversary's initial knowledge, as discussed earlier.

Line 35 defines what it means for the adversary's attack to succeed. We force it

to be true, thereby telling Alloy to find us a solution showing a successful attack.

Lines 37-38 are run statements that instruct Allov to search for solutions to

the predicate within the stated bounds. The first one has a solution, indicating

3If X1 did not say that only Y1 changes, then X1 would be implicitly allowing anything at all
to change when it triggers, which is clearly not a valid inference. The problem centers around the
needl for so calledl frame conditions in declarative logic - statements of the form '"and nothing else

changes".

189

a successfully attack (discussed below). The second one does not have solutions,

indicating that there are no viable attacks that take only 2 inferences.

5.4.6 Interpreting the Solutions

Running the analysis on Line 37 of Figure 5-23 returns a solution - a case where the

adversary succeeds at making an attack despite obeying the restrictions placed on his

initial knowledge. Figures 5-26 through 5-29 show one such solution as displayed by

the Alloy visualizer. The solution has been projected over Time, meaning that we

will see a sequence of diagrams each representing the state of the world at a particular

point in time.

VWe can see the actual election information in any of the diagrams, since it is not

time dependent. There is one voter, and that voter intended to vote for the only

candidate. That voter is given the only ballot, which has a receipt with an onion.

That receipt is sent to the voting board where is is re-encrypted (the mix relation) and

turned into a record. Both the receipt and record are marked at the same position,

next to the sole candidate in the race. The candidate thus has a score of 1. These

relations have no time column, so they are are the same in each Time-dependent

diagram.

By looking at the sequence of diagrams, one for each time step, we see the

sequence of inferences the adversary used. In each diagram, the trapezoid node

pastAttractions is a history variable that gives the inference that result in that

time step. The trapezoid labeled comingAttractions is a prophecy variable giving

the inference that is about to happen.

190

sig Voter {
intention: set Candidate,
known_intention: Candidate -- Time,
voterBallot: set Ballot,
knownvoterBallot: Ballot -* Time,

}

//initial knowledge is correct , but
pred seededKnowledge [1 {

known_intention, first in intention

possibly incomplete

pred successful_hardattack [] {

seededKnowledge

/you cannot inittally know defined phenom. only designated ones
no knownballot Candidate . first
no known_receiptCandidate. first
no known_recordCandidate. first

/domain-specific restrictions
no known_intention. first //no telepathy
no known ballotArrangement. first //tear-off receipts
no knownonionArrangement. first //encryption
-- no knownmix. first //re-encryption scrambling

/fnmalicio'us goal
some v: Voter some v. (known_voterBallot. last).(knownballot Candidate. last)

run successful_hard_attack for 2 but 3 Inference , 4 Time, 3 int . 1 Record expect 1
run successful_hard_attack for 2 but 2 Inference, 3 Time, 3 int 1 Record expect 0

Figure 5-23: Selections from the voting secrecy model that define the information
and temporal structure. Full text is given in Appendix 12.

191

1 abstract sig Inference {
2 pre. post: one Time
3}
4 sig pause extends Inference {} {} /the trivial inference that learns nothing
5
6 abstract sig intention_Inference extends Inference {
7 usedvoter_from_intention : one Voter,
8 used_candidate_from_intention : one Candidate,
9}

10 sig intention_inference_1 extends intention_Inference {}{
11 /what you learn
12 (used voter_from_intention -- used_candidate_fromintention)
13 in known_intention. post
14 (used_voter_fronl_intention -- used_candidat efrom_intent ion
15 not in knownintent ion. pre
16
17 //when you can learn it
18 used_voter_from_intention in knownRegisteredVoter. pre
19 let b = used _voterfrom_intention . (known_voterBallot. pre)
20 b. (known ballot Receipt . pre) . (known receiptMarked . pre)
21 .(b.(knownballotArrangement. pre)) = used_candidate_from_intention
22 }

Figure 5-24: A typical inference written in the event-based idiom. Adding inferences
under this idiom is modular. To add an inference, only one signature paragraph need
be added - the rest of the model remains untouched. This particular inference is for
deducing a tuple in the intention relation - learning that a particular voter definitely
intends to vote for a particular candidate by examining that voter's ballot.

192

1 sig Time {
2 comingAttractions: set Inference, //prophecy
3 pastAttractions: set Inference, //history

4}
5 fact history_matches_prophesy {
6 all t: Time I t. coningAttractions = t.next. pastAttractions
7 no first. pastAttractions
8 all t: Time - last t . corningAttractions. pre = t

9 all t: Time - first t. pastAttractions post = t

10 }
11
12
13
14 pred sequentialInferences [] (
15 all t: Time lone t .comingAttractions
16 all t: Time lone t.pastAttractions
17 }
18
19 ...
20
21 pred explainAdditions {
22 all t: Time - first , v: Voter, c: Candidate
23 (v - c) in known_intention. t - known_intention.(t. prev)
24 - some inf: intentionInference & t .pastAttractions
25 inf. used_voterfrom_intention = v
26 and inf. used_candidatefrom_intention =c
27
28 }

Figure 5-25: Selections from the voting secrecy model that define predicates that
constrain how inferences are made. Full text is given in Appendix 12.

193

Voter
(Victim, knownRegisteredVoter, RegisteredVoter)

Ballot
bArrange: Position->Candidate

ballotCandidate: Candidate

allotRece) known ballotReceipt

Receipt

receiptCandidate: Candidate -

Record

knArnge: Position andidate nown_receiptMarked eceiptMarked

recordCandidate: Candidate

recordMarked

Figure 5-26: The first time step (TimeO) in a successful attack on the voting system's
voter records. This timestep represents the static structure of the election that
happened, and the initial knowledge available to the adversary.

Initially (TimeO), the adversary knows which ballot the voter was given, the receipt

attached to that ballot, the onion for that receipt, which record that receipt turned

into, and how the receipt was marked. This is not yet enough information to deduce

for whom the voter voted, since it is not (yet) apparent how the ballot was arranged,

how the receipt was marked, or how the voter intended to vote. In fact, in this attack,

the final score for the candidate isn't known and doesn't need to be inferred.

194

_ _ __ __

Voter
(Vcn konRgsccd(cRgsee~tr

Figure 5-27: The second time step (Timel) in a successful attack on the voting
system's voter records. In this step, the adversary has just inferrred the ordering
represented by the onion by looking at the ordering of the record associated with
that onion's receipt.

The first inference used is onionArrangementInference_3, which says that one

can deduce the arrangement of an onion if one knows the arrangement of the record

that the onion's receipt turned into when fed into the voting board. Specifically, it

relies on the fact that those two orderings must be identical (as stated in the voting

board bread crumb). In the second time step (Timel), we see the result of this

inference - that the adversary now knows the onion's arrangement (a kn_oArrange

entry has been added to the onion's pentagonal box, which mirrors that portion of

the actual onion arrangement, oArrange).

From the second to the third time steps, the adversary uses

ballotArrangementinference_2 to deduce the arrangement of candidates on

the ballot based on the arrangement of candidates encoded in the now-revealed

195

5

Figure 5-28: The third time step (time2) in a successful attack on the voting system's
voter records. The adversary has just inferred the candidate ordering on the ballot
by noting the ordering represented by that ballot's receipt's onion.

onion.

From the third to fourth time steps, the adversary uses

ballotCandidate_inference_5 to deduce the candidate marked on the ballot

from a combination of that ballot's arrangement (just deduced) and how that ballot's

receipt was marked (already known). This inference concludes a successfully attack

for the adversary, since the voter's voting behavior has been revealed.

Alloy guarantees sound counterexamples, so we know that this attack is a valid

one (given the inference rules provided). Our analysis does not have solutions for a

smaller time bound (line 38 of Figure 5-23), so we know that no shorter attack exists

(in the given scope).

If we add an assumption that the adversary cannot know the voting boards

196

scrambling pattern (Line 32 of Figure 5-23), then Alloy is unable to find an attack,

even if permitted larger bounds. This gives us confidence (but not a guarantee) that

no attack against the system can succeed with this arsenal of inferences. It is still

possible that an attack exists in a larger scope, or that one is possible with additional

(unstated) inference rules. However, with the given inferences and given bounds, we

are guaranteed that no attack exists.

Small Elections

An earlier version of our model included another class of inferences pertaining to

attacks on small elections. For example, if there is only one voter, then one can

determine his or her vote simply by looking at the final candidate scores. Similarly, if

you know how all but one voter voted, then you can use the candidate scores to deduce

the last voter's vote. More subtle attacks include the fact that an adversary might

himself be a voter, and thus might know how one of the voter voted, and attempt

to leverage that information. These inferences were not derived directly from the

fidelity model (as described in Section 5.6), but rather were added directly to the

model according to outside knowledge.

The final version of the model omits these inferences, partly to show the power

available from using just the derived inferences, and partly because attacks on small

systems are usually considered uninteresting from a security perspective. With the

small-attack inferences in place, we had to include a set of assumptions in the attack

simulations assuming that there were at least 3 elements of each domain, and at

least 3 votes were cast for each candidate. Those assumptions inflated the size of the

resulting counterexamples, but did not show more interesting attacks. Analysis time

for the slightly larger solutions was not noticeably slower.

197

Voter
(Victim, known_RegisteredVoter, RegisteredVoter)

voterBallt knownvoterBallot 'r

Ballot
bArrange: Position->Candidate

ballotCandidate: Candidate
knbArrange: Position->Candidate
known ballotCandidate: Candidate

ballotCandidate inference5
(pastAttractions, post)

ballot: Ballot
candidate: Candidate

ballotReceip known_ballotReceipt score

Receipt
receiptCandidate: Candidate

Record
dArrange: Position->Candidate

kn-dArrange: Position->Candidate
recordCandidate: Candidate

known_receiptMarked eceiptMarked

recordMarked

Figure 5-29: The final time step (time3) in a successful attack on the voting system's
voter records. The adversary has just inferred what candidate is indicated by the
voter's ballot, be examining its ordering (just inferred) and its receipt's marking
(initially known). This constitutes a successful attack on the systems secrecy, since
the adversary now knows how this voter voted.

198

receiptOnion

{)
77 4 q

- II - - - ---- - - - -

I /

5.5 Auditability Goal

It is not enough for the engineers who built the voting system to be sure that it works:

public observers must also be able to check that the operating implementation is

functioning correctly. In the absence of security and secrecy requirements, auditability

can be as simple as publishing the fidelity argument associated with the system - the

argument that the designers used to get the system right. However, the fidelity

argument is likely to make reference to phenomena that are forbidden from being

made public by the secrecy argument, and the censored fidelity argument is not

complete enough to provide auditors with confidence.

The typical solution to this problem is to introduce statistical audits of the secure

portions of the system [5]. The details of how such a statistical sample is gathered is

a domain-dependent question - the question relevant to our analysis is that of which

phenomena should be audited. By building the secrecy and fidelity arguments with

the same lexicon, we can see which phenomena need to be audited by comparing the

phenomena used in the two models (as described below, in Section 5.5.3).

The view of auditability that we use in this section is based on Rivest and

Wack's [74] notion of software i ndependence the notion that a voting (or other

high profile) system should not rely upon the correct (and honest) implementation

of its software components. It should be possible to know if the system has failed,

no matter what malicious component has been substituted in. In other words, one

should not merely rely upon a good system design but one should also provide a way

to directly audit particular implementations of that design as they are running.

5.5.1 Types of Audits

There are three forms of auditability to consider. Applied to a voting system, they

are as follows:

* A design audit is when the system design is assessed to determine if it will satisfy

its requirements (accurately tally votes, protect voter anonymity). Publishing

the system's fidelity argument is sufficient to provide design auditability, as it

199

gives observers access to the same information used by the engineers to design
the system.

* A system audit is when an installation is evaluated by an independent authority.
such as a government agency. a newspaper, or a university. It might involve
a review of the hardware and software used to implement the design, and it
confirms that the machines installed in actual election booths implement the
validated design [12, 5].

* A personal audit is when individual voters can confirm that their votes were
tallied. Perhaps the voter is given a receipt with an ID number, and the final
tally lists the ID numbers it included. This process confirms that the vote was
counted without revealing how the voter voted [77, 73, 1].

The system audit is at the core of all three styles. The design audit establishes

a system-level property like the ones we establish using requirement progression -

that the assumptions made about the components are sufficient to enforce a given

requirement for the system as a whole. However, it does not actually validate that

the components obey their assumptions; that is the job of a system audit. Similarly,

the merit of a personal audit relies on the merit of the system audit. The fact that

an individual voter's ID appears in the final tally is only meaningful if a system audit

has confirmed that IDs only appear in the final tally if they were counted. For these

reasons, we will focus on providing system auditability.

5.5.2 A Precise Formulation

We begin with the informal auditability goal, then rewrite it in more precise language.

informal

Outside public observers need to be confident that the system has not
been tampered with.

precise

If the election does not choose the most popular candidate, then there
imust be a high probability that this fact is apparent to public observers.

200

This phrasing has two important implications on how we perform the necessary audits,

which enable statistical audits of any phenomena in question.

* There is no need for error recovery, just error detection - one can re-run an

election that is deemed to be fraudulent. Thus an audit does not need to catch

all fraudulent elements of a corrupted system (as would be needed to fix the

problem). Rather, it is sufficient to identify just one fraudulent element and
denounce the entire system.

* There is no need to catch all tamperings, just those that alter the outcome of the
election. One can tolerate both a small chance that many votes were changed

or a high chance that very few votes were changed. In both cases, there is only
a small chance that the election result will be altered.

5.5.3 Identifying Necessary Audits

As discussed earlier, auditability would be easy if it were not for secret data - one

could simply publish the fidelity argument and reveal all information used in the

operation of the system. Even in the presence of secrecy requirements, some parts of

the system can be audited in this direct fashion. To determine which parts require

special treatment, note the set of designated phenomena that are kept secret from

the public. In our case, as given by lines 29-32 of Figure 5-23. they are intention,

ballotArrangement, onionArrangement, and mix.

Now consider each domain assumption in the fidelity argument. If it makes no

reference to the hidden phenomena, then it can be audited directly (by observing the

values of non-secret phenomena). If it references one or more hidden phenomena,

then it cannot be audited directly and calls for a statistical audit. The assumptions

we must audit are given in figure 5-30 and interpreted below.

Lines 2-3: We must provide an audit of voter intentions to assure the public that

they are well formed without revealing enough data to an adversary to attack

the system's secrecy.

The system designers did not record this assumption or provide a mechanism

for ensuring it. The audit might involve a user study showing that voters do

201

1 //from Voter breadcrumb
2 all v: RegisteredVoter | let b v. voterBallot
3 b. ballotReceipt . receiptMarked .(b. ballotArrangement) = v. intention
4
5 //from Ballot breadcrumb
6 all b: Ballot
7 b.ballotArrangment = b. ballotReceipt . receiptOnion .onionArrangement
8
9 //from Board breadcrumb

10 all output: R,eceipt.mix I one mix.output
11 all b: Ballot I b. ballotReceipt in mix. Record
12 all r: mix. Record | r in Ballot. ballotReceipt
13 all input: mix. Record let output = input .mix {
14 input .receiptOnion . arrangement = output. recordArrangement
15 input . receiptMarked = output . recordMarked
16 }

Figure 5-30: Domain assumptions that cannot be audited directly (without violating
secrecy) and thus call for statistical audits.

indeed intend to vote for one candidate - they are not confused about the rules

of the election, the implications of their vote, or the meaning of marking the

ballot. Put another way, we are assuming that voters know whom they want to

win and understand how to mark a ballot to make that happen.

Lines 6-7: Since we are hiding the content of the onio ns (the arrangements they

represent), we must provide an audit of them. Specifically, we must check that

the arrangements on the ballots matches the arrangements represented by the

onions on the receipts of those ballots.

To address the corrupt ballot concern, the system designers suggest a random

audit of ballots - randomly select a subset of the unused ballots to be audited

and discarded. Each selected ballot's onion is decrypted (using the private

key) to confirm that the onion reflects the printed list of candidates. Outside

observers can confirm that the decryption is accurate (using the public key)

even though they cannot themselves perform the decryption step. The audited

ballots are invalidated and discarded. If any ballots are invalid, they nmust all

be re-generated. For example, if one percent of the ballots are corrupt, and one

audits 1000 random ballots, then the chance of all bad ballots going undetected

202

is around 1 in 25. 000.

Lines 10-15: We must also randomly audit that the receipt scrambling process is

working. Since we have hidden the mix relation from directly observation, we

need to audit the properties we assume about it (given in the voting board

breadcrumb).

To address the corrupt voting board concern, the system designers provide

a cryptographic mechanism for auditing individual re-encryption steps. Each

receipt is re-encrypted several times before being outputted as a record (and

decrypted). However, for secrecy to be maintained, there only needs to be one

re-encryption step. As illustrated in Figure 5-31, consider all of the receipts

after the first re-encryption step. Randomly select half of them and reveal what

receipts they came from. For the other half, reveal what receipts they went to in

the next re-encryption step. Reveal no other re-encryption steps. Note that no

receipt can be fully tracked through the re-encryption process, and thus secrecy

has been preserved. However, if the machine is performing bad re-encryptions,

there is a high chance of detecting it. If 1 percent of the ballots are corrupt,

and there are 12 re-encryption steps, then the chance of all bad re-encryptions

going undetected is about 1 in 25. 000.

5.6 Deriving Inferences from Breadcrumbs

While the primary benefit of building compatible fidelity and secrecy arguments is to

aid auditability, there are other benefits. They will share a common set of signature

declarations and can both make use of a common set of domain assumptions (the

fidelity argument checks their consistency and the secrecy argument enforces them

as invariants). Furthermore, as we discuss in this section, the domain assumptions

developed in the fidelity argument can be leveraged to derive a core set of inferences

for the secrecy model.

The set of derived inferences is not complete - indeed no set of inferences is ever

203

first re-encryption second re-encryption

receipt 1 --------- receipt 3

receipt 4

receipt 6

Figure 5-31: Auditing the receipt-scrambling re-encryption process of the voting
board. Each column represents the set of receipts after a re-encryption step. We have
selected half of the receipts (red / dark gray) and revealed the prior re-encryption step
for them (dark arrows) and kept the other re-encryptions hidden (dashed arrows). For
the other half of the receipts (green / light gray), we reveal the next re-encryption
step. An observer cannot track a receipt through the entire encryption process, but
we have had two chances to catch a bad re-encryption step.

complete, as one can never predict the full computational and inferential power of

an adversary. These inferences should be augmented by security experts - standard

practice is for all inferences to be provided by experts.4 However, the set of inferences

derived in this way are sufficient to mount basic attacks against the system's secret

data, even without additional inferences provided by an expert (see Section 5.4.5).

The derived inferences not only make developing the secrecy model easier, but they

also make the set of inferences more thorough and thus increase the confidence gained

4As described in section 5.4, the secrecy model is written in a modular fashion, so an expert can
add inferences to the model without making global changes or requiring a global understanding.

204

when the model reports that no attacks are possible.

5.6.1 Derivation Process

The key insight to deriving inferences from breadcrumbs is that any property the

system relies upon is also a property the adversary call rely upon. For example,

if the system relies upon the fact that voters mark their ballots according to their

intentions, then the adversary can also make that assumption. The technical challenge

is to translate declarative assumptions about valid states of the world (breadcrumbs)

into operational inferences about what information can be deduced from what other

information (inferences).

Currently. our approach can only derive inferences from a narrow (but common)

type of assumption: a universal quantifier surrounding an equality between two

sequences of relational joins. This pattern is sufficient to subsume most of the

breadcrumbs in our fidelity model (Section 5.3), and was used to derive all the

numbered inferences given in the secrecy model (Section 5.4).

To derive an inference, follow these steps:

(1) Identify a legal target constraint and relation.

(la) Confirm that the constraint is in the required form - a universal quantifier
surrounding an equality of two strings of relational joins.

(lb) Identify one of the relations in the constraint, for which we will attempt to
learn a new tuple. That relation cannot have more than one column with
the same type.

(1c) Determine if the target constraint is strong enough to permit an inference
of the target relation. This evaluation examines the multiplicities of the
other relations in the constraint, aided by an object-model diagram of the
constraint.

(ld) Create a place-holder tuple of the target relation, representing the new
tuple that will be learned. Provide fresh variables for the entries of that
tuple.

(2) Transform the target constraint to become a precondition for learning a new
tuple of the target relation.

205

(2a) Drop the universal quantifier if it over a domain that match the types of
any of the variables in the send-in tuple.

(2b) If the universal quantifier does not match any of those domains, replace it
with an existential quantifier.

(2c) Replace all instances of the target relation in the constraint with the place-
holder tuple.

(2d) Replace the equality operator in the constraint with a non-empty equality
operator. Non-empty equality is the same as equality, except that it
resolves to false if either side of the equation is empty.

(2e) Manipulate the equation as necessary to get rid of the place-holder tuple.
The resulting equation, or set of equations, will still contain the variables
used in that tuple.

(2f) Replace all relations with their matching knowledge relations, joined with
a time variable T.

(3) Piece together the inference. The resulting inference states that, if the resulting
constraint holds on the knowledge relations in the pre-state, then the place-
holder tuple can be added to the target relation's knowledge relation in the
post state.

5.6.2 Sample Derivation

For example, from the Voting Board Breadcrumb, we spot the following constraint in

the required form:

1 all input: mix. Record
2 input . receipt Marked = input .mix. recordMarked

WVe decide to build an inference for the receiptMarked relation, which maps each

receipt to the position (if any) tha.t is marked on that receipt. Examining the object-

model diagram, we confirml that this constraint is strong enough to permit an inference

of the target relation. The details of that process are described in Section 5.6.4.

We build a place-holder tuple of the target relation, with fresh variables for each

entry of that tuple. The relation maps receipts to positions, so we create the tuple

rn = (- p).

Next, we manipulate the target constraint to transform it into the precondition

for adding 'rmi to our knowledge of receiptMarked. Tile quantified variable is

over receipts; that is the type of one of the variables in the tuple, so we drop the

206

quantifier. We then replace all instances of receiptMarked with (r t p), producing

the following:

1 r.(r -* p) r. mix. recordMarked

We manipulate that equation to get rid of the tuples. The left-hand side reduces

to p by the definition of relational join. The right-hand side does not reduce. The

equation is now the following, taking care to note that "=" now represents non-empty

equality.

1 p = r.mix. recordMarked

Replacing the relations with the corresponding knowledge relations gives us the

following:

1 p = r. (known_mix. pre).(known_recordMarked. pre)

Putting this into the Alloy model, we get the following inference:

1 sig receiptMarkedinference_4 extends receiptMarked_Inference {}{
2 /what you learn
3 (used_receipt_from_receiptMarked -+ used position_fromreceiptMarked)
4 in known_receiptMarked . post
5 (used receipt_from_receiptMarked - used_position_from_receiptMarked)
6 not in known_receiptMarked. pre
7
8 /when you can learn it
9 used_position_from_receipt Marked =
0 used_receipt_fromreceiptMarked . (known_mix. pre).(knownrecordMarked. pre)
1}

Intuitively, we have taken a constraint that says "The positions marked on receipts

going into the re-encryption process is the same as the positions marked on the

corresponding records coming out." and transformed it into an inference that says

"The adversary can infer that receipt R is marked at position P if he knows that R

was mapped to a record D and that D is marked at position P.".

5.6.3 Another Example

Now consider the same constraint but instead target the recordMarked relation,

which maps records to positions. The tuple we wish to infer is now din, = (d -- p).

This time, the universal quantification is over a domain not used in the tuple, so the

207

it is replaced by an existential quantifier. We splice the tuple into the constraint in

place of the target relation, producing the following:

1 some input: mix. Record |
2 input . receipt Marked = input .mix.(d -- p)

Manipulating that expression (using the fact that the "=" represents non-empty

equality), we get the following:

1 some input : mix. Record {
2 input . receipt Miarked = d
3 input . mix = p
4}

If we had instead targeted mix, we could go through all the steps to generate

an inference. However, the resulting inference would be invalid, and would be

preemptively caught by step 1c, as described next.

5.6.4 Validation via Multiplicities

To determine if a given constraint can produce an inference for a given relation,

consider the object-model representation of the relations used in the constraint,

annotated with multiplicity marking on all relations. Note the target relation and

which node represents the type of the equality - the type of both the left and right

hand sides of the equation. Consider all paths along relations from the nodes used in

the relation to the equality node. If more than one of them has a * on the origin of

the arc or if any of them have a * on the destination of the arc, then the inference is

rejected. Otherwise, the derived inference will be valid.

Figure 5-32 shows the diagram that describes the target constraint from the voting

board breadcrumb used in the preceding examples.

Looking at the multiplicities, we see that we can derive valid inferences for the

receiptMarked and recordMarked relations, but not for the mix relation.

All of the numbered inferences in the secrecy model (described in Section 5.4 and

given in full in Appendix 12) were derived in this fashion. The target constraints and

Ternary relations are shown as two merging arrows. Multiplicity markings on ternary relations
should be interpreted as "given values for the other two slots of a tuple of this relation, how manyll
possible values are there for the remaining slot in that tuple?".

208

all i: mix.Record I
i.receiptMarked

i.mix. recordMarked

Figure 5-32: The second part of the voting board breadcrumb viewed graphically in
preparation for deriving inferences from it.

corresponding multiplicity diagrams are shown in Figures 5-33 through 5-38.

209

Y

ballotReceipt

all v: Voter I
v.voterBallot.ballotReceipt. receiptMarked.(v.voterBallot.ballotArrangement)

v.intention

Figure 5-33: The voter breadcrumb viewed graphically in preparation for deriving
inferences from it.

ballotReceipt Receipt receiptOnion

all b: Ballot I
b.ballotArrangement

b.ballotReceipt.receiptOnion.onionArrangement

Figure 5-34: The ballot
inferences from it.

breadcrumb viewed graphically in preparation for deriving

210

voterBallot

Receipt mix Record

receiptOnion 1
Position

recordArrangement

Onion OnionArrangement Candidate

all i: mix.Record I
i.receiptOnion.OnionArrangement

i.mix.recordArrangement

Figure 5-35: The first part of the voting board breadcrumb viewed graphically in
preparation for deriving inferences from it.

211

-- I rl r --- ------ I

all b: Ballot I
b.ballotCandidate

b.ballotReceipt.receiptMarked.(b.ballotArrangement)

Figure 5-36: The ballot appended fact viewed graphically in preparation for deriving
inferences from it.

all r: Receipt I
r.receiptCandidate

r.receiptMarked.(r.receiptOnion.onionArrangement)

Figure 5-37: The receipt appended fact viewed graphically in preparation for deriving
inferences from it.

212

all d: Record I
d.recordCandidate

d.recordMarked.(d.recordArrangement)

Figure 5-38: The record appended fact viewed graphically in preparation for deriving
inferences from it.

213

I IIImm

5.7 Achievements

We articulated the existing intuition for the fidelity. secrecy, and auditability of the

Pret a Voter system, using an unambiguous formal model, and confirmed those

three arguments through automatic analysis of our model. Our analysis not only

demonstrates that the desired properties hold, but it also provides a structured,

traceable, and readable argument describing why the system satisfies its requirements.

5.7.1 Clean Division

In building the argument, we separated the system-level arguments from low-level

cryptographic arguments. The designers had previously conflated the arguments

together, making reasoning about the system more difficult. Requirement progression

provided such a boundary - it argues why a certain set of assumptions enforce the

requirement, separate from the argument that those assumptions are provided by the

proposed cryptographic protocols. Put another way, we identified the appropriate

level of detail for the system argument - exposing certain properties about the

cryptographic theorems and protocols while hiding others. The automatic analysis

confirms that we exposed an appropriate level of detail.

We also re-enforced our belief that requirement progression is faster and easier

when supported by an expert-provided intuitive outline for how we expect the

argument to look. That argument guided progression, and allowed us to finish the

process in just a few hours.

5.7.2 Leveraging Fidelity for Secrecy and Auditability

We demonstrated how building the fidelity, secrecy, and auditability arguments in

tandem can make them not only easier but also more thorough.

- We built the fidelity argument using requirement progression, which provided
automatic analysis to confirm the argument. The resulting set of breadcrumb
assumptions were encoded in an Alloy model.

214

- When we built secrecy, we leveraged that Alloy model in two ways: We used
the structure of the data (the sets and relations) to build the structure of the
adversary's knowledge base. Ve used the breadcrumb assumptions to derive a
core set of inferences. Those inferences can be expanded, but we found that just
the derived inferences were enough to model basic attacks against the system's
secure information.

- The audlitability argument rests upon identifying the correct set of properties to
audit. VWe showed how to read that list off the fidelity and secrecy arguments
- one must audit any assumption in the fidelity argument that references
phenomena that are initially hidden in the secrecy argument. The means by
which one audits those assumptions is a domain-specific question, but we easily
produce a complete list of what needs to be audited.

5.7.3 Discoveries

For the most part, our analysis confirmed the system as proposed. In a couple of

cases, we discovered some minor surprises.

- The Pret a Voter system as proposed uses onions to encode not only the list
of candidate names but also the position of the marking on the re-encrypted
receipts. Our analysis shows that encoding just the list of names is sufficient to
provide the three goals (fidelity, secrecy, auditability). Encoding the markings
does not interfere with those goals, but adds unnecessary complication. In an
actual implementation, it may be useful to encode the markings simply to more
fully automate the re-encryption process - so that the entire receipt is encoded
in an onion and there are no slips of paper to pass around.

- Before our collaboration, Peter Ryan had proposed a method for obfuscating
what list of candidates was given to a particular voter, but he was not sure if
that mechanism was necessary. Our analysis shows that it is indeed necessary
to provide secrecy.

5.7.4 Effort

Our analysis required two weeks (10 days) of work, counting time spent by all

participants. The fidelity argument took five days of work, four of which were

spent just understanding the system and one of which was spend performing the

actual requirement progression. See Figure 5.7.3. The secrecy argument took four

215

stated as property on...

context
Interviews to understand /

Ssystem overview and needs //
S 4 days,

/
30 lines Alloy

. 50 lines comments

O system
() Interpret assumptions into
() cryptographic properties

t: 1 hour,
40 lines prose /

O component cryprographic
- theorems /

/) 0/? days
Fu j Tm srequirement progression

. 1 day human,

)n e / 5 seconds analysis,
pzr 100 lines Alloy,
0 module 150 lines comments

i p c cryprographlc
/ proofs

/i 0/? days

Figure 5-39: Time spent building the fidelity argument.

days, two of which were spent building the model framnework and two of which were

spent deriving inferences for the adversary. See Figure 5.7.3. Identifying the list of

properties to audit required less than one dayv.

These counts do not include the time spent by Peter Ryan and his collegues to

establish the assumptions with cryptographic protocols. That work had already been

completed when we performed our analysis, and this timing data only reflects the

additional work needed to build the dependability argument on top of prior work.

216

stated as property on...

context

0
U)

0)

OQLa.
U)

Co
()Cz
0-

system

component

module

Figure 5-40: Time spent building the secrecy argument.

217

218

Chapter 6

Related Work

6.1 Related Work

6.1.1 Requirement Decomposition

Like our Requirement Progression technique, many approaches to system analysis

involve some kind of decomposition of end-to-end requirements into subconstraints,

often recursively.

Assurance and Safety Cases

Assurance and safety cases [4, 49], for example. decompose a critical safety property.

They tend to operate at a larger granularity than problem frames, in which the

elements represent arguments or large groupings of evidence, rather than constraints.

Another class of analyses focus on failures rather than requirements (such as

HAZOP [65]), in which decomposition is used to identify the root causes of failures.

Our work, like that of assurance cases, provides confidence that a given requirement

will hold, rather than establishing that a, particular type of error will not occur.

Leveson's STAMP approach involves decomposing design constriants, with a focus

on managerial control over the operation of a system [51, 52].

219

I*, Tropos, KAOS

More similar to our approach are frameworks, such as i* [87] and KAOS [21, 22, 18, 8],

that decompose system-level properties by assigning properties to agents that work

together to achieve the goal. For KAOS, patterns have been developed for refining

a requirement into subgoals [22]. In our approach, we have not given a constructive

method for obtaining the new constraint systematically, and the refinement strategies

of KAOS may fill this gap.

Similar to i*, Tropos [15, 28, 67] is based on actors with different goals for the

system and different measures of success. It is focused on early design stages, and

is mostly for human-human communication plus some simulation/evaluation support

for making sense of larger models.

KAOS refinements has been applied to agent-oriented policy decomposition and

applied to Systems of Systems (SoS) [32]. It is used as a means for combatting

emergent behaviors that result from independently designed systems combined into

a single system.

Four Variable Model

The four-variable model [66, 86] makes a distinction, like Problem Frames, between

the requirements, the specification, and domain assumptions. However, in Problem

Frame terminology, it assumes that a particular frame always applies, in which there

is a machine, an input device domain, an output device domain, and a domain of

controlled and monitored phenomena.

Requirement Elicitation

Letier and Lamsweerde show how a goal (requirement) produced from requirement

elicitation can be transformed into a specification that is formal and precise enough to

guide implementation [48]. That approach is centered around producing operational

specifications from requirements expressed in temporal logic, and focuses on proving

the correctness of a set of inference patterns. Such inference patterns are correct

220

regardless of context, in contrast to our approach in which transformations are only

justified by context-specific domain assumptions.

Refinement

Johnson made an early use of the phrase "deriving specifications from requirements"

in 1988 when he showed how requirements written in the relational logic language

Gist can be transformed into specifications through iterative refinement [43]. Each

refinement step places limits on what domains may know and on their ability to

control the world, and exceptions are added to global constraints. A specification

is not guaranteed to logically imply the requirement it grew out of, and the two

descriptions may even be logically inconsistent with each other. In contrast, as we

refine (transform) a requirement, the breadcrumbs we add expand our assumptions

about the domains rather than restricting them, and a specification will always be

consistent with the requirement it enforces.

6.1.2 Problem Frames

Problem Progression

Michael Jackson sketches out a notion of problem progression in the Problem Frames

book [40]. A problem progression is a sequence of Problem Frame descriptions,

beginning with the full description (including the original requirement) and ending

with a description containing only the machine and its specification. In each

successive description, the domains connected to the requirement are eliminated and

the requirement is reconnected and altered as needed. He does not work out the

details of how one would derive the successive descriptions, but it seems that he had

a similar vision to our own. However, rather than eliminating elements (domains)

from the diagram at each step, our approach adds elements (domain assumptions),

providing a trace of the analyst's reasoning in a single diagram.

Jackson and Zave use a coin-operated turnstyle to demonstrate how to turn

a requirement into a specification by adding appropriate environmental properties

221

(domain assumptions) [41]. Their approach is quite similar to our own, and uses

a logical constraint language to express domain assumptions. Our work strives to

generalize the process to be applicable in broader and more complex circumstances,

and to help guide the analyst through the process with the visual notion of pushing

the requirement towards the machine.

Problem Reduction

Rapanotti, Hall, and Li recently introduced problem reduction, a technique that uses

causal logic to formalize problem progression in Problem Frames [71]. Like our own

work, they seek to formalize and generalize problem progression in a way that provides

traceability as well as a guarantee of sufficiency. Problem reduction follows the style

of problem progression described in the Problem Frames book [40], in which the

requirement is moved closer to the machine by eliminating intervening domains.

Calculus of Requirements Engineering

Hall, Rapanotti, Li, and TM. Jackson are developing a calculus of requirements

engineering based on the Problem Frames approach [44, 54, 55, 70]. They examine

how problems and solutions can be restructured to fit known patterns. Part of

their technique involves transformation rules for problem progression, in which a

requirement (expressed in CSP) is replaced by an equivalent requirement in an

alternate form. In contrast, our technique is a form of requirement progression, in

which the transformations only change the constraints, not the underlying domain

structure. Furthermore, our transformations are not semantics-preserving; they are

justified by a set of explicit assumptions rather than proofs of equivalence.

6.1.3 Analysis of the BPTC

Jackson and Jackson have examined the gantry creep in the BPTC, in which the angle

of delivery slowly shifts over the course of many treatments of the same patient [20].

Rae et al have used lightweight code analysis to determine conditions under which

222

the BPTC emergency stop button would not operate correctly [68].

Dennis et al have shown how commutitivity analysis can be used to detect race

conditions between operators of a system, even when that system uses atomic single

threaded operations. They apply the technique to the automatic beam scheduler

currently employed in the BPTC [24]

In earlier work, we have used the BPTC to motivate the development of a

technique for performing requirement progression [78, 79, 80, 81].

223

224

Chapter 7

Conclusions

We have proposed and applied a methodology with which a skilled analyst can build

end-to-end dependability arguments for complex, software-intensive systems with

reasonable human effort. These arguments not only validate the system design as

whole, but they also provide traceability - linking system level requirements to low

level assumptions about individual components in the system.

7.1 Contributions and Achievements

We introduced require'ment progression (Chapter 3), a systematic, guided method

for decomposing a system requirement into a set of component assumptions.

A system requirement articulates the needs of the overall system, but no one

engineer or specialist is qualified to confirm or deny that broad of a requirement,

since it references aspects of many components. The component assumptions

(breadcrumbs) generated by requirement progression articulate important properties

about individual components, which can be independently assessed by appropriate

domain specialists.

The progression process is incremental and local - each step of a. progression only

requires the analyst to reason about one domain and its interfaces. We provide a

set of guidelines to help the analyst develop the progression efficiently, which are

based on the structure of the system's Problem Diagram [40]. The analyst can

225

automatically check the steps of the progression (using Alloy [30, 34]), ensuring that

the resulting set of domain assumptions will indeed be strong enough to enforce the

original requirement.

We introduced the Component Dependab'ility Argument Diagrams (Chapter 2). a

notation for classifying analysis techniques and for composing them together to form

an integrated end-to-end argument. CDADs show how requirement progression links

into other analyses from related fields of study, helping the analyst select and compose

techniques to build an end-to-end dependability argument.

In the proton therapy case study (Chapter 4), we saw how requirement progression

can be combined with automatic code analysis to discharge domain assumptions on

software components. The resulting argument. illustrated with a CDAD, constitutes

a dependability argument for a critical aspect of a working radiation therapy medical

device.

In the voting case study (Chapter 5), we saw how to analyze a system with

multiple, apparently contradictory. requirements - fidelity, secrecy, and auditability.

By using requirement progression to build an Alloy model of fidelity, we saw how

it was then easier and more systematic to build secrecy and auditability arguments.

The resulting analysis validates the design of the Pret a Voter election scheme [76].

7.2 Limitations

To understand an approach, one must understand its limits - both the incidental

limitations of the particular approach and the inherent limitations of all approaches

in that style. The limitations we discuss below are reasonable restrictions if one wants

to build end-to-end confidence in a system, but it is important to be aware of the sort

of investment one must make and results one can obtain. Much of the future work

(Section 7.4) revolves around reducing or eliminating these limitations.

226

7.2.1 Vulnerabilities Versus Errors

This sort of system analysis fundamentally discovers vulne'rabilities rather than

errors. One sometimes discovers errors in the course of building the argument

and understanding the needs for the system, but the focus is on the discovery and

documentation of component assumptions. Sometimes the mere act of building

a dependability case will increase dependability simply by focusing attention and

prioritizing concerns about the different components. More typically, errors are

discovered when one attempts to discharge and validate component assumptions,

and the ability to perform that validation limits the errors that can be uncovered in

this manner.

7.2.2 Human Domains

In some domains, discharging assumptions is relatively easy and thorough. For

example, in the BPTC case study (Chapter 4), we saw how to link requirements

progression and system analysis to automatic code analysis. Other technical domains,

such as electro-nmechanical devices, can similarly be analyzed by well-established

means.

However, it was hard to analyze human domains - such as a therapist who

identifies a BPTC patient and selects the matching name from a list in the GUI.

Interpreting assumptions made about human processes is low cost but not as

systematic as the rest of our analyses. Even our ad-hoc analysis of such components,

in the BPTC example, revealed a large number of vulnerabilities and critical

undocumented assumptions (Section 4.3.7). However, it was unclear now to build

proper confidence that more such assumptions and vulnerabilities do not exist.

Even with trained, experienced operators, it is hard to build confidence. One

of the big concerns in human controlled systems is habituation - experienced

operators get used to the normal modes of operations, and thus become less likely

to notice deviations from the norm. As such, systems with human operators can

actually become less safe the longer they operate, even as the humans become more

227

experienced. We suspect that extending the type of classification proposed by Donald

Norman [60] would help to provide such confidence.

7.2.3 Support from Domain Specialists

Building an argument focused on identifying and assessing component assumptions

requires that the analyst have access to experts on the system components probably

engineers and operators working on particular components of the system under

analysis. We found that the analyst did not need a lot of time from those specialists,

but did need to meet with them in a few key capacities:

initial interviews: The analyst will perform up-front specialist interviews for each
component, to build a rough understanding of the basic structure of the domains
and their roles in the system. This helps the analyst to build the initial
problem diagram, provides intuition for the overall shape of the argument, and
gives an idea of what sorts of assumptions can be reasonably made about each
component.

assisting analysis: If the analyst directly participates in the analysis of the domain

(as we did with the software of the Treatment Manager at the BPTC), then
additional time will be incurred, depending on the efficiency of the techniques
and confidence demanded.

identifying interface: A skilled analyst must separate the internal details of the
domain (the realm of the specialist) from the interface of the domain (the realm
of the generalist). Assumptions are made about (and phrased in terms of) the
interface, but exactly what internal details are relevant to the interface is not
always obvious. The analyst must resist the pressure from specialists to expose
in inner workings of a domain, and be able to abstract the interface out of the
specialist's (much more detailed) explanation of the entire component.

interpreting assumptions: For each assumption made about a domain, the analyst
must interpret that assumption back into the language of the domain, thus
putting it in a form that the specialists can understand and evaluate. Doing
so requires an understanding of the language and terminology used by the
domain experts, at least at a high level. For example, interpreting a code
assumption involves phrasing it in terms of input and output variables in the
code. In contrast, assumptions about physics devices (e.g. the cyclotron) are
best phrased in terms of the properties of the beam generated (e.g. intensity
and duration).

228

discharging assumptions: As the argument takes form, the analyst begins to need
to discharge assumptions made about the components, which involves frequent
(but small) questions to be answered by particular specialists.

If no expert is available for one of the components, there are several options available

to the analyst:

(1) Accept lower confidence in the system as a whole. If one cannot confidently
discharge assumptions about one of the domains, then it becomes a weak link
in the argument and will reduce confidence in the dependability of the system
as a whole.

(2) Rework or replace the component, effectively building a new component for
which you now have an expert. This option can be costly, but is can also fit
with an iterative development process, such as those adhering to Fred Brook's
advice:

Plan to throw one away. You will do that, anyway. Your only choice
is whether to try to sell the throwaway to customers.

Fred Brooks [27]

(3) Use components that are transparent, clear, or simple. That is, use components
for whom anyone can become an expert through careful examination. Some
components are fundamentally too complex to make transparent to outsiders,
but the general engineering experience is that simpler components are better.

Everything should be made as simple as possible, but not simpler.
Albert Elinstemn

Confidence in the system relies on both confidence in the system argument and

confidence in the component assum.ptzons that underly that argument. Without both,

confidence is impaired.

7.2.4 Analyst Expertise

The role of analyst actually building the dependability argument should, itself,

be treated as a specialized task demanding proper background and training. Only

229

a small number of analysts are needed, perhaps as few as just one, but that analyst

must have a certain technical aptitude

In general, the analyst must be capable of system level reasoning - a generalist

not a specialist. It is the analyst's job to to communicate with different kinds of

engineers and extract the relevant information - both a technical skill (getting past

domain specific terminology) and a social skill (convincing engineers to help build the

safety argument and managers that it is a worthwhile expenditure of resources).

For our approach, the analyst must be capable of using and interpreting formal

notation. We used Alloy as our formal language, although other formalisms can also

be used to articulate the assumptions made during requirement progression. However,

some sort of formal language is needed, both to unambiguously communicate and

record the assumption, and also so that the system argument is amenable to automatic

analysis. The analyst must both translate assumptions and requirements into the

formal language (based on informal descriptions provided by specialists), as well as

being able to interpret the assumptions discovered during requirement progression

back into language that makes sense to the specialists (whose job it is to confirm or

deny those assumptions). The analyst must also be comfortable at rephrasing the

requirement (during the requirement progression process) and structuring/debugging

the associated model.

Relational logic provided us with a useful formalism. We found it to be a fairly

intuitive way to precisely describe requirements (and found that most technical

people, even from other engineering disciplines, could make sense of Alloy statements).

It also fit nicely with the Forge analysis tool [23], which was capable of automatically

discharging relational claims about code fragments.

Domain Knowledge During Validation

When analyzing and interpreting assumptions into domain language (e.g. the code

analysis for the BPTC case study), the analyst must be aware of the kinds of failures

possible in that domain. That is, how might the domain violate the assumption made

about it? This knowledge can come partly from talking to domain experts (personnel

230

working on tile system) but the analyst needs to have a basic idea of what to look

for. Put another way, an analyst should be a generalist capable to talking to a range

of specialists in order to gain an understanding of the relevant domains.

For example, one vulnerability we found on the BPTC involved an SQL injection

attack. We discovered the attack while we were performing a separability analysis to

determine if the data read out of the database could have been overwritten. While

we did not initially look for SQL injection attacks, we only discovered the attack

because were were (peripherally) aware of the existence of such attacks. The analysis

uncovered the assumption tile database values are currently the same as when they

were initialized - but the analyst had to come up with the particular failure mode

that could violate that constraint - SQL injection attacks.

This observation ties into our philosophy of providing a technique that is

systematic but not automatic. No tool or technique can substitute for domain

expertise, although our technique helps an analyst decompose a system requirement

(that no one person is qualified to confirm) into a set of domain assumptions (that

individual domain experts are qualified to confirm). We aid the analyst in identifying

what question to ask what specialist, but do not replace the need for the specialists

nor do we replace the need for an analyst who can reason about abstract, systemn-level

concerns.

7.2.5 Code Analysis

A particular instance of relying on expert specialists to validate assumptions is the

reliance on expert software engineers when analyzing software. We found that, while

automatic analysis eased the process and make it more thorough, it did not substitute

for a well structured or well explained code base. Our analysis of the BPTC code

was dependent on the head programmer (Doug Miller) and his broad understanding

of how the code fit together. When he moved away, our ability to discharge code

assumptions with confidence went down, as it became much harder to identify the

subset of the code relevant to particular assurmptios (which was necessary, since our

analysis tools could not scale to the entire code base).

231

In order to keep performing analyses without an expert on the code base, we would

either have needed a tool that scaled better than Forge (but which could still discharge

arbitrary relational claims), or the code base would have had to be better structured,

so that we could have more easily identified the relevant subset. NWe suspect that tools

(like Forge) that are expressive enough to handle relational claims about real code

(including loops, recursion, conditionals, arithmetic) will never scale well enough to

handle millions of lines of code without some amount of human assistance.

The more reasonable path is to demand that the code be structured to reflect

the safety argument and execution modes, thus making it possible to easily and

confidently identify a small portion of the code relevant to a particular concern. While

in theory this mnight not be possible for an arbitrary algorithm implemented in code, in

practice our impression was that there were no such obstacles facing the BPTC code.

Having written the code once, a complete rewrite of the code (i.e. iterative design)

would have produced code that was transparently correct to an outside observer.

For example, the BPTC code uses many globals that are only used in a few places

(and thus could instead be passed around, have access control, or have not be global

to the entire code). The code also lumps all data of one type together, rather than

all data of one purpose together. For example, all messages are listed in one huge

case statement (which must be kept synchronized with other lists which declare the

valid types of messagers). Modes and sub-mnodes are kept as separate variables, with

no assertions to maintain the invariant that you are not in mode A while you are also

in a submode of mode B.

In spite of these limitations, this work does show that (even without automatic

tool support or better code structure) it is possible to link requirement progression

to code analysis, thereby building deep end-to-end arguments. The cost of manual

analysis was still a fraction of the cost of building and testing the system, and was

quite reasonable for a safety critical system like the BPTC. If one reduced the cost,

then our techniques would be applicable to a wider range of systems.

232

7.3 Experience and Reflections

While the research focuses on the technical aspects of building and checking an

argument, a lot of the skill involved is communicating effectively with the specialists

involved in the system.

The art of fortifying does not consist of applying rules or following a
procedure, but of good sense and experience.

Marechal Sebastien le Prestre de Vauban
(1633-1707, Military Engineer to King Louis XIV)

7.3.1 Types of Personnel

In the course of building the BPTC dependability argument, we talked with the

following types of specialists (ordered with the most frequently accessed personnel

first):

- The lead software engineer and programmer - Doug Miller. Extensive contact
and support during the code analysis. Provided overview of code fragments and
answers to particular questions about blocks of the code.

- The head of the BPTC, responsible for managing, certifying, and providing
funding for the project Jay Flanz. Extensive contact early in the project,
but less as the analysis moved to lower levels. Useful for identifying whom we
should speak to, and determining the correct set of requirements.

- The head physicist, who works both on calibrating the system, performing
research on it, and helping physicians translate their prescriptions into radiation
treatments. Moderate contact early in the project. Limited contact late in
project. Useful for understanding the precise definition of a correct dose,
including the somewhat subtle definition of location. He also helped describe
the overall system structure.

- Operators who work in the Master Control Room (MCR), coordinating the
therapists in the individual treatment rooms. Moderate contact mnid-way

through project. Helpful in understanding day-to-day process and what normal
operating conditions are like, and what sorts of minor errors occur routinely.

- Therapists who directly contact patients and prep them for treatment. Limited
contact due to hospital restrictions about access during operating hours.

233

Potentially helpful to analyzing patient identification protocol, but not helpful
in practice due to limited availability.

- Physicians who write prescriptions for patients undergoing radiation treatment.
Limited contact during analysis of database. Relevant to the initial assignment
of criticality to hazards, to determine the danger posed by different failure
modes. Would be key to building a more thorough hazard analysis or
requirement elicitation phase.

- Patients undergoing treatment. No contact due to privacy restrictions. Might
have helped understand the patient identification process better, to better
understand the likelihood of different sorts of false-identification scenarios.

For the voting case study, we spoke alniost exclusively with Peter Ryan, who

originally proposed the system and is currently one of the leading researchers

developing it. It is a much smaller system than the BPTC, involving fewer different

types of engineers, and our total analysis took about a quarter of the time (two weeks

instead of two months). Peter Ryan is an academic researcher, with a background

in cryptography and voting systems, and a side interest in system analysis. He thus

played both the role of a specialist (knowing what assumptions could be guaranteed

bvy cryptographic proofs) and a generalist (giving a summIary of the overall system).

Before our collaboration. he already had an intuitive safety argument, which proved

helpful in guiding progression.

7.3.2 Mediums of Communication

Initially, we used the problem diagrams themselves as a means of guiding

communication with the BPTC personnel. However, this proved to be less fruitful

than using the assumptions (generated via requirement progression). as isolated

concrete questions. When shown a high-level overview of the system, the specialists

tended to trust the diagram's accuracy more than we wanted, and thus not provide

proper feedback on our understanding of the system structure. In contrast, concrete

claims or questions produced elaborate and informed responses.

For example, an early version of the BPTC problem diagram had a direct

connection between the GUI and the prescription database. At one point, the software

234

lead made an aside along the lines "I guess that's some sort of abstracted view of

dataflow" when actually it was a mistake - the database information only gets to

the GUI via the TM and network (which were also on that diagram). However,

when shown the matching domain assumption that the messages sent by the GUI are

received by the DB, he immediately pointed out that no such message existed, and

explained the indirect path of communication between those two points. Furthermore,

he pointed to the particular parts of the code relevant to passing that message along

and processing it.

In general, we found that using breadcrumbs as a medium of communication

was more productive, as they provide concrete questions. The engineers and

specialists tended to be concrete thinkers who were deeply grounded in their particular

component. As such, they were very able to answer very hard (and slightly vague)

questions about their components, but were not able to give us a useful overview of

how the component worked and what key properties it provided.

When we did end up showing problem diagrams to the programmers, we ended up

just pretending they were dataflow diagrams - a more concrete and familiar notation

for a progranimmer. For the most part, phenomena in our diagrams represented the

flow of information (or the issuing of commands) between components, and so viewing

them as dataflow diagrams was fine for checking our broad understanding.

In the voting case study, Peter Ryan was able to directly understand the Problem

Frames notation, but still needed help in making sense of the details of larger Alloy

models.

7.3.3 Styles of Thinking

While we interacted with only a, small sample number of engineers, a few patterns

did emerge about how the different types of engineers tended to describe their

components. The physicists were more apt to think declaratively than tile

programmers they were more apt to give a declarative statement about the

system (such-and-such a property will always be true of the beam) and less likely

to make an operational statement (X happens and so Y then happens). In contrast,

235

programmers were more able to separate abstraction layers, describing the overall

shape of information in the system without diving into the details of the code (the

A-related stuff happens in this part of the code, and the B-related stuff happen in

this chunk of code). The physicists seemed comfortable with thinking about non-

temporal invariants (X is always greater than Y), but less comfortable deciding what

details to leave out of an explanation. Roughly speaking, physicists told us too much,

progranmmers told us too little, and we had to adapt our questions accordingly.

7.3.4 BPTC Safety Culture

The BPTC specialists tended to have broad and deep understandings of their own

domains. The overall system was small enough that there were only a few specialists

of each type, and thus individual people could answer fairly broad questions about a

component. This made it easy to find a specialist qualified to validate a given domain

assumption, or at least to help us in validating it.

However, while the individuals were knowledgeable, the system documentation

was too vague and too sparse. It gave little or no overview of the system nor any

argument for why the system would work, and simply described details of how the

svstem actually operated. As such, a lot of the relevant knowledge to maintaining

safety is in the heads of the specialists, and is lost when those specialists are replaced

or retire.

The head of the center, Jay Flanz, was very concerned with safety issues, and very

supportive of our efforts to analyze the system. He was unsure of how to build an

appropriate safety argument, and was concerned that the FDA certification process

did not provide the confidence he wanted in the system. He knew that the testing

was not enough, but he was not sure what to do other than add additional safety

interlocks in response to incidents as they occurred.

Overall, the personnel had a conscious understanding of the safety-critical nature

of their device. They understood the different types of dangers presented, reinforced

by their physical proximity to the device (and thus immediate personal concern in

the safety of the proton beam). They had proper respect not only for the immediate

236

dangers of overdosing a patient, but also the dangers of poor logging or non-graceful

failure modes. While they lacked the techniques and expertise to build a safety

argument for the system, they were motivated and skilled enough to support the

construction of such an argument.

7.3.5 BPTC Conceptual Mistakes

While maintaining an overall strong safety culture, there were some particular points

wherein the BPTC personnel and management made conceptual mistakes about how

to reason about a complex system.

Criticality Classification

Components were not always properly classified as critical or non-critical, and thus

their reliability was not always appropriated prioritized. Some components were

classified as non-critical, even though they could (if they were replaced by a malicious

or careless implementation) violate safety concerns.

For example, the network was not deemed safety critical, even though emergency

stop commands were transmitted across it [68] and corrupt network messages could

result in patients receiving someone else's treatment (Chapter 4). Similarly, in earlier

work [24], we analyzed the automatic beam scheduler, responsible for allocating the

proton beam between the treatment rooms. It was classified as non-critical. since the

instruction to fire the beam was controlled by the therapists in the individual rooms.

However, a bad scheduler could cause the beam to turn on or off at unpredictable

times, causing underdoses and treatment delays (and potentially harming confused

therapists or technicians).

In general, the devices classified as non-critical are the devices that we felt should

be non-critical. However, the realities of the system architectures did not not always

provide sufficient separability and modularity, meaning that the safe operation of the

system ended up relying upon a wider range of components than necessary. This

indicates a general need to provide better separation between critical and non-critical

237

components, so that one can better assign effort to the critical ones and ignore the

less critical ones without undermining confidence in the critical concerns.

Planning for Change

A lesser concern was with the provision of misguided generality in the software. While

planning for change is difficult, as one does not know exactly how requirements will

change, we found a few cases where a little more forethough would have made the

system nmuch more amenable to safe and easy modification.

For example, the code written to allocate the proton beam to one of the three

rooms [24] also provided a notion of priority, so a therapist could indicate that he

or she has a small child who is getting restless and needs the beam right away. The

priority queue included a three-tiered system for determining which room to allocate

next, including nine total possible priority levels. However, there were only three

rooms, and in practice there are only two priorities "any time is fine" and "sooner

is better". The code provided generality for adding more priority levels and more

types of priorities at each level, even though the current priority levels already far

exceeded the system's needs.

However. the scheduler code did not provide generality for how many rooms there

were. It was originally written for exactly two rooms, and had to be retro-actively

(and inelegantly) extended to handle the 3rd room, when it was later added. The

new code included a lot of duplicated functionality, requiring dual maintenance when

modifications are made. As the center grows to meet the high demand for proton

therapy, the hospital is likely to add more rooms, which will require further extensions

of the code in ways it does not easily accommodate.

Human Versus Machine

The BPTC includes redundant checks and safety interlocks, combining automatic

hardware checks, automatic software checks, and manual human checks. However,

as tile center evolved, some portions were over-automnated due to inadequate

requirements elicitation.

238

The Automatic Beam Schedule [24] implements a priority queue, used to

automatically decide which room should currently have access to the proton beam.

This process was previously handled by live communication (via a telephone) between

the therapist and the Master Control Room (MCR) operator. There are only three

treatment rooms, and a treatment takes about an hour to complete, so the beams

scheduling was not much of a burden on the MCR operator. The system was

automated in response to complaints that the therapists had that they were not sure if

their request was being processed or if their room had been forgotten. As such, what

they needed was better visibility of the current queue, not automatic prioritization

of that queue. A simple system could have provided feedback on the current queue

without adding the risks and complexities of an a,utomatic priority queue.

In contrast, we would like to see more automatic checks in the patient-

identification process, to support the existing human checks. For example, scanning

a barcode on a patient ID rather than reading text by eye would reduce the risk of

selecting a patient with a similar name (and thus delivering the wrong dose).

7.4 Future Work

7.4.1 Tool Support for Progression

The requirement progression process is fundamentally a human process, requiring a

human to guide the introduction of meaningful assumptions. However, tool support

can certainly improve human processes. We currently support the human with

automatic checks of proposed requirement rephrasings. We would like to extend this

support to include automatic suggestions of how to proceed in the progression process.

using a comnbination of heuristics (such as pushing the requirement arcs towards the

machine domain) and mathematical inferences (such as using prime interpolents to

propose breadcrumbs [17]).

Aside from generating suggestions, simply providing a GUI for building and

maintaining problem diagrams and progressions would make the process more

239

accessible. Such a GUI could integrate with a back-end Alloy analysis, linking the

constraints in a diagram with the accompanying Alloy model that analyzes those

constraints.

7.4.2 Code Analysis

The current code analysis required a fairly large amount of human effort, although

only a fraction of that spent on building and testing the system. The introduction

of automatic translation tools, such as CForge and JForge [23], helps to reduce this

time cost. However. the scalability limitations of the Forge analysis still requires

that a human invest time in building an abstraction barrier of specification stubs to

isolate the relevant portion of code. However, we remain tied to Forge for our analysis

because of its unique ability to check arbitrary relational claims (written in Alloy)

against code. This feature permits us to smoothly integrate the code analysis with

the assumptions generated by our Alloy-based requirement progression.

We feel that the gains from smoothly integrating the code analysis (Forge)

with the requirements analysis (requirement progression) justifies the additional

human investment. For costly or safety-critical applications, this tradeoff is sensible.

However, reducing the time investment would broaden the appeal of our techniques,

and make it applicable to a wider range of systems.

As mentioned earlier, one solution is to require better structured code, so that

it is easier to identify the relevant subset. Another approach would be to improve

Forge-like tools to scale better. A third option is to provide better tool support for

automatically identifying the relevant subset. For example, one might run a slicing

algorithm over the code to identify a subset small enough to hand off to Forge.

7.4.3 Integration with STAMP

Our current approach uses hazard analysis to justify the set of requirements analyzed,

but that technique is not as systematic as other component arguments, and thus

weakens the overall confidence of the dependability argument. For example, we

240

believe that Leveson's STAMP [52] notation would link requirement progression to

requirements elicitation, justifying why the requirements analyzed by progression are

indeed the right requirements to be establishing.

7.4.4 Lightweight Techniques

We would like to experiment with applying these techniques to less critical

applications, where the analysis must be cheaper but need not provide as much

confidence. Working on that sort of case study would likely involve

- adding more automation and tool support so that existing techniques are lower

cost.

- using CDADs to select a lighter-weight set of component techniques, and

- being more conscious about the tradeoff. not only between breadth and depth,
but also between cost incurred and confidence provided.

One idea we have begun to develop to help manage that tradeoff is the waterglass

model an extension of the CDAD notation that guides the distribution of effort or

budget across those techniques based on the confidence they provide and costs they

incur. We provide a glimpse of the waterglass model in the next section.

7.5 Waterglass Model of Budget Allocation

Suppose you have selected a set of techniques that fit together to build an end-to-end

dependability argument, as shown in the CDAD in Figure 7-1. Now vou have to

allocate effort amongst those techniques, given a limited budget.

7.5.1 Representing Component Techniques

Think of each component argument as a glass of water, as shown in Figure 7-2.

The height of the glass represents the maximum confidence you could gain from the

technique, the height of water within a glass shows how much confidence you are

241

stated as property on...

context 0

C
O system

Cn hazard
() (analysis

.)

O component
-. , - requirement

Sprogression

module

- Iautomatic
block/ code analysis:

Figure 7-1: Techniques linked together to form an end-to-end dependability argument.

gaining given your current investment in the technique, and the diameter of the glass

represents return on on investment - it takes more water to raise the level of a wider

glass. Your budget is a pitcher of water. which is to be poured into the glasses.

To get an idea of the overall confidence provided by a dependability argument, line

up the glasses side-by-side, as shown in Figure 7-3-a. As a rough approximation, the

confidence provided by the entire argument is the minimum water level of any glass. 1

Confidence is maximized by equalizing the water level in all the glasses. Imagine

putting a pipe between the glasses so that they even themselves out, producing the

highest possible minimum (Figure 7-4-b).

1The actual confidence is surely a more complex function, but it is one that punishes you severely
for having one glass much lower than the rest and rewards you very little for having one glass nmuch
higher than the rest. The ninimum function is a good approximation for the purposes of this
narration.

242

stated as property on...
o'k

context

O system
U) hazard

(analysis

a)
O component
CL / requirement

) progression

CZ J-4-a
CZ module
a)
L_

,/ automatic
block-,/ code analysis

Figure 7-2: Each technique is represented by a glass of water. The height of the glass
shows potential confidence gained, the water level shows the current confidence being
provided, and the diameter represents return on investment.

7.5.2 Classifying Mistakes

This representation allows us to classify some of the ways that a dependability

argument can go wrong.

Figure 7-4 shows cases where one of the glasses has been omitted. In part (a),

requirements gathering has been omitted (right glass). A requirement has been

carefully decomposed into breadcrumbs (center glass), and the breadcrumbs have

been validated (left glass), but the wrong requirement might have been enforced, so

overall confidence is low. In part (b), requirements were carefully gathered (right),

and the system was carefully architected (center), but the components were not

validated (left), leaving overall confidence low. In part (c), the requirements were

243

Ia*~~ ienS I

minimum ----

automatic
code analysis

requirement
progression

automatic requirement
code analysis progression

Figure 7-3: Overall confidence in the dependability argument
confidence of the component techniques.

is the minimum

well understood (right), and the components were checked carefully (left), but no

argument was made that the component assumptions actually enforced the system

requirement (center), lowering overall confidence.

Figure 7-5 shows cases where techniques were chosen that were not appropriate

given the budget. Part (a) shows a case where a heavyweight theorem proving

technique was used to analyze code (left), as represented by a very wide (but tall)

glass. However, with a low budget, the benefits of theorem proving cannot be realized,

and the wide glass just sucks the water out of the other (much thinner) glasses. Overall

confidence is lower than necessary. Part (b) shows the opposite problem. A set of

244

hazard
analysis

(b)

minimum ----

hazard
analysis

............

lightweight techniques have been used they are narrow (fill up quickly) but short

(can only ever provide so much confidence). With a high budget, all three glasses

have been filled up with water to spare (and there is no where to spend the extra

budget). Overall confidence is lower than necessary.

7.5.3 Shaped Glasses

Actual techniques do not always correspond to cylindrical glasses. For example,

consider the glasses in Figure 7-6. The left-most glass represents a technique with

diminishing returns, such as testing. It takes more water (more test cases) to gain

confidence the higher the level already is (the more tests you have already run).

Each drop of water (test case) adds less confidence than the last. The second glass

represents a technique with a high overhead, such as a custom-build analysis. It

takes a lot of work to setup, but then has a high return on investment. The last two

glasses show the tradeoff (discussed earlier) between lightweight and heavyweight

techniques. Heavyweight techniques have the potential to provide high confidence,

but take a large investment to achieve that confidence. Lightweight techniques have

a much lower maximum confidence, but attain that maximum much more quickly.

The shapes of the glasses for particular techniques would be based on empirical data

and historical experience.

Building a dependability argument is thus not only a matter of picking techniques

with appropriate breadth and depth (as shown on the CDAD), but also about

matching the techniques to the budget at hand. The waterglass model has the

potential to guide the selection of techniques and also guide the allocation of budget

to those techniques.

245

(a)

minimum ---

automatic requirement
code analysis progression

fZZZZZ~

minimum ----

no requirement
code analysis progression

(c)

minimum ---

automatic no
code analysis link

Figure 7-4: Representing errors of omission. Building an
harms confidence.

incomplete argument greatly

246

no
elicitation

hazard
analysis

hazard
analysis

f:=

7-

minimum ----

theorem requirement
proving progression

minimum -----------

informal
review

patterned
argument

hazard
analysis

hazard
analysis

Figure 7-5: Representing errors of technique selection. In the first case, the budget is
low so the heavyweight technique sucks all the water out of the other glasses, lowering
overall confidence. In the second case, the techniques are lightweight but the budget
is high, resulting in wasted budget and lower confidence.

247

i-IIll ~c~- - ~-

IT

diminishing
returns

high
overhead heavyweight lightweight

Figure 7-6: Waterglasses have different shapes depending on how their return on
investment changes as investment increases.

248

A I I

I

Chapter 8

Appendix: Automatic Door Model

An Alloy model that checks the requirement progression and resulting argument

diagram described in Section 3.6. It permits auotmatic analyses to confirm that

the generated domain assumptions are indeed strong enough to enforce the system

requirements.

1 /* A model of an automatic door controller . as part of its dependability argument.
2 * problem proposed by Nick Ourusoff
3 * model created by Robert Seater June 2008
4 * last updated August 2008
5 /
6
7 open util/ordering [Tine]
8 sig Time {
9 DistanceSensor : one Int

10 DistanceDoor: one Int
11 DoorGap: one Int,
12 MotorSpeed: one Int
13 WalkingSpeed: one Int
14 MotionDetected: one MotionDetectedOption
15 MotorPolarity : one MotorPolarityOption,
16 MotorPower : one MotorPowcrOption,
17 DoorGapMeasure : one DoorGapMeasureOption.
18 AppliedForce: one AppliedForceOption,
19 }
20
21 abstract sig MotionDetectedOption {}
22 one sig Motion , NoMotion extends MotionDetectedOption {}
23

24 abstract sig MotorPolarityOption {}
25 one sig Opening , Closing extends MotorPolarityOption {}
26
27 abstract sig MotorPowerOption {}
28 one sig MotorOni, MIotor Off extends MotorPowerOption { }

249

29
30 abstract sig DoorGapMeasureOption {}
31 one sig AlmostOpen, AlmostClosed, UnknownGap extends DoorGapMeasureOption { }
32
33 abstract sig AppliedForceOption {}
34 one sig OpeningForce, ClosingForce, NoForce extends AppliedForceOption {}
35
36 fact sanity {
37 all t: Time t.DoorGap =< 10
38 }
39
40 /a*************************************

41 pred ServiceGoal [t: Time] {
42 (DistanceDoor [t] =< 1) - (DoorGap[t] >= 9)
43 (DistanceDoor [t] >= 11) (DoorGap[t] =< 1)
44 }
45
46 pred MotorDamage [t: Time] {
47 (
48 MotorPower [t] MotorOn
49 and MotorPolarity [t] Opening
50 and DoorGap [t] >= 10
51) or (
52 MotorPower [t] = MotorOn
53 and MotorPolarity [t] = Closing
54 and DoorGap[t] =< 0
55
56 }
57
58 pred DoorDamage [t: Time] {
59 (
60 AppliedForce [t] = OpeningForce
61 and DoorGap[t] >= 10
62) or (
63 AppliedForce[t] = ClosingForce
64 and DoorGap [t] =< 0
65
66 }
67
68 pred goals [t: Time] {
69 ServiceGoal [t]
70 ! MotorDamage [t]
71 ! DoorDamage [t
72 }
73
74 ***************************************/
75 pred PeopleBC [] {
76 /the sensor is located on top of the door
77 all t: Time | DistanceDoor [t] DistanceSensor [t]
78
79 /max walking speed is a constant between 0 and 2 feet per second
80 all t,t': Time I WalkingSpeed [t] - WalkingSpeed [t']
81 WalkingSpeed [fir st] >= 0
82 WalkingSpeed [fir st] < 2

250

83
84 //people move up to their max walking speed
85 all t : Time, t ': t .next {
86 (DistanceSensor [t] >= DistanceSensor [t] - WalkingSpeed [t]
87 and
88 DistanceSensor [t'] = < DistanceSensor [t] + WalkingSpeed [t])

89 }
90
91 }
92
93 pred MotionSensorBC [] {
94 /the sensor has a detection range of 6 feet
95 all t: Time]MotionDetected [t] = Motion a DistanceSensor [t] =< 6

96 }
97
98 pred ControllerBC [] {
99 all t: Time {

100 (MotionDetected[t] = Motion and DoorGapMeasure[t] != AlmostOpen)
101
102 (MotorPower[t] = MotorOn and MotorPolarity[t] = Opening)

103 }
104 all t: Time {
105 (MotionDetected [t = NoMotion and DoorGapMeasure[t] != AlmostClosed)
106 =
107 (MotorPower [t] = MotorOn and MotorPolarity [t] = Closing)
108 }
109 all t: Time
110 (MotionDetected[t] = Motion and DoorGapMeasure[t] = AlmostOpen)
111 : MotorPower [t] - MotorOff
112 all t: Time
113 (MotionDetected [t] = NoMotion and DoorGapMeasure [t] = AlmostClosed)
114 I MotorPower [t] MotorOff
115 }
116
117 pred MotorBC [] {
118 /motor speed is 50% per second, and remains constant over time
119 all t ,t': Time MotorSpeed [t] = otorSpeed [t ']
120 MotorSpeed [first] 5
121
122 / The motor 's power and polarity determine the force applied to the door
123 all t: Time
124 MotorPower [t] = MotorOff AppliedForce[t] = NoForce
125 all t" Time
126 (MotorPower [t] MotorOn and MotorPolarity[t] = Opening)
127 = AppliedForce[t] = OpeningForce
128 all t Time
129 (MotorPower [t] MotorOn and MotorPolarity [t] = Closing)
130 = AppliedForce[t] = ClosingForce
131 }
132
133 pred DoorBC [] {
134 //The applied force on the door bounds how the gap can change. as limited by
135 all t: Time, t ': t .nxt {
136 AppliedForce[t] - OpeningForce 4

251

137 (DoorGap[t'] = int [DoorGap[t]] + int [MotorSpeed[t]])
138 }
139
140 all t: Time, t ': t.next {
141 (AppliedForce[t] = ClosingForce) 4
142 (DoorGap [t'] = int [DoorGap [t]] - int [MotorSpeed [t]])
143 }
144
145 all t: Time, t ': t .next (
146 (AppliedForce [t] = NoForce) 4 (DoorGap[t'] = DoorGap [t])
147 }
148 }
149
150 pred PositionSensorBC [] {
151 all t: Time
152 DoorGapMeasure [t] = AlmostOpen 4 DoorGap [t] >=9
153 all t: Time |
154 DoorGapMeasure [t] = AlmostClosed 4 DoorGap[t] -=< 1
155 }
156
157 pred breadcrumbs [] {
158 PeopleBC
159 MotionSensorBC
160 ControllerBC
161 MotorBC
162 DoorBC
163 PositionSensorBC
164 }
165
166 * * * ****** ************************
167 pred initialConditions [] {
168 goals [first]
169 goals [first .next]
170 DoorGap[first] >= 0
171 DoorGap[first] =< 10
172 }
173
174 assert enforcement {
175 breadcrumbs and initialConditions
176 - all t : Time goals [t]
177 }
178
179 check enforcement for 3 but 6 iit , 5 Time
180 // 5 int gives the bitwidth , thus ?we are allowed nategers in the range [-15,16]
181 // we use bztwidth 6 to reduce the problems from overflow
182

183 pred nice [] {
184 breadcrumbs
185 initialConditions
186 all t: Time goals [t]
187 }
188 run nice for 3 but 6 int , 5 Time

252

Chapter 9

Appendix: BPTC Case Study

History

This research project has grown largely out of an ongoing collaboration with the

Burr Proton Therapy Center (BPTC), a radiation therapy facility associated with

the Massachusetts General Hospital in Boston. It has served as both inspiration for

new approaches for ensuring software dependability. and as a reality check for what

approaches are realistic on a real, working, safety-critical system.

History of the BPTC

The Burr Proton Therapy Center (BPTC) is a radiation therapy facility associated

with the Massachusetts General Hospital in Boston. It is one of only two facilities in

the United States to offer treatment with protons (rather than electrons or x-rays).

Proton beams require much more elaborate and expensive equipment to produce, but

can be more tightly conformed, and cause less damage to surrounding tissue. They

are thus more suitable for treatments in sensitive areas such as the eye, and for the

treatment of tumors in the brains of children, for which collateral damage has more

serious long-term consequences. The center occupies a new building adjacent to the

hospital, and began treating patients in the fall of 2001.

The Software Design Group in the MIT Lab for Computer Science began a

253

collaboration in April 2002 with BPTC and the developers of the therapy system

to investigate better methods for the development of safety critical software. The

BPTC system would be used as a, challenging example of a modern and complex

medical device for the purposes of research; in turn, the results of the research would

be used where appropriate to improve the safety and reliability of the system.

The BPTC installation has at its core a cyclotron that generates a beam of protons.

The beam is multiplexed amongst several treatment rooms, each with its own gantry

and nozzle for positioning the beam. Technicians in a master control room supervise

the cyclotron and allocate the beam to treatment rooms. Each treatment room is

paired with a treatment control room, in which clinicians enter and execute treatment

prescriptions.

The patient is placed on a couch which is electromechanically positioned by staff

within the treatment room. The beam emitter is also positioned, and its aim verified

by staff using X-rays and lights attached to the emitter. The staff then leave the

room, and the treatment is initiated from the treatment control room. Treatment

consists of irradiating a specific location on the patient using a beam of protons with

a defined lateral and longitudinal distribution.

The machine is considered safety critical primarily due to the potential for

overdose - treating the patient with radiation of excessive strength or duration. The

International Atomic Energy Agency lists 80 separate accidents involving radiation

therapy in the United States over the past fifty years. The most famous of these

accidents are those involving the Therac-25 machine. Faulty software was a primary

cause of the Therac-25 failures. More recently, software appears to have been the

main factor in similar accidents in Panama in 2001.

The BPTC system was developed in the context of a sophisticated safety program.

Unlike the Therac-25, the BPTC system makes extensive use of hardware interlocks,

and has a redundant PLC-based system running in parallel with the software control

system. Video cameras inside the control room allow the technicians to view

internal mechanisms, including a lead beam stop that can be inserted to isolate the

treatment room from the cyclotron. The software itself is instrumented with abundant

254

runtirime checks, including a heartbeat monitor to ensure continued operation of

critical processes. A detailed system-level risk analysis was performed. The software

implementation was heavily tested, and manually reviewed against rigorous coding

standards.

Our Experience

The work described in Chapter 3 grew out of the difficulty we encountered with

keeping track of a large number of domain properties, relating them appropriately to

the requirements and specifications.

Initially, we used problem diagrams simply to describe the BPTC system - keeping

track of how domains interacted and recording properties about the domains. As we

spent more time interacting with the BPTC engineers, we found that the problem

diagrams were not only useful recording information they had told us, but also for

indicating what questions to ask. The information they initially gave us was not

enough to build a safety case, yet it was not clear what additional information would

be. There simply was not time to get full descriptions of all the parts of the system,

so we needed to narrow our questions and focus our inquiry.

We found that we could use the structure of a problem diagram to (at least start

to) build a safety argument for a requirement and, by doing so, explicitly expose the

assumptions we were making about the behavior of different parts of the system. Once

those assumptions were exposed and articulated, we could ask the BPTC engineers if

they were reasonable. This approach was a big improvement over our earlier attempts

to build safety arguments out of the information the engineers volunteered on their

own or blindly probing their knowledge of the immensely complex system.

The requirement progression technique described in Chapter 3 and applied in

Chapter 4 is a more general and systematic way for doing the kind of reasoning that

has helped us communicate with the BPTC. This rmethod can either be used as a

means of focusing requirements elicitation, or it can be used to build an auditable

argument one in which an outside reviewer can understand why the argument is

correct. We originally developed it to help us do the former task, although our current

255

work focuses more on the latter task.

256

Chapter 10

Appendix: Requirement

Progression Model

This Alloy model is analyzable with the current, freely available, version 4 of the

Alloy Analyzer [30].

257

1 module requirementProgression
2 open util/ordering [Diagram] as ord
3 -- for effective visualization , project over Diagram
4

5 ***********************************s**
6 /* defining a problem diagram */

7 ********s******************************
8
9 sig Phenomenon, Domain, Constraint (}

10
11 -- the anatomy of a problem diagram
12 sig Diagram {
13 phenomena: set Phenomenon,
14 domains, machines: set Domain,
15 constraints, requirements ., specifications: set Constraint,
16 connects: Domain -, Domain,
17 involves: Domain - Phenomenon,
18 touches: Constraint -' Domain,
19 mentions: Constraint - Phenomenon
20 }
21
22 pred wellFormedDiagram [x: Diagram] {
23 -- relations do not cross between diagrams
24 selfContained [x]
25 -- there is exactly one machine
26 one x. machines
27 -- domains connect iff they involve a shared phenomenon
28 connectIffShare [x]
29 -- diagrams are non-trivial
30 nonTrivial [x]
31 - all constraznts are well formed
32 all c: x.constraints I wellForinedConstraint [c ,x]

33 }
34
35 run wellFormedDiagram for 4
36 run wellFormedDiagram for 35 -- 2 minutes to solve

258

2 /* helper functions for well formedness ,/

3 /*************************************/
4
5 domains connect iff they involve a shared phenomenon

6 domains do not connect to themselves
7 pred connectIffShare [x: Diagram] {
8 all d,d': Domain
9 d' in x.connects d] a

10 (d != d' and some x. involves [d] & x.involves[d '])

11 }
12

13 pred selfContained [x: Diagram] {
14 -- domains don't connect to doma ns in other diagrams

15 (x.domains).(x. connects) in (x.domains)
16 -- domains do not involve phenomena from other diagrams

17 (x.domains).(x. involves) in (x.phenomena)
18 -- requirements and specifications are not from other diagrams
19 x.requirements + x. specifications in x.constraints
20 -- the machine is not in another diagram
21 x.machines in x.domnains
22 }
23
24 pred nonTrivial [x: Diagram] {
25 -- each constraint mentions some phenomena
26 all c: x.constraints | some x.mentions[c]
27 -- each domain involves some phenomena
28 all d: x.domains some x. involves [d]
29 -- the diagram is connected
30 all d.d': x.domains d' in d.*(x.connects)
31 -- there is at least one non-machine domain
32 some x.domains - x. machines

33 }
34
35 pred wellFormedConstraint [c: Constraint . x: Diagram] {
36 -- constraints can only touch the domains that involve phenomena they mention

37 -- constraints must touch the domains that involve the phenomena they mention

38 all p: x. mentions [c] some d: x. touches [c] p in x. involves [d]
39 all d: x.touches[c] some x. involves [d] & x.mentions[c]
40 -- specifzcations only touch machines
41 c in x.specifications = x.touches[c] in x.machines
42 -- c is contained entirely within x
43 fullyContained(Constraint [c , x]

44 }
45

46 pred fullyContainedConstraint [c: Constraint, x: Diagram] {

47 -- c must be one of x's constraints
48 c in x.constraints
49 -- constraints do not touch domains in other diagrams

50 x.touches[c] in x.domains
51 -- constraints do not mention constraints in other diagrams

52 x.mentions[c] in x .phenomena

53 }

259

/***************************************

/* requirement progression transformations */

pred addBreadcrumb [before , after: Diagram] {
-- nothing changes except for the addition of a single breadcrumb
structureEquivalent [before , after]
some bc: Constraint {

addConstraint [bc . before , after]
-- be is a well formed valid breadcrumb
one after.touches[bc]
wellFormedConstraint [be , after]
-- be is not a require2ment or a spec
be !in after requirements + after. specifications

pred rephraseRequirement [before, after: Diagram] {
-- nothing changes except for r' replacing r
stru ctureEquivalent [before , after]
some r : before . requirements , r ': after . requirements {

wellFormedConstraint [r ' , after]
replace [r . r , before , after]
onlyChanges[r, r', before , after]

-- r and r ' have different phenomena but
before.mentions[r] !- after.mentions[r']
before.touches[r] = after.touches[r ']

samre domains

-- the change is justified by the other constraints
implication [after . constraints , r, after]

}

pred pushRequirement [before , after: Diagram] {
structureEquivalent [before , after]
onlvTouchesChanges [before , after]
-- one requirement changes what it touches
some r: before . requirements & after . requirements (

before .touches [r] !- after.touches [r]

before.touches - (r - unix) after.touches - (r -+ univ)
wellFormedConstraint [r . after]

}

260

1 * **************************************
2 /* simulation and invariant preservation ,/
3 ***************************************/
4
5 pred commonTransformation [xx': Diagram] {

6 some y,z : Diagram {
7 addBreadcrumb [x, y]
8 rephraseRequirement[y, z]
9 pushRequirement [z .x ']

10 }
11 }
12
13 pred someTransformation [xy: Diagram] {
14 addBreadcrumb [x, y] or
15 rephraseRequirement [x, y] or
16 pushRequirement [xy] or
17 commonTransformation [x, y]
18 }
19

20 pred simulation [] {
21 -- the first diagram is well formed
22 wellFormedDiagram [fir st []]
23 -- it has no spec,
24 no first []. specifications
25 -- and it has a requirement
26 some first []. requirements
27
28 -- a spec is evenltually derived via transformations
29 some final: Diagram - first [] {
30 all x: prevs [final] someTransformation [x, next [x]]
31 final . requirements in final. specifications
32 }
33 }
34 run simulation for 4
35
36 assert wellFormednessPreservation {
37 all x,y: Diagram |
38 wellFormedDiagram [x] and someTransformation [x.y]
39 - wellFormedDiagram [y]
40 }
41 check wellFormednessPreservation for 4
42 -- the check executes faster if commonTra'(nsformation
43 is elimiinated from someTransformation

261

1 /**e****s**e*************************

2 / helper functions for the transformations ./
3 /***************************************
4
5 add a non-requirement , non-specification constraint
6 pred addConstraint [c: Constraint , x,y: Diagram] {
7 onlyChange[c. x, y]
8 c = y.constraints - x.constraints
9 x.requirements = x.requirements

10 y. specifications = y. specifications }
11
12 -- only constraints , requ, re men ts, specifications , touches rn mentions vary
13 pred structureEquivalent [x,y: Diagram] {
14 x.domains - y.domains
15 x. machines = y.machines
16 x. phenomena = yv.phenomena
17 x. connects = v. connects
18 x. involves = y. involves }
19
20 -- approximates meaning of the implication (aO ^ a ... a_n - b)
21 pred implication [a: set Constraint b: Constraint, x: Diagram] {
22 x.mentions[b] in x.mentions [a] }
23
24 -- r disappears and r ' appears to replace it
25 pred replace [r,r r Constraint , x,y: Diagram] {
26 r in x.requirements
27 r !in y.requirements
28 r' !in x. requirements
29 r' in y. requirements }
30
31 -- only constraints in c change
32 pred onlyChange [c : set Constraint , x, y: Diagram] {
33 x.specifications - c = v.specifications - c
34 x.touches - (c - univ) = v.touches - (c - univ)
35 x. requirements - c y. requirements - c
36 x. constraints - c = y.constraints - c
37 x. specifications - c = v.specifications - c
38 x.mentions - (c - univ) = v.mentions - (c - univ) }
39
40 -- only constraint c changes
41 pred onlyChange [c : set Constraint , x, y: Diagram] {
42 onlyChanges [c c,x,y] }
43
44 -- only changes are c in x and c' in y'
45 pred onlyChanges [c,c': set Constraint, x,y: Diagram] {
46 x. specifications - c = y.specifications - c
47 x. touches - (c * univ) = y. touches - (c' - univ)
48 x. requirements - c y. requirements - c'
49 x. constraints - c = y. constraints - c'
50 x. specifications - c = y. specifications - c
51 x. mentions - (c - univ) = y. mentions - (c' - univ) }
52
53
54 -- nothing but the touches relation differs betw.een x and y

262

55 pred onlyTouchesChanges [x ,y: Diagram] {
56 x. requirements = y. requirements
57 x. constraints y. constraints
58 x. mentions = y. mentions }

263

264

Chapter 11

Appendix: Voting Fidelity Model

The full fidelity model for the cryptographic voting case study.

* moel describig a secure vot

• A model describing a secure voting procedure.
*

*

*

*

The voting scheme was developed ., in part , by Peter Ryan.

This model was developed by Rob Seater and Eunsuk Kang,
with help from Emina Torlak.

* model created 3-24-08

module voting
module voting

// Someone who is capable of voting (but not
sig Voter {

// Each voter wants zero or one candidates
intention: lone Candidate,

necessary authorized to do so)

to win.

// Each voter receives a set of 0 or more ballots.
voterBallot: set Ballot,

// Some voters are registered voters;
/ and are assumed to show up to vote

sig RegisteredVoter extends Voter {}

they allowed to vote

265

// The name of a candidate who is running in the election.
sig Candidate {

// The total 'number of votes computed by the voting method for this candidate
/A candidate can only get one number of votes,
// but we don 't yet say how they are computed.
score: one Int

/ A checkable
// e.g. ' 'the
sig Position { }

// A ballot is th
// It consists of
// Each candidate
// Different ball
// The list of c h
// forming the
// At the bottom
// of the order
sig Ballot {

// the order in
// each positio
// each candida
arrangement : Po

location on a ballot/receipt;
third box down from the top "

e piece of paper given to a voter.
a list of candidates next to a list of checkboxes (positions
name is at some (vertical) position on the ballot.

ots may have different arrangements/orderings of those names.
eckboxes can be torn off from the list of candidates,
'receipt
of the receipt is an onzon -- an encrypted representation
of the candidate names on the ballot.

which the candidate names appear on the ballot
n on a ballot lists one candidate
te is listed at one position on a ballot
sition one one Candidate,

/each ballot has exactly one Receipt stuck to it
ballotReceipt : one Receipt ,

// Helper relation: makes the model more readable but is really
// just sugar (constrained by the appended fact).
// The candidate indicated by this ballot , based on the ballot 's
// arrangement and the position rnarked on the receipt.
ballotCandidate: lone Candidate,

/defining constraint for the ballotCandidate helper relation
ballotCandidate = ballot Receipt. marked. arrangement

266

).

is an encrypted representation of an arrangement of candidate names
to a given onion , each candidiate name is given one position

position holds one candidate name
sig Onion {

// the order in which
// each pos tion on a
// each candidate is
arrangement: Position

the candidate names appear, according to the onion
ballot lists one candidate

listed at one position on a ballot
one - one Candidate,

// A receipt is attached to a ballot , but can be torn off and separated.
// It has a set of positions (arranged vertically so they can line up

// with a list of candidates). any of which can be checked off.

// We assume that at most one box is checked -- otherwise the ballot is

// voided and the voter is given a new one.

sig Receipt {
// each receipt has exactly 1 onion associated with it
receiptOnion: one Onion,

// Zero or one positions on the receipt have been marked

(e.g. checked off by a voter)
marked: lone Position ,

/ Helper relation: makes the model more readable but
// just sugar (constrained by the appended fact).
// The candidate indicated by this receipt, based on

// arrangement and the marking on the receipt.
receiptCandidate: lone Candidate.

is really

it 's onion 's

// the defining constraint for the receiptCandidate helper relation
receipt C ndidate = mrked .(receiptOnion.arrangement)

267

/ an Onion
// according
/ and each

// A record is a decrypted version of a receipt;
// it 's arrangement and marking is visible for all to see,
// although it 's connect to a voter has hopefully be obscured.
sig Record {

// the order in which the candidate names appear on the record
// each position on a ballot lists one candidate
// each candidate is listed at one position on a ballot
arrangement: Position one , one Candidate,

// zero or one positions on the receipt have been marked.
// a vote for the candidate at that position
marked: lone Position .

// Helper relation : makes the
// sugar (constrained by the
// The candidate indicated by
// and marking.
recordCandidate: lone Candidat

model more readable but is
appended fact).
this record, based on it 's

really just

arrangement

// the defining constraint for the recordCandidate helper relation
recordCandidate m= arked. arrangement

}

// The voting board takes in the receipts from ballots, then outputs
// a set of records.
// The input receipts are re-ordered . and their onions re-encrypted.
/ The output records have their onions decoded and made public ,

// so that they can be counted.
/ There is only one voting board.

one sig Board {
/the the reordering done by the voting board

// each input receipt corresponds to 0 or 1 output receipts
// (losses are by default allowed)
// each output receipt corresponds to 0 or 1 input receipts
// (spontaneous generation is by default allowed)
scramble: Receipt lone -+ lone Record

}

// A helper function that represents the scrambling done by the voting
// Because there is only one voting board, we can represent the
// ternary relation <board, input, output>
// as a binar y relation <input , ou tput> wthou t any a mbig'uity.
fun mix [] : Receipt -+ Record { Board.scramble }

268

tn dicating

board.

1 /* LIVENESS SIMULATION */

2 // generates an interesting election
3 pred liveness [] {
4 // at least one voter wants to vote for at least one candidate

5 some c: Candidate #(RegisteredVoter & intention.c) > 0
6
7 / all of our assumptions hold
8 VoterBreadcrumb
9 BallotBreadcrumb

10 BoardBreadcrunb
11
12 / There is at least one ballot that doesn 't get counted
13 / (but it could be one that wasn't used)
14 #Receipt != #Ballot
15
16 /there is at least one unused record floating around
17 some Record - Receipt .mix
18

19 // there are at least 2 onions that represent the same ordering of candidates

20 some disj o.o': Onion Io.arrangement = o .arrangement

21 }
22 run livenless expect 1
23
24
25 /* REQUIREMENT PROGRESSION SETUP ,/
26 // The system requirement is the inritial version of our goal constraint
27 // The score for a candidate is exactly the number of people who
28 / intended to vote for that candidate.
29 pred GoalO [] {
30 all c: Candidate
31 c. score - #(RegisteredVoter & intention . c)
32 }

269

1 /* VOIER TO BALLOT */

2 // The first rewriting of the goal.
3 // The score for a candidate is the same as the number of ballots that
4 // get marked for that candidate
5 pred Goall [] {
6 all c: Candidate
7 c.score - #(ballotCandidate.c & Ballot)

8s }
9

10 //assumptions made about the voter dolain
11 pred VoterBreadcrumnb [] {
12 // ballots that aren 't given to voters don 't get marked
13 all b: Ballot - Voter. voterBallot no b. ballotReceipt .marked
14
15 // every registered voter gets exactly one ballot
16 all v: RegisteredVoter] one v.voterBallot
17
18 // no unregistered voter gets a ballot
19 all v: Voter - RegisteredVoter no v.voterBallot
20
21 // each ballot is given to at mnost one voter
22 all b: Ballot lone voterBallot.b
23
24 // Voters mark the ballots they are given according to their
25 // intention aund the ordering on the ballot.
26 // Note that they don't pay any attention to the onion or the
27 // ordering it represents.
28 all v: RegisteredVoter let b = v.voterBallot
29 b. ballot Receipt .marked . (b. arrangement) - v. intention
30 }
31
32 // the voter breadcrurnb justifies replacing GoalO with Goall
33 assert partialClaiml {
34 VoterBreadcrumb and Goall -= GoalO

35 }
36 check partialClaiml expect 0

270

1 /* BALLOT TO BOARD */
2 // The second rewriting of the goal.
3 // The score for a candidate is the same as the number of receipts that

4 // according to the marking made on the receipt and according to the
5 // ordering encoded in the onions of those receipts . favor that candidate.
6 pred Goal2 [] {
7 all c: Candidate
8 c.score =

9 #(Ballot . ballotReceipt & receiptCandidate. c)
10 }
11

12 // assumptions made about the ballot domain,
13 pred BallotBreadcrumb [] {
14 // different ballots have different receipts attached to them
15 all disj b,b': Ballot I b.ballotReceipt != b'.ballotReceipt
16
17 // A ballot 's onion accurately encodes the arrangement of candidates
18 // shown. on the ballot.
19 // That is the . the order of candidates on the ballot is the same as
20 // the order of candidates encoded in the onion.
21 all b: Ballot b. arrangement = b. ballotReceipt . receiptOOnion . arrangement
22 }
23
24 // the ballot breadcrumb justifies replaczng Goall with Goal2
25 assert partialClaim2 {
26 BallotBreadcrumb and Goal2 = Goall
27 }
28 check partialClaim2 expect 0

271

1 /* BOARD TO RECORD */
2 // The third rewriting of the goal.
3 // The score for a candidate is the same as the number of votes that the
4 / candidates gets according to the output (records) of the electon board.
5 pred Goal3 [] {
6 all c: Candidate
7 c.score = #(Receipt .mix & recordCandidate.c)
8s }
9

10 // assumptions about the voting board
11 pred BoardBreadcrumb [] {
12 // Every ballot receipt gets sent into the board exactly once.
13 // Receipts are transformed but not destroyed:
14 // each receipt going into the board corresponds to 1 record coming out
15 all input: Ballot. ballotReceipt i one input .mix
16
17 // Receipts are transformed but not created:
18 // each record coming out of the board corresponds to 1 receipt going in
19 all output: Receipt .mix one mix. output
20
21 // all receipts from all ballots go into the voting board for scrambling
22 all b: Ballot b. ballot Receipt in mix. Record
23
24 // only receipts frorn ballots go into the voting board for scrambling
25 all r: mix.Record | r in Ballot. ballotReceipt
26
27 // The scrambling process may change the onions, but it does not change
28 // the candidate orderings they represent or the markings made.
29 // That is . for every input receipt . there is a corresponding output record
:30 // with the same arrangement of candidates and same marked position
31 all input: mix. Record I let output = input .mix {
32 input . receipt nion . arrangement - output . arrangement
33 input . marked = output.marked

34 }
35 }
36
37 // the board breadcrumb justifies replacing Goal2 with Goal3
38 assert partialClain3 {
39 BoardBreadcrumb and Goal3 - Goal2
40 }
41 check partialClaim3 expect 0
42
43 // Since goal3 connects to only one domain , it has become a breadcrunmb
44 // (for Public Record) and progression is complete.

272

1 /* EQUIVALENCE CLAIMS ,/
2
3 //all the breadcrumb domain assumptions put together
4 pred allBreadcrumbs [1 {
5 VoterBreadcrumb
6 BallotBreadcrumb
7 BoardBreadcrumb
8 }
9

10 // Checks that it is ok to use a more compact & efficient style for
11 / counting votes.
12 assert equivalence {
13 // counting the number of voters who intend to vote for a g2ven cand2date
14 allBreadcrumbs 4 all c: Candidate
15 #(RegisteredVoter & intention .c)
16 = #{v: RegisteredVoter I v. intention = c}
17
18 // Counting the number of ballot that are marked in favor of a given
19 // candidate.
20 allBreadcrumbs : all c: Candidate
21 #{b: Ballot I b. ballotReceipt . marked. (b. arrangement) = c}
22 = #(RegisteredVoter & intention . c)
23
24 // Counting the number of receipts that are marked in favor of a given
25 // candidate, according to the arrangements given by their onions.
26 allBreadcrumbs > all c: Candidate
27 #{b: Ballot I b. ballotReceipt .marked.
28 (b.ballotReceipt . receiptOnion . arrangement) = c}
29 #(Ballot . ballot Receipt & receipt Candidate. c)
30
31 // Counting the number of records outputted by the board that are marked
32 // in favor' of a given candidate,
33 // accordzng to the arrangements given by their" onons.
34 allBreadcrumbs > all c: Candidate
35 #{r: Board. scramble [univ] I (r.marked).(r. arrangement) = c}
36 = #(Receipt .mix & recordCandidate . c)

37 }
38 check equivalence expect 0

273

274

Chapter 12

Appendix: Voting Secrecy Model

The full secrecy model for the cryptographic voting case study.

1 /* A model of what informaton about a voting system can be observed,
2 * and how an adversary can use inferences to attack that system.
3 * Created 9-12-08 (by Rob Seater), updated 11-11-08 (by Rob Seater).
4 * This model uses an extention of the event-based idiom from Daniel Jackson 's
5 * book Software Abstractions (p. 197).
6 *
7 * If you need to add a new inference . just add a new signature paragraph in a
8 * parallel style to the existing inferences . No other parts of the model
9 * need changing.

10 ,

11 * The current inference rules are derived (by hand) from the assumptions
12 * allowing the adversary to attack the system using znformation that was
13 * useful for proving the system correct. As a naming convention, all
14 * inferences derived from the same assumptions are given the same number
15 * (e.g. a_inf_5 and b_inf_5 would both be based on the same assumption).
16 * By convention, a "d" is used to name for Record variables, and
17 * "r" is reserved for Receipt variables.
18 /

1 /**********************/

2 /* TEPOAL4L FRAMEWORK ,/
3 ***********************
4 open util/ordering [Tiine]
5 sig Time {
6 comingAttractions: set Inference
7 pastAttractions: set Inference
8}
9 fact history_matches_prophesy {

10 all t : Time t . comingAttractions = t . next . pastAttractions
11 no first . pastAttractions
12 all t: Time - last t . comingAttractions. pre = t
13 all t: Time - first t . pastAttractions . post = t
14 }

275

1 **************/
2 /* SIGNATURES */
3 **************/
4 // Each relation in the fidelity model is mirrored by a "known " version
5 // with an extra time column at the end.
6 sig Voter {
7 intention : set Candidate,
8 known_intention: Candidate -+ Time,
9 voterBallot: set Ballot.

10 known_voterBallot: Ballot -- Time
11 known_Registered Voter : set Time,
12 }
13 sig RegisteredVoter in Voter {}
14 sig Candidate {
15 score: set Int,
16 known_score: Int -+ Time,
17 }
18 sig Ballot {
19 ballotReceipt: set Receipt,
20 known_ballotReceipt : Receipt -- Time,
21 ballotCandidate : set Candidate,
22 known_ballot Candidate : Candidate -- Time,
23 ballotArrangement: Position -- Candidate,
24 known_ballotArrangement : Position -- Candidate Time,
25 }
26 sig Position {}
27 sig Receipt {
28 receiptMarked: set Position
29 knownreceiptMarked : Position --+ Time,
30 receiptOnion: set Onion,
31 known_receiptOnion: Onion -+ Timne,
32 receiptCandidate: set Candidate,
33 known_receiptCandidate : Candidate -- Tine,
34 }
35 sig Onion {
36 onionArrangement : Position -+ Candidate,
37 known_onionArrangement: Position -- Candidate - Time,
38 }
39 sig Record {
40 record Arrangement: Position -+ Candidate,
41 knownrecordArrangement : Position -- Candidate -- Time,
42 recordMarked: set Position ,
43 known_recordMarked: Position -- Time.
44 recordCandidate: set Candidate,
45 known_recordCandidate : Candidate -- Time,
46 }
47 sig Board {
48 scramble: Receipt -" Record,
49 known_scramble: Receipt - Record - Time,
50 }
51 fun mix [] : Receipt - Record { Board. scramble }
52 fun known_mix [] : Receipt - Record - Time { Board. known_scramble }

276

1 /*******************/

2 /* INFERENCE RULES • /
3 /*******************/

4 abstract sig Inference {
5 pre, post: one Time
6}
7 sig pause extends Inference {} {} /the trivial inference that learns nothing
8
9

10 abstract sig intention_Inference extends Inference {
11 used_voterfrom_intention: one Voter,
12 used_candidate from_intentioi: one Candidate,
13 }
14
15 // VoterBreadcrumb
16 // all v: RegisteredVoter let b = v. voterBallot
17 / b. ballotReceipt . receiptMarked . (b. ballotArrangemnent) = v. intention
18 sig intention_inference _ extends intentionInference {}{
19 /what you learn
20 (used_voter_fromintention - used_candidatefromintention)
21 in known_intention. post
22 (used_voter_from intent ion - used_cand id at efrom int ent ion
23 not in known_intention. pre
24
25 //when you can learn it
26 usedvoter _from_intention in known_RegisteredVoter. pre
27 let b = used_voter_from_intention . (known_voterBallot. pre)
28 b. (known_ballotReceipt . pre). (known_receiptMarked. pre)
29 .(b.(known_ballotArrangement. pre)) = used candidate_from_intention
:30 }
31
32
33 abstract sig votcrBallot_Inference extends Inference {
34 usedvoterfrom_voterBallot: one Voter,
35 used_ballot_from voterBallot: one Ballot,
36 }
37
38 // VoterBreadcrumb
39 // all v: RegisteredVoter let b = v. voterBallot
40 / b. ballotReceipt . receiptMarked . (b. ballotArrangement) - v. intention
41 sig voterBallot_inference _ extends voterBallot_Inference {} {
42 l/what you learn
43 (used_vot r_fromnvotorB allot - used -_ballot _fromn _votrB allot)
44 in known_voterBallot. post
45 (usedvoterfromvoterB allot - usedballot_from_voterBallot)
46 not in known_voterBallot. pre
47
48 //when you can learn it
49 used_voterfrom_voterBallot in knownRegisteredVoter. pre
50 used _ballot _from_voterBallot . (known_ballotReceipt . pre). (known_receiptMarked. pre)
51 . (used _ballot _from_voterBallot . (known_ballotArrangement . pre))
52 = used_voter from_voterBallot.(known_intention. pre)
53 some used_voter _fromvoterB allot .(known_intention.)re)

54 }

277

1 abstract sig RegisteredVoter_Inference extends Inference {
2 used_voter_fromRegisteredVoter: one Voter,
3}
4
5 // VoterBreadcrumb
6 // all v: Voter - RegisteredVoter | no v. voterBallot
7 sig RegisteredVoter_inference_A extends RegisteredVoter_Inference {} {
8 /what you learn
9 (used_voter_from_RegisteredVoter) in known_RegisteredVoteredVoter. post

10 (uised_voter_frornJegisteredVoter) not in knownRegisteredVoter. pre
11
12 /when you can learn it
13 some used_voter_from_RegisteredVoter (knownvoterBallot. pre)
14 }
15
16
17 abstract sig score_Inference extends Inference {
18 usedcandidatefromscore: one Candidate,
19 used score_from_score: one Int,
20 }
21
22 // System Fidelity Requirement
23 // all c: Candidate
24 // c.score = #(Registered Voter & in'tention.c)
25 sig score_inferenceA extends score Inference {}{
26 /what you learn
27 (used_candidate _from_score -- used_scorefromscore) in known_score.post
28 (used_candidate_from_score -- used_score_fron_score) not in knownscore.pre
29
:30 //when you can learn. it
31 // The first line is technically cheating , since it mentions a non-"knownr_"
32 // variable , while an adversary should never directly access such information.
33 // We use it to replicate the effect of adding negative knowledge to the system,
34 // without the need to add a lot of additional complexity to the model. Were
35 // more znferences to use negative knowledge , it could be added to the model by
36 / adding a "knownnot_'" version of each knowable relation . representing tuples
37 // that the adversary knows are not part of that relation . We have omitted
38 // those relatzons since they are not relevant to any inference but this one.
39
40 // Ths relation says that we know everyone 's regstration status.
41 // In this problem. domain, we can get away with this . since voter registration
42 // is public knowledge. To reflect this ossumption, note the final constraint
43 // in the seededKnowledge predicate.
44 //
45 // The second and third lines are legit according to our style, and mirror the
46 // constraint given in the system fidelity requirement.
47 RegisteredVoter = knownRegisteredVoter . pre
48 all v: known_RegisteredVoter. pre some v.(known_intenetion. pre)
49 used _scorefrom_score = #((known_RegisteredVoter. pre)
50 & (known_intention. pre). used candidate _from_score)
51 }

278

abstract sig ballotReceipt_Inference extends Inference {
used_ballot_from ballotReceipt : one Ballot,
used_receipt _from_ballotReceipt : one Receipt,

}

// VoterBreadcrum b
// all v: Registered Voter let b = v. voterBollot
// b. ballotReceipt . receiptMarked . (b. ballotArrangement) = v. intention
sig ballotReceipt_inference_l extends ballotReceipt_Inference {}{

//what you learn
(used _b allot from_b nallotRec eipt -> used_re ceiptfrom_b allotReceipt)

in known_ballotReceipt .post
(usedballot_from_ballotReceipt - used_receipt_from_ballotReceipt)

not in known_ballot Receipt . pre

//when you can learn it
some v: knownRegisteredVoter. pre {

v. (known_voterBallot. pre) = usedballot _from_ballotReceipt
used_receipt _from_b allotReceipt . (known_receiptMarked .pre)

(v. (known_voterBallot. pre). (known_ballotArrangement . pre))
- v. (known_intention . pre)

some v. (known_intention. pre)

// AppendedFacts
// all b: Ballot
// (b. ballot Candidate) = (b. ballotReceipt). receiptMarked.(b. ballotArrangement)
sig ballotReceipt_inference_5 extends ballotReceipt_Inference {}{

//what you learn
(used_ballot_f ron -ballot Receipt - use(d_reccipt_fro -m_ballotReceipt)

in known_ballot Receipt . post

(used _ballot _from ballot Receipt - used _receipt _froim_ballot Receipt)
not in known_ballotReceipt . pre

/when you can learn it
used ballotfromballot _tro ba lotReceipt .(known_ballotCandidate. pre)

Sused receipt_from _ballotReceipt .(known_receiptMarked. pre)
.(used _ballot _fromballotReceipt .(knownballotArrangement .pre))

279

1 abstract sig ballotCandidate_Inference extends Inference (
2 used_ballot from_ballotCandidate: one Ballot,
3 used_candidate_from_ballotCandidate: one Candidate,
4}
5
6 // AppendedFacts
7 // all b: Ballot
8 (b. ballot Candidate) = (b. ballotReceipt). receiptMarked . (b. ballotArrangem.et)
9 sig ballotCandidate_inference_5 extends ballotCandidate_Inference {} {

10 /1/what you learn
11 (used ballot_fromni_ ballot C andid (ate - used candid at_frorn_ballotCandidate)
12 in knownballot Candidate . post
13 (used_ballot_from_ballotCandidate used_candidate_from_ballotCandidate)
14 not in known_ballotCandidate. pre
15
16 //when you can learn it
17 used_candidate_from ballotCandidate
18 used _ballot-rom-ballotCandidate. (known_ballotReceipt . pre)
19 . (known_receiptMarked . pre). (used_ballotfromballot Candidate
20 . (known_ballotArrangement . pre))
21 }

280

1 abstract sig ballotArrangemientInference extends Inference {
2 used_ballot_fron_ballotArrangement: one Ballot,
3 used_position_from_ballotArrangement: one Position,
4 used_candidate_from_ballotArrangement: one Candidate,

5}
6
7 // VoterBreadcrumb
8 // all v: Registered Voter let b = v. voterBallot
9 / b. ballotReceipt . receiptMarked . (b. ballotArrangement) = v. intention

10 sig ballotArrangemient_inference_1 extends ballotArrangementInference {} {
11 //what you learn
12 (used ballot_from_ballotArrangement - used_position_fronm_bllotArrangemnent
13 -+ used_candidate_from_ballotArrangement) in known_ballotArrangenient, post
14 (usedballot_from_ballotArrangement --* used_position_fronm_ballotArrangement

15 used_candidate_from_ballotArrangement) not in known_ballotArrangement. pre
16
17 //when you can learn it
18 some v: knownRegisteredVoter. pre {
19 v. (knownvoterBallot, pre)
20 = used ballot_from_ballotArrangement
21 used ballot _froni_ballot Arrangement. (kniown_ballotReceipt , pre)
22 .(knownreceiptMarked. pre) = used position_from_ ballot Arr ang ement
23 used _candidate_from_ballotArrangement
24 =v. (known_intention. pre)
25 }
26 }
27
28 // BallotBreadcrumb
29 // all b: Ballot I b. ballotArrangement - b. ballotReceipt. receiptOnion. onionArrangerr
30 sig ballotArrangement_inference_2 extends ballotArrangement_Inference {}(
31 //what you learn
32 (used_ballot_from_ballotArrangement used_posit ion_fromballotArrangement
33 - used_candidate_fronm_ballotArrangenient) in known_ballotArrangement.post
34 (used_babalfronballotArrangement used_position_fronm_ballotArrangement
35 - used _candidat e _from_ballotArrangement) not in known_ballotArrangement .pre
36
37 //when you can learn it
38 used _position_fromn_ballotArrangement -- usedcandidate_from_ballotArrangement
39 =used _ballot_from_ballotArrangement . (known_ballotReceipt . pre)
40 . (known_receiptOnion. pre) . (known_onionArrangement. pre)
41 }

281

1 / AppendedFacts
2// all b: Ballot
3 // (b. ballot Candidate) = (b. ballotRece pt). receiptMarked .(b. ballotArrangemen t)
4 sig ballotArrangement_inference_5 extends ballotArrangement_Inference {}{
5 //what you learn
6 (used_ballot_fronm_ballotArrangement -- used_positionfromballotArrangement
7 -- usedcandidatefromballotArrangement) in knownballotArrangement. post
8 (used_ballot_fromallotlotArrangement - used_positionfromballotArrangement
9 -* used_candidatefrom_ballotArrangement) not in known_ballotArrangement. pre

10
11 /when you can learn it
12 used_ballot_from_ballotArrangement . (known_ballotCandidate, pre)
13 = used_candidate _fror_ballotArrangement
14 used_ballot_from_ballotArrangement .(known_ballotReceipt . pre)
15 .(known_receiptMarked. pre) = used_position_from_ballotArrangement
16 }
17
18
19
20
21 abstract sig receiptMarked_Inference extends Inference {
22 used_receiptfrom_receiptMarked: one Receipt,
23 usedposition_fromreceiptMarked: one Position,
24 }
25
26 VoterBreadcrumb
27 // all v: Registered Voter let b = v. voterBallot
28 / b. ballotReceipt . receiptAarked .(b. ballotArrangement) = v. intention
29 sig receiptMarkedinference_l extends receiptMarked Inference {}{
30 /what you learn
31 (used_receipt_from_receiptMlarked -- used_I)ositioi_from_receiptMarked)
32 in known_receiptMarked . post
33 (used receipt_fron receiptMarked used_posit ionfroireceiptMarked)
34 not in knownreceiptMarked. pre
35
36 //when you can learn it
37 some v: known_Registeredoter. pre {
38 v. (known_voterBallot. pre). (known_ballotReceipt . pre)
39 - usedreceipt_fromreceipt Marked
40 uised_position_fromreceipt Marked .(v. (known_voterBallot. pre)
41 . (knownballot Arrangement . pre)) - v. (known_intention . pre)
42 some v. (known_intention, pre)
43
44

282

1 // BoardBreadcrunmb
2 // all input: mix. Record| let output = znput.mix {
3 // input. receiptMarked output. recordMarked

4 }
5 sig receiptMarked_inference_4 extends receiptMarked_Inference {}{
S //uwhat you learn

7 (used_receiptfromreceiptMarked -+ used_position_from_receiptMarked)
8 in known_receiptMarked. post
9 (usedreceipt_fromreceiptMarked used_positionfrom_receiptMarked)

10 not in known_receiptMarked. pre
11
12 //when you can learn it
13 usedposition_from_receiptMarked
14 =used_receipt_from_receiptMarked. (knownmix. pre).(known_recordMarked. pre)
15 }
16
17 // AppendedFacts
18 / all b: Ballot
19 // (b. ballot Candidate) = (b. ballotReceipt). receiptMarked . (b. ballotArrangement)
20 sig receiptMarked_inference_5 extends receiptMarked_Inference {}{
21 //what you learn
22 (usedreceipt_from_receiptMarked -t used_position_from_receipt Marked)
23 in knownreceiptMarked. post
24 (used_receipt_from_receiptIarked -- used_position_ from_receiptMarked)
25 not in known_receiptMarked. pre
26
27 //when you can learn it
28 some b: Ballot {
29 b.(knownballotCandidate. pre)
30 = used position_from_receiptMarked . (b. (known_ballotArrangement .pre))
31 b. (known_ballotReceipt. pre) = used_receipt_fron_receipt Marked
32 }
33
34
35 // AppendedFacts
36 // all r: Receipt
37 // (r. receiptCandidate) = (r. receiptMarked). ((r. receiptOnion). onion7Arrangenent)
38 sig receiptMarked_inference_6 extends receiptMarked_Inference {}{
39 //what you learn
40 (used receipt_fromreceiptMarked -4 used_position_from receiptMarked)
41 in knownreceipt Marked . post
42 (usedreceiptfromreceiptMarked -- used_position_froimreceiptMarked)
43 not in knownreceiptMarked. pre
44
45 //when you can learn it
46 used_receipt from_receiptMarked. (known_receiptCandidate .pre)
47 =usedposition_from_receiptMarked .(used_receipt_fronm_receiptMarked
48 . (known_receiptOnion. pre). (known_onionArrangemrent. pre))
49 some used receipt_fromreceiptMarked . (known_receiptCandidate . pre)
50 }

283

1 abstract sig receiptOnion_Inference extends Inference {
2 used_receipt_from_receiptOnion: one Receipt
3 used_onion_from_receiptOnion: one Onion,
4}
5
6 // AppendedFacts
7 // all r: Receipt
8 // (r. receiptCnndidate) = (r. receiptMarked). ((r. receiptOnion). onionArrangement)
9 sig receiptOnion_inference_6 extends receipt OnionInference {} {

10 l/what you learn
11 (used receipt_froni_receiptOnion -- used_onion_from_receiptOnion)
12 in known_receiptOnion. post
13 (used_receipt_from_receiptOnion - used_onion_from_receipt Onion)
14 not in known receipt Onion. pre
15
16 //when you can learn it
17 used_receipt _from_receiptOnion . (knownreceiptCandidate . pre)
18 used_receipt_fromreceipt Onion . (known_receiptMarked . pre)
19 . (used_onion_fromreceiptOnion. (knownonionArrangement. pre))
20 some used _receipt _fromreceiptOnion . (knownreceiptCandidate . pre)
21 }

1 abstract sig receiptCandid ate_Inference extends Inferencc {
2 used_receiptfrom_receiptCandidate: one Receipt,
3 used_candidate_from_receiptCandidate: one Candidate,
4}
5
6 // AppendedFacts
7 all r: Receipt
8 // (r. receiptCandidate) = (r. receiptMarked). ((r. receipt Onion). onionArrangement)
9 sig receiptCandidate inference 6 extends receiptCandidate_Inference {} {

10 /what you learnr
11 (used receiptfrom_receiptCandidate -- used_candidat e_from_receiptCandidate)
12 in known_receiptCandidate . post
13 (used receipt from_receiptCandidate -- used_candidat e_from_receiptCandidate)
14 not in known_receiptCandidate . pre
15
16 /when you can learn it
17 usedcandidate_from receiptCandidate
18 = used_receipt_from receiptCandidate.(knownreceiptMarked. pre)
19 . (used receipt_from_receiptCandid ate. (known_receiptOnion. pre)
20 . (knownioionArrangement . pre))
21 }
22
23
24 abstract sig onionArrangement_Inference extends Inference {
25 used_onionfrom_onionArrangement: one Onion,
26 used _position_from onionArrangement : one Position,
27 used_candidate_from_onionArrangement: one Candidate,
28 }

284

1 // BallotBreadcrunb
2 / all b: Ballot b. ballotA rrangement
3 / = b. ballotReceipt . receiptOnion. onionArrangement
4 sig onionArrangement inference_2 extends onionArrangement_Inference {}{
5 //what you learn
6 (used_onion_from_onionArrangement - used_position_from_onionArrangement
7 -- used _candidate_from onionArrangement) in known_onionArrangement. post

8 (used onion_from_onionArrangement -- used _position_from onionArrangement
9 -- used _candidate from_onionArrangement) not in knownonionArrangement. pre

10
11 //when you can learn it
12 some b: Ballot {
13 b. (knownballotArrangement . pre)
14 = (used_position_from_onionArrangenment -- used candidate _from_onionArrangement)
15 b. (known_ballotReceipt . pre). (known_receiptOnion. pre)
16 = used_onion_from_onionArrangement
17 }
18 }
19
20 // BoardBreadcrumb
21 / all input: mi:c. Record let output = input.,rrix {
22 // 2nput . receipt Onion. onionA rrangement = output. recor'dArranTgem ent }

23 sig onionArrangement_inference_3 extends onionArrangement_Inference {}{
24 //what you learn
25 (used _onionfrom_onionArrangement - used_position_fromn_onionArrangement
26 - used_candidate_from _onionArrangement) in known_onionArrangement. post
27 (used_onion_fromonionArrangement used_position_from_onionArrangement
28 -- used_candidate _from _onionArrangement) not in knownonionArrangement. pre
29
30 //when you can learn it
31 some i: (known_mix. pre). Record {
32 i . (knownreceiptOnion. pre) - used onion_fromi_onionArrangement
33 (used_position_frornonionArrangernent -+ used_candidate_fronl_onionArrangenient)
34 i. (known_mix . pre). (known_recordArrangement . pre)

35 }
36 }
37
38 // AppendedFacts
39 // all r: Receipt
40 // (r. receiptCandzdate) = (r. receiptMarked). ((r. receiptOnion). onionArrangement)
41 sig onionArrangementinference_6 extends onionArrangement_Inference {} {
42 //,hat you learn
43 (used_onioin_from onionlArrangeient - usedp)osition_from onionArrangement
44 -+ used_candidate_fronl_onionArrangement) in known onionArrangemiient.p ost
45 (used onionfrom_onionArrangement -+ used_position_from_onionArrangement
46 - used candidate _from_onionArrangement) not in known_onionArrangement. pre
47
48 //when you can learn it
49 some r: Receipt {
50 r.(known_receiptOnion. pre) u= sedonion_from_onionArrangement
51 r .(known_receiptCandidate . pre) = used _candidate_fromonionArrangement
52 r.(known_receiptMarked .pre) = used_position fromonionArrangement
53 }
54

285

1 abstract sig recordArrangenment_Inference extends Inference {
2 used_recordfrom_recordArrangement: one Record,
3 used_position _from_recordArrangement : one Position ,
4 used_candidate_fromrecordArrangement: one Candidate.
5
6
7 // BoardBreadcrumb
8 // all input: mix.Record let output = input.mix {
9 input. receiptOnzon. onionArrangement = output. recordArrangement }

10 sig recordArrangemenctinference_3 extends recordArraiigecmeintInference {} {
11 //what you learn
12 (used_recordfroinrecordArraingcment -- use(dp)osition_from_recordArrangement
13 ' used_candidate_from_recordArrangement) in knownrecordArrangement . post
14 (used record_from_recordArrangement - used_position _fronrecordArrangement
15 -- used_candidate_from_recordArrangement) not in known_recordArrangement .pre
16
17 //when you can learn it
18 some i: (knownmix.pre). Record {
19 i . (known_receiptOnion. pre). (known_onionArrangement. pre)
20 (use(d_position_from_recordArrangement - used_candidate_from_recordArrangement
21 i . (knownmix. pre) = used record_from_recordArrangeent
22 }
23 }
24
25 // AppendedFacts
26 // all r: Record
27 // (r. recordCandzdate) = (r. recordMarked).(r. recordArrangement)
28 sig recordArrangement_inference_7 extends recordArrangementInference {}{
29 /what you learn
30 (usedrecord_fromrecordArrangement --+ usedpositionfrom_recordArrangement
31 - usedcandidate_frormrecordArrangement) in known_recordArrangement . post
32 (usedrecord_fro recordArrangeiment - usedposition from_recordArrangiement
33 usedcandidatefrom_recordArrangemnent) not in known_recordArrangement .pre
34
35 //when you can learn it
36 used_recordfrom_recordArrangement . (knownrecordCandidate. pre)
37 = used_candidate_fromrecordArrangement
38 used_recordfrom_recordArrangement. (known recordMarked. pre)
39 = used_position_fromrecord Arrangement
40

286

1 abstract sig recordMlarkedInference extends Inference {
2 used_record_from_recordMarked: one Record,
3 used_position_from_recordMarked: one Position,
4}
5
6 // BoardBreadcrumb
7 / all input: mix.Record let output = input.iix {
8 // input. recciptMarked - output. recordMarked
9 //}

10 sig recordMarked_inference_4 extends recordMarked_Infercnce {} {
11 //what you learn
12 (used_record_froim_recordMarked -+ used position_from_recordMarked)
13 in knownrecordMarked. post
14 (used_record from_recordMarked - used position _fronm_recordMarked)
15 not in known_recordMarked. pre
16
17 l/when you can learn it
18 some i : (knownmix. pre). Record {
19 i . (known_receiptMarked. pre) = used _position from_recordMarked
20 i. (known_mix. pre) = used_record_from recordMarked
21 }
22 }
23
24 // AppendedFacts
25 // all r: Record
26 // (r.recordCandidate) (r. reordCandidate) (r. recordMarked). (r. recordArrangement)
27 sig recordMarkedinference_7 extends recordMarked_Inference {}{
28 /what you learn
29 (used_record_from_recordMarked --+ used_position_from_recordMarked)
30 in knownrecord'Marked. post
31 (usedrecordfroirecordMarked - used_position_fromnrecordMarked)
32 not in known_recordMarked. pre
33
34 //when you can learn it
35 used record_from_recordMarked . (known_recordCandidate . pre)
36 used _position_from_recordMarked .(used_record_from_recordMarked
37 . (known_recordArrangement . pre))
38 some used_record_from_recordMarked. (known recordCandidate. pre)
39 1

287

1 abstract sig recordCandidateInference extends Inference {
2 used_record_from_recordCandidate: one Record,
3 used_candidate_fromrecordCandidate: one Candidate,
4}
5
6 // AppendedFacts
7 // all r: Record
8 (r.recordCandidate) - (r. ri-ecordMarked).(r.recordArrangement)
9 sig recordCandidate_inference_7 extends record Candidate_Inference {} {

10 //what you learn
11 (used_record_froni_recordCandidate -* us(ed_candidatc_froni_rccordCandidate)
12 in known_recordCandidate. post
13 (used_recordfrom_recordCandidate - used_candidate_fronm_recordCandidate)
14 not in knownrecordCandidate. pre
15
16 //when you can learn it
17 usedcandidate_from recordCandidate
18 = used_record_from_recordCandidate. (known_recordMarked. pre)
19 .(usedrecord_from_recordCandidate. (known_recordArrangement . pre))
20

1 // There are no inference rules for these guys . so we have to exiplicitly ban
2 / them from existing. Otherwise Alloy will create trivial instantiations,
3 i//n accordance with its language semantics, which will permit bad inferences.
4 // Extended abstract sigs cannot exist on their own rzght , but unextended ones can.
5 fact {no scramble_Inference + mix_Inference}
6 abstract sig scramble_Inference extends Inference {
7 usedboard: one Board,
8 used_receipt : one Receipt
9 used_record: one Record,

10 }
11 abstract sig inixInference extends Inference {
12 used_receipt : one Receipt
13 used_record: one Record,
14 }

288

2 /* INFERENCE GUIDELINES ,/
3 ********* -**************/
4
5 //knowledge zs not forgotten
6 pred memory [1 {
7 all t: Time. t': t.next {
8 known_intention. t in known_intention.t'
9 known_voterBallot. t in known_voterBallot. t

10 known_RegisteredVoter.t in known_RegisteredVoter.t'
11 known_score. t in knownscore.t'
12 known_ballot Receipt .t in known_ballotR eceipt .t '
13 known_ballotCandidate.t in knownballotCandidate.t'
14 known_ballotArrangement. t in known_ballotArrangement.t'
15 known_receipt Marked. t in known_receiptIMarked . t
16 known_receiptOnion. t in knownreceiptOnion.t"
17 known_receiptCandidate .t in known_receiptCandidate .t'
18 known_onionArrangement. t in known_onionArrangement.t'
19 knownrecordArrangement .t in knownrecordArrangement .t '
20 knownrecordlMarked. t in known_recordMarked. t
21 knownrecordCandidate .t in knownrecordCandidate .t'
22 knownscramble. t in known_scramble. t'
23 knownmix. t in known_mix. t'
24 }
25 }
26
27 /you learn (or forget) something new every day; knowledge can't remain static
28 pred progress [] {
29 all t: Time, t": t.next (
30 known_intention.t != known_intention.t
31 or knownvoterBallot.t != known_voterB allot.t
32 or known_- egisteredVoter. t != knownR egisteredVoter. t'
33 or knownscore.t != known_score . t'
34 or knownballot Receipt. t != known_ballotReceipt. t
35 or knownballotCandidate . t != knownballotCandidate .t
36 or knownballot Arrangement . t != known_ballotArrangement .t'
37 or knownreceiptMarked. t != known_receiptMarked.t '
38 or knownreceipt Onion. t k= known_receiptOnion.t
39 or knownreceiptCandidate.t != knownreceiptCandidate.t'
40 or knownonionArrangement. t != known_onionArrangement. t'
41 or knownrecordArrangement .t != knownrecordArrangement . t'
42 or knownrecordMarked. t != known_recordMarked. t'
43 or knownrecordCandidate.t != knowniirecordCandi(late.t '
44 or knownscranble . t != known_scraible. t '
45 or knownmix . t != known_mix . t'
46 }
47 }

289

/initial knowledge is correct . but possibly incomplete
pred seededKnowledge [] {

known_intention. first in intention
known_voterBallot. first in voterBallot
known_RegisteredVoter. first in RegisteredVoter
knownscore .first in score
known_ballotReceipt. first in ballotReceipt
knownballotCandidate. first
known_ballotArrangeinent . fir s
known_receiptMarked. first in
known_receiptOnion. first in
known_receiptCandidate. first
known_onionArrangement. first
known recordArrangement . fir s
knownrecordMarked. first in
knownrecordCandidate . fir st

in ballotCandidate
t in ballotArranigenment

receiptMarked
receiptOnion

in receiptCandidate
in onionArrangemient

t in recordArrangement
recordMarked
in recordCandidate

knownscramble. first in scramble
knownmix. first in mix

RegisteredVoter = known_R,egisteredVoter. first //public record

}

/take zt slow: only do inference one at a time
pred sequentialInferences [] {

all t: Time lone t .comingAttractions
all t: Time lone t.pastAttractions

}

// You can only pause after all the work is done, and you can only pause if you do u(
// That is. once you start pausing you mrust do nothing but pause.
pred onlyPauseAtEnd [] {

all t: Time
some pause & t. comingAttractions j no t .comingAttractions - pause

all t: Time - last
some pause & t .pastAttractions - some pause & t .comingAttractions

}

290

1 //additions to current state must be explained
2 pred explainAdditions [1 {
3 all t: Time - first . v: Voter, c: Candidate
4 (v - c) in knownintention. t - knownintenention.(t . prev)
5 j some inf: intention_Inference & t.pastAttractions
6 inf. used_voter_from_intention = v and inf . usedcandidate_from_intention =c
7
8 all t: Time - first , v: Voter , b: Ballot
9 (v -+ b) in known_voterBallot.t - knownvoterBallot.(t.prev)

10 4 some inf: voterBallot_Inference & t.pastAttractions
11 inf .used_voter_froim_voterBallot = v and inf. used- ballot_fronm_voterBallot =b
12
13 all t: Time - first , v: Voter
14 (v) in knownRegisteredVoter. t - known_RegistereVter er . (t. prev)
15 4 some inf: RegisteredVoter_Inference & t. pastAttractions
16 inf. usedvoter_from RegisteredVoter = v
17
18 all t: Time - first , c: Candidate. s: Int
19 (c -- s) in knownscore .t - known_score .(t .prev)
20 4 some inf: scoreInference & t .pastAttractions
21 inf .used_candidate_from_score - c and inf . used_scor e _fron_score = s
22

23 all t: Time - first b: Ballot, r: Receipt
24 (b - r) in known_ballotReceipt .t - known_ballotReceipt . (t . prev)
25 j some inf: ballotReceipt_Inference & t.pastAttractions
26 inf. used _ballot_from_ballotReceipt = b
27 and inf. used receipt _from_ballotReceipt = r
28
29 all t: Time - first . b: Ballot, c: Candidate
30 (b c) in known_ballotCandidate. t - known_ballotCandidate .(t. prev)
31 = some inf: ballot C andidate Inference & t. pastAttractions
32 inf. used_ballot_fronmballot C andidat = b
33 and inf. usedcandidate_fronballot Candidate = c
34
35 all t: Time - first , b: Ballot , p: Position, c: Candidate
36 (b p - c) in known_ballotArrangement . t - known_ballotArrangement .(t . prev)
37 4 some inf : ballotArrangement_Inference & t . pastAttractions
38 inf. used_ballot_from_ballotArrangement = b and
39 inf. used_positionfrom_ballotArrangement = p and
40 inf. used candidate_from-ballotArrangement = c
41
42 all t: Time - first , r: Receipt, p: Position
43 (r - p) in knownreceiptMarked. t - known_receiptMarked . (t . prev)
44 4 some inf : receiptMarked_Inference & t . pastAttractions
45 inf. usedd_receipt_from_receipt Marked = r
46 and inf . used_position_from_receipt Marked = p
47
48 all t: Time - first , r: Receipt , o: Onion
49 (r - o) in known_receiptOnion. t - known_receiptOnion. (t . prev)
50 j some inf: receiptOnion_Inference & t . pastAttractions
51 inf. usedreceipt_from_receiptOnion = r
52 and inf. usedonioni fromreceipt Onion = o
53
54

291

55 all t Time - first , r: Receipt , c: Candidate
56 (r c) in known_receiptCandidate . t - known_receiptCandidate .(t .prev)
57 j some inf : receiptCandidate_Inference & t. pastAttractions
58 inf . used_receipt_from receiptCandidate = r
59 and inf. used_candidatefrom_receiptCandidate = c
60
61 all t: Time- first , o: Onion, p: Position . c: Candidate
62 (o -* p -4 c) in known_onionArrangement. t - known_onionArrangement. (t . prev)
63 j some inf: onionArrangement_Inference & t . pastAttractions
64 inf. used_onionfroimonionArrangemnent = o and
65 inf . used_position_frooni_onionArrangement = p and
66 inf. used_candidate_frorn_onionArrangeient = c
67
68 all t: Time first , r: Record, p: Position c: Candidate
69 (r -p c) in knownrecordArrangement . t - known_recordArrangement .(t .prev)
70 j some inf: recordArrangement_Inference & t.pastAttractions
71 inf . used_record_from_recordArrangement r and
72 inf. used_position_fromrecord Arrangement p and
73 inf. used_candidate_from_recordArrangement = c
74
75 all t: Time- first , r: Record., p: Position
76 (r --+ p) in known_recordMarked. t - known recordMarked. (t .prev)
77 4 some inf : recordMarked_Inference & t . pastAttractions
78 inf . used_record_from_recordMarked r
79 and inf.used_position from_recordMarked = p
80
81 all t: Time - first , r: Record, c: Candidate
82 (r - c) in known_recordCandidate . t - known_recordCandidate .(t . prev)
83 # some inf: recordCandidate_Inference & t . pastAttractions
84 inf. used_record_from_recordCandidate = r
85 and inf. used _canldidate from_recordCandidate = c
86
87 all t: Time- first , b: Board, rt: Receipt , rd: Record
88 (b - rt --+ rd) in known_scramble . - known_scramble . (t .prev)
89 4 some inf: scramble_Inference & t. pastAttractions
90 inf.used_board = b and inf. used_receipt = rt and inf.usedrecord = rd
91
92 all t: Time - first , rt: Receipt , rd: Record
93 (rt - rd) in known_mix . t - known_mix. (t. prev)
94 j some inf: mix_Inference & t . pastAttractions
95 inf . used_receipt = rt and inf . used_record = rd
96 }

292

statement that at time
(but may have holes in

t the adversary only knows
knowledge).

//A//

// T
//
pred

no
no
no
no
no
no
no
no
no
no
no
no
no
no
no
no

things that are correct

explicitly checked in

293

his pred is not assunmed/enforced. but rather it is
the "error" anaysis paragraph.
correctKnowledge [t: Time] {
known_intention. last - intention
knownvoterBallot. last - voterBallot
known_RegisteredVoter. first - RegisteredVoter
knownscore . first - score
known ballotRecceipt . first - ballotR eceipt
knownballotCandidate. first - ballotCandidate
knownballotArrangeinent . first - ballot Arrangement
knownreceiptMaarked. first - receiptMarked
knownreceiptOnion. first - receiptOnion
knownreceiptCandidate . first - receiptCandidate
known _onionArrangement. first - onionArrangement
knownrecordArrangenment . first - recordArrangement
knownrecordMarked. first - recordMarked
knownrecordCandidate. first - recordCandidate
knownscramble . first - scramble
known_mix . first - mix

1 /************/
2 /* ANALYSES s/
3 /************/
4
5 pred sim [] {
6 assumptions
7 memory
8 progress
9 sequentialInferences

10 seededKnowledge
11 onlyPauscAtEnd
12 explainlAd(ditions
13
14 some Inference - pause
15 }
16 run sim for 1 but 1 Inference, 2 Time, 3 int expect 1
17
18 pred easy_attack [] {
19 assumptions
20 memory
21 progress
22 sequentialInferences
23 seededKnowledge
24 onlyPauseAtEnd
25 explainAdditions
26
27 some c: Candidate c.score !=0
28 no known_intention. first
29 #knownintention. last >= 2
30 #Position >= 2
31 }
32 run easyattack for 3 but 4 Inference, 4 Time, 3 int expect 1

294

pred hard_attack [] {
//general rules

assumptions //oddly, this can be removed and the attack still fails
seededK nowledge
explainAdditions

/restrictions on knowledge
//you can't initially know any meta-information , only literal information
no known_ballotCandidate. first
no knownreceiptC andidate . first
no known_recordCandidate . first /not necessary to block attacks

no known_intention. first //no telepathy
no known_ballotArrangement . first /tear-off receipts hide this
no known_onionArrangement. first //encryption
no knownmix. first
// If you remove this last one, then the attack succeeds!
// If you leave it in , the unsat core feature
// constraints in this predicate , indicating
// It should highlight all of them.

//maltcious goal
some v: Voter | some v.(known_voterBallot. last

run hard_attack for 3 but 3 Inference,
run hard_attack for 4 but 5 Inference,
// Ensure #inferences + 1 >= #Time (or

4 Time. 3
6 Time, 4
else you

of Alloy 4 highlights most
their relevance to the result.

). (knownballotCandidate . last)

int expect 0
int expect 0

get an overconstraint)

pred successful_hard_attack [] {
//general rules

assumptions
seededKnowledge
expla i nAdd it ions
memory
progress
sequentialIlferen c es
onlvPauseAtEnd

/restrictions on knowledge
//you can't initially know any meta-information , only literal information
no knownballot Candidate. first
no knownreceiptCandidate . first
no knownrecordCandidate. first

knownintention. first /no telepathy
knownballotArrangement . first //tear-off receipts
known_onionArrangement. first //en cryption

no known_mix. first //REMIOVED to enable attack!

prevent you know knowing this

//malicious goal
some v: Voter some v.(knownvoterBallot. last).(knownballotCandidate. last)

}
run successfulhard_att ack for 2 but 3 Inference . 4 Time, 3 int , 1 Record expect 1
run successfulhard_attack for 2 but 2 Inference . 3 Tinme, 3 int, 1 Record expect 0

295

1
2 //situation in which adversary infers an incorrect fact
3 pred error [] {
4 assumptions
5 seededKnowledge
6 explainAdditions
7
8 /Add in these guys to make counterexamples easier to understand.
9 // but leave them out in the final check.

10 -- memory
11 -- progress
12 -- sequentialInfere n c es
13 -- onlyPauseAtEnd
14
15 -- first . comingAttractions = ballotReceipt _ inference _
16 some known_ballotReceipt. first - ballotReceipt
17
18 not correctKnowledge [last]
19 }
20 run error for 2 but 2 Time expect 0
21 -- run error for" 3 but 3 Time expect 0

296

1 /***********************

2 /* ASSUMP1TIONS & GOALS */

3 ************************
4
5 pred AppendedFacts [] {
6 all b: Ballot
7 (b. ballotCandidate) = (b. ballotReceipt). receipt.Marked .(b. ballotArrangement)
8 all r: Receipt
9 (r . receipt Candidate) (r. receipt Marked).((r . receiptOnion). onionArrangement)

10 all r : Record
11 (r . recordCandidate) (r . record-Marked) .(r .recordArrangement)
12 }
13
14 // Muliplicity markings from the fidelity argument are wrztten explicitly here.
15 / They could have been left inlined (as they are in the fidelity argument)
16 // without disrupting this model.
17 pred Multiplicities [] {
18 all v: Voter lone v. intention
19
20 all c: Candidate one c.score
21
22 all b: Ballot , p: Position one p.(b. ballotArrangement)
23 all b: Ballot , c: Candidate one (b. ballot Arrangement). c
24 all b: Ballot one b. ballotReceipt
25 all b: Ballot lone b. ballotCandidate
26
27 all o: Onion, p: Position one p.(o.onionArrangement)
28 all o: Onion, c: Candidate one (o. onionArrangement). c
29
30 all r: Receipt one r . receiptOnion
31 all r: Receipt lone r . receiptMarked
32 all r: Receipt lone r . receipt Candidate
33
34 all r: Record, p: Position one p.(r. recordArrangement)
35 all r: Record, c: Candidate one (r. recordArrangement). c
36 all r: Record lone r . record.Marked
37 all r: Record lone r. recordCandidate
38
39 all r: Receipt lone r . (Board. scramble)
40 all r: Record lone (Board. scramble). r
41
42 one Board

43 }

297

1 pred VoterBreadcrumb [] {
2 // ballots that aren't given to voters don't get marked
3 all b: Ballot - Voter. voterBallot I no b. ballotReceipt. receiptMarked
4 // every registered voter gets exactly one ballot
5 all v: RegisteredVoter one v.voterBallot
6 // no unregistered voter gets a ballot
7 all v: Voter - RegisteredVoter no v.voterBallot
8 // each ballot is given to at most one voter
9 all b: Ballot lone voterBallot.b

10
11 // Voters mark the ballots they are given according to their intention
12 // and the ordering on the ballot. Note that they don't pay any attention
13 // to the onion or the ordering it represents (,t 's encrypted!).
14 all v: RegisteredVoter let b = v.voterBallot |
15 b. ballotReceipt . receiptMarked .(b. ballotArrangement) = v. intention
16 }
17
18 pred BallotBreadcrumb [] {
19 // different ballots have different receipts attached to them
20 all disj b,b': Ballot b.ballotReceipt != b'. ballotReceipt
21
22 // A ballot 's onion accurately encodes the arrangement of candidates shown
23 // on the ballot . That is the, the order of candidates on the ballot is the
24 // same as the order of candidates encoded in the onion.
25 all b: Ballot b. ballotArrangenient = b. ballotReceipt . receiptOnion. onionArrangement
26 }
27
28 pred BoardBreadcrumb[] {
29 // every ballot receipt gets sent into the board exactly once
30 // receipts are transformed but not destroyed:
31 // each receipt going into the board corresponds to 1 record coming out of the boa
32 all input: Ballot. ballotReceipt one input .mix
33
34 // receipts are transformed but not created:
35 // each record coming out of the board corresponds to 1 receipt going into the boar
36 all output: Receipt.mix one nmix.output
37
38 // all receipts from all ballots are put into the voting board for scrambling
39 all b: Ballot b. ballotReceipt in mix. Record
40
41 // only receipts from ballots are put into the voting board for scrambling
42 all r: mix.Record I r in Ballot.ballotRcecipt
43
44 // The scrambling process may change the on.ions. but it does not change the
45 // candidate orderings they represent, and it must leave the position of the
46 // marking on the receipt the same. That is, for every input receipt. there
47 / is one output receipt that both has an onion with the same arrangement of
48 // candidates and has the same position marked.
49 all input: mix. Record let output = input.mix {
50 input. receipt Onion . onionArrangement = output . recordArrangement
51 input . receipt-Marked - output . recordMarked
52 }
53 }

298

1
2 pred RecordBreadcrumb [1 {
3 all c: Candidate
4 c.score = #(Receipt .mix & recordCandidate c)
5}
6
7 pred assumptions [] {
8 AppendedFacts
9 Multiplicities

10 VoterBreadcrumb
11 BallotBreadcrunmb
12 BoardBreadcrtumb
13 RecordBreadcrumb
14 }
15
16 pred goal [] {
17 all c: Candidate
18 c. score - #(RegisteredVoter & intention .c)
19 }
20
21 pred correct system [] {
22 assumptions
23 goal
24 some c: Candidate c.score > 0
25 }
26 run correct_system for 1 expect 1
27
28 assert implication {
29 assumptions - goal
:30 }
31 check implication for 1 expect 0
32 check implication for 3 expect 0
33 check implication for 6 expect 0

299

300

Bibliography

[1] Ben Adida and Ronald L. Rivest. Scratch & vote: self-contained paper-based
cryptographic voting. In WPES '06: Proceedings of the 5th ACM wor'kshop on
Privacy in electronic society, pages 29 40, New York, NY, USA, 2006. ACM.

[2] United States Federal Aviation Administration. FAA: Federal aviation
administration. website, 2008. http://www.faa.gov/.

[3] United States Nuclear Regulatory Agency. U.S. NRC: Protecting people and the
environment. website, 2008. http://ww.nrc.gov/.

[4] Air Force, Space Division. System safety handbook for the acquisition manager,
January 1987. SDP 127-1.

[5] Javed A. Aslam, Raluca A. Popa, and Ronald L. Rivest. On estimating the size
and confidence of a statistical audit. In EVT'07: Proceedings of the USENIX
Workshop on Accurate Electronic Voting Technology, page 8, Berkeley, CA, USA,
2007. USENIX Association.

[6] Issa Bass. Failure mode and effects analysis - FMEA. website, 2007.
http://www.sixsigmafirst.com/F.M EA.htim.

[7] T. E. Bell and T. A. Thayer. Software requirements: are they really a problem?
In Proceedings of the 2nd International Conference on Softlware Engineer7ng
(ICSE'67), pages 61-68. IEEE Society Press, 1967.

[8] P. Bertrand, Robert Darimont, E. Delor, Philippe Massonet. and Axel
van Lamsweerdc. Grail/kaos: an environment for goal driven requirements
engineering. In Proceedings of the 20th International Conference on Softwarc
Engineering (ICSE'98), Kyoto, Japan, April 1998.

[9] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mind,
D. IMonniaux, and X. Rival. Design and inmplemnentation of a special-purpose
static program analyzer for safety-critical real-timie embedded software, pages 85
108. Number 2566 in LNCS. Springer, 2002.

[10] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mine,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical software.
In Proceedngys of A CM SIGPLAN 2003: Program, ming Language Design and

301

I'rnpelementation(PLDI'03), number 7-14, pages 196 207, San Diego, CA, USA,
June 2003. ACM Press.

[11] P. D. Bruza and Th.P. van der Weide. The Semantics of Data Flow Diagrams. In
N. Prakash, editor, Proceedings of the International Conference on Malanaqgement
of Data, Hyderabad, India, 1989.

[12] Jeremy W. Bryans, Maciej Koutny, Laurent Mazaré, and Peter Y. A.
Ryvan. Opacity generalised to transition systems. nt. J. Inf. Secur., 7(6):421-
435, 2008.

[13] NASA California Institute of Technology. Jet propulsion laboratory. website,
2008. http://www.jpl.nasa.gov/index.cfim.

[14] Caltech/MIT. VTP: Voting technology project. website, 2000-2008.
http://vote.caltech.edu/drupal/.

[15] Jaelson Castro, Paolo Giorgini, Stefanic Kethers, and John Mylopoulos.
A requirements-driven methodology for agent-oriented software. In Brian
Henderson-Sellers and Paoli Giorgini, editors, Agent- Oriented Methodologies
Idea Group Pub, NY, USA, 2005.

[16] Richard I. Cook and Michael F. O'Connor. Medicatlion Safety: A Guide to
Health Care Fac'ilittes,, chapter Thinking about accidents and systems. pages
73-87. American Society of Health-System Pharmacists, Bethesda, MD, 2005.

[17] Giovanna D'Agostino and Marco Hollenberg. Logical questions concerning the
mu-calculus: Interpolation, lyndon and los-tarski. The Journal of Symbolic Logic,
65(1):310-332, 2000.

[18] Christophe Damas. Bernard Lambeau. P. Dupont, and Axel van Lamsweerde.
Generating annotated behavior models from end-user scenarios. In IEEE
Transactions on Soft'ware Engineering, Special Issue on Interaction and State-
based Mlodehng, volume 31, pages 1056-1073, 2005.

[19] Lynette I. Millett Daniel Jackson, Martyn Thomas. Software for Dependable
Systems: Sufficient Evidence? National Academics, Washington, DC, May 2007.

[20] Michael Jackson Daniel Jackson. Separating Concerns in Requirenments Analysis:
An Erample. Springer-Verlag. 2006.

[21] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed
requirements acquisition. Science of Comnputer Programm ng, 20(1-2):3 50, 1993.

[22] Robert Darimnont and Axel van Lamsweerde. Formal refinement patterns for
goal-driven requirements elaboration. In Proceedzngs of the 4th International
Syrnposi'um on the Foundations of Software Engineering (FSE'96), pages 179
190, San Francisco, Oct 1996.

302

[23] Greg Dennis. Forge: Bounded program verification. website. 2008.
http://sdg.csail.mit.edu/forge/.

[24] Greg Dennis, Robert Seater, Derek Rayside, and Daniel Jackson. Automating
commutativity analysis at the design level. Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA "04), July 2004. Boston,
MA, USA.

[25] Praxis Engineering. Praxis engineering. website. 2008.
http://www.praxiseng.comn/.

[26] Food and Drug Administration. FDA statement on radiation overexposures in
panama. www.fda.gov/cdrh/ocd/panamaradexp.html.

[27] Jr. Fred P. Brooks. The mythical man-month. In Proceedings of the international
conference on Reliable software, page 193, New York, NY, USA, 1975. ACM.

[28] Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani. Goal-oriented
requirements analysis and reasoning in the Tropos methodology. In Engineering
Applications of Artificial Intelligence, volume 18/2, march 2005.

[29] Sol Greenspan, John Mylopoulos, and Alex Borgida. On formal requirements
modeling languages: RML revisited. In Proceedings of the 16th International
Conference on Software Engineering (ICSE'94). pages 135-147. IEEE Computer
Society Press, 1994.

[30] Software Design Group. The Alloy Analyzer. website, 2007. http://alloy.mit.edu.

[31] Charles B. Haley, Robin C. Laney, and Bashar Nuseibeh. Using Problem Frames
and projections to analyze requirements for distributed systems. In Proceedings
of the 10th International Workshop on Requirements Engineering: Foundation
for Software Quality (REFSQ'04), volume 9, pages 203-217. Essener Informatik
Beitriige, 2004. Editors: B. Regnell, E. Kamsties, and V. Gervasi.

[32] Martin Hall-May and Tim Kelly. Defining and decomposing safety policy
for systems of systems. In 24th internatio'nal conference on computer safety,
reliability, and security (SAFECOMP'05), volume 3688, Fredrikstad, Norway,
September 2005. ISBN 3-540-29200-4.

[33] Mats P. E. Heimdahl. Safety and software intensive systems: Challenges old and
new. In Future of Software Engineering (FOSE'07). pages 137-152, Washington,
DC, USA, 2007. IEEE Computer Society.

[34] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT
Press, Cambridge, MA, March 2006.

[35] Daniel Jackson. A case for dependable software, 2008.

303

[36] Daniel Jackson and Michael Jackson. Rigorous Development of Comrplex Fault
Tolerant Systems, chapter Separating Concerns Requirements Analysis: An
Example. Springer-Verlag. To appear.

[37] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularitv
mechanism. In Proceedings of the 8th European Software Engineering Conference
/ Proceedings of the 9th ACM SIGSOFT Sypmosiurn on the Foundations of
Software Engineering (ESEC/FSE'01), pages 62-73, Vienna, Austria, September
2001.

[38] Michael Jackson. Software Requirements and Specifications: a lexicon of practice,
principles and prejudice. Addison-Wesley, 1995.

[39] Michael Jackson. Problem analysis using small Problem Frames. South African
Computer Journal. 22:47-60, March 1999.

[40] Michael Jackson. Problem Frames: analyzing and structuring software
development problems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA. USA, 2001.

[41] Michael Jackson and Pamela Zave. Deriving specifications from requirements:
an example. In Proceedings of the 17th International Conference on Software
Engineering (ICSE'95), pages 15 24, New York, NY, USA, 1995. ACM Press.

[42] Chris W. Johnson. Failure in Safety-Critical Systems: A Handbook of Incident
and Accident Reporting. Glasbow University Press, October 2003.

[43] W. Lewis Johnson. Deriving specifications from requirements. In Proceedings
of the 10th Internatioral Conference on Software Engineering (ICSE'88), pages
428 -438. IEEE Computer Society, 1988.

[44] Michael A. Jackson Jon G. Hall, Lucia Rapanotti. Problem oriented software
engineering. Technical Report 2006/10, Department of Computing, The Open
University, 2006.

[45] Trevor A. Kletz. Human problems with computer control. Plant/Operations
Progress, 1(4):209-211, October 1982.

[46] Patrick Lain, Viktor Kuncak, and Martin Rinard. Hob: A tool for verifying
data structure consistency. In In 14th International Conference on Compiler
Construction (tool demo, 2005.

[47] Robin C. Laney, Leonor Barroca, Michael Jackson, and Bashar Nuseibeh.
Composing requirements using Problem Frames. In Proceedings of the 12th
IEEE International Requirements Engineeri'ng Conference (RE'04), pages 121
131. IEEE Computer Science Press, 2004.

304

[48] Emmanuel Letier and Axel van Lamsweerde. Deriving operational software
specifications from system goals. In Proceedings of the 10th International
Symposium on Foundations of Software Engineering (FSE'02), pages 119-128.
2002.

[49] Nancy G. Leveson. Safeware: system safety and computers. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[50] Nancy G. Leveson. Intent specifications: An approach to building human-
centered specifications. IEEE Transactions on Software Engineering, 26(1):15
35, January 2000.

[51] Nancy G. Leveson. A new approach to hazard analysis for complex systems. In
International Conference of the System Safety Society, August 2003.

[52] Nancy G. Leveson. A systems-theoretic approach to safety in software-intensive
systems. 1:66 86. 2004.

[53] Nancy G. Leveson and C. Turner. An investigation of the Therac-25 accidents.
IEEE Computer, 7(26):18-41, 1993.

[54] Zhi Li, Jon G. Hall, and Lucia Rapanotti. A constructive approach to Problem
Frame semantics. Technical Report 2004/26, Department of Computing, The
Open University, 2005.

[55] Zhi Li, Jon G. Hall, and Lucia Rapanotti. From requirements to specifications:
a formal approach. In Proceedings of the 2nd International Workshop on
Applications and Advances in Problem Frames (IWAAPF'06), co-located with
the 28th International Conference on Software Engineering (ICSE'06), page 65,
Shanghai, China, May 2006. AC.M Press.

[56] S. Liu and R. Adams. Limitations of formal methods and an approach to
improvement. In APSEC'95: Proceedings of the Second Asia Pacific Software
Engineering Conference, page 498, Washington, DC, USA, 1995. IEEE Computer
Society.

[57] Derek Mannering, Jon G. Hall, and Lucia Rapanotti. Relating safety
requirements and system design through problem oriented software engineering.
Technical Report 2006/11, Department of Computing, The Open University,
2006.

[58] Derek Mannering, Jon G. Hall, and Lucia Rapanotti. A problem-oriented
approach to normal design for safety critical systems. In Proceedings of
Funmdamental Approaches to Software Engineering (FASE'07). European Joint
Conferences on Theory and Practice of Software (ETAPS'07), Braga, Portugal,
24 March - 1 April 2007.

[59] R. R. Mohr. Failure modes and effect analysis. presentation slides, January 1994.
8th edition, Sverdrup.

305

[60] Donald A. Norman. Design rules based on analyses of human error. Comnm'un.
A CM, 26(4):254-258, 1983.

[61] United States Department of Health and Human Services. FDA: U.s. food and
drug administration. website, 2008. http://www.fda.gov/.

[62] University of Texas at Austin. Software engineering program. website, 2007.
http://www.utexas.ediu/student/ admissions/ugdegrees.html.

[63] University of Waterloo. Software engineering program. wobsite, 2007.
http://www.softeng.uwaterloo.ca/.

[64] Nick Ourusoff. Personal communication, 2006.

[65] Henry Ozog. Hazard identification, analysis, and control. Hazard Prevention,
pages 11-17, IMay-June 1985.

[66] David L. Parnas and Jan Madey. Functional documentation for computer
systems engineering. vol. 2. Technical Report Technical Report CRL 237,
McMaster University, Hamilton, Ontario. Sept 1991.

[67] Tropos Project. Tropos: requirements-driven development for agent software.
website, 2006. http://www.troposproject.org/.

[68] Andrew Rae, Prasad Ranianan, Daniel Jackson, and Jay Flanz. Critical feature
analysis of a radiotherapy machine. In International Conference of Computer
Safety, Reliability and Securty (SAFECOMP 2003), Edinburgh, September
2003. http://sdg.lcs.init.edu.

[69] Brian Randell and Peter Y. A. Ryan. Voting technologies and trust. IEEE
Security a'nd Privacy, 4(5):50 --56, 2006.

[70] Lucia Rapanotti, Jon G. Hall, and Zhi Li. Deriving specifications from
requirements through problem reduction. In IEE Proceedings -Software. volume
153: Issue 5, pages 183-198, October 2006. ISSN: 1462-5970.

[71] Lucia Rapanotti, Jon G. Hall, and Zhi Li. Problem reduction: a systematic
technique for deriving specifications from requirements. Technical Report
2006/02, Department of Computing, The Open University, Feb 2006. ISSN
1744-1986.

[72] Robert C. Ricks, Mary Ellen Berger, Elizabeth C. Holloway, and Ronald E.
Goans. REACTS Radiation Accident Registry: Update of Accidents in the United
States. International Radiation Protection Association, 2000.

[73] Ronald L. Rivest and Warren D. Smith. Three voting protocols: Threeballot,
vav, and twin. In EVTT'07 Proceedings of the USENIX Workshop on Accurate
Elcctronic Voting Technology, pages 16 16, Berkeley, CA, USA, 2007. USENIX
Association.

306

[74] Ronald L. Rivest and John P. Wack. On the notion of software independence in
voting systems, 2006.

[75] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen. Object-oriented modeling and design. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1991.

[76] P. Y. A. Ryan and S. A. Schneider. Pret a voter with re-encryption mixes. In In
European Syrimposiurn on Research in Computer Security, number 4189 in Lecture
Notes in Computer" Science, pages 313 326. Springer-Verlag, 2006.

[77] Altair O. Santin, Regivaldo G. Costa, and Carlos A. Maziero. A three-ballot-
based secure electronic voting system. IEEE Security and Privacy, 6(3):14-21.
2008.

[78] Robert Seater and Daniel Jackson. Problem Frame transformations: Deriving
specifications from requirements. In Proceedings of the 2nd International
Workshop on Applications and Advances in Problem Frames (I.WAAPF'06),
co-located with the 28th International Conference on Software Engineering
(ICSE 06), pages 65-70, Shanghai, China, May 2006. ACM Press.

[79] Robert Seater and Daniel Jackson. Problem Frame transformations in the
context of a proton therapy system. Unpublished manuscript. Unpublished
manuscript, 2006.

[80] Robert Seater and Daniel Jackson. Requirement progression in problem
frames applied to a proton therapy system. In Proceedings of the 14th IEEE
International Requ'zrements Engineering Co'rference (RE'06), Minneapolis, MN,
September 2006.

[81] Robert Seater, Daniel Jackson, and Rohit Gheyi. Requirement progression
in problem frames: Deriving specifications from requirements. Requirements
Engineering Journal (REJ'07), 2007.

[82] Michael Shnayerson. Hack the vote. Vanity Fair, page 158, April 2004.

[83] Elizabeth A. Strunk and John C. Knight. The essential synthesis of problem
frames and assurance cases. In Proceedings of the 2nd International Workshop
on Applications and Advances in Problem Frames (IWAAPF'06), co-located with
the 28th International Conference on Software Engineering (ICSE'06), pages 81-
86, Shanghai, China,, May 2006. ACM Press.

[84] Mana Taghdiri. Inferring specifications to detect errors in code. In ASE '04:
Proceedings of the 19th IEEE international conference on Automated software
engi7eering, pages 144 153, Washington, DC, USA, 2004. IEEE Computer
Society.

307

[85] Mana Taghdiri, Robert Seater, and Daniel Jackson. Lightweight extraction of
syntactic specifications. In SIGSOFT '06/FSE-14: Proceedings of the 14th ACM
SIGSOFT international symposium on Foundations of software engineering,
pages 276-286, New York, NY, USA, 2006. ACM.

[86] Jeffrey M. Thompson, Mats P. E. Heimdahl, and Steven P. Miller. Specification
based prototyping for embedded systems. In Proceedings of the 6th Eropean
Software Engineering Conference / Proceedznmgs of the 7th A CM SIGSOFT
Symposi'um on the Foundations on Software Engineering (ESEC/FSE'99),
number 1687 in LNCS, pages 163-179, September 1999.

[87] Eric S. K. Yu. Towards modelling and reasoning support for early-phase
requirements engineering. In Proceedings of the 3rd IEEE International
Symrposium on Requirements Engineering (RE'97). pages 226-235, Washington
DC. USA. Jan 1997.

[88] Marc Zimmerman, Mario Rodriguez, Benjamin Ingramin, Masafummi Katahira,
Maxime de Villepin, and Nancy G. Leveson. Making formal methods practical.
In Proceedings of the 19th Digital Avionics Systems Conferences, October 2000.

