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Abstract

A new technique has been developed for the synthesis and realization of bandpass

filters employing quartz resonators. By the use of approximation methods, crystal

filter design is simplified to the point at which synthesis may be accomplished with only

a slide rule and a number of plotted curves. The problem of obtaining piezoelectric

resonators adjusted to extremely close tolerance was solved by the development of a

new crystal-measuring procedure. Several crystal filters were constructed, and an

excellent correspondence was found between calculated and measured characteristics.





I. PIEZOELECTRIC MATERIALS

1.1 INTRODUCTION

A piezoelectric material is one in which an electric stress applied in the direction

of a specific crystallographic axis gives rise to a proportional mechanical stress along

a related axis, and vice versa. The existence of the piezoelectric effect in quartz and

other materials was discovered by Pierre and Paul-Jacques Curie and was announced

in 1880.

The first practical application of the piezoelectric effect grew out of an experimental

program started in 1915 by Paul Langevin at the request of the French Navy Department

to devise a means of detecting submarines. Langevin's device was not perfected until

the end of World War I but it found ready use as a sonic depth finder.

At about the same time, A. M. Nicolson, of Bell Telephone Laboratories, working

with piezoelectric Rochelle salt, and Walter G. Cady, of Wesleyan University, working

with quartz, showed that these materials could be successfully employed in oscillator

circuits. The subsequent development of low temperature-coefficient quartz resonators

made possible the stable piezoelectric crystal oscillator.

In 1922, Cady (2) proposed the use of a crystal as a frequency selective element by

taking advantage of the sharp maximum in current through the crystal at its resonant

frequency. The combination of crystals, inductances, and capacitors in lattice networks

by Warren P. Mason (4, 5) made possible the many contemporary applications of crystal

filters.

Because of the very low dissipation inherent in the quartz resonator, it is possible

to make filters with very high selectivity. Crystal filters are used in noise and sound

analyzing devices which permit frequency spectra to be obtained with very high resolu-

tion; in carrier systems for separating out control frequencies; and in radio communi-

cation systems for selecting harmonics of local oscillator signals. They have also been

applied to carrier telephone systems (6) requiring very small channel spacings; to single

sideband systems for separating the two sidebands; and to amplifiers in which very high

selectivity is desired.

1.2 THE QUARTZ RESONATOR AND ITS EQUIVALENT CIRCUIT

Of the hundreds of crystals that exhibit the piezoelectric effect, only the quartz crys-

tal has been employed to any significant extent in oscillators and filters. Any plate cut

from a piece of natural quartz has a number of resonant frequencies that depend on the

crystal dimensions, the vibrational mode involved, and the orientation of the cut. In

the vicinity of a resonant frequency, the crystal can be replaced by an equivalent elec-

tric circuit (3,9) of the type shown in Fig. la. The inductance L 1 and capacitance C 1

represent the effective mass and stiffness of the crystal, respectively. C o is the static

capacitance that would be measured if he crystal were not vibrating. The resistance
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Fig. 1. Equivalent circuit of crystal resonator.

R 1 represents the frictional loss of the vibrating crystal. The ratio of the reactance of

L 1 at the resonant frequency to the resistance R 1 (crystal Q) is generally of the order

of 20, 000 when the resonator is mounted in air, but when the units are carefully mounted

in vacuum, it may be (10) of the order of 500, 000. Because of this extremely low dis-

sipation, the crystal may be considered a purely reactive network for most filter appli-

cations.

The reactance curve corresponding to the resonator equivalent circuit is shown in

Fig. lb. The resonant frequency or zero of the crystal unit (fa) and the antiresonant

frequency or pole (fb) are related to one another by the ratio of capacitances of the crys-

tal defined by

C
r = (1)

CI

The relationship is easily seen to be:

fBecause of the coupling that exists between the electrica =l and mechanical stress(2

Because of the coupling that exists between the electrical and mechanical stresses

within the crystal, there will always be a fixed ratio of capacitances for any crystal

cut (1). The lowest ratio found for quartz is 115 but, because of stray-wiring capaci-

tance and crystal-holder capacitance, the minimum ratio (rx) for practical quartz cuts

is approximately 125. From Eq. 2, the zero-pole spacing (Sa in Fig. lb) can be approx-

imated by

f
5 a ~b~a ~ 2r (3)a fb fa 2r

If capacitance is added in series or in parallel with a crystal unit, r will increase

and, correspondingly, S a will decrease. It will become evident later that bandpass

filters employing only crystals and capacitors as elements will have bandwidths that can

be no greater than twice the zero-pole spacing of a crystal-capacitor combination.

Therefore, capacitance added in any manner to a crystal can only reduce the filter band-

width. In Section III, a method is described for producing wideband crystal filters by

employing inductances in series or in parallel with crystal units. In the final analysis,
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however, the bandwidth of narrow- or wide-band crystal filters will be limited to a

maximum value determined by the criterion

ri> rx (4)

where r is the smallest ratio of capacitance required by the crystal elements in the

filter, and rx depends on the crystal cut employed, but it will rarely be smaller than 125

for any quartz resonator.

In addition to the fixed ratio of capacitances which is characteristic of any crystal

cut, the value of an electrical parameter, such as the crystal inductance (L 1), is limited

to a narrow range by such factors as resonant frequency, mechanical stability, tem-

perature coefficient, and suppression of spurious modes of vibration. In the crystal

filter, this limitation appears as a corresponding restriction on the realizable image-

impedance range, and in wideband filters it may further limit the range of realizable

bandwidths.

Detailed data relative to the quartz-crystal cuts commonly employed in filters,

together with the frequency and inductance constants necessary to dimension the reso-

nators, will be found in references 2, 11, 14, and 38. In general, the equivalent induct-

ance of a crystal will be considerably greater in value than any lumped inductance that

can be realized at the resonant frequency of the crystal. For example, at 100 kc/sec,

typical crystal inductances range from 10 to 100 henries.

1.3 DIVIDED-PLATE CRYSTAL UNITS

To prepare a crystal resonator for use in a filter circuit, it is desirable to deposit

a thin film of conducting material on the major faces of the crystal. Electric contact

is made to the plating by means of conducting wires, which are soldered to the plate.

These wires, which also provide mechanical support for the crystal, as shown in

Fig. 2a, are mounted at points on the crystal plate which are nodes of motion for the

resonator (11). In this manner, the restraining force exerted by the support wires has

little effect upon the vibration of the crystal.

Crystal filters are very often realized in the form of a symmetrical lattice network

employing one or more crystals in each lattice arm. Since the symmetrical lattice

requires elements in identical pairs, quartz resonators are often fabricated with divided

platings (16), as shown in Fig. 2b. The divided-plate crystal is a four-terminal sym-

metrical network that can be represented in balanced lattice form. Depending on how

the input and output terminals are chosen, the equivalent lattice will have a crystal in

either the series or shunt arms of the lattice (17). One choice of terminals is shown in

Fig. 2c; the impedance of the crystal in the series arm of the lattice is twice that of

the fully plated crystal. The capacitors C 1 3 and C14 represent stray capacitances

between terminals 1-3 and terminals 1-4, respectively. Bandpass lattice filters gen-

erally make use of crystals in both series and shunt arms, in which case the divided-

plate connections shown in Fig. 3a are employed. The subscripts A and B define

3



C'I4

2L, C,/2

(0 (c) I -
Fig. 2. Plated crystal resonators.4

Fig. 2. Plated crystal resonators.
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Fig. 3. Divided-plate crystal
connections: (a) bal-
anced; (b) unbalanced.

elements of crystals A and B, respectively. Crystals 2A and 2B have twice the imped-

ance of A and B, respectively.

If an unbalanced filter is desirable, the divided-plate connections of Fig. 3b may be

used. Note, however, that half the static capacitance (Co) of each crystal appears in

parallel with the other. In effect, the ratio of capacitances of the resonators is thereby

doubled, and the realizable bandwidth is correspondingly decreased. In addition, a

restriction on the attenuation characteristic results from the presence of 2C1 3 A + 2C1 4 B

in the series arm of the lattice. This capacitance, which is not balanced by capacitance

in the shunt arm, will cause the attenuation peaks of the filter to lie very close to the

passband, and special plating methods must be employed to obtain reasonable attenua-

tion characteristics (17).

4



II. THE SYMMETRICAL LATTICE FILTER

2.1 IMAGE PARAMETERS

The symmetrical lattice or bridge, which is the most general form of symmetrical

network (18), is particularly well suited to crystal-filter design. In addition to the

advantage of analytical flexibility offered by the lattice network, practical considera-

tions peculiar to crystal-filter realization often make it necessary to employ this struc-

ture to obtain desirable filter characteristics (4).

For the symmetrical lattice network, shown in Fig. 4, the image parameters (19)

are very simple functions of the series and shunt impedances, Za and Z b (18).

Zo= (ZaZb)1/ (5)

1/2

tanh = (Z b) (65)

where Z is the image impedance, and is the image propagation constant. If a

quantity p is defined by

1/2

(p Z (7)

then Eq. 6 may be written in the equivalent form

8 = ln 1 +p (8)1-p

It follows that the attenuation loss, which is the real part of 8, is given by

a = n l+pp (9)

If Z a and Zb are assumed to be pure reactances, the conditions under which the

symmetrical lattice acts as a filter may be readily determined in terms of the signs of

Za and Zb. When the reactances Za and Zb have opposite signs the value of ZO given

by Eq. 5 is real, and the value of p defined in Eq. 7 is imaginary. From Eq. 9, the

attenuation is zero, and a passband is obtained. Similarly, the lattice filter has an

attenuating- or stop-band whenever Za and Zb have the same sign. Under these condi-

tions, the image impedance is reactive and the attenuation becomes infinite whenever

p = 1, or Z a = Z b.

An important property of the lattice filter is that the image impedance depends only

on the number and location of the critical frequencies that are present in the stopband

of the filter and upon the cutoff frequencies, while the attenuation (and phase in the

passband) depends only upon the number and location of the critical frequencies that

appear in the passband and upon the cutoff frequencies. It is therefore possible to
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Fig. 4. Symmetrical lattice network.
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Fig. 5. Circuit for determination of
insertion loss.

specify the image impedance and the attenuation of a lattice filter independently of one

another, by suitable arrangement of the critical frequencies in the filter pass- and stop-

bands.

2.2 INSERTION LOSS

The attenuation a of a symmetrical network expresses the loss introduced by the

network when it is terminated in its image impedance. In practice, the terminal

impedances of a filter are generally fixed resistances, so that the attenuation loss only

approximately describes the performance of the filter.

The effect of placing a filter network between source and load resistances R t , as

shown in Fig. 5a, may be conveniently described in terms of the insertion loss it intro-

duces. Accordingly, an insertion ratio is defined as E/E 2 in Fig. 5b; that is, the

ratio of the output voltage when the filter is not present (Fig. 5b) to the output voltage

that results when the filter is placed between the resistances Rt (Fig. 5a).

If we define the normalized image impedance z by

Z
z0 

t

and the reflection coefficient p by

1 - z o
P= + z

0

it can be shown (21) that the insertion ratio becomes

E2 0 2-1 2 - 20
E = e(1 - p ) (1 - p e

(10)

(11)

(12)

The insertion loss aN is the logarithm of the magnitude of the insertion ratio. From

Eq. 12, it is therefore possible to write:

aN = a aa + a. (13)

where
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aN = in = insertion loss (14)
2

a = attenuation loss (14a)

ar= in (1 - p2 )-I = reflection loss (14b)

ai= in I1 - p2 e 2 0 = interaction loss (14c)

The reflection loss (ar) represents the mismatch effect at the filter terminals. It

yields a correction to the filter attenuation loss which is independent of that loss, since

p is a function only of Z and R t . The reflection loss is of greatest importance in the

filter passband, where the attenuation is zero and the filter loss is primarily the result

of mismatch. The filter network is assumed to be nondissipative.

In the filter passband, the reflection loss (Eq. 14b) can be written in terms of z by

using Eq. 11:

ar = 20 log Zo ) / + db (15)

Since z is always real in the passband, the reflection loss is always positive or zero.

In the stopband, Z is imaginary; hence Z = j Zo . With

lz°] (16)
1 ol R t

Eq. 14b becomes

a in or - n= ln + jzo2 + Z l/2 (17)ar In 0 + J l jol 4I Z

= -ln(4) + n (IZoi + Zol

In terms of decibels, Eq. 17 becomes:

ar -12 + 20 log (zl + db (17a)

The minimum value of ar in the stopband, which occurs when 1zo 1 = 1 or IZo = Rt,

is seen from Eq. 17a to be

ar min = -6 db
r

which corresponds to a reflection gain of 6 db. This result can be shown to hold as well
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for the dissipative network (22).

The interaction loss (a.i) is a second-order effect, which is generally negligible, but

which may be of interest in the vicinity of a cutoff frequency in the filter passband. In

the passband, 0 = j(a =0); and since e -2P = cos 2Z - jsin 2P, Eq. 14c becomes

ai = 20 log(l - p2 cos + p4)1/2 db (18)

The interaction loss varies in the manner shown in Fig. 6 in the vicinity of a cut-

off frequency (fB). From Eq. 18, the value of a. is maximum when = (Zn + l)(r/2),

and minimum when = nr; (n = 0, 1, 2, ... ). The interaction loss therefore always lies

within the limits

20 log(l - p ), ai < 20 log(l + p ) db (19)

2.3 UNBALANCED FORMS

It is sometimes desirable to realize crystal filters in unbalanced form, especially

at high frequencies when crystals become very small and division of plating is difficult.

The most useful method of obtaining an unbalanced filter, from the point of view of

maintaining the generality of the lattice structure, is to employ a three-winding trans-

former or hybrid coil (5). As shown in Fig. 7a, if the coupling between the secondaries

of the transformer is high (K2 = 1), the network becomes equivalent to the symmetrical

lattice.

When it is not economical to use the hybrid coil, the filter may be realizable in the

form of a T, r, or bridged-T network. The symmetrical lattice equivalents of these

networks are shown in Fig. 7b, c, d, and are easily derived by using the lattice equiva-

lence theorems (4) illustrated in Fig. 8. In practice, it is usually found that the

characteristics obtainable with T or r networks are too limited to be useful (4). The

bridged-T network, on the other hand, is more general than the T or rr, and sometimes

yields useful results, especially for lowpass, highpass, and band-elimination filters (23).
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III. SYNTHESIS OF BANDPASS CRYSTAL FILTERS

3. 1 GENERAL PROPERTIES OF BANDPASS FILTERS

Figure 9 illustrates the manner in which crystals, inductances, and capacitors can

be combined in symmetrical-lattice configurations to yield bandpass filter character-

istics. Curves of series- and shunt-arm reactances, filter attenuation, and image

impedance are sketched as functions of frequency for each filter. Filters 1 and 2 are

narrow-band filters, limited by crystal zero-pole spacing to bandwidths of less than

0. 8 per cent of center frequency for quartz. In each of the remaining filters, induct-

ances (Lo, L) have been added in series or in parallel with the crystal elements to

widen the filter passband (4). If quartz is used, bandwidths as large as 13.5 per cent of

center frequency are theoretically possible with these combinations.

In order to obtain the highest possible attenuation from each lattice configuration,

the passband extends from the lowest critical frequency of the series-arm reactance

Z a (solid line) to the highest critical frequency of the shunt-arm reactance Zb (dotted

line). These two frequencies, fA and fB' are called the "cutoff" frequencies. The

remaining critical frequencies of Za coincide with those of Zb to produce a continuous

passband. Within the passband, the filter attenuation is zero, and the image impedance

is resistive (solid line). In the attenuation band, the image impedance is reactive

(dotted line), and the attenuation characteristics have a number of infinite peaks which

can be no greater than one plus the number of "coincident" frequencies in the passband.

The simplest bandpass crystal filter (filter 1 in Fig. 9) will be referred to as the

"basic" section. The attenuation characteristic of the basic section has at most one

infinite peak, the position of which may be placed anywhere outside the filter passband

by varying the capacitor C'. It can be shown (18) that the attenuation character-
o

istic of a filter having n infinite peaks and a bandwidth B is equal to the sum of the

_ 2 3 _ 4 5 !

LO

j - Ic6 /

/A / -

_ _I _ I . ,... I 

O me _

Fig. 9. Bandpass crystal lattice filters.
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characteristics of n basic sections, wherein

each section has a bandwidth B and an atten-

uation peak corresponding to one of the n

peaks of the composite filter.

In practice, filters 3, 4, and 5 are usu-

a ally realized witn te series or parallel

Fig. 10. Wideband lattice filter with inductances equal (Lo ). Theinduct-
divided-plate crystals. ances can then be placed outside the lattice

by following the theorems illustrated in

Fig. 8. Some loss in generality of the filter

characteristic results if this is done. In the series-inductance case, one attenuation

peak must lie at infinite frequency, while in the parallel-inductance case, one peak must

lie at zero frequency (23). On the other hand, making the inductances equal saves two

inductances, permits the use of divided-plate crystals, and results in a resistance-

compensated network, in which the dissipation of the inductances cannot affect the filter

selectivity.

Figure 10 illustrates the divided-plate crystal connections for filter 3, when

Lo = L' The network equivalent of the lattice section between 1-1' and 2-2' is shown

in Fig. 3a. The two inductances at either end of the filter are generally wound on one

core, reducing the total number of components to two inductances, two divided-plate

crystals, and several fixed and variable capacitors.

3.2 OUTLINE OF SYNTHESIS PROCEDURE

The first step in designing a filter that will meet specified attenuation requirements

is to determine the number of basic sections which must be combined in order to meet

the specifications. An approximation of the basic section characteristic that permits

normalization with respect to bandwidth and center frequency will be described. From

the graphical addition of these normalized sections, the number and location of infinite

attenuation peaks is determined. This information permits the location of the coincident

frequencies in the passband. The coincident frequencies and the cutoff frequencies

specify completely the pole-zero configuration of the series- and shunt-arm reactances

of the lattice. Finally, the values of the elements making up the lattice reactances are

determined, within a multiplying constant, from the critical frequencies. We shall

describe both an approximate and an exact method of accomplishing each of the outlined

steps in the synthesis. The approximate analysis will permit a rapid and a simple solu-

tion of the filter synthesis problem with accuracy sufficient to determine whether or not

the filter is physically realizable.

3.3 NORMALIZED BASIC SECTION

As shown in Fig. 9, the series arm of the basic section (filter 1) consists of a crys-

tal which has a zero of impedance at fA and a pole at fB' Writing the reactance of the
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crystal equivalent circuit (Fig. lb) in terms of fA and fB yields

-j (f2 f2)

Z =
a 2f C (f _ f2B

The shunt reactance of the basic section is

-j
Z b -

rf C'
o

so that

(z)/2 (c / ( _2 25 1/2 f 1/2 (20)

\Zb kCo/ f f f2 f2

where m is not a function of frequency.

By making use of Eq. 6 and Eq. 7 and recognizing that tanh (/2) = 1 when f = fo

(see Fig. 11), it follows that

1/2
0 f ) (21)

p = tanh m (21)

where

Z 1/2

m (22)

Equation 21 permits the calculation of all possible attenuation characteristics

obtainable with the basic section. Since p is a function of bandwidth and m at any fre-

quency, a double infinity of curves would be necessary to cover all possible choices of

fA' fB' and f' It is possible, however, to find an approximation for p that is inde-
pendent of bandwidth and center frequency and yet will introduce negligible error in

practice. This is done as follows: Define

B fB -fA (23)

fA f f
fA B (23a)
o 2

Now write
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f = f + 2(f- fo) f+ (f fo )

o - fo -

fo = f + 2(f -fo) fo + (-0 0
fo )2
0

fA = f2 2(B) f + ( B )
A o 2

f = f2 .+o B

(f - fo) + Bo2 + [(f
0

fo)2 ( B2]}

=Bf +
(25)

1 + ( - 1)]4

= Bf (x+l ) [1 + r (xl- : o 4+-~(x)

where

f-f
0

B/2

BB -f
r f (relative bandwidth)

Following a similar process for fZ

results in Eq. 21 and Eq. 22, yields

2 2 2 2
fB' fA, and f0

2
fB and
B'

substituting the

2 [x - 1
P =

where

fo -
f

00 B/2

The desired result is now obtained by writing

p = po(l+6)

where

13
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(24)

f2 _ f
A = 2f

(26)

(26a)

Lx-1i

1)

1)j
B

1 + - (x0o

(27)

(28)

-



x + 1/z
Po m(x I- ) (29)

m =( 2 1. / (29a)

and

B B
1 + r (xo + 1) 1 + r (x-l)

B B (30)
1 +r (x -1) l+r (x+l)

Equations 29 and 29a permit the attenuation characteristics of the basic section

(Fig. 11) to be normalized with respect to bandwidth and center frequency. Further-

more, if

1/2
F (x) (x 1) (31)

then F(-x) = 1/F(x). In addition, m(-x) = l/m(xo).

Therefore, if an attenuation curve with x =xool is computed, the curve for x = -x0 1

is obtained by replacing x by -x (or rotating the characteristic for xl by 1800 about

x = 0). Thus, it is sufficient to consider xo > 1; that is, attenuation peaks occur above

the upper cutoff frequency. All possible characteristics, a number of which are shown

in Fig. 12, are then determined.

It is desirable to show that p is a sufficiently good approximation for p in all prac-

tical cases. Consider the last term on the right of Eq. 30. If Br(x+l)/4 << 1, then

B
1 + 4r (x-l) B

B 1 2r (32)

1 + r (x+l)

For narrow-band quartz-crystal filters, Br < 0. 8 per cent = 0.008; Eq. 32 will

therefore be an excellent approximation when x < 50. For wideband filters, Br < 0. 135,
and Eq. 32 requires x 4. In either case, the significant portion of the filter attenua-

tion characteristic will lie within the range of x for which Eq. 32 holds.

The first term of Eq. 30 requires somewhat more attention, since x may fall into

three different categories:

A. Br(Xoo - 1)/4 << 1; that is, the attenuation peak falls within the ranges of x
mentioned above. This represents the most common case and under these conditions

it is easy to show that

B2

6 8 (33)
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B. x = oo; (m=l). This condition is equivalent to f = o, and results when the

series inductances of filters 3 or 5 of Fig. 9 are made equal. In this case, the first

term of Eq. 30 is equal to unity and it follows that

B
6 r (34)

C. Finally, if f = 0; (xcO = -2/Br), as in the case of equal parallel inductances in

filter 4 (Fig. 9), then m 1 + Br/2, and if the normalized characteristic corresponding

to xO = o is used,

3B
6 4 (35)

The approximation for p may be written as an approximation for the attenuation a.

From Eq. 9,

1 + p 1 + p(l+6)
a = In -n p +) (36)

1 - Po(+6)

Since 6 << 1,

a.; a0 + Inl + 2)- (37)

where

a ln p (38)o 1 -Po0

Moreover, since 26po/1 - p° << 1,

in + 2 2 (39)
1 - P 1 P

If all terms are expressed in decibels, then Eq. 37 becomes

a a - 17.46 db (40)
O [PO - (/pO)

The order of magnitude of the approximation involved in Eq. 29 can now be seen in

terms of a. For example, in case A above, when B r = 10 per cent, and a. = 30 db, thenr o

a = 30 + 0. 16 db, and the error is about 0.5 per cent. Since, in practice, this is an

extreme case, it is apparent that in case A a correction need never be made. In case

B, for the same relative bandwidth and at x = 4, the correction is approximately 1 db.

This correction can be tabulated, since it depends only on the relative bandwidth

at any value of x. The exact characteristic is drawn in Fig. 12 as a dotted line for
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B r = 10 per cent. In practice, the x0c= o characteristic accounts for a relatively small

percentage of the total attenuation, so that even in case B the correction can usually be

neglected. The same reasoning applies to case C; thus, all practical cases have been

considered.

3.4 GRAPHICAL ADDITION OF SECTIONS

Whenever several basic sections are combined to form a filter, the composite

attenuation characteristic will have a number of minima, the magnitudes of which

must meet specifications given for the filter. By following a procedure developed by

Cauer (18, 24) it is possible to determine analytically the configuration of passband criti-

cal frequencies (or equivalently, the configuration of attenuation peaks) for which all

attenuation minima will have equal values. If this procedure is employed, some

readjustments by a cut-and-try process may be necessary to compensate for reflection

loss or to satisfy requirements not calling for equiminima behavior.

With the aid of the normalized representation of the basic section previously

described, it is often simpler to determine the composite filter characteristic entirely

by a trial-and-error process, especially since a given crystal filter is capable of sup-

plying a fixed number of attenuation peaks, some of which may be at zero or at

infinite frequency. This process consists of selecting an attenuation-peak configuration,

locating the positions of the corresponding attenuation minima by a graphical method

derived below, and determining the magnitudes of these minima from a set of normal-

ized characteristics such as that in Fig. 12. The process is repeated until the attenua-

tion at the minima and at other significant points of the filter characteristic is sufficient

to satisfy specifications.

It will be shown, in Section IV, that the reflection loss, and to some extent, the

interaction loss, of a crystal filter can be determined before the attenuation character-

istic is specified. The attenuation minima may therefore be adjusted to satisfy filter

specifications that are first corrected for reflection effects.

The procedure for determining graphically the position of attenuation minima is

derived as follows: From Eq. 29, Eq. 31, and Eq. 38, the attenuation of a single basic

section, neglecting the difference between a and a, becomes

a = n = in mF (41)
1-p l-mF

If n sections are combined, the total attenuation (aT) becomes:

aT = a 2 + a2 + 3 + . + an

(42)

- ln|Hl + lnlH 2 + + lnHni}

where

17



1+m F
H = nn 1-mF

n

and

n +1
oomn 

The position of the attenuation minima may be determined from the equation

daT 

dFdF = ° k (43)

- dF n21 dF I'' +n+ dF n n l J
If the required derivatives are taken and reduced to simplest terms, Eq. 43 becomes

da T 2m 2m 2m
T F Z (44)dF 2 + 2 2 +22 (44)

1 n

Equation 44 can be written in terms of x and x by using Eq. 29a and Eq. 31. The

result is the condition that must be satisfied by the abscissa xm of an attenuation

minimum:

2 1) 1/2 (2 1) L/2 2 1/21 ) + ( 2 + .+ 2= 0 (45)
Xm + xo o xm xoo m 001 m 2 m oon

To solve this equation graphically, it is necessary to plot a series of curves of the

func tion

2 1/2
G - 1)x > 1 (46)

for various values of x n . It is interesting to note that

Gn(1) = -
n

Goo(x) = -1

For negative values of x, the negative square root must be used in Eq. 46 because

of the absolute values taken in Eq. 42. That is, if the value of Gn(x) for negative x is

denoted by Gn-) (x), thenn

(X2 1)1/2

G( - ) (x) = - x 1 (47)

18



I !
t

i I i ! 4
!'~, ! f, !, f, f 5

l i , , I I I 

z - f T
I, f;2 f3 :f 

5;- 5 -- 4, S--, s,

Fig 1 Cv o n vr; N t e l d

Fig. 13. Curves of G n(x) versus x. Fig. 14. Notation employed in
sections 3.5 - 3. 7.

and it follows that

Gn) (1) = -m( xnl) (48)

Curves of Gn(x) versus x for various values of xo are shown in Fig. 13.

3.5 LOCATION OF "COINCIDENT" FREQUENCIES

An exact and an approximate method will be presented for determining the "coinci-

dent" frequencies within a filter passband from the frequencies of the infinite peaks in

the attenuation band. The notation to be used is given in Fig. 14. The exact method

will be presented without proof, since a complete derivation may be' found in refer-

ences 17 and 25.

The most complicated filter to be considered will be a five-peak filter such as

filter 5 in Fig. 9. If five basic sections are cascaded, each one described by an equa-

tion of the form

2 1/2

p = -tanh n (49)

wherewhere
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m* foon -fB2
-foon f2 f2 

it can be shown that the composite filter may be described by

- - 11 - - (e
FT - LQI

+ 02 + . . . + 05)
2

where 1 + 82+ . .. + 05 = T is the composite image propagation constant, and

m* * * * * *n 
=

ml 
+

m2 
+

m3 
+

m4 
+

m5

5 5

n=l o=1

n o

A* Z * * *

n o p

n o p

=r 2 m3 m4 m * * *
A5 = m m m3 m4 m5

n o; n p; o p

n o, p, q; o p, q;

+f, (A2

fB fB/

C~~/ 2 [.*2 (*2 ;l

2 f '2A - (A~ - 4A1+ - + A -

~~~~~*z *

+ A A* * .

fB 

A2 - (A
2

- 4A 4 ) f2 
+ 2 f 

2
A4

B

A2 + A2 - 4A 4 )I 

2

(50b)

Al + + A 5 A* 
fB 3 5 B/

A* + 3 (A3 -4A 1 A5' fA * + A3 - (A3 -4A! A5)

2 f2 L f

I
2
A 3 5 A 

fB , B/

A -(A32 - 4A A5 
f'F
A*i *

f' B L

3 + 
2

A -4A

20

(49a)

(50)

)

5

n=l

(50a)

p q

1

2 2f2=fB

Lf4 =fB

f3 
=

fB

f5 
=

fB

1

Al +

rT - ' 



If a filter with fewer sections is desired, the results may be obtained by letting some

of the mn go to zero. For example, for a three-section filter, m 4 = m 5 = 0, and

Eqs. 50, 50a, and 50b become:

1 /I)

(51)PT

where

A1 = m1 + m2 + m3

* *f**\ * *
A = ml m 2 + m 3 ) + m m 3

A3 = m 1 m 2 m3

A4 =A =04 5

(5 1 a)

f +A fB
2 B 2A

fg = ,
2 1 + A2

A*f 2 +A*f 2

2 1 fB 3 A
f3 = A* A*

2 2 2f4 = f5= B

(51b)

I

The approximate solution corresponding to Eqs. 50, 50a, and 50b is derived in Appen-

dix A of reference 38. The results will be given here.

If five basic sections are cascaded, each one described by a normalized equation of

the form

(52)Pon = m(x + 1)1/

where

xn - 1/2
mn X on + n = 1,2,..., 5

the composite filteonr may be described by

the composite filter may be described by

Al + A 3 +A 5 (x+l) (x -d 3 )

PoT 1 + A + A4 \(x-l) (x - d ) 2

/2
(x - d5)2 -

(53)
(x - d 4 )2 )

21
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where A1 through A5 are defined by Eq. 50a, if the asterisks are omitted, and

f. - f
1 O

B/2
i = 2,3,4,5

In terms of the values of A1 , A2 , ... A 5, the values of d i are given by

d3=

d5 =5

1 + A4 -A 2

1 - A 4 + (A2 - 4A 4 )

1 + A 4 - A2

1 - A4 - (A2 - 4A4 )

A 1 + A5 -A 3

2 1/2
A1 -A5 + (A3 - 4A 1 A 5 )

A1 + A5 - A 3

A1 A5 (A2 4A A 5 )1/21 \ 3 15'

Finally, for a three-section filter

A1 + A3 ((x+l) (x - d 3 ) 

PoT 1 + A2 K(x-l) (x - d 2)2

A 1 = + m + m 3

A 2 = m1 (m2 + m 3 ) + m 2 m 3

A3 = m 1 m 2 m 3

A4 = A5 = 0

-A
d =
Zi iAt

A1 -A3
d3 A 1 + A3

d4 = d5 = 1

Note: For f, = :

For f = 0:

Xo = o; m = 1

x0 = -2/Br; m 1 + Br/Z

t

(54)

(55)

(56)

(56a)

(56b)



3.6 ELEMENT VALUES OF FILTER REACTANCES

When the passband "coincident" frequencies are determined, the critical frequency

patterns of the filter reactance elements are likewise determined. For example,

Fig. 14 shows the zero-pole configurations for Za and Zb in the case of filter 5

in Fig. 9. Note the use of the prime to distinguish quantities related to Zb.

The synthesis procedure is complete when the element values of Za and Zb are

determined from the corresponding critical frequencies. This determination can be

accomplished by exact or by approximate methods. The calculations involved are

described in Appendix I; only the results are presented in this section.

The reactances to be considered are: (a) crystal, (b) inductance in series with

crystal, and (c) inductance in parallel with crystal. A complete list of filter reactances,

including combinations containing two crystals in parallel, is given in Article 3. 6 of

reference 38. The three combinations listed above are those most commonly encoun-

tered in crystal-filter synthesis.

All element values will be determined in terms of the crystal shunt capacitance Co,

which is limited by various crystallographic considerations to a relatively small range

of values. Within this range of values, C may be chosen to fix the filter image imped-

ance.

A crystal unit will be specified by its resonant frequency (fa), and its ratio of

capacitances (Co/C 1). The ratio of capacitances determines whether or not the crystal

can be obtained, since the realizability criterion states that

r = C/C 1 > r x

where rx depends upon the crystal cut employed. The crystal series capacitance (C 1),

or inductance (L 1 ), is determined (in terms of C ) if fa and r are fixed, since

C
C (57)

1 r
L = 1 (57a)

4rr fa C 4-w f C
a 1 a o

An inductance (Lo) placed in series or in parallel with crystal units will be deter-

mined by the frequency at which it resonates C. This frequency will be called f ,

so that

L 1 (58)o 40 2 fZ C
a 0

All approximate data represent only a first degree of approximation, since these

data will be used for rapid calculation. The element values are calculated from the

spacing (Si) between the reactance critical frequencies. The necessary values of S i
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may be calculated from the values of d i (Fig. 14) as follows:

S = B (d2 2d+ 1)

BSz = S = (d 3 - dz)

S3 = S = 2 (d4 - d3)

S = S = (d5 - d)

Bs 4 :¥(1- d5)

a. Crystal

-j f2 _ f2

2 2a 2 fC f fb
o b

Co = Cox + CA ' where Cox is the crystal-unit static capacitance and CA

parallel capacitance as shown in Fig. 15.

a=fb -f a

f2 f
a a

2 2 2S
b a

From Eq. 57,

C =C 
1 o 2 f

a

is any added

(61)

(62)

(63)

Li C,

Co
LI CI

CA CO

zo[ rfS.
FREQUENCY

Z,
REQUENCY

Yt, fb

Fig. 15. Reactance of crystal unit. Fig. 16. Inductance in series with crystal.
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b. Inductance in series with crystal

Z = j2r fL ( 1(f2 3) (64)
a 0 2 2 )

From Appendix I (Eq. 188):

2S S2

Sa f (see Fig. 16) (65)

and

f = (fl + f3f f + (S S (66)

Repeating Eq. 58:

L = 1
4rr f2 C

a 2

f2 f 2
a 0

2 2 4S (8)

C C-f 1a) C 2 (69)

C1 = Co f2 " o 2
a 2

c. Inductance in parallel with crystal

j f2 (f2 - f 2 )

a 2r fCo (f 2 _ f 2l)(f - f)

a = f2 (see Fig. 17) (71)

flf
fa =f f 2

+ (S 2 - S 1) (72)
a

Repeating Eq. 58:

o C
42rr f C

a. O0

f= (f2 + f23 (73)
2\)



2 2
f f
a a (74)

2 2 4S1S 2
b a

(f fa2 ) 4S Sc = c a c (75)
1 o fZ o fZ

a a

3.7 SUMMARY

The results of the previous sections will be combined to illustrate the synthesis of

the bandpass filters shown in Fig. 9. Specifically, filter 2 (narrow-band), and filter 3

(wideband) will be considered.

The method of determining the element values of Za from the corresponding critical

frequencies, or zero-pole spacings has just been described. The elements of Zb may

be determined in a similar manner, but it is more instructive to express the parameters

of Zb as a ratio of the corresponding values in Za For example, the ratio C/C is

the quantity that is adjusted during filter alignment to set the positions of the attenua-

tion peaks (15). The ratio C 1 /Cl, moreover, is important for two reasons. First of

all, this ratio will in most cases uniquely determine the relative positions of the

attenuation peaks in a filter. Since it cannot be varied without changing the crystal

units, the ratio C /Cl must be set by the crystal grinder to very close tolerances. This

point will be discussed further. The other reason for the importance of this ratio is one

of physical realizability. In grinding a pair of crystal units for a filter, the ratio C/Cl

is determined approximately by the ratio of the thicknesses of the quartz plates.

Because of mechanical considerations, this ratio may lie in the range 0. 1 to 10, approxi-

mately. When the ratio required by the filter design is outside of this range, as might

be the case in a filter with all attenuation peaks on one side of the passband, a capaci-

tor could be placed in series with one of the crystals to lower its capacitance (15, 38).

However, the series capacitor will raise r, and therefore decrease the bandwidth

obtainable from the filter.

The problem discussed above, which is peculiar to crystal filter synthesis, makes

the approximate method of analysis particularly desirable.

Lo

FRQUENCY

'Z °3'
I

FREUENCY

_T f , Co'

Fig. 17. Inductance in parallel Fig. 18. Narrow-band filter.
with crystal.
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L, C,

Co

L,' C,

Co.

Fig. 19. Wideband filter.

a. Narrow-band two-section filter

This filter will be of the type shown as filter 2 in Fig. 9. The reactances of the

lattice arms are shown in Fig. 18 with the corresponding critical frequency configura-

tions. From Eq. 60

(Z/2 = C/2
p ==

Z~~~~

/2

(76)

1/2

Zo = (Za Zb)l 2 (77)
2-m f (C C' 12 f -f

The steps involved in the synthesis procedure are listed in Table I, along with the

corresponding formulas. The information available before step 1 is: fA' fB' fool, foog

(or x, 1 Xoo0 2 )

b. Wideband three-section filter

The filter will be of the type shown as filter 3 in Fig. 9. The reactances and corre-

sponding zero-pole configurations of Z a and Z b are shown in Fig. 19. From Eq. 64

/b 

p = 
1 /2 (1 /2

:=/

/ (78)

(78)

2 2(fz 21
o (Zb) / = /zA (f - fB - 2))

The steps necessary to accomplish the synthesis of this filter are listed in Table II.

The information available before step 1 is: fA' fB' fool foo2' foo3 (or xoo l, x0o 2 x 3 ).
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Table I. Synthesis of Narrow-Band Two-Section Lattice Filter.

Exact Approximate
Step Quantity

Formula Source Formula Source

* 2 1/21/

mI 1, 2 B (49a) 1,2 (Sa)

ocl,2

All AZ I m2 m I M 2

2 A * (5 a) (56a)

m2' 2 m12 2

f 2 + A f)/1 + A1/2] (Sib)
2 [(B 2 A 2]

3 d2 (1 - A2 )/(1 + A2) (56b)

Si B/2 * (d2 + 1)

4 si -1B/2 (1- d2 ) (59)

5 fa fa fA; f Fig. 18 fA; fA + S1 Fig. 18

6 fb; fb f2; fB Fig. 18

7 c/ (1 + A*' (51) (1_+A (56)

oo\ A* (76) A1 (76)

. Co [ ft/2fZ fa)c 2 (63) Co S (63)

r f2/(f2 f) f /2S1

f2/f' 2) (62) f'/251 (62)
r' ft Z/ f' f ;(flb

2 2

-f2 a /2Sd2_ _ (1__ _ _ _ _ _ _ -1i + A_ (56 b
10 C1 C b a (63) C 1 (63)

1 0O ~~~~~~~~B/f2 ( f a
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Table II. Synthesis of Wideband Three-Section Lattice Filter.

Exact Approximate
Step Quantity

Formula Source Formula Source

m I 2 , m3 (5 a)fI fZ (49a) - + - (52a)
ml' m 2 ' m3 n A 1on

2 All A 2 , A 3 zm n , etc. (51a) Em n , etc. (56a)

3 f2d 2 etc. (lb1 + ) A) (56b)

f3; d3 1 + A2 (A1 - A3 )/(A 1 + A3 )

4 S1 , S 2 , S B/2 · (d2 + 1), etc. (59)

2 1/2

| + - /2f ( 6 LA ] (66)
5Co a5 8 f + S (66)
5 fa C3 (66) A 2

2S1S 2
fa fAf3/fa f2 f

6 (67) 2 (67)
2SS5

f f f/' 22 Fig. 19aBf3 f3

7/L (/Al+A 3 2(51) (A1 + A3 (56)
0 0 1+ A2 (78) A2 (78)

L' f' L'
8 co/cI 0 a (58) o (58)

c°c' Lof2 L,
ao

C f -f L' S
9 C/C a(63) L 1 (69)

11/ CI2 f z2V) L s.
a~~ o 2

2 2

1 2 (68)

f2 _- f2 4S S
2 2 f2

a 2

12 L 1/42 f C (58) 1/42 f C (58)_ _ _ _ _ _ _ o aC a o
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It is interesting to note that for filters with symmetrical attenuation characteristics

(about f = f, or x = O0), it is sometimes possible to express the maximum bandwidth

(which. depends upon r) in terms of the locations of attenuation peaks. In such cases,

a great deal of information can be obtained without necessitating even an approximate

synthesis. The use of the normalization technique to accomplish this analysis and its

use in determining the characteristics obtainable with crystal filters that are realized

in unbalanced form are discussed in Chapter V of reference 38.
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IV. INSERTION LOSS OF BANDPASS FILTERS

4.1 IMAGE IMPEDANCE

One of the general properties of the crystal lattice filters described in Section III,

is the arrangement of the critical frequencies of Za and Zb. With the exception of the

cutoff frequencies fA and fB' every zero of Z a is coincident with a pole of Zb, or

vice versa. Furthermore, since the coincident frequencies are located within the pass-

band, it follows that the image impedance

o = (ZaZb)l/2 (80)

can have a frequency dependence that involves only fA and fB. Therefore Z can be

classified according to three types, depending on the nature of fA and fB:

Type I: fA = zero; f = pole

1/2

(f - (81)
ol f (81)

Type II: fA = fB= zero

M2 f2 )(f 2 2 ))/2(82)

Type III: fA = fB = pole

1
Zo3 = M3f (83)

((f2 - 2) (2 f2)) 1/2

where M1, M2, and M 3 are constants that depend on the filter configuration.

Type I would yield an image impedance that is the reciprocal of Zol, and is not

signific ant.

If we use the normalization procedure described in connection with the basic

section, it is possible to write

- fA = B f(l+x) + 4 ( (84)

fB f = B f(l-x) + 4r (x+ (84a)

where use has been made of Eq. 23 to Eq. 26a. Substituting Eq. 84 and Eq. 84a in

Eq. 81, Eq. 82, and Eq. 83, we obtain
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MZ i/ ( B
ol f (1-x 4

Zo2 MfBr( - x2)/2 1 -

+ 1) (85)

(86)

(87)
M3

Zo3 f B
o r (1 - x )/ 2 ( +

Since the last term in each equation above is negligible in the neighborhood of the

filter passband, the normalized image impedances may be written:

Zol / Rol (-) (88)

oZ o Ro2 (1 - x) 1 2/ (89)

Z o 3
(90)

(1- x2) 1 /2

where R is the impedance at f = fo(x = 0), and

M
R -ol f

o

Ro = MfBro2 2fo r

M 3

o03 f B
o r

(91)

(92)

(93)

The image impedances of Types I and II are plotted as a function of x in Fig. 20.

Table III. Image Impedance of Bandpass Filters.

Filter No.

1, 2

3, 5

4

2w (CoCo)I/2

Image Impedance

1 )1/2 f /

2wf(C C)/2 f2
0 0

2( oLo) 1 / 2

- 0-- 0 f
fO~ i -fA) (f- f ))

((f2 fA) (f2 -f2))/

R
0

1 C
t f ~C 1C /z~ qc \c

B
r

0 o oLo/LI/ 2

1 (C /C )l2
2r f C Bo o r
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i lzl II

- 4 - -2 -I -0
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IZo021
02 /

///
/

// ib)

I 1 I 
0 5 2 3 4 5

Fig. 20. Image impedance characteristics of bandpass filters.

As in Fig. 9, the solid line represents resistive impedance, and the dotted line reactive

impedance. Since Zo 3 /Ro3 = Ro2/JZoz2 , the impedance characteristic of Type III

is the reciprocal of Fig. Z0b.

Equations 81-83 and Eqs. 91-93 can be applied to the bandpass filters shown in

Fig. 9. The results are shown in Table III.

In each case, the image impedance is obtained by substituting in Eq. 80 the values

of Za given in section 3. 6 and the corresponding values of Zb. The values of Ro given

for filters 3 and 5 would be

B
r

R = 2 f L (94)

(Lo/L)1/2

if Eq. 82 and Eq. 92 are used. However, by making use of Eq. 58, and neglecting the

difference between f and fa, Eq. 94 may be written in the form shown in Table III.

The formulas for Ro given in Table III may be used to determine the value of C o

necessary to provide a particular image impedance.

Alternatively, the image impedance can be expressed in the terms of crystal induct-

ance. It is only necessary to use Eq. 57a and to note that fa fo; then it follows that

2If L
(95)2rr f C r

o o

Substituting Eq. 95 in column 3 of Table III yields the desired expression for R in

terms of L 1 for each impedance type.
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4.2 PHASE CHARACTERISTICS

Crystal bandpass filters are rarely, if ever, designed for specified phase character-

istics. However, when it is important to determine the exact behavior of the filter in

the passband, the interaction loss, which depends upon the phase characteristic, must

be calculated.

Within the filter passband I x I < 1, so that the normalized approximate expressions

for the image propagation constant 0 may be used with negligible error. Making use

of Eq. 45 and Eq. 29a, it follows that

0 = a + j = 2 tanh1 po (96)

where

p = image phase constant

and

1/2
= m(x 1)

In the passband a = 0, and

tanh = tanh j = j tan 
2

(97)

(98)

Fig. 21. Phase characteristics of basic section.

34

i

_�·_ _��� C�I111111__111_11_ I(I1I·- XI- X-·l P1 I

I,

I
G
"I
"I
"I

I

--ou 8 - - - 0 -Z 04 0 . .



so that

: an- 1 +x 1/ 2
12 tanl m (l- x (99)

Curves of 13 versus x are plotted in Fig. 21 for various values of x. The charac-

teristics for x,0 negative (one of which is shown dotted in Fig. 21) are obtained from the

expression

( 1 ) (x) = 1800 - 1n(-x) (100)

That is, the phase constant at any value of x for x = -XoonJ which is denoted by

n- 1 ) (x), is equal to 180 ° minus the phase constant at (-x) for xo = Xon. Equation 100

is easily derived by replacing x and x, by (-x) and (-x,) in Eq. 97 and Eq. 98.

The composite phase constant (PT) for a number of cascaded basic sections is, of

course, the sum of the phase constants for the individual sections at any value of x.

4.3 REFLECTION AND INTERACTION LOSSES

When the results obtained in section 2. 2 are repeated, the insertion loss (aN) intro-

duced by a symmetrical filter terminated in Rt is given by

a N = a + r + ai (101)

where

ar = n 1(1 - p2)-1 1 = reflection loss (102)

-20T
ai= n 1 - p e T = interaction loss (10Za)

and

1 - z
o ( (103)

o

where

Z
= 0 (104)

o Rt

In the filter passband, Z is real, and Eq. 102 may be written

cr =20 log ((z) + / )jdb (105)

(% )

In the attenuation band, Z is imaginary and Eq. 102 becomes

a = -12 + 0 log (zo + db (106)
1 Zo 0
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where

I Zo= I Zo/Rt

It should be noted at this point that the reflection loss given by Eq. 102 is a function

only of the image impedance and the terminating resistance of a given filter. Moreover,

as explained above, the image impedance of a crystal filter is independent of the number

of basic sections making up the composite filter. By making use of the normalized

representations of Zol /R plotted in Fig. 20 it is therefore possible to determine ar

for all possible crystal filters by computing the reflection loss for Zol (narrow-band

filters) and for ZoZ (wideband filters). The resultant values of ar versus x may be sub-

tracted from a given set of filter specifications, after which the filter is designed for

an image attenuation that meets the adjusted specifications.

A discussion of the interaction loss was given in section 2. 2, wherein it was shown

that a.i is significant only in the passband and is given in that region by

ai = 20 log( - 2p2 cos 2 T + 4)1/2 db (107)

It is obvious from the symmetry of Zol /R 1ol about x = 0 and about Zo 1 /Ro 1 = 1

in Fig. 20a that the insertion loss will be symmetrical about x = 0 if Rt = Rol. If a

constant a is defined by a = Rt/R o , then the best terminal condition for a filter with

an image impedance of Type I corresponds to a = 1. The reflection loss corresponding

to this condition is shown in Fig. 22a. We see that a reflection gain of 6 db occurs over

most of the filter attenuation band. The dotted

line in Fig. 22a shows the attenuation character-

istic corrected for interaction loss in a narrow-

4 / _ band filter composed of two basic sections, with

attenuation peaks symmetrically located about

-. ;C ~s2 V\ e J 4 5 6 1x = 0 and Ixo , 10.

\4 The image impedance of Type II, shown in

-aL (o0) Fig. 20b, is identical with the midseries image

--- CORRECTION FOR impedance of a constant-k lowpass filter (26).

A filter having this type of impedance is best

terminated by a resistance somewhat less than

R . It can be shown (27) that the most satisfac-

tory terminations correspond to values of ao in

the vicinity of 0. 7 and 0. 8. The reflection loss

for a = 0.8 is shown in Fig. 22b. The dotted

line represents the total insertion loss in the
nmcshanrl fr n virihnnrid filtpr rnnnrd nf three

Fig. 22. Reflection loss of basic sections with xol = -2, Xo 2 =+2, xoo3 = 
bandpass filters. Although it is rarely necessary to calculate
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the interaction loss over the entire passband, it is frequently desirable to know the

filter insertion loss at the cutoff frequencies (x = +1). The expressions for reflection

and interaction loss given by Eqs. 102 and 102a do not hold at the cutoff frequencies, but

the combined loss given by

2 -20T
aN = iln -p e (108)

1 -p

must be finite at x = +1.

To calculate this loss, use is made of the normalized expression for the composite

image propagation constant T' From Eq. 8 and Eq. 53

T 1PoTe = oj (109)

where

A 1 + A 3 + A 5 x+l 1/2 (x- d3 )(x- d5 ) (110)

PoT 1 + A + A4 x-l (x - d2) (x - d4)

From Eq. 110 it follows that in the vicinity of the cutoff frequencies (x = +1), PoT 0 0

or o. Equation 110 can therefore be approximated as follows:

-20
e 1 - 4oT PoT 0

-2 _ Ieo (111)

e 1 - 4 /POT; PoT

Similarly, z - 0 or o at x = +1, so that Eq. 103 becomes

p 1 - 4z ; z

i2bstituting Eq. 11 nd E. 12 i Eq.108yiels te(112)
p 1 - 4/zo; 

Substituting Eq. 111 and Eq. 112 in Eq. 108 yields the desired result:

a = in i P z - O 0 -P -0o oT

= n ; Z z - PoT 0

ON = n I 1 + PoTZol ; zo co, PoT °

N = n I1 + PTZ; Zo ' PoT 

(113)
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where the indicated magnitudes are evaluated at x = +1 or x = -1, depending on where

the corresponding conditions on zo and PoT apply.

4.4 INCIDENTAL DISSIPATION

With the exception of filters having very narrow bandwidths, the effects of dissipa-

tion in crystal elements employed in filters may be neglected. This statement will be

discussed later. It is necessary to show first that inductances, which are 100 times

more dissipative than crystals, may be introduced into a crystal-filter network in such

a manner that the essential advantages offered by the crystal elements are not lost.

Rc Rc

2 2
(a) (b)

Fig. 23. Resistance-compensated
networks.

lel resistance of shunt inductances (filter 4 of

Let us refer to filters 3 and 5 of

Fig. 9. If the resistances associated with

the series inductances L and L are
0 0

equal (or are made equal by adding resist-

ance to the smaller one), then by the

theorems illustrated in Fig. 8, these

resistances may be removed from the

lattice and placed in series with the filter

network, as shown in Fig. 23a. Similar

reasoning would bring the effective paral-

Fig. 9) outside of the lattice, as shown

in Fig. 23b. The resistances brought out of the lattice may be incorporated in the ter-

minal resistances of the filter and will add a constant loss to the insertion loss charac-

teristic. Networks of this kind, in which the dissipation of lossy elements can be made

to introduce a constant loss without affecting the filter selectivity, are called resistance-

compensated networks (5).

The loss introduced by the effective resistance (Rc) of the inductances may be com-

puted as follows. In the case of series inductances, taking Lo = L, Eq. 94 yields

Rt = a R 0=a Zr f L Bt oo o o o r
(114)

From Fig. 23a, the insertion loss (ac) introduced by R c becomes

(115)= -20 log - )dbC R

The ratio of reactance to resistance (Qc) for the inductance L o , in the vicinity of

the filter passband, is given by

2r f L

Qc R
c

Substituting Eq. 114 and Eq. 116 in Eq. 115 yields

(116)
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c -20 log I ) db (117)

When two filters of the kind described above are cascaded to form a composite filter

network, it is necessary to introduce resistance in series or in parallel at the common

junction so that each filter will be properly terminated (28). The presence of these

impedance-matching resistors adds an additional constant loss to the composite network.

From Eq. 117 it is apparent that a filter using series inductances can have a mini-

mum bandwidth given by

1 125
Br(min) ao Q 1 per cent (for a 0.8) (118)

A similar result is obtained in the case of parallel inductances.

The range of bandwidths obtainable with filters employing quartz crystals and

inductances extends, therefore, from below 1 per cent to about 13 per cent, and covers

cases not practicable with crystals alone, or with conventional circuit elements.

The dissipation of the crystal elements in a crystal filter cannot be compensated in

the manner described above. However, since Q's of 10, 000 or greater are common for

quartz resonators, the corresponding dissipation is extremely small. For this reason,

it will be sufficient to determine the dissipative attenuation at several important points

of the filter characteristic. Accordingly, the value of attenuation in the presence of

dissipation () will be determined at the filter center frequency (x=0), at the cutoff fre-

quencies (x = +1), and at the frequency of the attenuation peak (x = x). The method

employed was suggested by E. A. Guillemin (21).

It is sufficient to compute a for a single basic section, since the dissipative attenua-

tion for a filter equivalent to a number of cascaded basic sections will be the sum of the

corresponding attenuations for each section, as long as all crystal resonators have

approximately the same Q values. Use is made of the normalized expression for

attenuation given by

1 + p0
a =1n 1p (119)

where

p = m(x+ I) 1/2(120)

and

m( 00 -)(121)

The analysis of a dissipative network is based upon the conclusion (29) that the

impedance or propagation function of a uniformly dissipative network may be obtained
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from the corresponding quantity of the lossless network by replacing j by j + E,

where

= 7 R + (Gl (122)

Since

f-f
o -

x = = (123)
B/2 rB

the value of po for the dissipative network () is obtained from p for the lossless

network by replacing jx by (jx + E/TrB). Furthermore, from Eq. 122

E o R G 1
1TB _ B + Q B (124)

In crystal filters Qo is essentially the Q of the crystal element, since the capaci-

tors employed in the network are usually small air trimmers and may be considered

dissipationless. With the use of Eq. 124, it is possible to write

o() = Po jQoB) (125)

a. Center frequency

In the vicinity of the filter center frequency, x - 0 and Eq. 120 can be approximated

by

PO jm[+X]; x -0 (126)

By making use of Eq. 126, Eq. 125 becomes (at x = 0)

(0) = m + jm (127)
QoBr

Substitution of Eq. 117 in Eq. 119 and the use of ln[l+u] u yields

"x= 0 2 2m 1B nepers (128)
+ m o r

b. Cutoff frequencies

In the vicinity of the lower cutoff, p - 0; in the vicinity of the upper cutoff, po - oo.

If the real part of Po is denoted by R e o , then
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= ln I -P

1+I
Po

Poa=ln 1p0

= 2R e O (-1);

e2R
e po(1) 

Using Eq. 125 and Eq. 120, we have

In(1 1 /2/2r i'o'r (130)

/a

p (1) m(2)l/a Q-

The desired result is obtained by taking the real parts of Po ( -1) and 0o(1) in Eq. 130,

and by using Eq. 129.

m

x=-i '1

(QBr)1/2

nepers

(131)
1

x=+l 1 
m(Q Br ) 1/ 2

r 

nepers

c. Attenuation peak

Near the attenuation peak, po - 1, so that po can be approximated by

(x - xoo); X ' Xox (132)

On the other hand, if po in Eq. 125 is approximated by two terms of a Taylor series,

( dp0\ 1 (133)
Po Po - dx Q B (133)

Substituting Eq. 132 in Eq. 133 yields

Po 1 + (x xOO)- Q x=X (134)

Taking the derivative indicated in Eq. 134 and using Eq. 119 and Eq. 121, we have
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x =+1

(129)

/dp0 a
PO -- 1 + d



2(x 2 - 1) QBr

a in (135)

+ Q2 B 2 (x - x)2]
I qo r

Equation 135 is the value of a in the vicinity of the attenuation peak. The maximum

value of this expression occurs at x = x.,, and is given by

max in [2Q B ( x 2 1)] (136)

Equations 128, 131, and 136 make it possible to estimate the effect of using crystals

with Q = Qo in any crystal filter of relative bandwidth B r . Since Q 20, 000 in general,

only filters with very small bandwidths or with peaks very close to the cutoff frequencies

will be affected to any significant extent by crystal dissipation.
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V. TOPICS PERTAINING TO THE REALIZATION OF CRYSTAL FILTERS

5.1 SPECIFICATION OF TOLERANCES ON CRYSTAL UNITS

Having successfully completed the synthesis of a particular filter, the designer is

faced with the problem of determining the tolerances to which the element values must

be held to ensure that the filter characteristics meet specifications. When the filter

contains crystal elements, and is realized in lattice form, it becomes especially diffi-

cult to determine the tolerance. First of all, the lattice structure is a Wheatstone

bridge and thus it is particularly sensitive to element variations. Moreover, the crystal

units will ordinarily be supplied by the manufacturer in sealed enclosures with no pro-

vision for varying the parameters of the crystals. Fortunately, quartz resonators are

stable and reliable circuit elements and are well suited for use in lattice structures.

However, since there is no "variable" crystal in the same sense as a variable inductor

or capacitor, the determination of tolerance limits by empirical means involves the

costly procedure of grinding many crystals with slightly differing characteristics. By

making use of the approximation techniques described in Section III a simple means of

specifying tolerances analytically can be derived.

The alignment procedure normally employed for lattice filter (15) will adjust the

values of C and C' of the filter network. The remaining quantities, which must be
0 0

specified within certain limits, are the crystal resonant frequencies fa and fa, the crys-

tal capacitance C 1, the external inductances L o , and the ratio C 1/C[I. The resonant fre-

quencies offer no difficulty, since the crystal manufacturer is accustomed to produce

crystals for oscillator circuits, in which the required frequency tolerances are gen-

erally much more exact than in filter circuits. Normal frequency tolerances for filter

crystals vary from +0.001 -per cent to +0.02 per cent, depending on the filter band-

width (30). Furthermore, so long as the ratio C 1/Cl remains constant, variations of

C 1 can affect only the image impedance of narrow-band filters, or the shape of the pass-

band in wideband filters. In the latter case, the effect may be estimated by varying Lo

instead of C 1 .

The remaining quantity, C 1 /C 1 , is of primary importance in determining the atten-

\ ,

f-A , - f. f 2- C f

Fig. 24. Notation employed in
sections 5. 1 - 5. 2.

uation characteristic of the filter. The procedure

for calculating the permissible variation in this ratio

will be as follows. The frequencies of peak atten-

uation (fool and foo2) will be determined in terms of

C 1 /Cl, fa' and f . Keeping one peak fixed, which

will be done in the alignment procedure, the per-

missible variation of the other peak is then found by

making use of a set of normalized basic section

characteristics (Fig. 12). The width of the pass-

band is assumed to be constant, since, as a general
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rule, very small variations of C 1/C1 are involved, and corresponding variations of

filter bandwidth are even smaller. Finally, the permissible range of attenuation peak

values is expressed as a tolerance limit on C1 /C,1 .

The first step of the procedure outlined above is accomplished by writing the

condition for an attenuation peak in terms of the admittances of Za and Zb. That is,

since Za = Zb at f = fol 2' then correspondingly,

aY Yb (137)

where Y = 1/Za, b a,b
With the notation of Fig. 18 and Fig. 24, Eq. 137 may be written

fa (fa)2

j2Tr fCo - j2w fC1 = j2r fC' - j2r fC (138)

(f 0 , 2 - f 0 C [f2 2- (fa)2]

At each attenuation peak, Eq. 138 becomes

C f2 C (f )Z
(Co C) a 1 a (139)

f2 fZ f2 f(ft) 2

0ol a col a

C f2 C, (f_ )2
(Co - Co) f2 f a (139a)

0 2 - f2 ff2 _ (ft) 2

cc2 a oo2 a

Subtracting Eq. 139a from Eq. 139 and simplifying the result yields

C 1 (ft )2 (f21 f) (4 f0
a (140)

C' f2 [f2 1 (f 2 2][f g ~ (fa) ]

Equation 140 may be put into a much simpler form by employing an approximation

technique similar to the one described in Section III. The notation involved is shown in

Fig. 24; A and A2 are positive when one peak lies on each side of the filter passband.

That is,

A1 fa- fol

(141)

f - f
2 oo2 a

Note that the extent of the passband is not specified, since Eq. 140 holds for narrow-

band or wideband filters, so long as no inductances are contained within the lattice itself.
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The approximate form of Eq. 140 is obtained by writing

f°,1 (fa A1) = f 2a 1 f2 A 21

2 2 2f° = (f + A) = (f) + 2A f + A 2

f2 fL + A )2= (fZ) ++2 a 

2 + 2
(fa)2 = (f + A )2 = f + 2A f + A2

a a o a o a oa fa o d 0 a 0

(142)

Substituting Eq. 142 in Eq. 140 and simplifying gives

Cl (fa)2 1 (2 + o) 2fa+ 2
C1 - fZ 2A(a 2 + Ao) (143)

a f2 A 2(AI+ A)
Laa 1a

If, in the bracketed expressions in Eq. 143, A2 and A 1 are neglected compared to 2 f a

and 2f a, respectively, then Eq. 143 becomes

A

C f' A
I a 2

C1 fa A- (144)
1 a o

The error involved in this approximation is completely negligible for all practical pur-1

The error involved in this approximation is completely negligible for all practical pur-
poses.

To illustrate the, use of Eq. 144, consider a narrow-band filter with one crystal in

each lattice arm, which is designed in accordance with the procedure outlined in

Table I. The desired attenuation characteristic is shown by the solid line in Fig. 25.

Assume that the specifications given for the filter are such that if xo 1 is held constant

at -10, then the filter characteristic can vary between the dotted and dot-dash curves

in Fig. 25, which correspond to x2 = 8 and xoo2 = 12, respectively. Thus xooZ varies
by +20 per cent, and the attenuation above the upper peak (x 20) varies by about

+10 per cent. The corresponding variation in C 1/C is easily calculated from Eq. 144

by recognizing that fa corresponds to x = -1, and f corresponds to x = 0 in the symmet-

rical narrow-band filter. The ratio fa/fa is essentially unity for this filter; and for the

solid curve in Fig. 25, since x 2 = 10, then a = 1, A1 = 9, 2 = 10 (in terms of x).

Thus, from Eq. 143, C/C 1 = 0.99, which must correspond, of course, to the value
of C 1/C, obtained at step 8 in Table I. Similarly, for xoo2 = 8 and xoo2 = 1Z, C/C 1 =
1.0125 and 0.975, respectively. The permissible variation of C 1/C 1 is therefore
+1.88 per cent.
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-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 l0 12 14 16 18 20 x

Fig. 25. Tolerance limits for narrow-band filter.

(0)

i \, /

,' \ A'

1i _O --_
A o A --

(b)

Fig. 26. Bridge method for adjustment of crystal units.
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5.2 BRIDGE METHOD FOR ADJUSTMENT OF CRYSTAL UNITS

A number of methods commonly employed for the measurement of the equivalent

electrical parameters of a crystal resonator are described in references 32 and 37 and

will not be repeated here. However, a simple and accurate bridge method used by the

author for adjusting the resonant frequencies and capacitance ratios (C 1/Cl) of crystal

resonators used in filters will be discussed in some detail.

The measurement circuit is shown in Fig. 26a. With Sw. 1 or Sw.2 in position 1, V

will have a maximum indication when the oscillator E is tuned to the resonant frequency

of crystal A(f ) or crystal B(fa), respectively. The value of A = f - f is measured

or adjusted in this manner. With Sw. 1 and Sw.2 both in position 2, crystals A and B

are arranged in a lattice configuration of the type which would be employed for a narrow-

band filter having one crystal in each lattice arm. Under these conditions the variable

oscillator E is set to a frequency which is A 1 cycles below fa, and the trimmer capaci-

tors CT (one in each series arm) are adjusted for minimum response at V. The oscil-

lator frequency is then varied until the other attenuation peak (fo,2 in Fig. 26b) is located.

If the frequency difference between f 2 and f' is A then the ratio C 1 /Cl (C1 for crystal
a

A, C for crystal B) is given by Eq. 141 and Eq. 144:

A

C f' AC1 _a _..._2
- f A (145)

C' faI a o
1 + o

A1

Nothing has been said thus far about optimum or reasonable values of Ao, A 1 and

A2 . When AO is less than the zero-pole spacing of a crystal, the measuring circuit is

essentially a narrow-band filter and the attenuation peaks will be well defined. Further-

more, the impedance of the circuit will generally be in the region that will permit the

coupling transformers T to be ordinary double-tuned coupled circuits (i-f trans-

formers). If crystals A and B are to be used in a narrow-band filter, then fa and f'a a
can be the resonant frequencies called for in the filter design. On the other hand, the

crystals may be employed in a wideband filter, in which case their resonant frequencies

must be widely separated, and two alternatives are possible:

1. The frequency fa is the resonant frequency of crystal A as called for by the

filter design. Crystal B is adjusted to a frequency fa, about 0. 1 per cent of fa ()
a' ' a (o0

above fa. The ratio C 1/C 1 is adjusted to

a
C 1a1x (146)

where (C 1/C)x and (fa)x are the values called for in the filter design. When the reso-

nant frequency of crystal B is subsequently raised to (f)x by decreasing the length of

the resonator (a longitudinal vibration is assumed), then the capacitance of the crystal
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will be decreased correspondingly, and the final ratio of series capacitances will be

(C 1 /C' 1 )x

2. Assume that two crystals have been ground and adjusted for use in a particular

wideband filter, using the method described above. For other procedures the reader

is referred to Article 6.1 of reference (38). Call these crystals A s and B s . When many

such filters are needed, As and Bs must be duplicated a corresponding number of times.

The bridge method is particularly suitable for this application, since A s and B s may

then be used as "standards." Suppose, for example, that A s has a resonant frequency

of fs. It is necessary, first, to regrind As to a frequency f + Ao, where AO is about

0. 1 per cent of fa. A, with frequency fs + A , is then placed in the "B" arm of the

lattice (Fig. 26a). Any crystal may now be made identical to As by placing it in the "A"

arm of the lattice and making the adjustments necessary to obtain

f =f
a s

C
1
= 1C'

In a similar manner crystal B s may serve as a standard from which any number of res-

onators are duplicated.

The choice of A1 in Fig. 26b, that is, the location of fool relative to fa' is based on

a compromise between two considerations. On the one hand, an analysis of the measure-

ment error, to be carried out presently, reveals that the accuracy of the bridge method

increases as A increases. On the other hand, if A 1 is made very large it will be diffi-

cult to distinguish the position of the attenuation peak, because of system noise. In

general, a good compromise is achieved when A1 is in the order of 10A.

The accuracy with which Ao, A 1 and A2 must be measured is easily determined

from Eq. 145. For example, if an error is made in the measurement of a 1, so that

= A1 +cl = 1 + A + ) (147)

where

A = measured value of A 1 (cps)

1 = actual value of A 1 (cps)

E1 = error in measurement of A 1 (cps)

then the measured value of C /Cl, denoted by (C 1/C)*, becomes, from Eq. 145

A

= a 2 (148)E
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Assuming E 1 << 1 , Eq. 148 may be written -

(cI) = a ( 1 / ) (149)
1 a ( L (A 1

Using Eq. 145, Eq. 149 is equivalent to

( l) C I o II + __ ____(150)

That is, an error of E1 in , corresponds to an error of

E 1

in C 1/Cl. If A 10 Ao, then the percentage error in C/Cl is less then one-tenth of

the percentage error made in the measurement of A1 . A similar result is obtained for

A 2'
When an error Eo is made in the measurement of A0 , the effect upon C 1/Cl, is

easily calculated from Eq. 145:

C( C 1 o
~C'I ) 7~ A (151)

The error in C 1/C , expressed by Eq. 151, can be made zero if A1 = a 2. From

Eq. 145, the condition A 1 = A 2 corresponds to

C f' A
1 a 0

Cl fl= 1+ 31 (152)
1 a a

since f' = f + A and A << fa a o o a
From Eqs. 151 and 152, it is apparent that small deviations in the value of A0

resulting from measurement error or from tolerances placed on the resonant frequen-

cies of the crystal units, will have negligible effects upon the accuracy of the bridge

method if A 1 >> Ao , and if C 1 C'1 . The latter condition is generally found to exist

when crystals are designed for symmetrical narrow-band or wideband filters and when

the bridge method is used to duplicate crystals.

As an example of the use of the bridge method, consider two resonators that must

49

_1___1_ __ ____�1�_11 _1_ __



satisfy the following requirements:

fa = 100, 000 cps 
(153)

f, = 100, 100 cps
a

C
C = 1 + 0.01 (154)

From Eq. 153: A0 = 100 cps. The resonators are ground to yield the required resonant

frequencies. As we explained previously, the bridge (Fig. 26a) is set to balance at fol.

In this case, taking A1 = 10Ao, fool = 99, 000 cps. The crystal capacitances must now be

adjusted, by removing the plating (34), until the attenuation peak fo2 lies within a range

f (Fig. 26b) determined by Eq. 154. From Eq. 145, we have

a fC C
(1 - 1 l1 - 1 (155)A f'C C A CI

al 1 1

For C1/C'1 = 1 - 0.01, and C1/Ct = 1 + 0.01, Eq. 155 yields

a = 8.9A = 890 cps

and

a = 11. lA = 1110 cps

respectively. The corresponding values of f are 100,990 cps and 101, 210 cps,

respectively. The attenuation peak foo2 will therefore lie within the range f = 220 cps,

for a deviation in C 1/C'1 of only +1 per cent. This result is not surprising, since the

bridge method merely takes cognizance of the fact that the lattice is particularly sensi-

tive to element variations. This fact, which creates a problem of considerable magni-

tude in connection with the realization of lattice filters, provides a corresponding

advantage when element values must be accurately measured.

5.3 CONSTRUCTION OF CRYSTAL LATTICE FILTERS

Figure 27 shows the measured insertion loss characteristic of two narrow-band fil-

ters that were designed for use in a noise-spectrum analyzer (35). The center fre-

quency is 80, 000 cps, and the filter bandwidths are 10 cps and 100 cps, as indicated.

Each filter is a single lattice section (filter 2, Fig. 9) employing two divided-plate

crystals.

The equivalent electrical parameters of the resonators (fully plated) are approxi-

mately
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L = 39.7h
1

C 1 = 0. 1 l

R = 900 

C O = 17.0 Lf

Q = 22, 000

(156)

Note: C includes crystal holder and socket capacitance. Referring to Fig. 27, the

insertion loss shown for the 10-cycle filter is actually the combined loss of the 10-cycle

and 100-cycle filters, since the two filters are connected in cascade when the analyzer

is operated with 10-cycle bandwidth, thereby increasing slightly the over-all selectivity.

An insertion loss of 6 db is introduced at the center frequency of the 10-cycle filter

because of incidental dissipation in the crystal elements.

To determine the agreement that can be expected between the calculated and meas-

ured performances of a crystal-lattice filter, a narrow-band filter (B = 100 cps; f =
o

80 kc) and a wideband filter (B = 4 kc; f = 80 kc) were constructed with divided-plate
o

crystals. The nominal values of the electrical parameters are listed in Eq. 156.

The narrow-band filter mentioned above was designed for the following character-

istics:

fA = 79, 950 cps fl = 79, 625 cps)
=80,OS>cps f = } (157)

fB = 80, 050 cps f 80, 375 cps

corre spondingly,

B = 100 cps x = -7.5 (158)

f =80, 000 cps xo 2 =+7 5

The total insertion loss (including reflection and interaction losses) is plotted in Fig. 28

(solid line).

The synthesis procedure outlined in Table I yields

I = 9, 50a

f' = 80, 000a

CI/Cl = 0.982

Co/C o = 0.982

r = r' = 800

(159)

The bridge method was used to make the necessary crystal adjustments.
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Referring to Fig. 3a, which shows the divided-plate crystal connection employed in

the filter, the impedance of the equivalent crystal in each lattice arm is seen to be twice

the impedance of the corresponding fully plated crystal. Therefore, from Eq. 156:

C 1=0.05 Eif

(160)
C = 8.5 ipf

The static capacitance of the crystal unit is denoted Cox to distinguish it from the capac-

itance C o called for by the design:

Co = rC 1 = 40 Lif (161)

The shunt capacitance CA (Fig. 3a) is therefore 40 - 8.5 = 31.5 pylf.

From Table III, the image impedance at f is:

C 1/2

Ro 2 f C (162)

From Eqs. 158, 159, and 161:

R 50,000 Q (163)

Double-tuned transformers, designed to yield a resistive impedance of 50 kilohms in

the vicinity of the passband, were used to terminate the filter. The measured insertion

loss at a number of frequencies is given in Fig. 28.

The final filter to be considered is a wideband filter having the following properties:

f = 79, 000 cpsA

fB = 83, 000 cps

f = 77, 000 cps (164)

f 2 = 85, 000 cps

002

oo3The synthesis procedure outlined in Table II yields:

The synthesis procedure outlined in Table II yields:

fa = 79, 885 cps C/C = 0.993

f, = 82, 029 cps C 1/C,1 = 1.014 (165)
a

f = 81, 168 cps r = 814.9 

The filter was realized in the form shown in Fig. 10. Two divided-plate crystals

that were adjusted by the bridge method to the required frequency and capacitance val-

ues were used. The value of the series inductance L is calculated as follows.
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C 0 = rC1 = 814.9 x 0.05 = 40.75 .4±f (166)

From Eq. 58:

L= 94.4 mh (167)o 4rZ f(2 C 
a o

From Eq. 94, the image impedance at f is

R = 2r f L B (168)o 0 r

Since Br = B/fo, Eq. 168 becomes

R = 2r BL = 2370 (169)
o o

The filter terminating resistance Rt was chosen to be 0.8 R o, or 1900 ohms. The

reflection and interaction losses corresponding to this termination (a = 0.8) are given

by Fig. 22b. The total insertion loss for the filter is shown in Fig. 29, together with

the measured loss at a number of frequencies. The insertion loss resulting from dissi-

pation in the series inductances is approximately 6 db. This loss is not shown in

Fig. 29, since the filter is resistance-compensated and the loss is the same at all

frequencies.

The close agreement between calculated and measured filter characteristics in

Figs. 28 and 29 justifies the time spent in determining the corresponding reflection and

interaction losses. Because of the extremely low dissipation and the high stability of

the quartz crystal, the designer may have a great deal of confidence in the fact that the

filter that he has completed "on paper" will be realized in practice.

Li C1

L, C

Co

z
QUENCY

Fig. 30. Inductance in series with crystal.
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APPENDIX I

ELEMENT VALUES OF FILTER REACTANCES

The calculations necessary for determining the element values of reactances used

in crystal filters from the corresponding critical frequency configurations will now be

described. The procedure involved is the same for all of the inductance-capacitance-

crystal combinations listed in section 3. 6. All element values are calculated in terms

of the crystal shunt capacitance CO (Fig. 15). A crystal unit is specified by its reso-

nant frequency fa' and its ratio of capacitances

C
r 0 (170)C11

The crystal series capacitance (C1 ) and series inductance (L 1 ) are determined (in terms

of Co) if fa and r are known. An inductance (Lo) placed in series or in parallel with a

crystal is determined by the frequency at which it resonates C :

1
_ 2Tf = (171)

(Lo Co )1/2

The exact solution for the reactance element values involves the determination of

fa' fb' and fa from the critical frequencies fl, f .... (Fig. 14). The approximate solu-
tion is accomplished by determining the crystal zero-pole spacing (Sa) and the spacing

between f and some fixed frequency, in terms of the critical frequency spacings

S 1 , S2 , . (Fig. 14).

To illustrate the method that can be used to determine the quantities mentioned

above, the case of an inductance in series with a crystal will be discussed in detail.

The notation involved is shown in Fig. 16, and is repeated in Fig. 30.

The reactance of the inductance is

Z L = jZ1r fL (172)

and the reactance of the crystal is given by

_j f2 - f2
Z a (173)
c rrw fC f -fz

o b

Combining Eqs. 172 and 173, using Eq. 171, and simplifying the result yields

Za = jZr fL 2 1 3 (174)

where
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fz = fb

f1 +f3= fb + fa

2 f2z f2za
fl 3 a a

Therefore, if fl, f 2 , and f3 are specified, then from Eq. 175:

=(fZ + Z - 1/ 2

a (fI f3 -f2)

flf3
f-

a f a

fb f2

The approximate solution is found by expressing every frequency in Eq.

of its position relative to f. That is, from Fig. 30,

fa (f2 - S1)2 2S1 S
f 2 = I f + 2 - z = z +-i
2f a f2

175 in terms

(177)

f23 (f2 + S2)
f2 f2

fz (f2
a a

f2 - f2

Z

= 1 + +_

2Sa Sa

f2 fz

If a quantity A is defined by

A f - f

then

fa (f + Aa) 
a2 fa = 1

f f2z 2

aA A-
+ a + a

2 fz

The approximate value of A is determined by writing Eq. 176 in the form:

a fl f3a _ -
fz fa fz

a za

Substituting Eqs. 177, 178, and 180 in Eq. 181 and neglecting terms containing 1/fZ,
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(176)

(176a)

(176b)

(178)

(179)

(180)

(181)
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yields:

2A 2S2 2S1
1 + +1- -1

fz ± f

(182)
Z(Sz - s)

=1+ f 

or

a = S2 - S1 (183)

A first approximation for fa is therefore given by

fa= f + (S - S 1) (184)

The crystal zero-pole spacing is determined from Eq. 176a and Eq. 181:

fZ fZ fZ Z Zf_ f3 fl f3fa Z Z Z = (185)

fz f f22 - 2 2

Equations 177, 178, and 179 may now be substituted in Eq. 185. It is important to

note, however, that although the last term in Eq. 179 may be neglected, the same is not

true for Eq. 177 or Eq. 178. This is the result of the fact that Sa is very small com-

pared to S1 or S2. There would be no justification for adding Lo to the crystal unit if

this were not the case. Equation 185 may therefore be written in the form

1 + f ) + 1 + + S

f2 22S a i 1- = 
1+ +

Expanding the numerator of the right side of Eq. 186 and neglecting terms containing

1/f and 1/f4 yields

(S - S) -s+ 4S 1 2

ZSa f 2 f 

2(S- S1 ) Sti
+
S

4SSS 

f s, - _s _ s, I

,~' --z ~ ' + f 

(187)
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Approximating the bracketed expression in Eq. 187 by unity, a first approximation for

S becomes
a

2S S2
S 2 (188)

z

so that

2SIS z

fa fz- (189)

fzaEq. 2:

r - 2 (190)
f f
b a

Or it may be approximated by noting that

fb a + Safa + Sa
>fa + 2Saaa } (191)

f2 + S f
a a a

Substituting Eq. 191 in Eq. 190 yields

f
ar - (19z)s a

In the case of an inductance in series with a crystal, Eq. 191 becomes

f f 2
r = a Z= (193)

2S1 S Z 2S1 SZ
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