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Abstract

The alpha-helical coiled coil is a protein sequence and structural motif that consists of
two or more helices in a parallel or antiparallel orientation supercoiling around a central
axis. Coiled coils have been observed in a wide range of protein families, and many
studies have focused on their sequence and structural diversity over the past half-century.
In particular, the observation that coiled coils can be involved in determining protein-
protein interactions and protein architectures has prompted the developments of methods
to predict the structure of a coiled-coil complex from sequence information alone. In this
thesis, I discuss the development of a structurally annotated database of coiled-coil
sequence useful for training statistics-based methods of coiled-coil structure prediction.
This database was used to retrain and stringently cross-validate the Multicoil method of
predicting coiled-coil oligomerization state. In addition, I describe recent work using
implicit and explicit structure models to predict dimeric coiled-coil orientation and
alignment. Improvements to existing models, insight into coiled-coil structure
determinants, and the future of coiled-coil prediction are also discussed.

Thesis Supervisor: Amy E. Keating
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Chapter 1

Introduction

1.1 Protein structure-function relationships and the study of conserved

structural motifs

Significant effort in current biomedical research is devoted to understanding how

proteins function and malfunction. Proteins are known to have highly specific yet diverse

structures, and in each instance, structure and function are closely intertwined. Many

significant advancements in molecular biology have been made through studying protein

structure, making methods of experimental structural characterization and computational

structure prediction important for modem biology[l].

Studies across the large number of solved protein structures have revealed that

proteins often contain conserved structural domains[2]. These domains, despite being

present in diverse proteins, often share evolutionary history, significant sequence identity,

and basic functions. Understanding the structures and functions of commonly recurring



conserved domains is one strategy adopted by protein scientists to broaden our

understanding of structure-function relationships. Here, I illustrate this by briefly

reviewing a few of the most common and most studied domains along with progress on

predicting their occurrences and annotating their functions.

One large class of protein domains is involved in mediating protein-peptide

associations. This class includes, among many others, the SH2, SH3 and PDZ domains.

SH2 and SH3 domains have been primarily identified in signal transduction processes, in

which SH2 domains preferentially bind phosphotyrosine-containing peptides, while SH3

domains bind proline-rich peptides and are often associated with protein kinases[3]. PDZ

domains have been found to form scaffolding interactions, also primarily in signal

transduction[4]. Because these domains mediate many critical protein-protein interaction

networks, much work has been done to characterize the structure and specificity of these

domains[5,6]. However, while identifying domains is relatively straightforward using

sequence comparison methods, identifying putative interaction peptides and measuring or

predicting the interaction specificity of these domains is an area of active

research[7,8,9,10].

Another important class of domains are the zinc fingers. Each of these short (20-

30 residue) domains coordinates a zinc ion through combinations of cysteine and

histidine residues. Although found primarily as specific DNA binding domains in a wide

array of transcription factors and other nucleic acid binding proteins[11], zinc fingers

have also been identified as protein-lipid and protein-protein interaction domains[12].

Zinc fingers can be recognized by their sequence similarity and are extremely common,

being identified in approximately 2% of all human proteins[ 11]. In their function as DNA



recognition domains, chains of zinc fingers have shown combinatorial specificity for

DNA sequence[13]. This combinatorial aspect has important implications for

evolutionary mechanisms of DNA-binding specificity and has been exploited in protein

engineering [14]. As with the protein-peptide interaction domains, the prediction of

DNA-binding specificity is important for understanding transcriptional regulation

networks, and has been addressed using machine learning approaches[15].

A highly conserved catalytic structure is that of the protein kinase catalytic

domains, which preferentially phosphorylate key serine, threonine or tyrosine residues in

their specific substrates. These kinase domains generally share similar structures, which

are conserved from yeast to humans[16]. However, despite this domain conservation,

kinases are known to have diverse substrate specificity[17]. This specificity plays an

important role in determining signal transduction pathways that are critical to all

biological processes. Therefore, many diverse approaches to predicting the specificity of

kinases and substrates have been developed[17,18,19].

The conserved structural domain that forms the subject of this thesis is the alpha-

helical coiled coil. Many proteins, a few of which are highlighted below, have been

identified to contain coiled coils, and a recent survey of 22 proteomes using a coiled-coil

detection method has estimated that between 2% and 8% of all proteins in any given

proteome contain coiled-coil motifs[20]. Unlike other protein domains, however, the

function of coiled coils is not always easily inferred from sequence similarity. Many

diverse coiled coils share very low levels of sequence similarity, and these have a wide

range of functions. Coiled-coil-containing fibrous proteins are involved in cellular

architecture, shorter coiled coils act as critical structural and mechanical elements of



globular proteins, and other coiled coils mediate protein-protein interactions to regulate

key cellular functions[21]. Because each coiled coil has a function that is influenced

strongly by its structure, understanding the functions of novel coiled coils would be

significantly enhanced through methods of predicting coiled-coil structure.

In this chapter, I describe some of the history and structure of the coiled coil, how

prediction of coiled-coil structure can play an important part in understanding protein

function, and how coiled-coil modeling is related to modeling of other types of protein

folds. Compared to predicting the structures of proteins generally, there are both

significant advantages as well as particular challenges involved in the prediction of

coiled-coil structure. Statistical approaches, previously demonstrated for secondary

structure prediction, have been successfully used in the prediction of coiled-coil structure.

However, coiled-coil databases used for training such methods, particularly those

annotated with structural information, have lagged behind the growth of sequence and

structure databases. In addition, structural approaches such as fold recognition have been

widely used in the prediction of protein structure, and the application of such techniques

to the coiled-coil geometry is discussed. Finally, this chapter summarizes the recent

advancements in coiled-coil structure prediction as presented in this thesis.

1.2 The history of coiled-coil structure

The coiled coil was first proposed in 1952 by Francis Crick as a solution to the

structure of certain fibrous proteins such as keratin[22]. Earlier models and experiments

had previously established the alpha helix as a key protein structural element[23];



however, X-ray fiber diffraction data of keratin did not exactly fit the alpha-helix model.

Crick's proposal was that the alpha helix, with only minor distortion, could be twisted

into a supercoil and pack against other alpha-helices having the same supercoil. This

packing was suggested to occur via a "knobs-into-holes" mechanism, where a side chain

protruding from one helix (the knob) packs into the space between four side chains from

the opposing helix (the hole)[24]. Figure 1-1 illustrates this basic structure. Later analyses

of alpha-helix interactions have shown that knobs-into-holes packing is the most common

of several classes of possible helix packing modes, including ridges-into-grooves and

knobs-onto-knobs[25,26].

Crick and others also noted that a seven-residue periodicity overlaid on the helices

involved in a coiled-coil interaction would result in a consistent set of residues present in

the core and peripheral positions[24,27]. This "heptad" periodicity, denoted by the letters

(a-b-c-d-e-f-g), placed hydrophobic residues primarily at the a and d positions, creating a

hydrophobic core that stabilized the interaction. This was first confirmed through

sequence analysis of the coiled-coil region of tropomyosin which showed a seven-residue

periodicity of hydrophobic residues[28,29].

Crick recognized that this simple combination of knobs-into-holes interaction and

heptad repeat could be achieved through the interaction of two, three or more helices

together in parallel or antiparallel relative orientations[24]. But it was not until 1963 that

tropomyosin was demonstrated to form a dimer[30], and the parallel orientation of

myosin was not confirmed until 1967[31]. These and further studies on fibrous proteins

led to the idea that the coiled coil was most often long, parallel and dimeric[32].

However, it soon became clear that significant coiled-coil structural diversity could be
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Figure 1-1. Illustration of coiled-coil structure. (a) Side view of a parallel dimeric
coiled coil. Spheres denote location of C3 atoms. Red and blue spheres represent a and
d position residues, respectively. (b) Structure of the heptad repeat in a parallel dimeric
configuration. Note hydrophobic interactions of a-a' and d-d' residues, as well as Glu-
Lys g-e' charge pair interaction. (c) Top view of parallel dimer, showing consistency
of hydrophobic interaction (red and blue segments) along the supercoil. (d-g)
Examples of various coiled-coil structures. Colored cartoon region is coiled-coil
assigned by SOCKET[33]. Arrows denote N--C sequence polarity. (d) Parallel dimer
(e) Antiparallel dimer (f) Parallel trimer (g) Antiparallel trimer)

b) C



found in a wide range of protein families. The crystal structure of influenza

hemagglutinin was published in 1981, showing a three-stranded coiled coil as the core of

this globular protein[34]. ROP, a protein involved in plasmid replication in E. coli, was

shown to consist entirely of a dimer of antiparallel-associated helices, creating a four-

stranded coiled coil[35]. In addition, crystal structures of E. coli seryl-tRNA synthetase

clearly showed a five-heptad-long antiparallel dimeric coiled coil, possibly involved in

binding tRNA[36]. Crystallographic studies of the leucine-zipper-containing protein

GCN4 demonstrated that it contained a two-stranded, parallel coiled coil[37], settling a

standing debate over the structure of the leucine zipper motif[38].

1.3 Computational prediction of coiled-coil structures

Since the original discovery of the coiled coil, increasing numbers of coiled-coil

domains have been found to be relevant for a wide array of protein structures and

interactions [39]. For example, the gp41 protein from the HIV virus contains a coiled-coil

trimer at its core that is crucial for viral-membrane fusion[40]. The SNAREs are a class

of yeast and mammalian membrane fusion proteins that associate as hetero-tetrameric

coiled-coil complexes comprised of three distinct proteins[41]. Motor proteins such as

myosin and kinesin use coiled coils as rigid rods to transmit force between load and

substrate[21]. The alphavirus capsid consists of capsid proteins that are known to

dimerize through a coiled-coil domain[42]. This dimerization is crucial for proper capsid

assembly, as mutations to the coiled-coil domain that promote trimerization disrupt

proper assembly[43]. In all of these examples, the structure of the coiled coil is critical to



the overall activity of the protein. However, over the past several decades, the growth of

sequence databases has significantly outpaced that of structure databases[44]. There

remain many coiled-coil-containing proteins with unsolved structures and important

functions. For example, the yeast spindle pole body is hypothesized to contain many

coiled coils[45], some of which have already been implicated in determining the

architecture of the large complex[46]. Therefore, computational methods that could

predict the structure of a coiled coil from its sequence alone would significantly enhance

our understanding of many aspects of biology.

The prediction of coiled-coil structure is a subproblem of the general protein

structure prediction problem. Many approaches have been devised to predict protein

structure generally. The first methods focused solely on predicting secondary structure

through simple statistical models[47,48]. Later, the concept of "fold recognition" was

introduced as an inverse protein folding problem; that is, the problem of finding a

sequence compatible with an observed fold[49,50]. Such approaches were the first

reasonably successful general protein structure prediction methods, but they can only

make accurate predictions for sequences that adopt a previously crystallized fold. Despite

this constraint, the consistent growth in protein structure databases, as well as

developments in structure evaluation potentials, have contributed to the continuing

success of fold recognition[51].

For structures without appropriate templates, modern advancements in structure

sampling algorithms, scoring functions and computational power have enabled the

development of ab initio or "free modeling" prediction methods that do not require a

complete template model[52,53]. These approaches have shown great promise on certain



prediction problems, such as high-resolution structure prediction[54,55,56], improving

homology models[57], and flexible-backbone protein-protein docking[58]. However,

such methods are still relatively unreliable, computationally expensive and not yet

available for genome-scale applications[51].

Given the many advancements in general protein structure prediction, it would be

natural to conclude that such approaches may be directly useful for predicting the

structure of the coiled coil. While this is a possibility, it is more likely that methods

specifically designed to utilize features of the coiled coil, such as the regular supercoil

and the heptad repeat, will reduce the need for crystal-based templates or extensive

structural sampling, and may be more accurate in their predictions. However, there are

unique challenges to predicting coiled-coil structure, such as fewer topological restraints

when predicting coiled-coil interactions, and many candidate template structures with

very similar energetics, as discussed in Section 1.6. These challenges have hindered the

development of methods that are able to completely predict coiled-coil structure.

However, much work has been done to address various subproblems of this goal, which

is summarized below.

1.4 Statistical models for coiled-coil structure prediction

One of the key challenges in coiled-coil structure prediction is identifying regions

of sequence that have the propensity to form coiled coils. This is similar to approaches

that assign secondary structure propensity to un-annotated sequence. Chou and Fasman

first developed such a method, which was trained using statistical information derived



from crystallographic observations[47]. This was later improved through the GOR

method, which considers pairwise residue information[48]. While these initial methods

were not highly accurate, modern approaches can achieve up to 70-80% prediction

accuracy through sequence-profile information and neural network approaches[59,60].

The first practical method of coiled-coil propensity prediction was suggested by

Parry, who proposed an algorithm based on the geometrical average of heptad-position-

specific residue frequencies determined from a small collection of diverse coiled-coil

sequences[61]. This approach was extended by Lupas et al., who suggested the use of a

maximum-over-window function to smooth scores and calibrated the results to a large

database of protein sequences in order to estimate the probability that a certain sequence

corresponds to a coiled-coil structure[62]. The Lupas approach, as originally captured in

the program COILS, is highly effective in many situations, but it is vulnerable to false

positives. The Paircoil algorithm extends the heptad-position-specific approach to include

pairwise heptad positions, similar to how the GOR method considers the effect of

neighboring residues on secondary structure propensity[48]. Paircoil was shown to be

more specific and yields fewer false positives[63]; however, the corresponding drastic

increase in parameter space leaves open the question of whether or not the available

sequence information is sufficient for training[64].

The success of the Paircoil method inspired several extensions of its approach to

different problems in coiled-coil structure prediction. The Learncoil method[65], which

applies Paircoil in an iterative training process to improve detection of under-represented

families, was successfully used to predict coiled coils found in viral membrane fusion

proteins [66] and histidine kinases[67]. In addition, the recognition that known coiled-



coil dimers and trimers exhibit significantly different residue preferences[68] prompted

development of the Multicoil method[69], which uses pairwise residue correlations from

a large dimer and relatively small trimer database to predict the propensity of sequences

to form one of those two structures. Finally, recognition of the significant growth in

protein sequence databases prompted updating the original Paircoil training set, resulting

in Paircoil2[70] which showed improved performance.

One aspect of all previously mentioned approaches is that they rely on a window-

based method to smooth scores for more accurate predictions. The Marcoil method does

not use such a window; instead, it is based on a hidden Markov model that uses residue

state transition probabilities to model the coiled-coil region[71]. Eliminating the window

makes it possible to predict much shorter coiled coils. A recent review of the above

methods suggests that while performance has improved significantly from the original,

simple approaches, it is still not possible to recognize all structurally confirmed coiled

coils with high confidence[64].

1.5 Coiled-coil sequence databases

All existing coiled-coil detection methods require a database of known coiled-coil

sequence for training purposes, and all except Marcoil require accurate heptad

annotations. The size and composition of the training databases plays an important role in

the ability of any given method to detect both known and previously unknown coiled-coil

sequence. As seen in Figure 1-2, the amount of sequence annotated with coiled-coil

structure initially grew to match the pace of growth in all known genomic sequence;
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Figure 1-2. Growth of known genomic and coiled-coil sequence databases. Genbank
sequence size from [73]. Coiled coil database sizes from [61,62,63,69,70,74] and
Chapter 2.

however, after a certain amount of time, that growth slowed significantly. This is likely

due to the exponential growth in sequence information overwhelming the predominantly

manual approaches used for curating such databases. The vast majority of sequences in

the original databases were collected from long fibrous coiled coils such as myosin,

tropomyosin and keratin[62]. Recently, the development of the SOCKET algorithm[33],

which detects the characteristic knobs-into-holes packing of coiled coils in PDB

structures, has opened the possibility of including many previously poorly annotated

short coiled coils in sequence databases[72]. However, the relatively small size of the

protein structure database has minimized the impact of such tools on general coiled-coil

sequence databases. Currently, the most common way to obtain new coiled-coil sequence



is to use homology searches from existing annotated sequence and to individually

discover and characterize new families using experimental data[70].

Predicting additional features of the coiled coil, such as dimerization versus

trimerization preference, requires databases that are annotated beyond the heptad repeat.

Early coiled-coil sequence databases consisted of sequences with uniform (parallel two-

stranded) structure. Subsequently, Woolfson and Alber studied a small database of two-

and three-stranded coiled coils (-2000 residues each) and identified patterns of residue

preferences that could distinguish between these two sets[68]. These successes prompted

the development of the Multicoil method and database[69], which contained 6,319 three-

stranded coiled-coil residues along with the 58,191-residue two-stranded database created

for Paircoil[63]. However, as discussed in Chapter 2, this three-stranded database does

not capture enough diversity to accurately predict some coiled coils. The primary aim of

the work described in Chapter 2 was to increase these database sizes and characterize

performance of the Multicoil method under more rigorous validation standards than were

possible when the method was first developed.

1.6 Structural models for coiled-coil prediction

The previously described prediction methods, with the exception of Multicoil,

only predict the propensity of a sequence to form generic coiled-coil structure. However,

as discussed above, coiled coils have been found to adopt a wide variety of

structures[75], including variations in number of helices, helix orientation, alignment and

partnering preference (Figure 1-1). Because protein sequence encodes structure, given the



proper model, it should be possible to predict structure from sequence. However, in some

cases, closely related sequences have been observed to form different structures, and the

energetic threshold between these structures can be low. For example, studies of point

mutations in the GCN4 leucine zipper (bZIP) domain showed variation not only in

interaction stability but in helix number, helix orientation and partnering

preference[76,77]. A solvent-exposed mutation in a GCN4 variant was shown to specify

the formation of parallel or antiparallel tetramers[78]. Studies of a model parallel dimeric

coiled coil demonstrated the formation of antiparallel dimers simply by moving the

position of one core asparagine residue[79], and further investigation showed the overall

contribution of the resulting core polar interaction was roughly equivalent to that of a

single interhelical electrostatic interaction, approximately 2.1 kcal/mol[80]. Therefore, in

order to accurately predict what type of structure a sequence will form, accurate structural

models that consider the entire complex are likely necessary.

1.6.1 Simple implicit structure models

One of the earliest innovations in the prediction of coiled-coil structure was the

recognition that a key set of interactions between specific positions of the heptad

(summarized in Table 1-1) are most important in determining structural preference[81].

This led to the development of a simple "charge-patterning" model where charge-charge

interactions between g and e' residues were scored according to their

complementarity[82]. A similar charge-patterning model was successful at predicting the

hetero-trimerization of laminins[83]. This rational approach of distilling complex



Parallel Antiparallel Predominant
Name positions positions environment

Core a-a', d-d' a-d' hydrophobic

Edge g-e' e-e', g-g' polar, charged
Core-to-edge g-a', d-e' a-e', g-d' all types

Vertical a-d', d-a' a-a', d-d' hydrophobic

Table 1-1. Key coiled-coil interactions. Interacting positions (such as g-e') denote an
interaction between a g position residue on one helix and an e position residue on the

other (prime) helix.

interactions into simple integer scores was later extended to include simple core

patterning terms, and was successful at predicting the association preference of a set of

bZIP proteins[84]. A similar rational model which considered charge and core patterning

along with a helix-propensity term was recently shown to correlate well with a set of

melting temperatures of bZIPs[85]. However, these types of models are extremely low-

resolution and tend to assign the same interaction weights to a group of related residues,

even when experiments have suggested that this is not strictly appropriate.

In order to refine such simplistic association models, the technique of double-

mutant thermodynamic cycle analysis was used. Experimental coupling energies between

residues commonly found at both e-g'[86,87] and a-a'[88,89] heptad pair positions

(Table 1-1) were measured in a model system derived from the avian bZIP coiled coil

VBP. A small set of antiparallel coupling energies have also been derived using synthetic

peptides[90,91]. The advantage of these coupling energies is that the thermodynamic

cycle allows for isolation and quantification of the interaction between a specific pair of

residues[92]. On a test of predicting a set of known bZIP associations, coupling energies

were shown to consistently perform better than a set of simple charge-patterning

weights[93]. While this approach appears to provide useful data, its major disadvantage is



the large number of experiments necessary to create and characterize the mutant proteins.

This has limited the number of residue pairs for which data is available.

Due to the significant amount of coiled-coil sequence available, machine learning

approaches are an attractive alternative to extensive experimental characterization. Singh

and Kim used a support vector machine (SVM) approach to determine residue pair

weights for core, edge and core-to-edge interactions (Table 1-1, [74]). The major

advantage of the SVM framework is that it allows for learning from heterogeneous data

derived from both sequence and experimental observations. The resulting weights were

shown to give good performance in predicting dimeric coiled-coil alignment, as well as

partner prediction among both the keratin[74] and bZIP families[93]. However, the

resulting weights are not always physically interpretable, as they are optimized only to

provide the greatest separation between "interacting" and "non-interacting" datasets.

Despite their diversity of construction, each of the previously described methods

shares a common trait: pairwise residue interactions used in evaluating models are

predefined according to knowledge about the structural relationships in canonical coiled

coils. These interactions are assumed to be independent at the pairwise level, and their

contributions to the stability of the complex are assumed to be additive. Therefore,

stability can be calculated simply by summing the scores assigned to all relevant

interactions. This class of models effectively has structure information "baked in" in an

implicit form, hence the name "implicit structure model" (ISM).



1.6.2 Statistical contact potential-based implicit structure models

As mentioned previously, fold recognition techniques have been widely used in

the prediction of protein structures. The basic process of fold recognition involves

collecting a set of structural templates, then "threading" a sequence to be predicted onto

those templates using a sequence/structure alignment protocol[94]. A key distinction

among fold recognition methods is the scoring function used to evaluate candidate

structural solutions. One common class of scoring functions is the statistical residue-

based contact potentials. Potentials such as these are constructed from the frequencies of

pairwise residue "contacts" (residue-residue distances below a given cutoff) in a large

database of protein structures, that are normalized to generate additive scores[95]. Other,

more detailed functions have been developed and tested, and have shown improved

performance at the expense of computational complexity[96].

The growing number of protein-protein interactions observed in structural data

has enabled the development of multimeric threading approaches that predict both protein

tertiary and quaternary structure. The MULTIPROSPECTOR method considers as

templates protein pairs that are observed to interact; candidate sequences are threaded

first onto individual components of the complex and then onto the complex itself. At the

complex stage, models are scored using a statistical contact potential specifically derived

from observed protein-protein interfaces. This method, along with others, has been shown

to recapitulate pieces of the protein interaction networks observed through experimental

data[97,98].



This work on structural prediction of protein-protein interactions using fold-

recognition methods was used as a starting point for predicting coiled-coil association, as

discussed in Chapters 3 and 4. We developed a statistical contact potential, known as

RISP, that is similar to those discussed above but is derived exclusively from heterotypic

protein-protein interfaces. While we first tested an approach where interhelical contacts

were defined using distance constraints derived from 3D models, as is common in fold

recognition, we found that the implicit structure modeling framework used in conjunction

with residue contact potentials was not only less computationally intensive but also more

accurate. Implicit structure models in the form of position-specific scoring matrices

derived from statistical potentials have been used previously to predict SH2-

phosphopeptide associations[8]. Unfortunately, the major drawback to such approaches is

the effort needed to develop new models for each possible structural variant. This process

is not always straightforward, as discussed in Chapter 4, where we observed that different

structures and even different sequence families are predicted best with different pairwise

heptad interactions. In addition, the representation of residue interactions as a single

value approximates the "true" potential, which can include multi-body effects such as

rotamer selection, packing strain and desolvation[99].

1.6.3 Explicit structure models

In recognition of the limitations of the implicit-structure approach, an alternative

class of structure modeling considers the full 3D representation of the interaction at the

atomic level. This detailed model allows for consideration of multi-body effects, as well



as having much finer granularity of interatomic distances. Such models were originally

developed for detailed modeling and refinement of protein structures[100,101], and

modern high-resolution scoring functions form the basis of the ab initio structure

prediction methods described above[ 102]. These potentials are applicable to the coiled-

coil structure as long as a suitable structural modeling framework is used.

One challenge with traditional fold recognition approaches is that coiled coils

have significant diversity in their backbone structures, not only in gross architectural

parameters but also in fine details such as superhelical pitch, radius and interhelical

displacement[103]. Instead of the fragment library approach used by methods such as

ROSETTA[54], the mathematical description of the coiled coil originally proposed by

Crick prompted the development of parameterized models of coiled-coil backbones.

These form the basis of most current coiled-coil explicit structure models. The first

example of this work was in the prediction of the coiled-coil structure of GCN4 to within

1.75 A, several months before the crystal structure was published[104,105]. Harbury and

coworkers used structure-energy minimization techniques to predict the rotamer

preferences of GCN4[106], as well as to design a coiled coil with a slight right-handed

superhelical twist[107]. Keating et al. later extended this technique to predict the

association preferences of core-position mutants in designed parallel heterodimers[ 108].

In contrast to the above approaches, which use parameterized constraints during

structure minimization to refine each modeled structure, Grigoryan and Keating modeled

a large number of native bZIP sequences on a fixed coiled-coil backbone[109]. This

approach, after correcting for concerns with the unfolded reference state and poorly



modeled core-position interactions, was shown to be superior to implicit-structure models

derived from coupling energies[109].

In Chapters 3 and 4 of this thesis, we have investigated the combination of

modeling backbone flexibility using parameterized backbones along with evaluating the

resulting structures with a variety of previously published energy functions. Our results

indicate that careful modeling can elucidate some of the determinants of structural

specificity; however, issues with structural sampling as well as reference state models can

diminish performance significantly.

While explicit structure models show some predictive ability, these models suffer

from several important limitations. First, the computational time necessary to build and

evaluate such detailed models makes this approach prohibitive for genome-scale

prediction. Computational time constraints also limit the amount of structural sampling

necessary to achieve an optimal model; several studies have demonstrated the detrimental

effect of even small inaccuracies in an evaluated structure[110,111]. However, cluster

expansion methods[ll112,113], which can be used to derive a set of sequence-based

weights from explicitly computed energies, effectively build a bridge between the explicit

and implicit structure models, making it possible to efficiently use explicit structure

models in computationally intensive tasks. For example, this method has recently proven

highly useful for designing novel heterospecific inhibitors of bZIP interactions[ 114].



1.7 Summary of thesis work

Progress has been made in the field of coiled-coil structure prediction, yet several

major issues remain. This thesis describes our recent work in updating statistical coiled-

coil prediction methods using new sequences, introducing more stringent tests of method

performance and exploring the behavior of a range of both implicit and explicit structure

models for two important coiled-coil structure prediction problems. Dramatic growth of

protein sequence and structure databases prompted us to develop updated coiled-coil

sequence databases. These databases, as described in Chapter 2, are organized by

structure and useful for training and validating prediction methods. The significantly

larger amount of available sequence expands the types of tests that can be used for

method validation. In addition, two major aspects of coiled-coil structure - helix

orientation and helix alignment - have yet to be comprehensively treated. Chapters 3 and

4 address these two problems, respectively, and show that useful prediction performance

can be achieved using both simple implicit structure models as well as detailed explicit

structure models. Finally, Chapter 5 discusses the progress made in coiled-coil structure

prediction and proposes future approaches towards the ultimate goal of a unified,

accurate coiled-coil structure prediction framework.
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Chapter 2

Discriminating coiled-coil dimers vs. trimers using an

annotated sequence database and Multicoil2

Author Contributions

This work was done in collaboration with Andrew V. McDonnell, Bonnie Berger

and Amy E. Keating. A.V.M. reimplemented the Multicoil2 algorithm in Java and

contributed cross-validation code. A.V.M. and B.B. contributed Paircoil2 training

databases.

2.1 Abstract

The alpha-helical coiled coil can adopt a variety of topologies, among the most

common of which are parallel and antiparallel dimers and trimers. In order to facilitate

computational approaches to predicting the structural specificity of coiled coils, we



constructed a database of coiled-coil-forming sequences. This database, comprised of

2,105 sequences containing 124,088 residues, contains highly reliable structural

annotations that are based on experimental data in the literature. Sequences are annotated

with respect to oligomerization state, helix orientation and coiled-coil heptad positions.

We used the database to train Multicoil2, an updated version of the Multicoil program.

Multicoil2 predicts both the location and oligomerization state (two versus three helices)

of coiled coils in protein sequences. We tested Multicoil2 using a variety of cross-

validation methods, including a stringent leave-family-out framework that reflects

expected performance on challenging new prediction targets that have minimal sequence

similarity to known coiled-coil families. Multicoil2 shows enhanced performance over

both Multicoil and Paircoil2. The training database, the Multicoil2 program, and scripts

that can be used to run various cross-validation tests will be available for download.

2.2 Introduction

The alpha-helical coiled coil is a protein motif characterized by superhelical

twisting of two or more alpha helices around one another. The structure of the coiled coil

is characterized by a regular, repeating backbone geometry and characteristic side-chain

interactions termed "knobs-into-holes" packing. Coiled coils are remarkably prevalent in

protein structures, and they adopt a wide range of structural topologies with variations in

helix orientation and oligomerization state. Structurally characterized examples of native

and designed coiled coils range from two to seven helices, with dimers and trimers most

common[l]. Knowledge of coiled-coil architecture is important for understanding the



overall structure and function of coiled-coil-containing proteins, e.g. for inferring

oligomerization stoichiometries[2], for determining whether attendant domains are close

or distant in space[3], and for reasoning about mechanism in molecular machines,

signaling cascades and motors[4].

Coiled-coil structures are encoded by a seven-residue heptad pattern of the form

(HPPHPPP)n, where H positions are predominantly hydrophobic and P positions are

predominantly polar. The positions in the repeat are denoted by the letters a - g, with a

and d hydrophobic. The repeating sequence motif makes the coiled-coil structure

amenable to prediction, and several algorithms have been developed to detect the

presence of coiled-coil-forming segments in protein sequence[5]. More complete

annotation of structure, however, requires predicting the number of helices participating

in a coiled-coil bundle, as well as the axial alignment and orientation of all helices.

Among these aspects of coiled-coil structure, the prediction of oligomerization state has

so far received the most attention, though work on other aspects of structural specificity

is becoming tractable as the number of solved coiled-coil structures grows[6].

In 1997, the Multicoil algorithm was introduced for predicting coiled-coil dimer

vs. trimer propensities[7]. It showed outstanding performance at the time, and after 12

years remains the only widely used method for predicting coiled-coil oligomerization

state. The algorithm has been used extensively and successfully to predict the propensity

of coiled-coil sequences to form dimers or trimers and has been cited over 450 times.

Multicoil is based on the Paircoil algorithm, which uses a probabilistic framework to

detect coiled-coil-forming segments in proteins, based on residue-pair frequencies in

known coiled coils. Multicoil uses a pair of sequence databases constructed from both



authentic dimers and trimers to derive pairwise residue frequency tables, which are then

used to derive both dimer and trimer propensities. Coiled-coil dimer versus trimer

prediction has also been attempted with the approach of Woolfson and Alber[8]. Both

approaches rely only on sequence-level features to make predictions.

At the time of initial development, relatively few sequences were available to

train the Multicoil program. With only 6,300 coiled-coil-trimer residues in the original

training database[7], it is unclear whether enough data were available to adequately

describe sequence features that determine oligomerization state for coiled coils broadly.

In addition, the limited amount of data also restricted the types of validation tests that

could be run. However, significant amounts of new sequence are now available. Genome

databases have grown larger, with 780% growth since 1997[9]. Many more protein

structures are available, and the SOCKET algorithm[10] can now be used to

automatically detect coiled-coil sub-structures in the Protein Data Bank. Finally, many

new coiled-coil-containing protein families have been experimentally characterized and

described in the literature. This has increased the number as well as the diversity of

known coiled coils.

The availability of new data motivated us to construct a database of coiled-coil

sequences useful for training as well as testing coiled-coil structure prediction methods.

Here, we describe this database, which is annotated with structural details and grouped by

biologically relevant families for validation purposes. We also present the results of re-

training Multicoil and illustrate how the validation method used affects perceived

performance. We discuss the impact of the larger dataset on the performance of the

method, identify areas of improvement, and suggest future directions for the prediction of



coiled-coil oligomerization state. We are releasing the database as well as the source code

and executables for the updated prediction software. We are also releasing validation

scripts that can be used with the database to evaluate other methods. We hope that the

availability of the data and testing framework may motivate further improvements in, and

novel approaches to, the prediction of coiled-coil structures.

2.3 Method

2.3.1 Database construction

The coiled-coil database was derived from three sources: the Paircoil2 training

set, coiled coils detected in the PDB using SOCKET, and new coiled-coil families

described in the literature.

The Paircoil2 training database consists primarily of manually annotated

sequences from long coiled coils (i.e. myosins, tropomyosin, intermediate filaments, viral

coat proteins, cortexillin, SNAREs) as well as many examples of shorter coiled coils (i.e.

bZIPs, flagellin, hemagglutinin) [11]. These sequences were not processed prior to the

global filtering step described below.

Structure-derived training examples resulted from application of SOCKET [10] to

a version of the PQS database[12] downloaded on September 3, 2008. SOCKET was run

with a distance cutoff of 7.0 A to reduce false positives. Skips and stutters were

eliminated by removing 10 residues on either side of any heptad discontinuity. Sequences

shorter than 21 residues were discarded, and the remaining sequences were filtered for



coiled-coil sequence identity no greater than 90%. Sequence identity filtering was

performed using BLAST-discovered alignments between coiled-coil regions only.

Contiguous clusters of sequences linked by edges representing >90% identity were

removed and replaced with the longest constituent coiled-coil domain. Structure-derived

sequences were grouped into families using information from the SCOP database[13] by

pooling sequences sharing the same SCOP superfamily.

Coiled-coil families designated as "new" were not present in either the Paircoil2

or SOCKET-derived sets of sequences. These families have no representation in the

structural database, but have strong experimental evidence to support the formation of

either a parallel dimeric or parallel trimeric coiled coil. Seed sequences were downloaded

from the NCBI[9] and the heptad register was assigned using Paircoil2. These sequences

were then used as BLAST[14] queries against a recent copy of the UniRefl00 protein

sequence database[ 15]. BLAST results were filtered to exclude hits with E-value greater

than lx10 -15. Hits were also excluded if the BLAST-provided alignment did not fully

align the coiled-coil region from the query to the subject. Heptad assignment for hit

sequences was copied from the query, based on the BLAST alignment, and was accepted

if the Paircoil2 P-score of the given heptad was < 0.20. The resulting sequence set was

subsequently filtered for coiled-coil sequence identity no greater than 90%.

The complete database was named NPS (for New families, Paircoil2, SOCKET).

To construct it, sequences from the three sources were pooled and filtered for coiled-coil

sequence identity no greater than 90%. Entries in the database were annotated based on

oligomerization state (dimer, trimer or tetramer; no other oligomerization states were

represented) and orientation (parallel vs. antiparallel). Orientation was defined as parallel



if all helices were oriented the same direction, and antiparallel otherwise. Finally, within

each annotation group, families originating from different primary sources were

combined using family information from the SYSTERS database[16]. Family

identification was determined by using BLAST to compare individual protein sequences

to the SYSTERS non-redundant database, which is annotated with SYSTERS family IDs.

Clusters of families sharing a common SYSTERS family assignment were combined into

a single family. In particular, TPR (from the new-family source) clustered together with

MLP (from the Paircoil2 database), which has been previously discussed[17].

2.3.2 Database format

The database is organized hierarchically according to oligomerization state, helix

orientation, protein family and sequence, as depicted in Figure 2-1. Each family is

contained within one text file, with each sequence represented by a four-line record. The

first line contains the protein name or PDB-id and BLAST E-value to the query (plus

query name), where appropriate. The second line contains structural descriptors drawn

from a standardized vocabulary, such as "long parallel homo dimer". In the last two lines,

each sequence is annotated with its coiled-coil domain using heptad-register notation (a-

g). Flanking un-annotated sequence is also included, although this may not span the

entire protein, e.g. when entries were taken from the PDB or from the Paircoil2 (PC2)

training set. The flanking sequence may or may not form a coiled-coil structure, and our

database is not authoritative for coiled-coil domain boundaries. The NPS database is

available on our website.
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2.3.3 Database Analysis

Residue frequencies were computed as the fraction of occurrences of a given

residue at a certain heptad position relative to all residues at the same heptad position.

Statistical significance was determined using a two-tailed exact binomial test for each

residue at each heptad position, with observed frequencies from the parallel trimer

database and expected frequencies from the parallel dimer database. To reduce family-

size biases, statistical significance was computed independently for each family and P-

values for each residue and heptad position were combined across families using Fisher's

method.

Sequence similarity tests were computed using BLAST-derived alignments, and

reported as the maximum sequence identity among all sequences between families.

2.3.4 Multicoil in brief

Multicoil is based on the probabilistic framework of the Paircoil method. Paircoil

can detect the presence of coiled-coil forming segments in protein sequence data by using

residue-pair frequencies derived from a single database of known coiled-coil

sequences[18]. Multicoil uses frequencies derived from two databases containing known

dimers and known trimers. For each database, residue-pair frequencies P, along with

background single-residue frequencies Pbkg, are used to calculate residue propensities for

residue ri according to the formula
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Pbkg (, r i+d , d) Pkg ( )

Here i is an index to the sequence, d is a distance in the range 1-7, ri is the residue at

position i, and hi is the heptad assignment of residue i.

To score residues in a sequence, overlapping windows of length 28 are defined

and all residue propensities under those windows are summed to produce a set of window

scores. The final score of a given residue is the maximum of all window scores

containing that residue. This process is repeated for both dimer and trimer frequency

tables, over all possible heptad register assignments hi and pairwise distance values d.

The result of this calculation is a 14-dimensional raw-score vector for each residue

position and possible heptad assignment in the sequence (7 values of d used with each of

the dimer and trimer databases). In practice, to reduce noise, this vector is reduced to a 6-

dimensional vector by choosing three distances for each of the two frequency tables.

Based on testing the performance of the method with all possible 6-dimensional vectors,

we did not observe significant sensitivity in performance with respect to this parameter.

Therefore, we selected those distances (dimer: 2, 3 and 4; and trimer: 3, 4 and 5) used

previously[7].

Using the reduced raw score vectors, probabilities are calculated using a set of

predetermined Gaussian functions along with estimated prior probabilities for each

possible class (dimer, trimer and non-coiled-coil). This is done using Bayes' theorem[19],

written as (e.g. computing dimeric probability)

PP(d I X) (X I di)P(di)
P(di I X) =

P(X)

where X is the score vector of a given residue, P(Xldi) is the value of the Gaussian



function evaluated at the point X, P(di) is the prior probability of any given residue being

found as a dimer, and P(X) is the cumulative probability of score vector X being any one

of the three classes, written as

P(X) = P(X I di)P(di) + P(X I tri)P(tri) + P(X I noncc)P(noncc).

The Gaussians are determined by computing means and covariances from the

distributions of raw scores over a training set. More details about the training sets used

are in the Validation section. The final residue probabilities and predicted heptad

assignment according to each class are taken as the maximum probability over all

possible heptad assignments.

2.3.5 Multicoil rewrite

Multicoil was rewritten in Java using the BioJava libraries[20]. The algorithm

remains the same as previously published[7]. Included in the distribution is a set of

scripts, written in Perl and Python, useful for testing Multicoil with the various validation

tests described here. The JAR archive is freely available on our website and source code

is available upon request.

2.3.6 Multicoil2 training database

The Multicoil2 training database was derived from the NPS database with minor

modifications. For cross-validation testing, we combined all families containing four

sequences or fewer into a "Miscellaneous" family. In addition, Multicoil2 is unable to



score sequences containing non-canonical residues such as B, J, X or Z; therefore,

sequences containing such residues were omitted. This criterion excluded only one

sequence from training.

2.3.7 Estimating prior class probabilities

The conversion of scores to probabilities requires a conditional probability

distribution for coiled-coil scores and an estimate of the prior probability of a residue

being found in a coiled coil. Given a representative database, this estimate can be made

by determining the 14-dimensional raw score vector of every residue and subsequently

finding the values of Pdim, Ptrim and Pnoncc that maximize the likelihood function

Slog[PdimVdim (X) + PtrimVtrim (X) + PnonccVnoncc (X)]
X=scores

where Vdim, Vtrim and Vnoncc are multi-dimensional Gaussian functions previously fit to

leave-family-out score distributions, and X is iterated over each raw score vector. We

performed this analysis with non-redundant protein sequence databases from Homo

sapiens, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae and

Escherischia coli K12 downloaded from the NCBI on November 8, 2008. Score vectors

were calculated for all residues, over all 7 residue-residue distances and over both

training databases. To find maximal values of the prior probabilities, we performed a two-

dimensional grid search, varying Pdim and Ptrim from 0.0 to 0.2 with a step size of 0.001.



2.3.8 Assessing performance using cross-validation

Multicoil2 testing was performed under three cross-validation frameworks: leave-

family-out, leave-N-percent-identity-out, and leave-sequence-out. Training under cross-

validation required two steps. First, residue frequencies were tallied. Second, three

Gaussian functions were fit to the distributions of dimer, trimer and non-coiled-coil raw

scores. Raw scores and Gaussian fits were derived under the appropriate validation

protocol. For example, under leave-family-out validation, the raw scores used to fit the

Gaussians were generated through a leave-family-out protocol. A flow chart describing

this process is shown in Figure 2-2. This is different from the testing protocol in the

previous version of Multicoil, where Gaussians were fit to the average of raw scores from

leave-sequence-out and leave-family-out tests, due to the much smaller amount of

available sequence data. Non-coiled-coil raw scores were determined from PDB-minus, a

database of protein sequences known to not contain coiled coils[l 1]. This database

contains 6363 sequences, totaling 1,480,158 residues.

The cross-validation frameworks differ in the way they divide the training

database. Leave-family-out validation uses family definitions from the training database

as biologically relevant sequence groupings. For each family, training sets were prepared

that excluded that family, and then prediction performance was evaluated for all family

sequences. Leave-N-percent-identity-out used individual sequences as the testing unit.

For each sequence, training sets excluded that sequence along with all other sequences

with sequence identity greater than or equal to the predefined cutoff. At the 100% identity

cutoff, only the sequence under test was excluded from the training databases, which we
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Figure 2-2. Flow chart of validation method. Rounded rectangles ("leave family out")
indicate iteration over all input families. This figure depicts leave-family-out cross-
validation; leave-sequence-out and leave-N%-out validation is similar but with sequences
or N%-identical clusters as the training unit, respectively.

refer to as leave-sequence-out. Finally, leave-nothing-out was used for comparison. In

this case, the testing database was prepared containing all available sequences and no

sequences were removed for training.

Performance was evaluated at the sequence level. For each sequence, a prediction

was labeled as correct if the sum over all residues in the known coiled-coil region of the

probability of the correct class was greater than the same sum over the probability of the

incorrect class, as described previously[7]. Performance was reported as the fraction of

sequences correct out of all tested sequences.



2.4 Results

2.4.1 A database of structurally annotated coiled-coil sequences

Probabilistic methods such as Paircoil and Multicoil (also COILS, Marcoil) rely

on discerning discriminating features of coiled coils using sequences of known structural

classification[7,11,21,22]. For the problem of distinguishing coiled coils from non-coiled

coils, many training examples exist. However, structurally annotated data that could be

informative about features such as coiled-coil oligomerization state are less abundant. To

address this, we assembled structurally annotated coiled-coil sequences from three

sources: sequences that form coiled coils in crystal structures, sequences recently

reported to fold as coiled coils based on experimental data, and sequences previously

curated for the Paircoil2 database. We excluded sequences shorter than 21 residues, due

to ambiguity about whether these regions are truly coiled coils[ 10].

The Paircoil2 training database[ 11] has been recently updated and contains 1,382

coiled-coil sequences (94,876 coiled-coil residues) longer than 21 residues each. To

collect coiled coils from crystal structures, the SOCKET program[10] was run on the

most recent release of the PQS database[12]. Filtering at the 90% sequence level gave

231 coiled coils contributing 340 coiled-coil sequences (10,605 residues). From the

literature, we compiled twelve protein families recently reported to contain coiled coils

that were characterized experimentally using electron microscopy, deletion analysis,

analytical ultracentrifugation and/or cross-linking studies: astrin[23,24], fer[2],



hsfbpl[25], 11orf [26], matrilin[27], nemo[28], numa[29], snv_n[30], spcll0p[3,31],

tenascin[32], tpr[33] and tspl[34]. Four of these families (astrin, numa, spcll0p and tpr)

are reported to be parallel dimers; the remaining eight families are described as parallel

trimers. Coiled-coil domains in these proteins were manually assigned with the assistance

of the Paircoil2 program at a P-score cutoff of 0.05. Seed sequences for each of these

families were used to search the UniRef100 protein sequence database[15] for additional

family members, resulting in a total of 561 coiled-coil sequences (26,065 residues).

We combined sequences from these three sources and then re-filtered to 90%

sequence identity to form the NPS (New families, Paircoil, SOCKET) database, resulting

in a total of 2,105 sequences containing 124,088 residues. The database was organized

according to the structural features of each sequence, as depicted in Figure 2-1a.

Sequences were grouped by oligomerization state (dimer, trimer, tetramer) and by

orientation (parallel, antiparallel). Figure 2-1b illustrates the size of the NPS database,

broken down by structural class. Despite adding a significant amount of trimeric

sequence, the size of the dimer fraction outweighs the trimer and tetramer fractions in

both databases. There are very few antiparallel trimer and tetramer sequences in the NPS

database.

Within each structural class, sequences were grouped by family, in order to enable

leave-family-out validation methods. We found that the most effective way to produce

meaningful family definitions was to preserve the family assignments made within each

sequence source, and then to combine families upon merging sources using a previously

developed family database[16]. Due to the low complexity of the coiled-coil motif,

families defined solely by sequence identity were not able to recapitulate known families.



2.4.2 Features of the dimer and trimer sequences

Using the NPS database, we looked for differences in residue frequencies among

known dimer and trimer sequences. Previous studies have made similar investigations,

albeit on much smaller databases[8,35]. Tables of residue frequencies as a function of

heptad position in the different structural classes are given in the supplementary material.

While these may be biased due to family composition, many trends can still be observed

from features that are common among families. Figure 2-3a shows frequency ratios for

coiled-coil core (a, d) and edge (e, g) heptad positions, plotted as a function of the

statistical significance of that frequency observation given our database. Experimental

data are available to support those observations marked in bold[8]. Other significant

observations, such as a preference in trimers for Ala@a, Asn@d, Met@d and Gly@g, are

variously distributed over families. For example, Ala@a is found mostly in laminins, and

Gly@g is found mostly in the viral coat family. Given the relative rarity of these features

over all families, it is difficult to determine whether they indicate a strong influence on

the oligomerization state or whether they are conserved for other reasons. Other residues

that are enriched in trimers relative to dimers are more distributed across families, e.g.

Met@d is found in five families (P < 0.001), and Asn@d is found in four families (P <

0.001). This suggests a possible role for these residues in determining coiled-coil

oligomerization state specificity.
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Figure 2-3. Characteristics of the NPS coiled-coil database. (a) Residue frequency

comparisons. The horizontal axis gives the statistical significance of a given observation

as a P-value computed using Fisher's method. The vertical axis represents the ratio of

observed trimer vs. dimer frequencies. Highlighted residues indicate residue/position

pairs previously determined experimentally to favor either dimer or trimer formation. [8]

(b) Maximum sequence similarities among dimer and trimer families.



We examined the sequence similarity within and between families of coiled coils

in our database. Figure 2-3b shows the maximum sequence identity among all parallel

dimer and trimer families in the NPS database. The brightly colored diagonal shows that

for nearly all families, sequence identity reaches the homology filter limit of 90%.

However, the cross-family similarities are much lower, with a maximum value of 50-

60%. The dimer families appear to have higher similarity to other dimers than the trimer

families have to other trimers, suggesting that the trimers may be more diverse than the

dimers. Interestingly, the dimer-to-trimer similarity is relatively high, indicating that

separating these populations using sequence-based methods is non-trivial.

Kammerer et al. have discussed the significance of a certain sequence motif in the

folding of short trimeric coiled coils[36]. We searched the NPS database for the presence

of this "trimerization motif', denoted by the PROSITE pattern R-[ILVM]-X-X-[ILV]-E.

When looking at all sequences 50 residues or shorter, we found the motif in 17.0% of

parallel trimer sequences and 13.2% of parallel dimer sequences. Interestingly, when

considering all sequences, the motif was found in 19.7% of parallel dimer sequences

while it was only present in 16.4% of all parallel trimer sequences. These slight and

contradictory differences suggest that the motif, while possibly exerting a significant

influence on structure in certain cases, is not likely to be a widespread determinant of

coiled-coil oligomerization, and cannot be used for high-confidence prediction.

2.4.3 Retraining Multicoil to Multicoil2

Multicoil2 is designed to discriminate between two coiled-coil structural classes.



The NPS parallel dimer and parallel trimer structural classes comprise 1,686 sequences,

or 80% of the total NPS database, and we selected these as the relevant classes for

training and testing.

Calculating coiled-coil propensity values in the Multicoil framework requires

prior probabilities for the distribution of dimers, trimers and non-coiled-coils. We re-

implemented the previously described method[7] of maximum log likelihood as

described in the Methods to determine these probabilities for a series of representative

protein sequence databases. In the original paper, the OWL database was used as a

representative set of proteins. However, the selection of an appropriate representative

database can be important, as there may be variations in the background coiled-coil

probabilities among organisms. Here, we used a variety of complete genomes to examine

this possibility. The prior probabilities that maximize the log likelihood are shown in

Table 2-1. These values must be regarded as rough estimates, because the sensitivity of

the likelihood to the prior probabilities is low, as originally demonstrated by Wolf et al[7].

It is also likely that these are underestimates of the true number of coiled coils, given that

the method often does not assign high raw scores to coiled-coil families that are only

Organism Size (residues) Dimer prior Trimer prior
E. coli K12 1,315,392 0.002 0.004
S. cerevisiae 2,914,765 0.005 0.017
C. elegans 10,043,780 0.009 0.016
D. melanogaster 11,824,157 0.011 0.020
M. musculus 15,624,175 0.017 0.017
H. sapiens 17,175,172 0.019 0.018

Table 2-1. Estimates of the coiled-coil dimer and trimer content of various genomes.
Dimer and trimer priors were calculated using the maximum log-likelihood method
described in Methods. See the main text for caveats.



distantly related to those in the training set (see below). In the validation tests described

below, we used the value 0.02 for both Pdim and Ptrim.

2.4.4 Validation

Testing should ideally be designed to approximate the accuracy of a method that

can be anticipated under typical use. Cross-validation testing, in which the sequence to be

tested and its close relatives are omitted from the training set, is commonly used for this

purpose. There are many ways to set up validation tests. The number and identity of

sequences omitted during training are important considerations that can dramatically

affect perceived performance. Here we use validation tests that successively remove

every member of the training set. This is in contrast to approaches that reserve a single

portion of the known space for testing purposes[5]. Due to the diversity of coiled coils, it

is important to characterize differences in performance over many test sequences, which

are difficult to capture in a static test set. We consider and compare leave-nothing-out,

leave-sequence-out, leave-family-out and leave-percent-identity-out. The raw score

distributions from leave-nothing-out, where all sequences including the one being tested

are used for training, are shown in Figure 2-4a. Prediction performance is given in

Table 2-2. Leave-nothing-out is obviously a poor estimator of actual expected

performance on new sequences.
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Figure 2-4. Distributions of raw scores resulting from cross-validation testing. Axes
describe raw score averages over the three dimer (horizontal) and trimer (vertical) scoring
distances. Scores for parallel trimers are in green (upper center); parallel dimers are in
blue (center right) and non-coiled coils from PDB-minus are in red (lower left).

2.4.4.1 Leave-family-out testing

A particularly stringent validation test involves successively omitting biologically

defined families of sequences from the training set. This simulates the behavior of the

method on never-before-encountered coiled-coil families. We used family definitions

from the NPS database. A plot of the average raw scores generated is shown in Figure 2-

4b, and contrasted with the raw scores generated through the leave-nothing-out test

(Figure 2-4a). A striking observation is that there is significantly less separation observed
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Leave-nothing- Leave-family- Leave-50%- Leave-sequence-
out out sequence- out

identity-out
Family Total Seqs % Seqs % Seqs % Seqs %

Seqs correct correct correct correct correct correct correct correct
Parallel Dimers
Astrin 27 26 96.3 16 59.3 19 70.4 21 77.8
bZIP 114 112 98.3 103 90.4 109 95.6 109 95.6
Kinesin 32 31 96.9 31 96.9 30 93.8 30 93.8
MLP 344 332 96.5 309 89.8 297 86.3 319 92.7
Myosin 220 219 99.6 212 96.4 213 96.8 215 97.7
cAMPbd 5 0 0.0 0 0.0 0 0.0 0 0.0
Tropomyosin 67 66 98.5 65 97.0 65 97.0 64 95.5
IF 371 370 99.7 319 86.0 360 97.0 369 99.5
Myc 8 8 100.0 8 100.0 6 75.0 8 100.0
Numa 87 79 90.8 80 92.0 74 85.1 77 88.5
Spc110p 8 8 100.0 6 75.0 6 75.0 6 75.0
Miscellaneous 49 37 75.5 24 49.0 27 55.1 27 55.1
Parallel Trimers
Fibritin 5 5 100.0 3 60.0 4 80.0 4 80.0
Viral coat 71 71 100.0 69 97.2 71 100.0 71 100.0
Fer 24 24 100.0 10 41.7 11 45.8 21 87.5
Fibrinogen 23 22 95.7 18 78.3 20 87.0 20 87.0
Hemagglutinin 14 14 100.0 12 85.7 14 100.0 14 100.0
Hsfbpl 9 9 100.0 6 66.7 9 100.0 9 100.0
Hsf 32 26 81.3 8 25.0 15 46.9 24 75.0
Llorfl 14 14 100.0 11 78.6 12 85.7 12 85.7
Laminin 85 85 100.0 47 55.3 68 80.0 76 89.4
Nemo 13 12 92.3 3 23.1 2 15.4 10 76.9
Scavenger 6 6 100.0 6 100.0 6 100.0 6 100.0
receptor
Snv_n 7 7 100.0 4 57.1 5 71.4 6 85.7
Tenascin 7 7 100.0 3 42.9 5 71.4 6 85.7
Tspl 19 19 100.0 14 73.7 19 100.0 19 100.0
Miscellaneous 24 18 75.0 13 54.2 13 54.2 14 58.3
Total Dimer 1332 1288 96.7 1173 88.1 1206 90.5 1245 93.5
Total Trimer 353 339 96.0 227 64.3 274 77.6 312 88.4
Total Seqs 1685 1627 96.6 1400 83.1 1480 87.8 1557 92.4

Table 2-2. Multicoil2 prediction performance for all families under different testing
protocols. Families taken from NPS parallel dimer and trimer sets. Miscellaneous
includes all families with four or fewer sequences. Prior probabilities were 0.02 for both
dimers and trimers.

between the distributions of known dimers and trimers. In particular, the raw score values

for the trimer sequences drop significantly upon leave-family-out testing, from a mean of

15.14, when nothing is left out, to 7.25 when the family being tested is left out. Dimer

raw scores also drop, but much less, from a mean of 16.62 to a mean of 13.57. As



expected, the consequence is a significant decrease in predictive ability, with the greatest

decrease along the trimer score dimension.

Performance figures per-family are shown in Table 2-2. Across all families, dimer

prediction performance is consistently higher than trimer prediction performance (88%

vs. 64% overall). Despite the lower trimer prediction rate, many families are predicted

well, including the Viral Coat family, with performance greater than 90%. However, four

trimer families are predicted correctly at rates less than 50%. These include three of the

new families added to the database: Fer[2], Nemo[28] and Tenascin[32], as well as the

heat shock factor[37] proteins, which were included in the original Multicoil training set.

The poor performance of these families can be understood by observing their

distributions of raw scores, shown in Figure 2-5. In each case, the raw scores for many

members of these families lie close to the center of the dimer raw score distribution (see

Discussion).

2.4.4.2 Leave-percent-identity-out testing

An alternative validation protocol involves leaving out all sequences more than

N% identical to the test sequence during training. This method is particularly appropriate

in the real-world case where an unknown sequence can be determined to have a certain

percent identity to sequences in the training set. We tested prediction performance using

N = 50%, which is close to both the median and average maximum-identity of all

families to the training database (median similarity 45%, average similarity 47%).
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Raw score distributions from the leave-50%-identity-out calculations are shown in

Figure 2-4c, with performance figures in Table 2-2. Leave-50%-identity-out testing gives

prediction performance distinctly better than the stringent leave-family-out method

(90.5% for dimers, 77.6% for trimers). This is expected, given that median percent-

identities within families are mostly lower than 50%. We also observe a smooth increase

in average performance as the N% identity threshold is increased (Figure 2-6). This

seems to be a result of increasing the size of the training set, with more observations of

less common residue pairs.

2.4.4.3 Leave-sequence-out testing

A much less stringent validation method involves omitting each single sequence

in turn from the training set, when predicting the oligomerization state of that example.

Although the maximum sequence identity between any two families is usually no larger

than 55%, sequence identity within families can be as large as 90%. The distribution of

raw scores achieved under leave-sequence-out validation is shown in Figure 2-4d, and is

highly similar to the results of leave-nothing-out tests. The much greater separation of

dimer vs. trimer scores is reflected in very high prediction performance (93.5% correct

for dimers, 88.4% correct for trimers), shown in Table 2-2. Many of the families that

performed poorly under leave-family-out testing do much better under leave-sequence-

out. Leave-sequence-out performance is nearly as good as leave-nothing-out

performance, consistent with the small differences between sequences in many families.

Leave-sequence-out testing was used to test the original Multicoil application, because
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relatively few sequences were available at the time it was developed. However, now that

more data are available, comparisons with more stringent cross-validation protocols make

it clear that this testing may overestimate the performance that can be expected for some

new sequences.

2.4.5 Improvement over Multicoil (1997)

To compare the effectiveness of the original and the re-trained versions of

Multicoil on the dimer vs. trimer recognition problem, we assessed performance on new

families not included in the 1997 training set. The original Multicoil program was run

71



and compared to the performance of Multicoil2 under leave-family-out cross validation.

Overall, Multicoil (1997 version) correctly predicts the oligomerization state of 560 out

of 784 test sequences (71% correct). Upon retraining to give Multicoil2, this increases to

637 correct predictions (81%). Interestingly, Multicoil2 appears to have a bias favoring

the prediction of dimers, which is not observed with original Multicoil (data not shown).

Two effects contribute to changes in performance. One is the larger size of the

new training database. The other is the fitting procedure used to derive the Gaussian

functions that reflect the expected distributions of dimer, trimer and non-coiled-coil

scores. In 1997, the prior probabilities for the three classes were fit using scores that were

an average of leave-sequence-out and leave-family-out testing. Here, prior probabilities

were fit using scores computed under the relevant validation protocol (i.e. for leave-

family-out testing, score distributions came from leave-family-out raw scores). To

separate these two effects, we trained Multicoil2 (using the new Gaussian-fitting

protocol) on those families in the NPS database that were represented in training

Multicoil (1997), and tested its performance on the newly identified families. This gave

overall performance intermediate between the old and new methods (78% of all

sequences correct). Interestingly, however, dimer prediction performance in this test was

almost the same as the fully re-trained Multicoil2, whereas trimer prediction performance

was much worse. This suggests that in terms of training set size, the original database

was in fact adequate for dimers but not yet large enough for strong trimer prediction. In

fact, this trend seems to hold even now, in 2009. Another conclusion is that the more

stringent procedure of fitting the Gaussians according to the expected score distribution

under cross-validation improves performance under cross-validation.



2.5 Discussion

Predicting the oligomerization state of a coiled coil from its sequence is a

challenging problem that requires discriminating between closely similar structures.

Efforts to discover simple motifs that specify coiled-coil oligomerization, while

successful in specific circumstances[36], have not been generally applicable[38,39]. The

Multicoil program, first published over 10 years ago, has proven valuable for this purpose

and remains widely used. Many more coiled-coil sequences with known structure have

now been annotated than were previously available, and we have used such examples to

assemble a database of 124,088 structurally annotated coiled-coil residues. We report an

updated version of Multicoil, Multicoil2, which is trained using this data. We show that

the method exhibits enhanced ability to distinguish dimeric from trimeric structures.

Validated performance on most families is high, even when assessed using stringent

leave-family-out cross-validation, although some families, particularly certain trimers,

show reduced performance under such a stringent test. This indicates that the Multicoil

framework is appropriate and powerful, and that its predictive performance will continue

to improve as more trimer families are discovered and added to the training set.

With a larger database available, we were able to test and compare several

different validation protocols. The choice of method has a significant effect on perceived

performance. Leave-sequence-out performance is not an accurate predictor of

performance for a new sequence lacking close homology to the training set; it is nearly

indistinguishable from non-cross-validated leave-nothing-out performance. Also, while



not tested here, methods in which a random N% of sequences are reserved as a test set

also fail to control for the high degree of homology among training sequences in the same

family[22]. We tested leave-family-out and leave-N%-identity-out methods as examples

of scenarios more likely to be encountered in real prediction situations. Our results

indicate that the expected accuracy of Multicoil2 for new sequences is -88-90% for

dimers and -64-77.6% for trimers. To facilitate testing of other (old or new) methods

under these various protocols, we are providing validation scripts in conjunction with our

new database. We hope that future studies will report performance under some of the

stricter validation protocols that we recommend.

Our validation tests suggest that the trimer database is still limiting prediction

performance. Although trimers behave very well under leave-sequence-out and leave-

nothing-out cross-validation, performance degrades in leave-family-out and leave-50-

percent-identity-out tests. Thus, these sequences are "predictable" as long as the right

training data is present. However, for many of the trimeric examples, the right training

data is only found within a protein's own family. This indicates a lack of inter-family

redundancy, which is critical to the ability of Multicoil to categorize new families

correctly.

It is possible that coiled-coil trimers exist not as one generic structural class but as

multiple classes, each with distinct sequence patterns determining trimerization. This may

be true; however, our method of combining all known trimer-forming sequences into one

class should not be detrimental unless aggregating such classes actually degrades

performance. We do not have any evidence to suggest that this is the case; instead, when

we remove from training those families with very poor performance (such as Nemo and



Fer), the prediction rates for the remaining families are unchanged. Thus, distant families

in the current database do not detract from overall performance.

We considered some of the probable causes of performance differences among

families. Each family has differences in the number of sequences and number of residues,

as well as in residue composition and identity to other families in the training set. This

makes it difficult to determine why certain families perform better or worse than others.

However, we can eliminate some potential problems as unlikely. The training database

was carefully prepared and thoroughly checked against available structural information

and the literature; therefore, we expect that incorrect predictions are not due to errors in

the training or test set annotations. For example, the cAMP binding domain, while

predicted uniformly as likely to be trimeric, is observed to form dimers according to

crystal structures[40]. Also, the CC2 domain of Nemo, while predicted to be a dimer, has

been confirmed through a variety of experiments to form coiled-coil trimers in

solution[28].

Low prediction performance is likely attributable to other factors. First, poorly

predicted families could have unique sequence features, not shared by other families, that

determine their oligomerization state. In addition, some families may have sequence

features typical of both training databases. This could happen, e.g., if a sequence can

form both a dimeric and a trimeric coiled coil. In such cases, the incorrect database may

provide stronger scores than the correct database. This may be true for Nemo, where it is

predicted that the LZ domain packs against the trimeric CC2 domain in an antiparallel

fashion[28]. This complex structure likely impacts the residue distribution of the family,

causing it to be poorly predicted. Finally, the largest families may have poor cross-



validated performance simply due to the large reduction in the size of the training set that

results from omitting them from the training database. This may be true for the laminin

family, which contributes 24% of sequences to the trimer database and shows very poor

leave-family-out performance. However, this is not uniformly the case, as the viral coat

family (20% of the trimer database) performs very well under all validation tests.

We expect that the most straightforward route to improving the performance of

Multicoil2 is to continue to increase the size of the training databases. One important

recent advancement is the CC+ database, which is regularly updated with coiled coils

detected using the SOCKET method[39]. We have strongly considered the use of

homology-search methods to increase the size of the known families; however, we must

express caution, given that sequence homology does not always imply structure

conservation[41 ], particularly in the case of coiled coils, where point mutations have been

observed to significantly change structural preferences[42]. Also, the greatest

improvement in leave-family-out performance will result from discovering new families

that share sequence features with known families that now perform poorly; simply adding

homologous sequences to existing families will likely not lead to significant

improvements. Finally, the development of structure-based methods, which rely less on

sequence-based training sets, provides an alternative route forward [6,43], that has not yet

been extensively tested.
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Chapter 3

Predicting helix orientation for coiled-coil dimers
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3.1 Abstract

The alpha-helical coiled coil is a structurally simple protein oligomerization or

interaction motif consisting of two or more alpha helices twisted into a supercoiled

bundle. Coiled coils can differ in their stoichiometry, helix orientation and axial



alignment. Because of the near degeneracy of many of these variants, coiled coils pose a

challenge to fold recognition methods for structure prediction. Whereas distinctions

between some protein folds can be discriminated on the basis of hydrophobic/polar

patterning or secondary structure propensities, the sequence differences that encode

important details of coiled-coil structure can be subtle. This is emblematic of a larger

problem in the field of protein structure and interaction prediction: that of establishing

specificity between closely similar structures. We tested the behavior of different

computational models on the problem of recognizing the correct orientation - parallel vs.

antiparallel - of pairs of alpha helices that can form a dimeric coiled coil. For each of 131

examples of known structure, we constructed a large number of both parallel and

antiparallel structural models and used these to asses the ability of five energy functions

to recognize the correct fold. We also developed and tested three sequenced-based

approaches that make use of varying degrees of implicit structural information. The best

structural methods performed similarly to the best sequence methods, correctly

categorizing -81% of dimers. Steric compatibility with the fold was important for some

coiled coils we investigated. For many examples, the correct orientation was determined

by smaller energy differences between parallel and antiparallel structures distributed over

many residues and energy components. Prediction methods that used structure but

incorporated varying approximations and assumptions showed quite different behaviors

when used to investigate energetic contributions to orientation preference. Sequence

based methods were sensitive to the choice of residue-pair interactions scored.



3.2 Introduction

The alpha-helical coiled coil has long served as a model for studying the relationship

between protein sequence and structure. The coiled coil consists of a bundle of

supercoiled helices that are encoded by a 7-residue sequence repeat of the form

[abcdefg]n. With a and d positions hydrophobic and e and g positions usually polar or

charged, a "sticky" stripe winds its way around an individual helix, dictating the

formation of a twisted helical bundle (Figure 3-la and b). Because of this simple

relationship, the coiled-coil fold is one of the easiest protein structures to predict.

Numerous programs have been developed to detect the presence of coiled-coil forming

segments in sequences, and these exhibit respectable sensitivity and specificity.[ [1,2,3,4]

However, few methods exist to predict the variety of topologies found in coiled-coil

structures.[4,5,6] Helix content can vary from 2 to 7 helices, and helix orientation can be

parallel or antiparallel. Structures can be homo- or hetero-oligomeric, and the helices can

align axially in different ways. Thus, the "coiled coil" is really a large family of

structures that share many properties but exhibit different topological characteristics. [7]

The difficulty of predicting coiled-coil structure lies in differentiating what can be

subtle distinctions in interactions. For example, it has been reported for several designed

coiled coils that changing a single a- or d-position residue can lead to a change or loss of

oligomerization specificity.[8,9,10] Small changes in sequence can also alter helix

orientation preferences. In the work of Oakley et al., moving a buried Asn residue by 7

positions in one helix and 3 in its partner helix was sufficient to switch a designed coiled

coil from a parallel to an antiparallel orientation.[ 11] Lumb and Kim found that a buried
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Figure 3-1. Crick parameterization of parallel and antiparallel coiled coils. (a-b)
Schematic illustrating parameters used to describe (a) parallel and (b) antiparallel
backbone geometries. For each wheel diagram, the heptad positions are indicated in
lowercase letters and the direction of the chain is indicated by whether the N or C
terminus is out of the page. For the structural diagram, the a and a' positions are shown
in black, the d and d' positions in gray, and the rest in white. (c) Distribution of the
backbone RMSD (N, Ca, and C atoms) for the native crystal structures in the test set to
the closest ideal structure in the backbone sets. For every example, an idealized model
with an RMSD of less than 1.8 A was available for selection as a template.

Asn can establish both oligomerization and helix orientation specificity.[12] Perhaps

surprisingly, this sensitivity to small sequence changes appears to hold for many native

sequences as well. Mutation of an Asn residue at an a position of the yeast transcription

factor GCN4 leads to loss of oligomerization specificity in that coiled coil,[13] and

changing 2 residues in the antiparallel coiled-coil dimer of Bcr can give either a mixture

of antiparallel higher-order helical assemblies or trimers, depending on the mutations.[14]

This plasticity of coiled-coil structure in response to mutation makes the problem of fold

recognition challenging. Much of the signal that is typically used to discriminate one

structure from another in prediction, including patterns of predicted secondary structure

and preferences of residues for different degrees of burial, is of little or no use in

classifying coiled coils by type because these properties are largely the same in many of

the competing structures. This situation also arises in other structure-prediction problems,

where target and decoy structures must be resolved that sometimes include "mirror-

image" variants containing the correct secondary structure elements arranged incorrectly

with a reversed overall chirality. [15,16]

Despite these challenges, some progress has been made on the problem of

predicting coiled-coil interaction preferences from sequence. Several methods have been

proposed for discriminating dimers from trimers. Simulations have successfully captured



oligomeric preferences, and sequence-based programs have been developed for making

predictions on novel coiled coils.[4,5,17] However, these were developed over a decade

ago, using extremely small sets of known coiled-coil examples, and frequently fail on

additional test cases that are available today. More recently, several methods have been

developed to predict interacting partners among the bZIP transcription factors - an

important protein family in which dimerization is mediated by a parallel coiled

coil.[6,18,19,20,21] Relatively little is known about determinants of coiled-coil helix

orientation, however. Various strategies have been used to design coiled coils that

specifically adopt a parallel or antiparallel orientation, such as electrostatic charge

patterning or the manipulation of a- and d-position polar residues or shape

complementarity.[11,22,23,24,25,26,27] Alanine in core positions has been proposed to

contribute to antiparallel specificity in coiled coils.[28] But in general, it is difficult to

recognize sequence patterns that may specify helix orientation in native sequences.

Analyzing features that determine orientation specificity via mutagenesis is often

confounded by the fact that key residues may encode other types of specificity as well.

For example, when probing the possible role of d-position Glu in determining the

orientation preference of the Bcr coiled-coil domain, mutation to Leu led to the formation

of trimers and other higher-order oligomers, as mentioned above. [14]

In this paper, we describe the performance of several types of computational

models on the problem of predicting coiled-coil orientation. Due to the relatively small

number of coiled coils with known orientation preference, learning strategies such as

those that have been used in other motif recognition problems are not readily

applicable.[1,29,30,31,32] Instead, we relied on structural models to evaluate coiled-coil



orientation. We developed both explicit structural models and sequence-based models in

which our use of structure was implicit. "Out-of-the-box" methods of both types did not

perform very well, but small adjustments that took advantage of coiled-coil properties

significantly improved the results.

3.3 Methods

3.3.1 Coiled-coil database

Parallel and antiparallel coiled-coil dimer structures were obtained by applying

SOCKET to the EMBL Protein Quaternary Structure (PQS) database downloaded on

April 12, 2007.[34] Structures returned by SOCKET were filtered to exclude those

shorter than 18 residues as well as those with a discontinuous heptad assignment. A

manual filtering step was used to exclude non-coiled-coil structures, such as certain

portions of helix bundles, helix sheets and other extended knobs-into-holes

assemblies.[35] The GCN4 coiled-coil family was overrepresented in this set; several

sequences containing point mutations were removed. Finally, due to the significant

minority of parallel heterodimeric coiled-coil crystal structures, we added seven sequence

pairs from the human bZIP family, for which the helix orientation and alignment can be

determined by sequence alignment[21,36]: ATF7+MAFK, ATF2+FOS, CREBPA+JUN,

CEBPbeta+CEBPalpha, ATFI+CREM, CEBPgamma+ATF4 and the ATF1 homodimer.

All complexes contained two chains of the same length and were completely overlapping



(i.e. had "blunt" ends) in both parallel and antiparallel orientations. The final set

consisted of 61 parallel and 70 antiparallel coiled coils.

3.3.2 Crick Parameterization

To describe and generate parallel coiled-coil dimer backbones, we used the

parameterization originally proposed by Crick and subsequently implement by Harbury et

al. as a user routine in CHARMM.[41,42] This parameterization has been shown to

closely mimic the geometry of several parallel coiled coils.[41] Additionally, using our

parallel coiled-coil test set, we found that this idealized parameterization can be fit to a

set of 54 native backbones with Ca RMSD values ranging from 0.25 to 2.5 A, and with

46 of 54 backbones having an RMSD less than 1.0 A (supporting data in Appendix B,

Figure B-1).

We modified the Crick/Harbury approach to describe and generate antiparallel

coiled-coil backbones. As in the fitcc program (Personal Communication Tom Alber;

Author Mark Sales http://ucxray.berkeley.edu/-mark/fitcc.html), we used the fact that the

Ca trace of the antiparallel coiled coil has approximately the same symmetry properties as

the parallel coiled coil. The two relevant exceptions are that a symmetry-breaking axial

shift can occur between the two chains, and the 0 values that describe the angle of side

chains relative to the helix-helix interface need not be the same on both chains. We

modified the coiled-coil parameterization to account for these differences by introducing

two new parameters. Parameter apzi captures the helical shift as described above, and



parameter 0 is replaced with an independent value for each helix: OA and B. We re-write

the parameterization for antiparallel coiled coils as:

CC(r) = EC'(,) + H(r)

cos(w0z) - sin(o or) cos(a) 0
E(wr, a,0) = sin(w0 r) cos(w0r) cos(a) 0

0 sin(a) cos(a)

R, cos(wr + 0)
C'= R, sin( coj" + O )

apzi

R0o cos(ozr)
H (r) = Ro sin(wor)

d cos(a)

where sin(a) = ROw 0
d

Here Ro is the superhelical radius, 4 are phase angles that locate the residues on the

superhelical backbone trace, and 0o is the superhelical frequency. a is the helix-crossing

angle, R1 is the a-helix radius and ol is the a-helix frequency. As described above, apzi

is an axial helical offset that is set to 0 for chain A, and is non-zero for other chains. As

for the parallel coiled coil, we generate chains by constructing them using this equation

and rotating them into position about the superhelical axis. This antiparallel

parameterization was coded as a user-defined energy routine in CHARMM, as for the

parallel parameterization.

We used the Crick parameterization both to fit idealized backbones to native

structures and to generate de novo backbones. To fit a native structure, we optimized

superhelical parameters, as well as two external parameters that locate the coiled coil in

the laboratory frame. It is important that the superhelical axis of the native coiled coil be

aligned with the z-axis of the parameterization above. The superhelical axis of a parallel

coiled coil can be well approximated as the rotational axis that maximizes superposition



of one helix onto another. However, this is not the case for antiparallel coiled coils. For

these, we found the best alignment by adjusting the internal Crick parameters, along with

two Euler rotations and three translational degrees of freedom, using a process similar to

that of the fitcc program. The center of mass of the helix was translated to the origin, and

then the coiled coil was approximately oriented using two vectors defined by connecting

the first and last Ca atom of each helix. The average of these two vectors was aligned

with the z-axis. Starting from this position, the rest of the Crick parameters, along with

two Euler angles and translations in three dimensions, were optimized using Matlab's

constrained minimization algorithm[65] to minimize the RMSD of the native helix to the

closest ideal Crick helix. Given this superhelical alignment, antiparallel Crick parameters

were fit in CHARMM by minimizing the energy with respect to these parameters as well

as a rotation about the superhelical axis and a translation with respect to this axis. The

energy minimized was proportional (with constant 25 kcal/A2 ) to the sum of the distances

squared of all C, atoms from the ideal Crick C,-atom positions.

3.3.3 Generation of backbones

All structures were generated via minimization under a potential that included the

user defined Crick energy as well as van der Waals interactions, bond length, bond angle,

dihedral and improper dihedral energy terms, and a hydrogen bonding potential, all

defined by the paraml9 force field.[45] Parameters R1, cl and d, which describe a-helix

geometry, were set to 2.26 A, 47/7 radians per residue and 1.52 A respectively.[41] Other

parameters were sampled as follows. The parallel set contained 120 structures with Ro



values of 4.7, 4.8, 4.9, 5.0, 5.1 and 5.2 A, 0 values of 0.25, 0.30, 0.35, and 0.40 radians,

and oo values of -0.055, -0.06, -0.065, and -0.70 radians. The antiparallel set contained

81 structures with R values of 4.8, 4.9 and 5.1 A, wo of -0.050, -0.060 and -0.070

radians, OA, OB pairs (in radians) of (0.412, 0.395), (0.422, 0.384), (0.432, 0.374) and apzi

values of 1.5, 2.0 and 2.5 A. These values span the space of native parallel and

antiparallel sequences, as illustrated in Appendix B, Figures B-2 and B-3. OA, OB values

were sampled as pairs due to correlations between these in native structures (Appendix B,

Figure B-4).

3.3.4 Evaluation of structures

Sequences were repacked on 201 parallel + antiparallel rigid backbones using

Rosetta with default parameters and expansion of the first and second dihedral angles in

the rotamer library.[44] The energy of these repacked structures was recorded to provide

the Rosetta energy. Repacked structures were then converted to CHARMM 19 atom types

and minimized using CHARMM with paraml9 EEF1 parameters and topology.[45,46]

The energy function used in minimization included van der Waals; EEF1 solvation;

distance-dependent-dielectric electrostatics with dielectric constant of 4r; bond length,

angle, dihedral angle, and improper dihedral molecular mechanics energy; hydrogen bond

energy; and the Crick user energy. Minimization was done with 1000 steps of steepest

decent followed by 1000 steps of adopted-basis Newton-Raphson. These minimized

structures were then re-evaluated using five ESM energy functions.



3.3.5 Energy functions - ESMs

All Crick-minimized backbones were evaluated with each ESM. The lowest

energy structure in each orientation was used to determine the energy difference. All

structures were held fixed during evaluation.

The Rosetta energy was calculated using the same energy function as for

repacking. All energy terms were included in the final score; however, the structure-

independent reference state canceled in the final analysis. Energy components labeled in

the figures for Rosetta are: Eatr - attractive van der Waals; Erep - repulsive van der

Waals; Epair - statistical pair electrostatics; Ehbnd - hydrogen bonding; Esol - solvation;

and Edun - Dunbrack statistical energy.

Model GK uses the physical energy function described by Grigoryan and

Keating.[18] Briefly, the energy function consists of three terms. First, a van der Waals

energy term includes atomic radii from CHARMM paraml9.[45] Second, an

electrostatics energy term combines Coulombic interaction energy in a uniform dielectric

of 4 with Generalized Born (GB) screening to account for transfer into an external

dielectric of 80 and an internal dielectric of 4. Perfect Born radii for use in the GB

formulae were calculated using PEP.[66] Finally, a desolvation energy term is included

from the EEF1 function in CHARMM.[46] Energy components labeled in the figures for

GK are: VdWatr and VdWrep - attractive and repulsive van der Waals; GB - screened

Coulombic interaction energy; EEF - EEF1 solvation component.

The DFIRE statistical potential was applied by using binding energies computed

using the dcomplex executable, as obtained from the Zhou lab.[48]



The FoldX energy was calculated with FoldX version 2.5.2 obtained from the

Serrano laboratory.[47,67] We used the "Stability" command with all options set to their

default values. All energy terms contributed to the final score. Energy components

labeled in the figures for FoldX are: VdW - van der Waals; VdWclash - van der Waals

clash; Elec+HDipole+Eleckon - sum of electrostatic, helix-dipole electrostatic and

electrostatic kon; SideHBond+BackHBond - sum of side-chain and backbone hydrogen

bonding; SolvP - polar solvation energy; SolvH - hydrophobic solvation energy; and

EntropySC+EntropyMC - sum of side-chain and backbone entropy.

RISP (Residue-based Interfacial Statistical Potential) was derived using the

framework outlined by Lu et al.[62] It was based on protein complexes from the QS50

database at 3dcomplex.org,[68] which consists of PDB entries filtered to exclude all

complexes with greater than 50% sequence identity. We further excluded all structures

showing significant sequence homology (BLAST E < 10-10) to structures in our coiled-

coil test set. An interface between two chains was defined as the set of all residues with

any heavy atom within 4.5 A of the other chain. Interfaces containing 5 or fewer residues

were excluded. To reduce the observed bias of the derived potential towards favoring

homodimeric interactions, interfaces were excluded if they contained two or more

residues making contact with copies of themselves on other chains. The final database

consisted of 2,864 interfaces containing 105,287 residues. Pair-wise residue scores were

computed according to:

N (i, j)
P(i, j) = -log ob

N exp (i, j)

where Nobs(i,j) is the number of contacts observed between residues i and j in the training

database and Nexp(i, j) is the product of the mole fractions of residues i and j in the



database multiplied by the total number of residues in the database. This reference state

performed better at orientation discrimination compared to a reference state based on the

mole fraction of residues occurring in solvent-exposed positions.[62] The RISP potential

was applied to modeled coiled-coil structures as a sum of pair-wise residue contact

scores. Contacts were determined according to the same criteria used in the development

of the potential.

3.3.6 Energy functions - ISMs

A null control model (NULL) was developed by assigning random scores

between +1 and -1 to all possible amino acid pairs at a-a', d-d', and g-e' (parallel) or a-d',

e-e', and g-g' (antiparallel) positions.

Model ELEC assigns all occurrences of g-e' (parallel) or g-g' + e-e' (antiparallel)

E-R, R-E, K-E or E-K pairs a weight of -1, while E-E, R-R, R-K, K-R, K-K, D-E, E-D

and D-D pairs are given a weight of +1.

The CE model is constructed using 48 experimentally determined coupling

energies for each orientation. For parallel coiled coils, coupling energies were obtained

from references Krylov et al.[50] and Acharya et al.[52] For antiparallel coiled coils, we

computed coupling energies for a-d' residue pairs from the AG values of Hadley et al. as

double mutant thermodynamic cycles relative to alanine.[57] Because no published data

are available for antiparallel interactions involving g and e residues, we applied the

analogous values from the Krylov study to the antiparallel pairs g-g' and e-e'.



To apply RISP to sequence data, we predefined pairs of heptad positions to be scored.

Different models included different pairs, as follows: RISPore included core interactions:

a-a', d-d' (parallel) and a-d' (antiparallel) pairs. RISPedge included edge interactions: g-e'

(parallel) and g-g', e-e' (antiparallel) pairs. RISPcore,edge included the pairs in both RISPcore

and RISPedge. RISPcc included all pairs from RISPcore,edge as well as the core-edge pairs g-

a', d-e' (parallel) and a-e', d-g' (antiparallel). Finally, the RISPall model further included

the pairs d-a' (parallel) and a-a', d-d' (antiparallel). These lists are summarized in Table

3-2. Energy components used in Figure 3-3 for RISPcc are: COREatr/rep - all core-core

interactions; EDGEatr/rep - all edge-edge interactions; CEatr/rep - all core-edge

interactions. Based on analyses of coiled-coil crystal structures, RISPall corresponds to

selecting all pairs with the potential to be in contact according to the 4.5 A criterion used

to develop RISP.

3.4 Results

We tested several methods for predicting whether two sequences that can form a

coiled coil will assemble as a parallel or an antiparallel dimer. For simplicity, we

considered pairs of sequences of equal length that can be fully overlapped in both parallel

and antiparallel orientations, i.e., those sequences that are "blunt ended" when aligned

both ways. This test is akin to biochemical assays that can measure the relative stability

of these two conformations,[11,33] although it avoids complexities that can be introduced

by non-dimer states. An important feature of our calculations is that they do not require

an accurate treatment of a dissociated and/or unfolded reference state (because the



common unfolded state cancels), and therefore represent a best-case scenario for

computational prediction.[18] Significant additional challenges, such as predicting the

correct axial alignment of helices, and determining that two sequences will form a dimer

rather than some other type of oligomer, must be overcome to develop a general coiled-

coil structure prediction method.

Our assessment of different methods used a database of parallel and antiparallel

coiled-coil dimers of known structure. To assemble this database, dimers were identified

using the program SOCKET,[34] which detects the knobs-into-holes side-chain packing

that characterizes coiled-coil interfaces. Additionally, SOCKET was used to determine

the coiled-coil heptad assignment (abcdefg). Because SOCKET also detects knobs-into-

holes packing in non-coiled-coil structures, such as 4-helix bundles and helical

sheets,[34,35] these were manually removed. We also included several sequences from

the human bZIP family of coiled coils[21,36] in order to increase the number of parallel

heterodimers in the database. In total, 61 parallel and 70 antiparallel examples with low

sequence similarity and length >= 18 residues were selected and defined as our test set.

We made the assumption that the coiled-coil motif itself is sufficient to encode the

observed helix orientation for these structures. This may not always be true, and it is less

likely to be true for short sequences that are part of a more complex fold. It is also less

likely to be true for coiled coils that are highly buried. Nevertheless, local determination

of helix orientation has been confirmed experimentally for a small number of cases in the

literature, and it is likely to be true for the majority of our examples.[14,37,38,39,40] Due

to the limited number of available structures, there are biases in the data set. In particular,

the parallel structures include more homodimers and the antiparallel structures more



heterodimers. This affected the performance of some methods, as discussed below. A

summary of the structures that make up the database is provided in Table 3-1 and a

detailed list is available in Appendix B, Table B-1.

We tested two general categories of methods. The first required explicit models of

structure for each orientation. The experimentally determined structure was available for

the correct orientation for most of the sequences, but to simulate a real prediction

problem we did not use this structure in our evaluations. Instead, models of both parallel

Table 3-1. Test set of coiled-coil dimers of known orientation.

Sequence Avg. Length Number of Avg (range) Avg (range)
Pairs (range) in intra- fraction exposed RMSD to

residues molecular SASAa closest ideal
coiled coils Crick

backbone (A)b

Parallel 61

Homodimer 49 32.9 (18-75) 0 0.71 (0.24 - 0.95) 0.72 (0.29-2.5)

Heterodimer 12 32.9 (18-40) 0 0.80 (0.67 - 0.91) 0.57 (0.35-1.0)

Antiparallel 70

Homodimer 19 25.0 (18-40) 0 0.59 (0.33 - 0.89) 0.51 (0.21-1.0)

Heterodimer 51 22.5 (18-53) 45 0.58 (0.16 - 0.83) 0.60 (0.28-2.4)

Data for seven bZIP coiled coils without structures not included in averages. aFraction
exposed is the ratio of the solvent-accessible surface area (SASA) of the coiled coil as
observed in the crystal structure to the SASA of the isolated coiled coil. SASA calculated
using NACCESS. bRMSD to the closest ideal Crick backbone is the difference between
the crystal structure and the best-fitting Crick ideal structure. Data for all structures is
shown in Appendix B, Figure B-1.



and antiparallel complexes were predicted for each dimer. To generate idealized parallel

backbones, we used a parameterization first developed by Crick in 1953 and

subsequently adapted for use with modern molecular modeling programs by Harbury et

al.[41,42] To describe antiparallel coiled-coil backbones, we introduced two new

parameters into the Crick parameterization (see Methods). We then generated 120 ideal

parallel and 81 ideal antiparallel backbones that spanned the parameter space of the

dimeric coiled-coil test set (Appendix B, Figures B-i through B-4). The backbone RMSD

between each native structure and its closest idealized backbone was in the range of 0.25-

1.8 A, with all but 12 structures within 1.0 A (Figure 3-1c).

The other class of methods that we tested was based on sequence and did not

require structural modeling. These approaches took advantage of characteristics of the

coiled coil, such as the heptad repeat and extensive experimental characterization of

interfacial residue-residue interactions that are important for dimer stability and

specificity. We used this information to select interchain pairs of heptad positions that

were scored based upon the residues at those positions, thus using structural information

implicitly. We refer to the two different types of approaches as ESMs and ISMs, for

explicit or implicit structural models, respectively.

These two classes of models have different strengths and weaknesses. The ISMs

are much faster to evaluate and can easily incorporate experimental data about relevant

heptad pairs and interaction energies. However, they make strong assumptions about the

independence of pair-wise interactions and may obscure potentially significant details of

atomic interactions necessary for modeling orientation specificity. ESMs provide

advantages for analysis and interpretation of the physical basis of the overall interaction.



Finally, ESMs are more generalizable in that they can potentially be applied equally to

any structure; ISMs must be created specifically for the structure to be modeled.

3.4.1 Performance of explicit structure models

Predicting helix orientation using ESMs involved three steps: (1) generating large

numbers of parallel and antiparallel dimer backbones, (2) modeling each sequence pair

on each backbone, and (3) selecting the lowest-energy model. The first step was carried

out using the coiled-coil parameterizations described above. The second step was carried

out using Rosetta, or a combination of Rosetta and CHARMM (see below). [43,44,45]

The third step gave rise to differences between models, with each ESM named according

to the energy function used at this stage.

In a preliminary set of calculations, we tested two structure-prediction methods

for use in step 2. Initially, Rosetta was simply used to place side chains into preferred

conformations on each of 81 parallel and 120 antiparallel idealized Crick backbones.

When Rosetta was used to select the lowest-energy structure and orientation for each pair

of sequences (corresponding to step 3), this procedure predicted the orientation of 42/61

parallel sequences and 48/70 antiparallel sequences correctly. In the second approach, all

Rosetta-repacked backbones were relaxed via minimization using the CHARMM

paraml9 force field.[45] Rosetta evaluation of these relaxed structures gave strikingly

better results, improving the prediction rate to 50/61 (82%) of parallel sequences and

57/70 (81%) of antiparallel sequences. The performance of these models is shown in

Figure 3-2a (left panel). Results are plotted as the fraction of antiparallel sequences
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Figure 3-2. Parallel vs. antiparallel discrimination performance of different
methods. The fraction of antiparallel structures correctly predicted is plotted versus the
fraction of parallel structures correctly predicted. Curves were generated by varying Ecut
= EA - Ep. A structure was predicted to have an antiparallel orientation if the energy of
the antiparallel state was lower than that of the parallel state plus Ecut. If this energy was
higher, the orientation was predicted as parallel. Ecut = 0 denoted by black dot. (a)
Comparison of ESMs. At left, a comparison of Rosetta evaluated on structures without
(repacked only) or with (repacked, min) structural relaxation. At right, all candidate
ESMs evaluated using relaxed structures. (b) Comparison of ISMs. At left, candidate
ISMs including NULL control; at right, several variants of the RISP model. (c)
Comparison of best ESM and ISM models. (d) Comparison of the performance on the
test set (red) and the performance when hetero- and homodimer results are weighted
equally (green). Clockwise from top left, the panels are for RISPstuct, RISPore, CE and
RISPcc.

predicted correctly vs. the fraction of parallel sequences predicted correctly. Because

including minimization in step 2 significantly improved performance, this protocol was

adopted in all remaining calculations, for all ESMs. Using this approach, the predicted

structures for the correct orientation provided a good approximation of the real structures,

with backbone RMSD values in the range 0.4-2.2 A (all but 7 within 1.5 A) and X-angle

recovery rates only slightly lower than can be achieved on the native structure (Appendix

B, Table B-2).

Models GK, FoldX, DFIRE and RISP used different potentials to select the

lowest-energy structures. Model GK, developed by Grigoryan et al.,[18] is based on the

CHARMM paraml9 force field[45] and includes van der Waals interactions and a

combination of EEF1 desolvation[46] and generalized Born screening of electrostatic

interactions. This model previously showed good performance predicting coiled-coil

binding partners.[18] GK describes similar physical terms to those captured by Rosetta,

but it is more physical, with no statistical terms or empirical weighting. It performed

slightly less well on orientation prediction than Rosetta. FoldX is a scoring function
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developed by Guerois et al.[47] It consists of physically descriptive terms weighted to

predict experimental mutation free energies of primarily large-to-small mutations. Its

performance was intermediate between that of Rosetta and GK (Figure 3-2a).

DFIRE and RISP are statistical potentials derived from the frequencies of

interactions in the PDB.[48] They were applied to coiled-coil structures by scoring pairs

of atoms or residues that met certain criteria. DFIRE is an atom-based potential that has

been reported to predict protein-protein complex affinities accurately from experimental

structures. [48]

On our orientation-prediction test, it performed slightly worse than GK. RISP is a

Residue-based Interfacial Statistical Potential consisting of 210 weights for scoring pairs

of inter-chain residues that fall within a distance cutoff; it is very similar to the residue-

based potential developed by Lu et al.[49] Applied to the relaxed structure set as

RISPstruct, it performed relatively poorly (Figure 3-2a).

To address test-set bias, we approximated the performance expected if there were

equal proportions of homo- and heterodimers in the parallel and antiparallel test sets. This

was done by calculating the average performance on homodimeric and heterodimeric

examples, weighted equally, for each orientation class, at each Ecut value (Ecut is defined

in Figure 3-2). Figure 3-2d shows that RISPstruct was quite sensitive to this adjustment.

This potential favored homodimers, and some of its success in predicting parallel

structures was a result of this bias. The DFIRE, Rosetta, FoldX and GK potentials, on the

other hand, performed similarly in the two tests.
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3.4.2 Performance of implicit structure models

In our ISM models, the energy of a structure is expressed as a sum of

contributions from pair-wise residue interactions. The models differ from one another in

the choice of pairs and/or the weights assigned to them. Our selection of residue pairs

took advantage of the known heptad register of the test-set structure. Heptad assignment

for coiled-coil sequences with unknown structures can be made using programs such as

Paircoil.[1,3] We considered only interactions among the a, d, e, and g residues that

make up the coiled-coil dimer interface. A summary of the notation and residue pairs for

all ISM models is shown in Table 3-2. To approximate the RISPstruct method using an

Table 3-2: Summary of pair terms used in ISM models.

Model Parallel Antiparallel

ELEC g-e' g-g' e-e'

CE a-a' g-e' a-d' g-g' e-e'

RISPcore a-a' d-d' a-d'

RISPedge g-e' g-g' e-e'

RISPcore-edge a-a' d-d' g-e' a-d' g-g' e-e'

RISPcc a-a' d-d' g-e' g-a' d-e' a-d' g-g' e-e' a-e' d-g'

RISPcc all a-a' d-d' g-e' g-a' d-e' a-d' d-a' a-d' g-g' e-e' a-e' d-g' d-d' a-a'

A prime (') designates a residue on the opposite helix. All interaction pairs listed involve
structurally adjacent sites on opposite helices. For edge interactions where there may be
some ambiguity as to what pair is indicated, the interactions are as follows: g-e' pairs in
parallel coiled coils are between a g residue and the e residue of the next (more C-
terminal) heptad of the opposite helix; n antiparallel coiled coils g-g' pairs are between a
g residue and the g residue of the previous (more N-terminal) heptad of the opposite helix
and e-e' pairs are between an e residue and the e residue of the next (more C-terminal)
heptad of the opposite helix.
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ISM, we scored seven pairs involving residues that commonly satisfy the RISPstruct

distance cutoff. These pairs were assigned their RISP weights, giving method RISPcc-all.

Like RISPstruct, RISPcc-all did not perform very well (Figure 3-2b). Interestingly, however,

when we scored only 5 types of interactions for each coiled-coil orientation, giving model

RISPcc, the performance was much better and rivaled that of the best ESM methods

(Figure 3-2c).

The pairs in RISPcc include those that have been described many times as being

important for coiled-coil associations (i.e. a-a', d-d' and g-e' for parallel[50,5 1,52,53]

and a-d', g-g' and e-e' for antiparallel[54]) as well as core-to-edge terms (g-a' and d-e'

for parallel and a-e', d-g' for antiparallel) that have been investigated in some systems

and that were previously predicted to be important.[18,55,56] Further reduction of the

number of pairs, i.e. using only core a-a', d-d' (parallel) or a-d' pairs (antiparallel),

giving model RISPcore, or only edge g-e' or g-g' (parallel) or e-e' (antiparallel) pairs,

giving RISPedge, degraded performance (Figure 3-2b).

Given the success of model RISPcc, we tested model CE. This model includes the

same heptad-position pairs, but draws weights, where possible, from experimentally

reported interaction energies. These include weights for a-a' and g-e' interactions in the

parallel orientation, taken from coupling energies measured in the Vinson laboratory.

Weights for a-d' interactions in the antiparallel orientation were taken from

measurements by Hadley et al.[57] This model also did well, despite the limited number

of available measurements (Figure 3-2b). The performance of two control models is also

shown in Figure 3-2b. Model ELEC scores only the e- and g-position electrostatic

complementarity and did not provide good parallel vs. antiparallel discrimination. We
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also illustrate the performance of a null model in which weights were assigned to the

restricted set of pairs randomly.

Of the ISM models, RISP,,,re and CE showed significant amounts of homodimer

bias, i.e. their performance was worse when we weighted the homo- and heterodimer

results equally (Figure 3-2d). For RISPcore, this effect came from more favorable weights

for a-a' and d-d' homotypic interactions than heterotypic interactions. This bias was

somewhat surprising, as the RISP energy function was designed to minimize such effects

by excluding cases where a residue interacts with a symmetry-related copy of itself in the

training set. Increasing the number of pair terms to make the RISPcc model, e.g. by

adding edge and core-edge interactions that occur between positions not related by

symmetry, diluted this effect, and the overall bias decreased (Figure 3-2d). The CE model

is based on a much smaller number of terms than the RISP models, and so homodimer

bias here is likely a result of unequal numbers of weights available for scoring homo vs.

heterodimers.

3.4.3 Analysis

The performance of all methods on all examples indicates that some structures are

easier to predict than others. For 23 dimers (18%), all 8 methods predicted the correct

orientation, and for 74 dimers (56%), at least 6 out of 8 methods were correct. Seventeen

structures (13%) were predicted correctly by three or fewer methods. Some of the

examples that are rarely predicted correctly may contradict our assumption that the PDB

reflects the structure that coiled-coil fragments would adopt in isolation. For example,
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10OV9, VicH H-NS histone-like protein, consists of an antiparallel coiled coil flanked by

N-terminal swap domains that pack against it; any influence on helix orientation from

these domains was not considered in our models. Another example is 1X75, DNA gyrase

subunit A, in which an intramolecular antiparallel coiled coil is packed against a large

structured loop. Again, structural elements that we did not model may contribute to the

observed orientation.

The various prediction methods work very differently, as is evident when

comparing their performance on subsets of the test complexes. Figure 3-3a clusters both

methods and examples by the similarity of predicted orientation preferences. Classifying

all methods as statistics-based (DFIRE, RISPstruct and RISPcc), knowledge-based (ELEC,

CE) or pseudo-physical (Rosetta, GK, FoldX) shows that the knowledge-based potentials

are least similar to the other methods and also not closely related to one another. The

simple ELEC model had poor performance overall (Figure 3-2b). Figure 3-3a shows that

Figure 3-3. Overview of prediction performance and component analysis. All
predictions were made using Ecut = 0. (a) Predictions clustered by method and example.
Color (red: parallel, blue: antiparallel) denotes orientation prediction, and intensity
(bright to dark) corresponds to the score of that prediction (AE), binned into deciles,
where darker color indicates low rank (AE close to zero). CRYSTAL column denotes
orientation in the x-ray structure. (b-e) Prediction results for subsets of sequences, re-
clustered. Color scheme as in (a). CRYSTAL column denotes known orientation.
Remaining columns are energy terms contributing to overall orientation predictions for
the best ESM and ISM methods. Terms favoring parallel orientation are red; those
favoring antiparallel are blue. Intensity is in units of sigma (standard deviation of all
energy components on all test sequences for a given prediction method), capped at 2.5 a.
In (b-e), energy terms are shown for examples with: (b) the largest absolute magnitude
Rosetta Erep, (c) the largest absolute magnitude Rosetta Eatr, (d) the largest FoldX
electrostatic components, and (e) paired a-a' Asn residues in the parallel orientation. N
indicates that the sequence pair contains Asn at one or more a-a' positions in the parallel
orientation; I indicates that the sequence pair contains an Ile pair at d-d' in the parallel
orientation. FoldX, Rosetta, and GK energy components are described further in the
Methods and in Appendix B, Table B-3.
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much of this poor performance resulted from the model's frequent failure to make a

prediction (gray boxes), due to equivalent attractive and repulsive charge-charge

interactions in both orientations. There are also examples where ELEC made a strong, yet

incorrect, prediction. Model CE performed much better than ELEC; in overall prediction

rate it was similar to the very good RISPcc (also an ISM). Yet, the clustering in Figure 3-

3a shows that CE is not at all similar to the other ISMs in terms of how orientation is

assigned for specific sequences. This is understandable, as CE and RISP are based on

completely different methods of deriving pair-wise scoring weights (experiments vs.

PDB frequency analysis). Comparisons of ELEC, CE, and RISPcc further illustrate how

three types of terms (edge interactions involving e and g positions, core interactions

involving a and d positions, and core-to-edge interactions) are all important (Appendix B,

Figure B-5a). The inclusion of these heptad-position pairs in RISPcc (absent from ELEC

or CE) help to account for its better performance. Finally, it is interesting that the

RISPstruct and RISPcc methods cluster quite tightly, despite significant differences in their

prediction performances, underscoring their basis in the same contact potential.

Differences among the structure-based methods can be dissected using component

analysis, which potentially offers insights into physical determinants of helix orientation.

For 5 methods (the ISMs CE and RISPcc and the ESMs FoldX, Rosetta and GK), we

broke the predicted energy differences into their component terms for all of the examples

in the test set. Figures 3b-e show subsets of these (all examples are included in Appendix

B, Figure B-5b). For the ESMs, we also examined the predictive power of individual

components, as well as the co-variation of individual energy-term differences with the

total parallel vs. antiparallel energy difference. These data are summarized in Figure 3-4
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(descriptions of components are included in Appendix B, Table B-3). Figure 3-4 panels

a-c illustrate the contributions of different energy terms to prediction performance. The

prediction accuracy of each important term when used alone is shown, along with the

effect of removing terms individually from the total energy. The Rosetta terms Eatr and

Erep, which together give the total van der Waals energy, gave reasonable prediction

performance when used alone (73%). Although the Rosetta electrostatics terms were

poorly predictive in isolation, they significantly enhanced overall performance (removing

them reduced performance from 82% to 76%). Interestingly, FoldX relied much more on

a single type of term. The electrostatics term alone gave 73% prediction performance

(just 3% below that of the FoldX total energy). Removing this term from the total energy

reduced performance to 63%. The GK model is more similar to Rosetta than to FoldX,

although it describes a more important role for electrostatics than Rosetta does.

Interestingly, omitting the repulsive van der Waals energy contribution from the total

energy had little effect on the performance of any of the models. Note, however, that

repulsive van der Waals terms were included when selecting the most appropriate

backbone structure, and may contribute significantly in this way.

The strong predictive ability of the Rosetta van der Waals energy and the FoldX

electrostatics terms suggests that these complementary descriptors could possibly be

combined to give a better-performing model. However, we observed that linear

combinations of these two terms performed worse than Rosetta on the test set. Extensive

fitting of multiple terms to give optimal performance is not appropriate, given that the

limited size of the test set restricts our ability to do rigorous cross-validation testing.
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Figure 3-4. Energy component contributions to performance. (a-c) The performance
of each component or sum of components was considered alone (Only) or was excluded
from the total (All But). The lower axis shows absolute performance and the upper axis
shows performance relative to the total energy. (a) Rosetta components as described in
the methods with Total VdW including Eatr + Eref, and Total Elec + Sol including Epair
+ Esol. (b) GK energy components as described in the methods with Total VdW
including VdWatr + VdWrep, and Total Elec + Sol including GB + EEF. (c) FoldX
energy components as described in the methods with Total Elec including Elec +
HDipole + Eleckon, Hbond including SideHbond + BackHBond, Total VdW including
VdW + VdWclash and Total Elec + SolvP including Elec + HDipole + Eleckon + SolvP.
(d-f) Histograms illustrating how different components of the energy functions co-vary
with the overall predicted Eparallel - Eantiparallel values. Only energy terms with strong
covariances are shown. Covariance for all sequences is shown in black, for sequences
predicted to be parallel in gray, and for sequences predicted to be antiparallel in white.
(d) Rosetta components are the same as in (a). (e) GK energy components are the same as
in (b). (f) FoldX energy components are the same as in (c) with TotElec the same as Total
Elec.

Co-variation is another way to assess which energy terms are most important for

making predictions. Seeking physical insights, we used this approach to explore whether

component terms contribute differently to the total energy depending on whether the final

prediction is parallel or antiparallel. For both Rosetta and GK, the van der Waals energy

terms co-varied strongly with the total energy (Figures 3-4d and e). The largest

contribution came from the repulsive term, and interestingly, steric clashes were more

important for examples predicted to be antiparallel than for those predicted to be parallel.

Other Rosetta and GK terms, including those that describe electrostatic and solvation

contributions, were smaller and exhibited less dramatic differences between parallel and

antiparallel predictions. The FoldX electrostatic terms co-varied to a significant extent

with the total energy (Figure 3-4f), consistent with the analysis of Figure 3-4c.

However,the FoldX energy terms that differed most between parallel and antiparallel

predictions were the van der Waals energy (VdW), solvation terms (SolvP and SolvH)

and side-chain entropy contribution (entropySC); these each showed stronger co-
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variation with the total energy for parallel predictions than for antiparallel. The

observations for all three energy functions described above are consistent with parallel

structures being packed more tightly than antiparallel, such that van der Waals

interactions are more attractive, side-chain motions are more restricted, desolvation is

greater, and clashes are more likely in the parallel orientation.

Figure 3-3 panels b-e further emphasize differences between the methods and also

support the characterization of parallel and antiparallel structures suggested by the co-

variation analysis. Figure 3-3b illustrates cases where differences in steric repulsion

between parallel and antiparallel structures were important, as reflected by a large

magnitude for the Rosetta Erep term. The GK model also recognized an effect from

repulsive van der Waals interactions for these examples. All but one of the cases with

large Erep terms were predicted to be antiparallel by Rosetta and GK, most of them

correctly so. Further analysis revealed that 11 out of 13 such examples, including 2

incorrect predictions, had Ile residues paired at d-d' positions in the parallel structures;

this is an interaction that is known to lead to unfavorable sterics for some well-studied

parallel coiled-coil dimers.[51,58] The examples in Figure 3-3b were treated differently

by FoldX, RISPcc, and CE than by Rosetta and GK, as is expected because the former

energy functions do not include a strongly repulsive steric term. Despite this, RISPcc and

FoldX performed well on these structures. These methods capture the influence of poor

packing due to steric clashes using other terms, in an overall balance that gives correct

results.

Because steric clashes involving Ile residues are a candidate motif for determining

orientation, we examined all such examples in the test set. There are 18 complexes in
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which two Ile residues were paired at d-d' when modeled in the parallel orientation.

Rosetta correctly predicted 10 out of 10 of the antiparallel coiled coils, and only 3 of 8 of

the parallel. Notably, all 8 of these parallel-orientation paired Ile residues are in terminal

heptads. From the crystal structures, it is clear that the helices often fray slightly towards

the ends of the supercoil to accommodate these P-branched residues (Figure 3-5). Such

fraying is not included in our idealized backbone models. To compensate for this, we

tested models in which each coiled-coil heptad, or each residue, contributed its minimum

energy when evaluated over all backbones. This provided a way for the radius of the

supercoiled bundle to effectively vary, potentially accounting more accurately for the

local context of key interactions. However, this did not improve overall performance.

FoldX, which does not contain a strong repulsive term, did slightly better at predicting

these structures, with 5 out of 8 parallel structures predicted correctly but only 9 out of 10

antiparallel structures correct.

Figure 3-3c highlights examples where there was a substantial difference in the

Rosetta attractive van der Waals component between the parallel and antiparallel states.

In these examples, this component favored the parallel orientation most of the time and

indeed, complexes with large values of this term were mostly parallel. Similar patterns

are seen in the CE and RISPcc COREatr terms, in the FoldX VdW and SolvH terms and,

to a lesser extent, in the GK Eatr term. Favorable packing was offset in most models by

solvation penalties, presumably because polar residues were more buried in better-packed

structures. Thus, clear preferences for the antiparallel structure showed up in the FoldX

SolvP and Rosetta Esol terms for examples in this panel, and, to a lesser extent, in the GK

EEF term. These trends support a model where closer packing and more burial (both
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favorable hydrophobic burial and unfavorable polar burial) can be achieved in the parallel

orientation relative to the antiparallel orientation.

Differences in electrostatics between orientations were predicted to be important

by some models. For FoldX, electrostatics terms co-varied most strongly with the total

energy (Figure 3-4f). Figure 3-3d shows examples that had large contributions from
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Figure 3-5. Distribution of C-Ca distances for core residues in parallel and

antiparallel coiled coils. All Ca-Ca distances between core residues (a-a', d-d' in

parallel and a-d' in antiparallel) were binned by distance. For the test-set structures,
residues were divided into two sets: Central heptads (black) include positions that are not

the first or last seven residues of a coiled-coil helix, and terminal heptads (gray) include

residues that are the first or last seven in a coiled-coil helix. All core positions of the ideal

backbone set are binned together and shown in white.
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FoldX electrostatics (Elec, HDipole and Eleckon); these terms more often favored

antiparallel structures. The GK potential also showed some of the FoldX trends for these

examples, but the overall importance of electrostatics relative to other terms was reduced.

Finally, electrostatics contributed very little to the Rosetta potential, which uses a

combination of a statistically derived term (Epair) and an orientation-dependent hydrogen

bond term (Ehbnd) to account for electrostatic effects.

Figure 3-4d shows a preference for parallel coiled coils in the Rosetta hydrogen

bonding term, which we suspected could include a contribution from Asn residues. A

preference for paired, hydrogen-bonding Asn residues at a-a' positions in parallel coiled

coils has been well documented and described as a determinant of coiled-coil orientation

and alignment.[ll,12]'[21] We explored whether this effect was evident in our data.

Among all 131 sequence pairs tested, there were 28 examples where two Asn residues

could be paired at a-a' sites in a parallel model. Of these, 27 were from parallel structures

and only one was from an antiparallel structure (Figure 3-3e). At least in our test set,

therefore, the potential to pair Asn residues at a-a' is a strong indicator of a parallel

orientation. This is recognized by models CE and RISPcc. CE includes a strong

preference for Asn-Asn pairing, as determined experimentally, [53] and its influence was

clear in the CE COREatr term. RISPcc also assigns a favorable weight to this term,

reflected in its COREatr term. However, the structure-based prediction methods did not

show a strong energy component pattern typifying paired Asn groups. No single term

dominated the predictions for these structures, although many seemed to be determined

by more favorable packing in the parallel than in the antiparallel orientation. Further

analysis at the residue level using Rosetta revealed that Asn hydrogen bonding favored
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the parallel state for only 16 out of 27 parallel examples, and the total energy of Asn

residues at paired a-a' positions favored the parallel state in only 14 out of 27 cases.

Nevertheless, 23 of 27 parallel dimers containing a pair of Asn residues were predicted

correctly by Rosetta, similar to the performance on all sequences. Thus, although Asn

pairs at a-a' positions correlate strongly with a parallel orientation in the test set, the

Rosetta method did not rely heavily on this interaction to make correct predictions. This

is consistent with previous observations by Grigoryan et al.[18] that the experimental

preference for Asn-Asn over Asn-Val a-a' pairs in coiled-coil dimers is difficult to

capture using these types of methods.

3.4.4 Confidence

To explore whether the predicted energy differences between parallel and

antiparallel models can be used as a measure of confidence, we modified our scheme

such that a structure was assigned as parallel (or antiparallel) only if the absolute energy

difference IEantiparallel - Eparallell was greater than some cutoff. Increasingly stringent cutoffs

left larger numbers of test set examples unclassified. Figure 3-6 illustrates the tradeoff

between performance and the number of classifiable structures. For the three best-

performing methods, the number of predicted structures falls off quickly as performance

improves. A gain of 10% prediction accuracy requires predicting between 40-60% of the

test set as "unknown". Thus, although it is possible to improve the confidence of the

predictions by imposing a larger energy gap, this comes at a very severe penalty.
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Figure 3-6. Performance as a function of increasing the gap requirement.
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and is plotted (thick lines, left axis) as a function of x. The size of the test set at each
value of x is plotted using thin lines and the right axis.

3.5 Discussion

Our results illustrate that coiled-coil helix orientation prediction is not a trivial problem.

Standard methods, applied either at the sequence or structure level, do not give good

performance. Nevertheless, refinement of these approaches can provide effective

predictors. For our ESMs, we found that allowing structural flexibility was important. To

increase the probability that an appropriate backbone was available for each complex,

each dimer was modeled on 120 different parallel and 81 different antiparallel templates.

This was critical; ultimately 52 parallel and 44 antiparallel backbones were used to

construct the minimum-energy structures of both orientations for the 131 complexes
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modeled. Although we found in post-analysis that a much smaller set of backbones could

provide the same total prediction performance, it would have been difficult to determine

in advance which scaffolds these should be. Thus, although it may be possible to capture

backbone variability more efficiently than we have done here (e.g. by using a better-

targeted backbone library or some different approach), we have found that it is important

to model flexibility to achieve good results. We also found that small amounts of

structural relaxation following rigid-backbone/rotameric side-chain repacking were

important. Comparing the performance of Rosetta on ideal vs. minimized backbones

(Figure 3-2a) illustrates the significance of energetically costly clashes that can be

removed relatively easily with minimization.

Analysis of the complexes for which ESMs gave incorrect predictions suggested

that our models do not yet include sufficient structural plasticity. In particular, we found

that our parallel dimer models cannot accommodate pairs of Ile residues at d-d' positions.

This is consistent with earlier observations by Harbury et al. that -branched residues

confer a preference for trimers or tetramers over dimers when located at the d position of

parallel homo-oligomers.[13] In native parallel structures, relatively rare Ile residues at d

positions towards the end of the coiled-coil chain are accommodated by fraying of the

ends (Figure 3-5). In contrast to this, the backbones on which we modeled these coiled

coils were uniform over the length of the sequence. Incorporating greater local structural

variation may be important for improving performance in the future, although our

attempts to approach this in a systematic way have not succeeded so far. For now,

knowledge that the structure-based methods can fail in cases where there are terminal-

heptad P-branched clashes can guide appropriate use of these methods.
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In the absence of more structural sampling, softening the steric repulsive term is a

way to approximate structural variability. However, it is not easy to modify the ESMs to

accommodate small clashes, because such clashes can be important for determining the

correct helix orientation. For example, softening the repulsive terms in Rosetta or GK to

accommodate Ile pairs at terminal d positions may prevent the proper identification of

clashes elsewhere. Interestingly, FoldX lacks such a rigid repulsive term, yet is still able

to correctly predict the orientation of many sequences that contain these paired residues

(Figure 3-3b). Overall, our analyses support a model in which packing constraints are

more demanding on parallel than on antiparallel backbones. Features of this model are

captured differently by different methods. Models that include steric repulsion use this to

predict that certain structures are antiparallel. Yet models that lack these terms can

nevertheless recognize better packing in other ways. For FoldX, energy decomposition

shows a role for the surface-area based van der Waals and hydrophobic solvation terms in

favoring parallel structures. However, for sequences with large clashes (as assessed by

Rosetta Erep differences), the preference of these terms for the parallel state is reduced or

even reversed (Figure 3-3b). This illustrates that despite a lack of explicit steric repulsion,

FoldX can still recognize poor packing that arises in structure prediction of the incorrect

orientation.

The models used here, although all quite successful for the task of prediction, do

not reach a significant consensus about what sequence features and energy terms are most

critical for specific cases. RISPcc, FoldX, and Rosetta are based on different sets of

assumptions, and each model includes many parameters that are not derived rigorously

from physical principles. GK is a more physical model, and although it may be more
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informative in component analysis, it did not perform quite as well. Thus, although

structure-based models supposedly work by accurately capturing physical phenomena,

the large extent to which they differ in their particulars here leaves this premise in doubt

(Figures 3-3 and 3-4). Our results suggest that despite good performance, caution should

be observed when attempting to gain physical insight from individual energy terms in

structure-based, yet highly parameterized, calculations. This is especially true given that

these methods are optimized to recapitulate native structures and mutational energies,

rather than to reproduce individual physical components.

Testing of various ISMs also led to interesting results. The performance of these

methods was very sensitive to the choice of interfacial pairs that were scored. In

particular, scoring all pairs of residues that satisfied a 4.5 A distance cutoff in explicitly

modeled structures was not effective (model RISPstruct). Scoring all pairs of residues that

could potentially be within 4.5 A, based on sequence and known coiled-coil dimer

structures, was also not effective (model RISPcc-all). Strikingly, however, when just 5

types of pairs were included for each orientation, performance was very good (RISPcc).

The key pairs included those that have been highlighted by many biochemical

experiments over the past 10-15 years. In particular, Vinson and colleagues have

quantified contributions of a-a', d-d' and g-e' pairs in parallel bZIP coiled

coils,[50,51,52,53] and there is an approximate structural correspondence between these

and the a-d', g-g' and e-e' pairs of antiparallel coiled coils, which have been less

investigated.[54] The core-to-edge terms (g-a' and d-e' for parallel and a-e', d-g' for

antiparallel) provide a slight but detectable improvement in performance (Appendix B,

Figure B-5a). Interestingly, including the core-core terms (a-d' in parallel or a-a', d-d' in
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antiparallel structures) significantly degraded performance, despite recent observations

by Hadley et al. that these can be significant in some antiparallel structures.[59] These

results suggest that fold-recognition techniques applied to protein complexes, e.g. as are

implemented in programs such as InterPreTS and Multiprospector,[60,61,62] could be

improved if strategies for identifying critical specificity-determining residues in different

folds were available. A significant disadvantage of some of the ISMs is that they exhibit a

parallel bias for homodimeric structures. It is unlikely that this preference has a physical

justification, as it is not supported by the best performing ESM models. Therefore, the

use of ISMs to predict coiled-coil orientation may be subject to systematic errors that

favor structures in which residues interact with adjacent copies of themselves. This effect

is also likely to show up in other related ISM applications.

Our results illustrate that several different types of computational approaches are

capable of discriminating parallel from antiparallel coiled-coil helix alignments with

reasonable accuracy. By far the most efficient of these are the sequence-based methods,

which are easily scalable to evaluate candidate interactions at the proteomic scale.

Structure-based methods are less prone to biases, however, and these methods could also

be scaled up for some types of applications. Our recently developed cluster-expansion

methodology, in which a simple expression for energy as a function of sequence can be

fit to the results of more expensive calculations, is a promising way of approaching this

problem.[63,64] However, significant challenges remain before accurate

tertiary/quaternary annotation can be provided for novel coiled-coil sequences.

Techniques must be developed that can recognize the correct set of interacting helices

and their appropriate stoichiometry. When sequences are of different lengths, the correct
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axial alignment must also be selected. Our demonstration of helix-orientation prediction

in a rigorously chosen subset of examples represents an important and necessary

component of this larger-scale genomic annotation problem.
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Chapter 4

Structure-based approaches to the prediction of

coiled-coil alignment

4.1 Introduction

One important aspect of the folding of fibrous proteins with periodic repeats is the

axial registration or alignment of the component strands. The repeating sequence pattern

in these proteins implies that many possible relative alignments will have similar

structures and thus similar stabilities. However, these repetitive proteins usually form one

stable, specific alignment, which is likely to be determined by some part of the protein's

sequence. Therefore, much work has been done to study the determinants of proper

alignment in this class of proteins.

Collagen consists of a three-stranded rope of chains containing a repetitive pattern

of proline and glycine residues[1]. These chains normally assemble in a fully-overlapping
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register, which is defined primarily by their C-terminal globular domains, as removal of

these domains causes non-specific chain registration and the formation of a gel[2].

Interestingly, in the collagens, there appears to be very little specificity for proper

alignment within the fibrous regions themselves[2].

Coiled coils are another large class of repetitive proteins observed in a wide range

of lengths and structures. Tropomyosin, a long two-stranded parallel coiled coil, has been

shown to fold via a two-state mechanism in which binding in the proper alignment occurs

rapidly[3]. Certain subregions of sequence have been shown to be important for this

process and for determining partnering specificity[4,5]. However, many more coiled coils

exist for which the relative alignment is not well known. Therefore, methods of

predicting coiled-coil alignment would be quite valuable.

Many approaches have been developed to predict various aspects of the structural

specificity of coiled-coil-forming sequence, including predictions of oligomerization

state[6], helix orientation[7] and partnering preference[8]. However, the prediction of

relative helix alignment has not yet been systematically addressed. In most cases, there

are no clear rules that dictate coiled-coil alignment, as the energetic contributions of

many residues are expected to contribute to structural specificity, making this a complex

problem[9].

There is very little prior work on predicting coiled-coil alignment. Parry et al.

used a rational charge-patterning model to predict the helix alignment and connectivity of

the spectrin superfamily by evaluating all possible topologies of the three known

component helices[10]. This work was later experimentally verified by Yan et al.[l 1]

Also, as part of validating their machine-learning-based model for predicting parallel
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dimeric coiled coils, Singh and Kim tested its ability to recognize the alignment of

keratins, intermediate filaments, tropomyosins and myosins[12]. Their results indicated

over 90% of sequences were aligned correctly according to their most stringent criteria.

However, both of these attempts each tested only one approach, and did not consider a

structurally diverse test set. Encouraged by our recent progress in predicting helix

orientation in coiled-coil dimers[7], we extended our structure-based modeling approach

to the prediction of helix alignment in coiled-coil dimers.

Several models to describe coiled-coil stability have been previously developed.

These fall into two major classes: explicit structure models (ESMs) and implicit structure

models (ISMs)[7]. The ESMs rely on all-atom three-dimensional models of the coiled-

coil interaction, while the ISMs leverage a reduced representation that considers only

pairwise contacts between interfacial residues. Intriguingly, the ISMs have shown

significant prediction performance in tests of helix orientation and coiled-coil partnering,

despite a significant reduction in model detail[7,12,13]. However, previous tests tended

to be very simple, with a small number of structural states under consideration. As the

number of considered states increases, reduced representations may fail to capture the

nuances of structural preference. Therefore, in addition to a diverse set of ISMs, we also

considered some of the more detailed ESMs, in the hopes of improving performance at

the expense of speed.

We tested pre-existing methods using several diverse test sets of known coiled-

coil dimers and various performance metrics. Analysis of these results led us to develop

new hybrid models that showed improved performance. We describe trends observed in

the performance of different models that highlight sequence features that may be
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important for determining coiled-coil alignment, and suggest further directions to

improve coiled-coil scoring models.

4.2 Methods

4.2.1 Framework

Our structural approach to predicting coiled-coil alignment involves modeling a

series of possible alignments as blunt-ended coiled coils, scoring each alignment and

making a prediction based on the best scoring (lowest energy) alignment. Figure 4-1

illustrates this process. In order to make the problem practical, we considered a one-

dimensional search whereby one of the two helices in the test interaction is held fixed at

its known extent, while the partnering sequence is shifted in 7-residue steps relative to the

first. At each step, the overlap between the two sequences is taken to be the possible

alignment. Overlaps shorter than the length of the known helix are discarded. This

approach avoids comparing sequences of differing lengths, which can be a challenge for

many scoring models. Each heterodimeric sequence pair from the test set results in two

alignment test cases, while homodimers only yield one. Each alignment search is

bounded according to boundaries defined independently for each sequence, as described

below.
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Figure 4-1. Alignment prediction framework. (a) Use of SOCKET and Paircoil2 to

assign known extent (red) and search boundaries (blue), respectively. Graph depicts

Paircoil2 P-score across the entire protein chain. (b) Illustration of alignment search

protocol. Upper helix is fixed to known extent while lower helix shifts in seven-residue

increments and blunt-ended overlaps are scored. Blue regions denote sequence not

assigned by SOCKET as coiled coil.
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4.2.2 Test sets

We constructed four test sets that covered a wide range of coiled coils. The sizes

of each test set are provided in Table 4-1. The first two test sets, referred to as "crystal

parallel" and "crystal antiparallel", consisted of parallel and antiparallel sequences,

respectively, derived from coiled coils detected in crystal structures. The program

SOCKET, which detects coiled coils within crystal structures, was used to automatically

assign alignments and known extents from crystal structures. SOCKET distance cutoff

was 7.0 A. Test sets were collected according to the protocol described in Chapter 3,

without the requirement that the sequence aligns in a blunt-ended fashion in both

orientations. Alignment search boundaries were defined by scoring each sequence with

Paircoil2[14] and defining the ends of the candidate coiled-coil region as the N- and C-

terminal points nearest to the known extent where the P-score increases faster than 0.055

per residue. This cutoff was defined as the 1 point of the distribution of all per-residue

score deltas from a set of known coiled coils. The third test set consisted of sequences

from the bZIP family of coiled coils. All bZIP sequences, alignments and partnering data

were derived from Newman and Keating [15]. Alignment search boundaries were defined

Name Sequence Pairs Test Median (range) Coiled-coil
Cases alignments per residues

test case
Crystal parallel 84 149 4 (1-28) 8,977
Crystal antiparallel 70 84 4 (1-36) 9,576
bZIPs 76 130 2 (2-3) 6,666
Parallel heterodimers 9 18 4 (2-7) 1,074

Table 4-1. Summary of alignment test sets.
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from the N-terminal coiled-coil f position through the C-terminus. In order to increase the

number of tested alignments, known extents were defined as the alignment search

boundaries but with seven residues deleted from the C-terminus. A final test set, known

as parallel heterodimers, consisted of five sequences from crystal structures, two from

bZIPs and two from the known heterodimeric keratins[16]. Keratin alignments were

derived from [12]. All sequences for all test sets are included in Appendix C.

4.2.3 Scoring models

Both ISMs and ESMs were tested. The ISMs consist of weights applied to

interhelical residue pair interactions that are specific to certain heptad pair positions (e.g.

a-a', e-g'). These weights can be derived from three sources: (1) rationally, choosing

pairs and weights based on hypotheses or literature consensus; (2) experimentally, from

experimentally-measured residue coupling energies or otherwise; (3) computationally,

from either statistical methods or machine learning methods. We used five previously

developed ISMs[7] that differ significantly in their weights and positions scored. A

summary of the ISMs can be found in Table 4-2. Model ELEC is a rational-based model

that scores edge (parallel: e-g'; antiparallel: e-e' + g-g') interactions with a simple

electrostatic patterning score, with +1 for same-charge pairs and -1 for opposite-charge

pairs. Model CE is based on experimentally determined coupling energies at edge as well

as core positions (parallel: a-a' + d-d'; antiparallel: a-d'). The RISP models are based on

applying the RISP potential of Apgar et al.[7] (Chapter 3) to various sets of heptad pair

positions: RISPcore,edge has only core and edge weights; RISPcc contains all weights from
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Term P AP ELEC CE SVM RISPcore,edge RISPcc RISPccan
CORE a-a' a-d' X X X X X

d-d'

EDGE g-e' g-g' X X X X X X
e-e'

COR-EDG a-g' a-e' X X X
d-e' d-g'

VERT a-d' a-a'
d-d'

Table 4-2. Pair terms used in ISMs. All models except FKS from [7]. FKS model from
[17].

RISPcore,edge plus core-to-edge weights (parallel: a-g' + d-e'; antiparallel: a-e' + d-g');

and RISPccan contains all weights from RISPcc plus vertical core weights (parallel: a-d';

antiparallel: a-a' + d-d'). We also applied a model (FKS) based on a set of weights

learned via a support vector machine from long parallel coiled coil dimers[12]. The FKS

model contains terms representing core, edge and core-to-edge interactions. Because the

FKS model was not trained on antiparallel dimers, the weights derived for parallel

examples were applied to the approximately equivalent antiparallel context. Finally, two

null control models were created. The first assigns random weights to all possible residue

pairs at core and edge positions (NULL), and the other uses similar residue weights but

scores all homotypic interactions as -100.0 (NULLHOMO).

All tested ESMs follow a common model-building framework, as described

previously[7]. First, the test sequence pair was repacked using RosettaDesign onto either

a set of 81 antiparallel or 121 parallel backbones. Next, structure relaxation using

CHARMM energy minimization with Crick backbone restraints was used to relax the

rotamer approximation. Finally, all repacked and minimized structures were evaluated

with an appropriate energy function, with the lowest energy structure accepted as the
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predicted structure. All ESMs shared this model-building framework and differed only in

the energy function used. We tested four previously developed ESMs using the DFIRE,

FoldX, Rosetta and GK energy functions[7]. Energy terms for previous ESMs are

described in Chapter 3. In addition, the HP/S energy function was implemented as

described previously[8]. The HP/S model was broken down according to the same terms

used for ISMs (Table 4-1) but with the POINT term denoting helix propensities and the

Rest term comprising all pairwise interactions not included in other terms.

The HP/S model was used as the basis for a series of hybrid models that

incorporated implicit structure information. The archetype of this hybridization is the

HP/S/C model as described in [8], which replaced core interactions with weights derived

from the previously described FKS model. We implemented this model (referred to as

HP/S/CFKs) along with two variations that used core position weights from the CE

(HP/S/CcE) and RISP (HP/S/CRISP) models. Finally, we tested two additional models that

replaced the helix propensity portion of the HP/S/C model with a coiled-coil-specific

propensity term derived using the Paircoil algorithm[18]. For each helix in the test

interaction, individual residue propensities were calculated according to the single

position frequencies from the Paircoil2 training database[ 14] as

R(r, h) = ln f ( ri h i

fbkg (i)

where f(ri,hi) is the frequency of residue ri occurring with heptad position hi in the coiled-

coil database, and fbkg(ri) is the frequency of residue ri observed in Genbank[18]. Next,

overlapping 7-residue windows were superimposed on each sequence and all residue

propensities under each window were summed to produce a set of window scores.

Residue scores were defined as the maximum window score over all windows
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overlapping a given residue. The final score for the interaction is given as the sum over

all residue scores. The models derived from this method are referred to as CC/S/CFKs and

CC/S/CRISP.

In addition, we tested a hybrid model known as RosettaCC, which combined

Rosetta (omitting the Eref term) together with the coiled-coil score described above.

4.2.4 Performance metrics

We used two metrics to quantify performance. The first is referred to as FBR

(Fraction-Best-Ranked). For a given positive with associated negative decoys, this metric

records a success only if the positive scores lower than all associated decoys (best

possible rank). This metric is easy to interpret, as it unambiguously provides a fraction of

correct predictions out of all possible predictions. However, it is highly dependent on the

average number of decoys per positive, making comparisons among test sets difficult. In

addition, this metric is relatively insensitive to smaller changes in score that do not result

in more positives achieving the best rank. Therefore, we developed the normalized total

performance metric, known as TPMn, which corrects for both of these problems. Un-

normalized TPM is computed as the sum over all positives of the reciprocal of the rank of

each positive among its associated negative decoys, where the best rank is rank 1. This

allows for "partial credit" given to positives that are low-ranked but not best-ranked.

Normalized TPM is computed as the ratio of (TPM - TPMnull) / (TPMmax - TPMnull),

where TPMnull is the value of TPM computed on a random distribution of positive ranks,

and TPMmax is the TPM of the best possible distribution, where all positives have rank
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1. This results in a score from + 1 (where the model assigns every positive as rank 1) to

zero (the model is indistinguishable from null). TPMn scores lower than zero are

possible, and represent performance worse than null.

4.2.5 Homodimer preference

To quantify the preference of a scoring model for parallel homodimers, we tested

a method whereby each sequence pair in a set of heterodimeric sequences was compared

to the two unobserved homodimers that result from partnering each strand with itself.

This method assigns a score of 0.5 to a correct prediction (favoring the heterodimer) and -

0.5 to an incorrect prediction. The score for a sequence pair was the sum of scores from

both component helices, and the final homodimerization score assigned to a score model

was the average over all sequence-pair scores resulting from that model. Final scores fall

in the range between 1.0 (exclusively favors heterodimer) and -1.0 (exclusively favors

homodimer).

4.2.6 Model optimization

We used two approaches to optimize the performance of our scoring models on

our test sets. To optimize the CC/S/VRISP model on structure-derived antiparallel

sequences, the Rest term was excluded, while the HP/S-based VERT term was replaced

by the equivalent term from RISPccall. Next, a grid-based search over the CORE and
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VERT scaling weights was used, with the grid ranging from -2.0 to 2.0 using a step size

of 0.1.

For the parallel sequences, a Monte Carlo-based approach was used to

simultaneously vary the scaling weights of all scoring terms for a given model. For each

iteration of the optimization, one term was randomly selected and its weight was

incremented by a random value between -0.5 and 0.5. Performance using the new weights

was computed according to the TPMn metric, and the move was accepted either if

performance increased or with a probability of 1-(0. 9 7 s) where s is the current iteration

step. This procedure, iterating over 300 steps, was repeated 5 times for each test set and

scoring model pair, and the final performance was taken as the maximum observed

performance over all optimization runs.

4.3 Results

There are two major classes of dimeric coiled-coil alignment problems. The first

involves searching for the alignment of two sequences where the coiled-coil boundaries

of one or both sequences are not well defined. This problem arises most often when using

coiled-coil detection methods, since these methods are not always accurate at predicting

coiled-coil boundaries [19]. With this alignment problem, the predictor must discriminate

mostly between the true coiled-coil-forming region and regions that have some coiled-

coil-like features but do not form coiled coils. The second class of alignment problems

seeks the alignment of two sequences that are both known to potentially form a coiled

coil along their entire length. This can be found, for example, when aligning a
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heterodimeric pair of designed leucine zippers with differing lengths. With this problem,

the two sequences will have similar coiled-coil propensity across their entire lengths,

causing prediction methods to rely more on interhelical interactions.

Our prediction framework addresses both of these problems, primarily through

the choice of test set. The crystal-structure-based test sets relate directly to the first class,

as they are constructed using the Paircoil2 method[ 14] to construct reasonable extensions

of the known (by SOCKET) coiled-coil-forming regions into sequence that is often

observed to not form a coiled coil. Figure 4-1 illustrates this process. In order to automate

a typically manual process of observing Paircoil2 score graphs and selecting the valleys

of well-scoring regions, we defined the alignment search boundaries at the points nearest

to the known extent where the score increases at a per-residue rate faster than a defined

cutoff. In contrast, all sequences in the bZIP test set have search boundaries that contain

only coiled-coil-forming sequence. This test set simulates the aforementioned designed

leucine-zipper alignment problem, albeit with native leucine zippers.

Given the problem as defined above, there are two possible approaches to

evaluating any given candidate alignment. One approach considers the interaction as

"blunt-ended" - in other words, sequence that is not part of the defined coiled-coil

interaction is not modeled or considered. This approach is more appropriate for the first

class of alignment problems, where any given model of the non-overlapping sequence is

not likely to be correct. In addition, this approach is more compatible with ISMs, which

consider mainly local interactions. The second approach models the entire complex,

including non-overlapping sequence, and only compares the changes in interaction

structure for each candidate alignment. This approach, similar to the orientation
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prediction approach discussed in Chapter 3, does not require scoring models to contain

reference state terms. However, the major disadvantage to this approach is that it relies

only on interhelical interactions to determine alignment, and does not consider the

specific preferences of residues to form amphipathic helices. Since proper consideration

of the reference state has been previously discussed to be important in the prediction of

coiled-coil partnering[8], a super-problem of coiled-coil alignment, we chose the blunt-

ended approach.

4.3.1 Performance of ISMs

The implicit structure models are a class of simple, fast sequence scoring models

that rely on previous characterization of model structure. Figure 4-2 summarizes the

predictive performance of the seven tested ISMs using the TPMn metric. All non-null

methods have positive predictive value, and many models show performance above 0.80

(corresponding to FBR 83-90%). The FKS model shows excellent performance on the

bZIP sequences, as described previously[17]. However, this is not observed for other test

sets, which are best predicted using the RISP models. The CE model, which was

originally developed using a parallel bZIP model system[20], shows good performance

on the crystal parallel and bZIP sets, but shows poor performance on the crystal

antiparallel set. Indeed, both the CE and FKS models, which relied on terms from parallel

models being applied to the analogous antiparallel interactions, perform poorly on the

crystal antiparallel set. Intriguingly, the RISP models show different performance trends

as the number of terms changes. The crystal antiparallel sequences are predicted better
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Figure 4-2. Prediction performance of ISMs. Performance is reported in units of TPMn

and is evaluated separately for three test sets: antiparallel coiled coils with known

structures, parallel coiled coils with known structures, and bZIPs, which are known to

function as parallel dimers.

when more terms are added, while prediction performance for the crystal parallel and

bZIP sets actually degrades with addition of these terms.

To understand these models in more detail, we used component analysis to isolate

the contributions of each term in the model to the final performance. Component analysis

looks at the change in performance as a model undergoes two different perturbations: one

where a given term is excluded during scoring (all but) and the other where the same

term is the only term used for scoring (only). If performance increases during either of

these perturbations, this is an indication that the term either contributes negatively (in the

case of 'all but' testing) or is a dominant contributor (in the case of 'only' testing). If

performance decreases, this represents a more complicated relationship among the terms

of the model.

We used component analysis to determine the causes of performance trends in the

ISMs. Figure 4-3 highlights key findings. First, the poor performance of the RISPccall
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Figure 4-3. Component analysis of selected ISMs. RISPccall on (a) crystal parallel and
(b) crystal antiparallel sequences, as well as FKS on (c) bZIP and (d) crystal parallel
sequences. Vertical and horizontal axes represent model performance in TPMn when a
term is excluded (all but) or is used by itself (only), respectively. Vertical and horizontal
lines represent performance of the unmodified model. Points below or to the left of these
lines depict decreases in performance upon perturbation; points above or to the right
depict increases in performance.

model on the crystal parallel sequences is a result of both the COR-EDG and VERT

terms, since omitting either of these improves performance (Figure 4-3a). In contrast, the

RISPccall model applied to the crystal antiparallel sequences shows no such reduction in

predictive power, suggesting that all terms contribute favorably to the prediction (Figure

4-3b). However, the VERT term (towards the lower right of the figure) appears

particularly significant for the final prediction. Analysis of the FKS model applied to the

bZIPs shows that all terms contribute, although the bulk of the predictive performance of
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this model comes from the CORE term (Figure 4-3c). In contrast, the FKS model applied

to the crystal parallel set shows negative contributions of the COR-EDG and EDGE term

to the total model (Figure 4-3d).

4.3.2 Homotypic bias

A striking feature of the data in Figure 4-2 is the disparity in performance

between the parallel and antiparallel sequences. One reason for this may be the large

proportion of homodimer sequence in the crystal parallel set. Homodimers are expected

to be much easier to align compared to heterodimers, given that their core interactions (a-

a' and d-d') are exclusively homotypic. However, models that excessively favor

homotypic interactions may not be effective at predicting the interactions of parallel

heterodimers. Therefore, to characterize these effects, we tested the performance of a

composite set of nine parallel heterodimeric sequence pairs. Four of the nine sequence

pairs (two bZIPs and two keratins) are paralogous in nature, being likely evolutionarily

related[16,21]. This set is quite small relative to the size of the parallel homodimer set

(70 sequences), and is not representative of all parallel heterodimeric coiled coils.

Nevertheless, some interesting trends are obvious even with these few sequences, as seen

in Figure 4-4a. Alignment prediction performance of the parallel heterodimer sequences

as measured by TPMn is similar to that of both the crystal parallel and bZIP sequences.

In addition to the models previously tested, we constructed a control null model (known

as NULLHOMo) which contained random weights for the core and edge interactions, with

the exception of strongly favorable weights at core homotypic interactions. While this
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model shows null performance on the antiparallel sequence set, we observe excellent

performance on all parallel sequences, including the parallel heterodimer set. This

suggests that favoring homotypic interactions in parallel sequences may be part of an

effective strategy for predicting parallel coiled-coil alignment even in heterodimeric

sequences. However, favoring homotypic interactions is not sufficient for some parallel

sequences, given that certain models that incorporate more detail are able to make better

predictions than the simple control model NULLHOMO.

The standard alignment test is an indirect method of studying the propensity of a

model to favor homotypic interactions. A more direct test compares the ability of a model

to assign a favorable score to an observed heterodimer relative to the two un-observed

homodimers that result from duplicating the individual strands of the heterodimer.

Previous results using the FKS model on a set of keratin sequences showed reasonable

performance on this test[12]. We compared the results of this test to the alignment

prediction performance on the parallel heterodimer test set in order to understand whether

favoring homotypic interactions correlates with alignment performance, either favorably

or unfavorably. These data are plotted in Figure 4-4b. We observe no correlation between

the ability of a model to predict the correct alignment of a pair of heterodimeric

sequences and the ability of the same model to predict heterodimerization in the known

heterodimer set over homodimerization. For the three RISP models, alignment prediction

performance appears to increase slightly as hetero-preference increases, although all three

prefer homodimers to heterodimers. The FKS model also shows high alignment

prediction performance and high hetero-preference. However, we observe the highest
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alignment prediction performance with the NULLHOMO model, which shows no hetero-

preference at all.

4.3.3 Performance of ESMs

While implicit structure models are fast, simple and can provide good

performance, the assumptions built into such simple models may limit their effectiveness.

With all ISMs, performance is significantly different between the two parallel test sets.

One possible reason for this disparity is the lack of consideration by the ISMs of the

possible structural diversity between these sets. In order to investigate this hypothesis, we

tested a series of explicit structure models (ESMs) that are much more detailed than their

implicit counterparts. All ESM scores were calculated on the same set of structures;

differences in predictions were solely due to the final evaluation step. We tested five

evaluation functions: Rosetta, DFIRE, FoldX, GK [7] and HP/S [8].

Figure 4-5 shows the performance of the ESMs on our test sets, compared to the

best-performing ISM for each set (crystal antiparallel: RISPcca1, crystal parallel:

RISPcore,edge, bZIPs: FKS). The GK model, which previously showed good performance

on a dimeric coiled-coil orientation prediction test[7], is not able to distinguish alignment

in this test. In contrast, the HP/S model, which was refined on a test set of bZIP

interactions[8], shows excellent performance on our bZIP alignment set. We also

observed lower than anticipated performance for the Rosetta model on all test sets.

DFIRE performs very well on both parallel test sets, which is likely due to a higher
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Figure 4-5. Performance of ESMs. Performance is in units of TPMn.

amount of homodimer bias in the potential'. Overall, we observe lower performance of

the ESMs relative to the best ISM tested. Because this structural modeling framework

was used successfully in the prediction of coiled-coil orientation, we focused on

understanding and optimizing the energy functions used in these models.

Component analysis, shown in Figure 4-6, highlights some of the causes of poor

performance among the explicit structure models. The choice of reference state has been

previously discussed as being critical to the prediction of coiled-coil partnering[8]. Most

of the ESMs contain reference states optimized using generic globular proteins, while the

HP/S model contains a reference state derived from helix propensities that was shown to

significantly improve coiled-coil partnering detection[8]. However, Figure 4-6 shows that

for both the HP/S and Rosetta models, the reference state term strongly disfavors

alignment prediction performance. In addition, the CORE term of the HP/S model shows

1Heterodimer preference (described in section 4.3.2) of DFIRE on the parallel heterodimer set is -0.333
(favoring homodimer), compared to the median over all other standard ESMs of 0.277 (favoring
heterodimer).
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Figure 4-6. Component analysis of selected ESMs. Crystal antiparallel sequences
analyzed using (a) HP/S and (b) Rosetta. Crystal parallel sequences tested with (c) HP/S
and (d) Rosetta models. Axes and points as described in Figure 4-3.

poor predictive ability relative to the remaining terms.

Based on this analysis, we built several updated models that replace terms from

poor-performing ESMs with analogous terms from ISMs. Figure 4-7 shows the

performance of these new models. Model RosettaCC replaces the Eref reference-state

energy term with a term derived from the coiled-coil propensity of the sequence. This

term significantly improves performance on all test sets. The HP/S/C series of models

replaces the core residue interactions from the HP/S model with the core contact

potentials from three different ISMs: CE, FKS and RISP. This type of replacement was
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of modified, unoptimized ESMs. Performance is in units of

previously shown to improve performance for bZIP partner prediction[8], and is observed

in this work to improve alignment prediction performance above the base HP/S model in

all cases. Finally, the CC/S/C series of models was generated by replacing the HP

reference term in the HP/S/C model with the same coiled-coil propensity term used in

RosettaCC. This change improves performance slightly for all models, particularly that of

the RISP-based models on the crystal sequence test set.

4.3.4 Model optimization

In the hybrid models described above, terms were combined from different

sources without any adjustment in relative weights. Since these different models were not

designed to produce scores on similar energy scales, we attempted to adjust the relative

weights of component energy terms in order to improve performance. However, since
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these results were not cross-validated, these tests only provide a theoretical maximum of

performance of the models on our sequence sets.

Model CC/S/CRISP shows the best performance of all ESMs on the crystal

antiparallel sequences. However, it only achieves a TPMn performance of 0.61, still far

below the parallel sequences. We were able to optimize this model by replacing its VERT

term with that from the RISPccall model, and scaling the new term by 1.5. Furthermore,

we removed the Rest and CORE terms from the model. These changes, resulting in

model PC/S/VRISP, improved performance to 0.71, which is the highest performance

observed on the antiparallel sequence set. This performance corresponds to over 77% of

the sequences predicted correctly. Interestingly, of the remaining 23% of sequences not

predicted correctly by this optimized model, at least one other tested model predicts each

sequence correctly.

The best un-optimized models for the parallel sequences have TPMn performance

of 0.92 and 0.98 for the RISPcore,edge model on the crystal parallel test set and the FKS

model on the bZIPs, respectively. We used a simple Monte Carlo-based search routine to

optimize term weights for these sets. On the crystal parallel pairs, TPMn performance of

0.96 was achieved using the CC/S/CRIsP model by down-weighting the Rest term while

emphasizing the CORE term. On the bZIP sequences, perfect performance of 1.00 was

achieved through a variety of models including the FKS model, which down-weighted

the EDGE and COR-EDG terms while again emphasizing the CORE term.
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4.4 Discussion

We have described the performance of a variety of models developed for the

prediction of coiled-coil alignment. Many models have the ability to favor the correct

alignment relative to a reasonable set of decoy alignments, and some are able to predict

the observed alignment of >90% of a set of parallel dimeric coiled coils. However, no

single model is optimal for all test sets; significant differences in performance are

observed among the crystal parallel and parallel bZIP sets. This indicates that much work

remains in developing a universal model for predicting coiled-coil alignment.

Previous work in predicting the alignment of the spectrin antiparallel trimer only

considered interhelical charge interactions, assuming that any variation in hydrophobic

core interactions would not significantly affect alignment specificity[10]. This

assumption was supported by experimental evidence from the Fos/Jun heterodimer,

which suggested that partnering specificity was determined primarily by charged edge-

position residues[22]. However, in our study, many parallel sequences can be aligned

correctly using models that rely heavily on core terms, in contrast to these previous

assumptions. Indeed, the crystal antiparallel sequences performed best on models such as

RISPccan and CC/S/CRISP that considered more detailed core vertical interactions,

although performance of parallel sequences decreased using the same terms.

One hypothesis regarding the evolution of paralogous heterotypic interactions is

that they commonly proceed through a homotypic intermediate[23,24,25]. This

hypothesis implies that favorable homotypic interactions are easily formed at random,

when selection pressure is low, and that when selection increases, heterotypic
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compensatory mutations continue to stabilize the complex. The coiled coil is an

interesting test system for this hypothesis, as it allows for comparison of homodimers and

heterodimers in the same structural context. Our results support this hypothesis, as we

have observed that a simple model favoring homotypic interactions is able to predict a

small set of preferentially heterodimerizing coiled coils. This effect may be a physical

preference for identical residues to be in contact with each other, given that both the CE

model (based on experimental data) and the RISP models (trained on heterotypic protein-

protein interfaces, section 3.3.6) show a clear preference for homotypic versus

heterotypic interactions (Figure 4-4b). Upon closer inspection of these potentials, we

observed a preference for homotypic interactions primarily among the commonly-found

coiled-coil core hydrophobic residues (leucine, isoleucine and valine) as well as certain

core polar interactions (asparagine in CE, asparagine and glutamine in RISP). Therefore,

while physical homotypic preference is not expected for all interactions, it is observed in

a key subset of residues commonly found in the cores of coiled coils.

One important application of coiled-coil alignment prediction is to accurately

predict the alignment of a pair of designed leucine zippers. Since we do not have a test set

of validated designed leucine zipper alignments, we used the bZIPs as a reasonable

substitute. Our results indicate high predictive performance on the bZIPs for many

models. One feature common among leucine zippers is the use of core polar interactions

to constrain orientation[26], partnering specificity[27] and oligomerization state[28].

Such interactions are also assumed to favor proper helix alignment. While the high

performance of the ELEC model (which lacks core terms) on the bZIPs suggests that
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such interactions are not required, the best performing models on bZIP sequences

(including CE and FKS) have strong favorable weights for core polar interactions.

The alignment performance of all methods on our crystal antiparallel dimer test

set is significantly lower than that observed on the parallel sets. There are several

possible reasons for this. First, the CE and FKS models attempted to use analogous

weights from parallel studies in the antiparallel context. This approach, while

simplistically true for edge charge patterning[10,29], proves to be inappropriate for

detailed models. Second, our implicit structure models assume the same generic

structural environment for all sequences, which may limit performance given our

understanding of the importance of modeling structural diversity[7,30]. However, our

explicit structure models, which incorporate backbone flexibility and full structure

modeling, did not perform significantly better than the implicit structure models. Finally,

the parallel test set contains a significant number of homodimers, which are expected to

be trivial to predict. This may result in a general overestimate of performance for parallel

sequences. However, a control test set of parallel heterodimers had similar performance

to the other parallel test sets, and no correlation was observed between homodimer bias

and alignment prediction performance.

Given the good performance of the ESMs in predicting coiled-coil orientation, it

was reasonable to expect similar performance on the related question of coiled-coil

alignment. However, the poor performance observed can be explained for a number of

reasons. First, consideration of the reference state is a major factor in modeling protein-

protein interactions, and many explicit structure energy functions do not model this state

effectively[8]. Coiled-coil alignment, unlike orientation prediction, requires an effective
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reference state to compare structures containing different sequence. For example, the GK

model, which performed well at orientation prediction despite lacking a reference state

term[7], performs near the null level for alignment prediction on all sequences. We

observe significant improvement of the Rosetta and HP/S ESMs when generic reference

states were replaced with a coiled-coil-specific term. Interestingly, the helix-propensity

reference state of the HP/S model, previously shown to be effective at predicting bZIP

association[8], was counter-productive on both crystal parallel and crystal antiparallel

sets (although it improved alignment performance on the bZIP set). This may be due to

the prevalence of helical sequence being included within alignment test boundaries.

Instead, the coiled-coil-specific term may assist the energy function to locate the most

likely coiled-coil region even within regions already assigned to be coiled coil by

Paircoil2. Finally, core interaction modeling was shown to be insufficient, as replacing

either core or vertical terms with well-performing terms from ISMs improved

performance on crystal parallel and crystal antiparallel sequences, respectively. This

effect has been previously discussed as a necessary advancement of explicit structure

models for coiled coils[8].

Several simple extensions of this work may prove fruitful. First, the RISP ISMs

do not explicitly model the known physicochemical differences among coiled-coil heptad

positions, e.g. differences in solvation of core versus edge interactions. Rather than

applying the single RISP contact matrix to all pairwise interactions, it may be possible to

construct individual potentials for each heptad pair interaction that are better

representations of the stability of an interaction in a particular structural context. Such

models may prove to be more effective without sacrificing the speed and simplicity of

154



traditional RISP. Second, the ESMs showed poorer than expected performance, even

given the modifications described above. Detailed analysis of the predicted structures,

along with comparison to observed crystal structures, may show trends among poorly

performing sequences. This type of analysis was previously instrumental in highlighting

key features promoting dimeric coiled-coil orientation[7].

In order to refine our antiparallel models, new techniques to understand the

relationship between model and reality are required. While the component analysis

method provides general indications of the strengths and weaknesses of a given model, it

does not provide sufficient resolution to understand which scores or residues may be

modeled incorrectly. Future experimental data, possibly obtained using model coiled

coils such as those developed by Hadley et al.[31], may prove useful for refining

predictive models of antiparallel coiled coils. In addition, it may be possible to discern

features that divide the set of antiparallel coiled coils into distinct classes and predict each

class with a slightly different model. This approach is supported by the observation that

all antiparallel sequences are predicted correctly by at least one model. However, this

approach requires a framework for predicting such classification while avoiding

overtraining to the currently small set of test sequences.

The development of improved models for predicting coiled-coil alignment is an

important step on the road towards coiled-coil interaction prediction. Existing models for

predicting parallel alignment may be sufficient, although antiparallel models are not yet

complete. While future developments in explicit structure modeling may provide highly

accurate predictions, further refinement of simple implicit structure models may improve

performance without the need for detailed structure.

155



4.5 References

1. Fessler J (1974) Self-assembly of collagen. Journal of Supramolecular Structure 2: 99-
102.

2. Engel J, Prockop DJ (1991) The Zipper-Like Folding of Collagen Triple Helices and
the Effects of Mutations that Disrupt the Zipper. Annual Review of Biophysics
and Biophysical Chemistry 20: 137-152.

3. Mo JM, Holtzer ME, Holtzer A (1991) Kinetics of self-assembly of alpha alpha-
tropomyosin coiled coils from unfolded chains. Proceedings of the National
Academy of Sciences of the United States of America 88: 916-920.

4. Araya E, Berthier C, Kim E, Yeung T, Wang X, et al. (2002) Regulation of coiled-coil
assembly in tropomyosins. Journal of structural biology 137: 176-183.

5. Kammerer R, Schulthess T, Landwehr R, Lustig A, Engel J, et al. (1998) An
autonomous folding unit mediates the assembly of two-stranded coiled coils.
Proceedings of the National Academy of Sciences of the United States of America
95: 13419-13424.

6. Wolf E, Kim PS, Berger B (1997) MultiCoil: a program for predicting two- and three-
stranded coiled coils. Protein science : a publication of the Protein Society 6:
1179-1189.

7. Apgar JR, Gutwin KN, Keating AE (2008) Predicting helix orientation for coiled-coil
dimers. Proteins 72: 1048-1065.

8. Grigoryan G, Keating AE (2006) Structure-based prediction of bZIP partnering
specificity. J Mol Biol 355: 1125-1142.

9. Grigoryan G, Keating A (2008) Structural specificity in coiled-coil interactions.
Current Opinion in Structural Biology 18: 477-483.

10. Parry DA, Dixon TW, Cohen C (1992) Analysis of the three-alpha-helix motif in the
spectrin superfamily of proteins. Biophysical journal 61: 858-867.

11. Yan Y, Winograd E, Viel A, Cronin T, Harrison SC, et al. (1993) Crystal structure of
the repetitive segments of spectrin. Science (New York, NY) 262: 2027-2030.

12. Singh M, Kim P. Towards predicting coiled-coil protein interactions; 2001. ACM. pp.
279-286.

13. Mason JM, Schmitz MA, Mtiller KM, Arndt KM (2006) Semirational design of Jun-
Fos coiled coils with increased affinity: Universal implications for leucine zipper
prediction and design. Proc Natl Acad Sci U S A 103: 8989-8994.

14. McDonnell AV, Jiang T, Keating AE, Berger B (2006) Paircoil2: improved
prediction of coiled coils from sequence. Bioinformatics 22: 356-358.

15. Newman JR, Keating AE (2003) Comprehensive identification of human bZIP
interactions with coiled-coil arrays. Science 300: 2097-2101.

16. Coulombe P, Omary B (2002) [']Hard' and [']soft' principles defining the structure,
function and regulation of keratin intermediate filaments. Current Opinion in Cell
Biology 14: 110-122.

17. Fong JH, Keating AE, Singh M (2004) Predicting specificity in bZIP coiled-coil
protein interactions. Genome Biol 5.

156



18. Berger B, Wilson DB, Wolf E, Tonchev T, Milla M, et al. (1995) Predicting coiled
coils by use of pairwise residue correlations. Proceedings of the National
Academy of Sciences of the United States of America 92: 8259-8263.

19. Gruber M, Siding J, Lupas AN (2006) Comparative analysis of coiled-coil prediction
methods. J Struct Biol 155: 140-145.

20. Krylov D, Mikhailenko I, Vinson C (1994) A thermodynamic scale for leucine zipper
stability and dimerization specificity: e and g interhelical interactions. The EMBO
journal 13: 2849-2861.

21. Deppmann CD, Alvania RS, Taparowsky EJ (2006) Cross-species annotation of basic
leucine zipper factor interactions: Insight into the evolution of closed interaction
networks. Mol Biol Evol 23: 1480-1492.

22. O'Shea EK, Rutkowski R, Kim PS (1992) Mechanism of specificity in the Fos-Jun
oncoprotein heterodimer. Cell 68: 699-708.

23. Ispolatov I, Yuryev A, Mazo I, Maslov S (2005) Binding properties and evolution of
homodimers in protein-protein interaction networks. Nucleic Acids Res 33: 3629-
3635.

24. Lukatsky DB, Shakhnovich BE, Mintseris J, Shakhnovich El (2006) Structural
Similarity Enhances Interaction Propensity of Proteins. J Mol Biol.

25. Lukatsky DB, Zeldovich KB, Shakhnovich El (2006) Statistically Enhanced Self-
Attraction of Random Patterns. Physical Review Letters 97.

26. Oakley MG, Kim PS (1998) A buried polar interaction can direct the relative
orientation of helices in a coiled coil. Biochemistry 37: 12603-12610.

27. Zeng X, Herndon A, Hu J (1997) Buried Asparagines Determine the Dimerization
Specificities of Leucine Zipper Mutants. Proceedings of the National Academy of
Sciences of the United States of America 94: 3673-3678.

28. Junius FK, Mackay JP, Bubb WA, Jensen SA, Weiss AS, et al. (1995) Nuclear
magnetic resonance characterization of the Jun leucine zipper domain: unusual
properties of coiled-coil interfacial polar residues. Biochemistry 34: 6164-6174.

29. McClain DL, Woods HL, Oakley MG (2001) Design and characterization of a
heterodimeric coiled coil that forms exclusively with an antiparallel relative helix
orientation. J Am Chem Soc 123: 3151-3152.

30. Apgar JR, Hahn S, Grigoryan G, Keating AE (2009) Cluster expansion models for
flexible-backbone protein energetics. Journal of computational chemistry.

31. Hadley E, Gellman S (2006) An Antiparallel [alpha]-Helical Coiled-Coil Model
System for Rapid Assessment of Side-Chain Recognition at the Hydrophobic
Interface. Journal of the American Chemical Society 128: 16444-16445.

157



158



Chapter 5

Conclusions and Future Directions

5.1 Prediction of coiled-coil structure

The coiled coil, despite being studied for over a half century, is still not fully

understood. We have yet to describe the full range of proteins and processes in which

coiled-coil structures play an important role. To this end, we seek to develop methods of

predicting coiled-coil structure from sequence alone. Such methods, when fully realized,

will enable organism-wide studies of coiled-coil structures and interactions from existing

genomic sequence data. However, current methods only address one structural parameter

at a time, while predicting uncharacterized sequence will require simultaneous prediction

of all aspects of coiled-coil structure: partnering, oligomerization number, orientation and

alignment. As discussed in the previous chapters, we have made improvements in three

key subproblems of coiled-coil structure prediction, paving the way towards the goal of a

unified coiled-coil structure prediction framework.
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5.2 Coiled-coil databases and statistics-based prediction

As the number of known protein sequences increases, so does the amount of

known coiled-coil sequence. The earliest database of coiled-coil sequence consisted of

just a few thousand residues from parallel dimeric fibrous proteins[l]. This database,

while small, proved instrumental in the development of early statistical coiled-coil

prediction methods[2]. As described in Chapter 2, we have now compiled over 124,000

residues from 158 families that are known to adopt coiled-coil structures, covering many

combinations of helix number and helix orientation. Because our database is annotated by

structure as well as heptad, it is useful for training prediction methods that predict coiled-

coil structure.

We demonstrated that as database size increases, the prediction of previously

uncharacterized sequence improves. However, many families remain poorly predicted

under cross-validation, indicating that performance is highly sensitive to individual

family composition, and that additional sequences are required to improve performance.

Because leave-family-out cross-validation performance is dictated by the composition of

the remaining families, we expect that further performance improvement of the Multicoil

method will most likely be realized by the discovery of new families that share common

residue pairs with currently underperforming families. In addition, performance could

improve simply by enlarging the size of existing families, assuming that the same

underrepresented residue pairs occur in existing families at low frequency. However,

using sequence homology searching methods to increase family size can be problematic,
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since increasingly diverged sequence (which is the most valuable from a statistical

perspective) may also have diverged structure[3]. Indeed, preliminary results from

training Multicoil on a database containing large amounts of homology-search-derived

sequence showed a slight decrease in overall performance, suggesting that such sequence

may be less reliable. However, there are other possibilities for this poor performance,

such as greater bias from over-represented families in the training set. Therefore, more

work must be done to understand this result.

One possible method of targeting performance improvements would be to use the

statistical data already collected to search for novel sequences that specifically improve

under-represented observations. A similar approach was used in the Learncoil method,

where an iterative process was used to detect sequences using a frequency table, then to

update that frequency table according to the detected sequences[4]. Learncoil has been

shown to improve detection of certain difficult-to-detect coiled-coil families[5,6],

although it has not yet been used to enrich general coiled-coil prediction.

In addition to demonstrating the importance of high quality training databases,

Chapter 2 showed how the choice of validation protocol has a significant impact on

perceived performance. Currently, there is no strong consensus in the field of coiled-coil

prediction as to the proper way to train and validate prediction methods. Most authors

recognize the need to test using databases distinct from those used in training; however,

there is currently no agreement on appropriate similarity or evolutionary cutoffs between

these two sets. This lack of consensus makes fair comparisons between prediction

methods very difficult. Our results indicate that previous methods of cross-validation

such as leave-sequence-out overestimate performance when compared to stringent yet

161



realistic cross-validation approaches like leave-family-out. The contribution of our

training database, broken down by distinct families, along with clear cross-validation

routines, is an important contribution to this field.

Finally, further advancements to statistical frameworks will likely improve

predictions, by using training data more efficiently. Sequence-profile methods have been

shown to significantly improve prediction of secondary structure[7], and have recently

been implemented for the prediction of coiled-coil location[8]. These methods may also

prove useful in predicting further coiled-coil structural features, particularly for families

with significant sequence diversity. However, similar to the concerns with using

homology-search methods to expand training databases, profile-based methods of

structure prediction may not improve performance if the profile inadvertently contains

sequences of heterogeneous structure.

5.3 Current prediction of coiled-coil structural features

The earliest hypotheses about the coiled coil did not place any restrictions on the

orientation or number of helices involved in the complex[9]. This turned out to be

prescient, for although the first studied coiled coils were determined to be parallel dimers,

it soon became clear that coiled coils could be found in a wide array of structural

topologies[10]. However, relatively few methods have been developed to distinguish

between these possible topologies based on protein sequence alone. The Multicoil

method, retrained in Chapter 2 as Multicoil2, is currently the only widely-used method of

predicting dimer versus trimer propensity. Chapter 3 describes a novel structure-based

162



method for predicting helix orientation in dimers, and illustrates possible molecular

mechanisms influencing this preference. Finally, Chapter 4 describes the performance of

structure-based methods for the prediction of helix alignment in parallel and antiparallel

dimers.

Both of the methods in Chapters 3 and 4 utilize two classes of structural models:

implicit structure models (ISMs) that score pre-defined residue pair interactions, and

explicit structure models (ESMs) that evaluate a full 3D all-atom model of the

interaction. For the implicit structure models, we showed that predictions made using

simple charge-patterning rules, or weights from parallel systems used in antiparallel

contexts, were insufficient to predict many sequences correctly. However, the interfacial

contact potential RISP was able to make useful predictions about both orientation and

alignment, especially for antiparallel sequences. Finally, the observation that homo-

specific models can accurately predict heterodimeric sequence is interesting in light of

hypotheses about the conservation of homotypic interactions during the evolution of

protein complexes[ 11,12].

In contrast, the ESMs have shown varied performance in our tests. For the

orientation prediction problem, ESMs that have poor models of the unfolded reference

state still perform well, due to this state canceling. However, the same ESMs perform

much worse in the alignment prediction problem, which does require a reasonable

reference state. We tested the use of a coiled-coil-specific reference state, which

improved performance particularly on antiparallel sequences. Also, the HP/S ESM

appears to have difficulty modeling certain core interactions. Replacement of core or
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vertical interaction scores with ISM-derived terms, as suggested previously[13],

improves performance for the parallel and antiparallel sequences respectively.

5.4 The future of coiled-coil prediction methods

The ultimate goal of coiled-coil prediction is the concurrent prediction of all

structural variations (number of helices, helix orientation, helix alignment and partnering

preference). Currently, no method or combination of methods is able to achieve this goal.

A major challenge is that the determinants of coiled-coil structure specificity are often

subtle and involve a balance of factors. Unlike other domains, high sequence identity

does not always connote similar structure, as coiled coils have been observed to change

structure significantly upon a single point mutation. Instead, smaller differences in factors

such as core packing, hydrogen bonding or rotamer selection can determine coiled-coil

structural specificity. Existing models can capture some of these trends, however, more

work is necessary in order to improve accuracy enough to predict all features

simultaneously.

5.4.1 Improvements to existing methods

Several possible advancements may improve the performance of existing

prediction methods. First, the RISP ISM has much potential for improvement. Currently,

it does not consider the differences in residue environments between interactions (e.g. the

difference in solvation between core and edge) or in residue geometry between coiled-
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coil orientations (e.g. differences between parallel and antiparallel). Updating this model

to consider such differences may improve its ability to model certain residue interactions.

This can be done, for example, using methods from a variety of orientation-dependent

potentials[14,15,16]. Such potentials have shown improved performance in decoy

discrimination tests [17].

In addition, further developments in modeling the unfolded state of coiled coils,

as well as improved evaluation of core interactions, will likely improve the performance

of many ESMs. This has been discussed in work by Grigoryan and Keating [13].

5.4.2 Folding-based models

Current models used for coiled-coil structure prediction only consider the stability

of the final folded complex. However, protein folding is a complex kinetic process, and

prediction models that consider aspects of this process may show enhanced prediction

performance. Many coiled coils have been shown to fold through a two-state mechanism

that is hypothesized to require certain sequence patterns to nucleate folding[18,19]. In

particular, heterodimeric tropomyosin was shown to require a specific region within the

long sequence for proper folding and heterodimerization, and mutation of this region was

shown to modify the association preferences of the entire coiled coil[20]. A model which

is able to recognize such regions as nucleation sites may reduce the amount of structural

sampling necessary for current alignment prediction methods. So-called "trigger

sequence" motifs, while demonstrated to be important for the folding of certain coiled

coils, are likely not a general solution to this problem[21]. However, further
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understanding of the folding determinants of coiled coils, particularly whether they are

localized or distributed, may focus predictions on more important sequence regions,

decreasing prediction noise. Currently, the major challenge to folding-based prediction

methods lies in understanding the critical "activated state" structure that is the nucleus of

folding. This activated state is extremely short-lived, making structural characterization

very difficult[18]. In addition, by focusing on the small activated-state region, models of

the interactions within this region may need to be more detailed in order to make accurate

predictions of the entire interaction.

5.5 Applications of coiled-coil structure prediction

Once methods of predicting coiled-coil structure improve, there are many

potential applications with broad impacts for biology. Much experimental work has been

done to characterize the structures of various coiled-coil proteins, with implications for

their function. For example, the crystal structure of the SNARE core domain

demonstrated a possible mechanism for membrane fusion: the folding of the SNARE core

domain into a parallel four-stranded coiled coil places the C-terminal transmembrane

domains of the membrane-embedded SNARE proteins in close proximity, overcoming

the natural repulsion of the donor and acceptor membranes[22]. Interestingly, some

SNARE proteins do not appear to be specific for the parallel configuration, suggesting a

lack of competency for membrane fusion and possible regulatory roles for these

proteins[23,24]. However, the importance of this structural specificity could have been

predicted without extensive experimental results, if such prediction methods were
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available. In this final section, I highlight several more applications of coiled-coil

structure prediction, and discuss how advancements in this field will improve our ability

to predict, understand and design biological systems.

One important application for coiled-coil structure prediction is to aid whole-

sequence structure prediction. An example of a coiled-coil motif that frequently occurs

within larger protein folds is the intramolecular antiparallel hairpin. This structure,

typified by the seryl-tRNA synthetase protein[25], consists of two coiled-coil-forming

helices connected by a loop or other intervening sequence. The ability to detect such

structures on a genomic scale would not only show how common these motifs are in

various protein families, but also would aid in predicting the structure of such proteins.

This is also an intermediate application that is simpler than the general coiled-coil

structure prediction problem, because partnering is restricted to a single sequence, and

targets can potentially be identified by a coiled-coil-break-coiled-coil pattern

predicted by detection methods. Such detection on a genomic scale will require accurate

prediction of coiled-coil alignment and helix boundaries, as well as an estimate of the

propensity of a sequence pair to form a hairpin.

In addition, the combination of experimental data with coiled-coil structure

prediction methods can potentially elucidate some of the important interaction networks

and structural complexes that are known to contain coiled coils. For example, the spindle

pole body is hypothesized to contain many coiled coils, and while some have recently

been studied experimentally[26], accurate prediction methods would help greatly in

understanding how coiled coils play a role in the assembly of this complex. In particular,

predictions of the possible connections between the individual components of the
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complex can be combined with existing low-resolution structure data to build detailed

models of the complex architecture[27]. Such approaches have previously been used to

develop a model of the nuclear pore complex[28].

Finally, protein engineering is a fast-growing subfield of biological engineering.

Its main goal is to utilize existing and novel protein structures to test and modify cellular

function. One major part of this goal is to develop protein-protein interaction motifs for

use in constructing protein complexes. For example, protein-protein interaction

specificity has been implicated in the specificity of signaling networks[29,30], and re-

engineering certain interactions using designed coiled coils has recently been used to alter

the fundamental properties of such networks[31]. While this is a useful proof-of-concept,

further modifications will require more interaction-mediating motifs with well-

characterized stabilities, association preferences and structures. The leucine zipper is

particularly suitable for this, being highly specific and relatively well understood[32,33].

However, current leucine-zipper design methods do not model all possible structural

states. Better methods for predicting coiled-coil structure could address this and could,

e.g., be used in conjunction with the recently developed CLASSY specificity design

framework to expand the structural space available for design[32].
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Appendix A

Residue frequencies from NPS database

Database construction as described in section 2.3.1. Frequencies reported as

"raw / normalized (counts)", where raw represents the fraction of the specified residue

over all residues of that heptad position, normalized is the raw frequency divided by the

average frequency of occurrence of that residue in Genbank as reported in [1], and counts

is the number of occurrences of the specified residue in the specified heptad position.

Frequencies are reported over the entire database ("All"), and over each structural

subclass: parallel dimers, parallel trimers, parallel tetramers, antiparallel dimers,

antiparallel trimers and antiparallel tetramers.
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All : 2105 strands 124034 residues
a

0.267 / 2.859
(4770)

0.141 / 2.628
(2515)

0.130 / 2.027
(2328)

0.034 / 1.467
(614)

0.021 / 0.552
(383)

0.035 / 1.115
(630)

0.007 / 0.095
(120)

0.075 / 0.983
(1335)

0.069 / 1.208
(1236)

0.049 / 0.918
(885)

0.013 / 0.559
(225)

0.017 / 0.273
(298)

0.002 / 0.040
(36)

0.016 / 0.385
(294)

0.055 / 1.300
(988)

0.028 / 0.382
(497)

0.025 / 0.413
(441)

0.014 / 0.758
(252)

0.002 / 0.139
(35)

b
0.036 / 0.388

(643)

0.014 / 0.260
(247)

0.025 / 0.395
(450)

0.013 / 0.542
(225)

0.005 / 0.139
(96)

0.004 / 0.121
(68)

0.028 / 0.397
(501)

0.108 / 1.418
(1911)

0.099 / 1.732
(1759)

0.074 / 1.377
(1318)

0.017 / 0.741
(296)

0.181 / 2.967
(3214)

0.105 / 2.094
(1870)

0.099 / 2.328
(1765)

0.063 / 1.476
(1114)

0.079 / 1.090
(1409)

0.045 / 0.756
(801)

0.002 / 0.124
(41)

0.001 / 0.060
(15)

C

0.033 / 0.356
(588)

0.018 / 0.336
(318)

0.025 / 0.386
(439)

0.014 / 0.582
(241)

0.013 / 0.335
(230)

0.007 / 0.211
(118)

0.031 / 0.443
(557)

0.083 / 1.100
(1477)

0.091 / 1.594
(1614)

0.077 / 1.421
(1356)

0.018 / 0.791
(315)

0.191 / 3.131
(3380)

0.097 / 1.924
(1713)

0.090 / 2.097
(1585)

0.068 / 1.597
(1201)

0.088 / 1.207
(1555)

0.050 / 0.842
(890)

0.004 / 0.210
(69)

0.001 / 0.100
(25)

d
0.422 / 4.518

(7565)
0.051 / 0.949

(911)
0.059 / 0.918

(1058)
0.039 / 1.681

(706)
0.025 / 0.653

(455)
0.035 / 1.109

(629)
0.006 / 0.089

(113)
0.130/ 1.713

(2333)
0.023 / 0.394

(404)
0.011 / 0.206

(199)
0.011 / 0.490

(198)
0.050 / 0.814

(891)
0.006 / 0.120

(108)
0.027 / 0.633

(485)
0.018 / 0.425

(324)
0.033 / 0.449

(586)
0.041 / 0.683

(732)
0.006 / 0.321

(107)
0.008 / 0.561

(142)
0.000 / 0.002 0.000 / 0.004 0.001 / 0.027 0.000 / 0.000

(2) (4) (25) (0)

e

0.054 / 0.578
(945)

0.028 / 0.522
(490)

0.027 / 0.415
(467)

0.014 / 0.619
(254)

0.006 / 0.165
(112)

0.005 / 0.173
(96)

0.024 / 0.336
(418)

0.043 / 0.561
(746)

0.112/ 1.951
(1957)

0.095 / 1.765
(1668)

0.014 / 0.634
(250)

0.226 / 3.701
(3959)

0.040 / 0.796
(702)

0.138 / 3.223
(2413)

0.056 / 1.323
(986)

0.056 / 0.765
(977)

0.059 / 0.988
(1034)

0.001 / 0.067
(22)

0.002 / 0.142
(35)

f
0.040 / 0.432

(710)
0.020 / 0.383

(361)
0.025 / 0.397

(449)
0.013 / 0.560

(231)
0.005 / 0.132

(90)
0.005 / 0.171

(95)
0.035 / 0.487

(610)
0.113 / 1.486

(1988)
0.114 / 1.993

(2009)
0.097 / 1.798

(1708)
0.017 / 0.734

(291)

0.151 / 2.467
(2653)

0.075 / 1.491
(1322)

0.083 / 1.952
(1469)

0.062 / 1.452
(1088)

0.084 / 1.151
(1477)

0.054 / 0.901
(948)

0.004 / 0.204
(67)

0.002 / 0.133
(33)

g
0.055 / 0.591

(970)
0.025 / 0.458

(431)
0.028 / 0.444

(501)
0.020 / 0.848

(349)
0.004 / 0.100

(68)
0.008 / 0.239

(133)
0.014 / 0.192

(240)
0.077 / 1.020

(1362)
0.114 / 1.987

(1999)
0.092 / 1.703

(1614)
0.013 / 0.579

(229)
0.214 / 3.515

(3771)
0.063 / 1.254

(1109)
0.139 / 3.262

(2450)
0.036 / 0.848

(634)
0.052 / 0.708

(906)
0.043 / 0.712

(748)
0.003 / 0.153

(50)
0.001 / 0.089

(22)
0.000/0.002 0.001 / 0.020 0.000/0.000

(2) (19) (0)
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Parallel Dimer : 1332 strands 94516 residues

a b c d e f g

L 0.279 / 2.987 0.031 / 0.335 0.030 / 0.317 0.451 / 4.831 0.053 / 0.565 0.040 / 0.432 0.049 / 0.523

(3780) (421) (398) (6101) (709) (546) (658)

0.129 / 2.416 0.013 /0.237 0.017 /0.321 0.033 / 0.625 0.025 / 0.467 0.022 / 0.407 0.019 / 0.363

(1753) (171) (231) (453) (336) (295) (262)

V 0.123/1.912 0.026/0.399 0.025/0.386 0.049/0.757 0.021/0.325 0.025/0.384 0.024/0.376
(1665) (345) (333) (658) (281) (334) (325)

M 0.029 / 1.257 0.012 / 0.495 0.013 / 0.569 0.034 / 1.440 0.015 / 0.645 0.014 / 0.599 0.015 / 0.637
(399) (156) (179) (456) (203) (190) (201)

F 0.019 / 0.492 0.005 / 0.134 0.014 / 0.364 0.024 / 0.617 0.006 / 0.144 0.005 / 0.129 0.002 / 0.048
(259) (70) (190) (324) (75) (68) (25)

y 0.037 / 1.171 0.003 / 0.080 0.006 / 0.200 0.040 / 1.269 0.004 / 0.132 0.004 / 0.140 0.005 / 0.153
(502) (34) (85) (543) (56) (60) (65)

G 0.006/0.078 0.024/0.345 0.028/0.389 0.006/0.078 0.015/0.214 0.034/0.473 0.010/0.138
(75) (330) (372) (75) (204) (455) (132)

A 0.064/0.848 0.118/1.557 0.080/1.051 0.131/1.731 0.037/0.482 0.114/1.499 0.069/0.913
(873) (1593) (1073) (1779) (492) (1542) (934)

K 0.085/1.479 0.099/1.739 0.090/1.580 0.024/0.415 0.115/2.017 0.119/2.088 0.119/2.082
(1147) (1341) (1216) (321) (1552) (1619) (1605)

R 0.057/1.057 0.075/1.400 0.076/1.406 0.008/0.152 0.101/1.873 0.104/1.924 0.092/1.714
(773) (1017) (1020) (111) (1358) (1406) (1245)

H 0.014/0.632 0.017/0.772 0.019/0.832 0.010/0.450 0.014/0.611 0.016/0.718 0.012/0.538
(193) (234) (252) (137) (185) (219) (163)

E 0.017/0.277 0.195/3.200 0.206/3.381 0.061/0.999 0.249/4.077 0.152/2.485 0.240/3.928
(229) (2631) (2775) (825) (3345) (2055) (3229)

D 0.002 / 0.037 0.103 / 2.046 0.100 / 1.992 0.007 / 0.129 0.034 / 0.667 0.071 / 1.406 0.065 / 1.289
(25) (1387) (1348) (88) (451) (959) (874)

Q 0.011/0.266 0.103/2.420 0.089/2.075 0.025/0.595 0.143/3.359 0.079/1.861 0.151/3.545
(154) (1393) (1192) (344) (1929) (1077) (2040)

N 0.067 / 1.574 0.054 / 1.276 0.061 / 1.441 0.013 / 0.301 0.053 / 1.237 0.057 / 1.343 0.034 / 0.810
(907) (731) (824) (173) (707) (774) (464)

S 0.024 / 0.330 0.076 / 1.047 0.089 / 1.226 0.034 / 0.464 0.052 / 0.716 0.086 / 1.182 0.048 / 0.659
(326) (1027) (1201) (457) (701) (1166) (647)

T 0.019 / 0.315 0.041 / 0.689 0.049 / 0.820 0.035 / 0.591 0.062 / 1.044 0.052 / 0.879 0.042/0.707
(255) (554) (659) (478) (838) (711) (569)

C 0.017/0.892 0.003/0.152 0.005/0.260 0.007/0.353 0.001/0.064 0.004/0.234 0.002/0.120
(225) (38) (65) (89) (16) (59) (30)

w 0.002/0.110 0.000/0.016 0.001/0.105 0.009/0.655 0.001/0.063 0.001/0.047 0.001/0.047
(21) (3) (20) (125) (12) (9) (9)

p 0.000 / 0.001 0.000/0.003 0.002/0.031 0.000/0.000 0.000/0.001 0.001/0.017 0.000/0.000

(1) (2) (22) (0) (1) (12) (0)
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Parallel Trimer : 354 strands 14544 residues
a

0.255 / 2.731
(532)

0.187 / 3.500
(391)

0.170 / 2.648
(355)

0.029 / 1.248
(61)

0.024 / 0.630
(51)

0.021 / 0.652
(43)

0.013 / 0.182
(27)

0.123 / 1.622
(257)

0.015 / 0.260
(31)

0.007 / 0.124
(14)

0.007 / 0.319
(15)

0.005/ 0.086
(11)

0.002 / 0.038
(4)

0.039 / 0.920
(82)

0.027 / 0.631
(56)

0.027 / 0.368
(56)

0.038 / 0.642
(80)

0.008 / 0.438
(17)

0.002 / 0.170
(5)

0.000 / 0.000
(0)

b
0.049 / 0.520

(103)
0.013 / 0.247

(28)

0.023 / 0.360
(49)

0.016 / 0.685
(34)

0.007 / 0.170
(14)

0.008 / 0.268
(18)

0.038 / 0.531
(80)

0.078 / 1.031
(166)

0.097 / 1.697
(206)

0.072 / 1.329
(152)

0.011 / 0.482
(23)

0.147 / 2.410
(312)

0.098 / 1.939
(207)

0.102 / 2.395
(217)

0.077 / 1.818
(164)

0.094 / 1.288
(199)

0.066 / 1.113
(141)

0.000 / 0.000
(0)

0.002 / 0.167
(5)

0.000 / 0.000
(0)

c

0.054 / 0.579
(113)

0.020 / 0.375
(42)

0.026 / 0.402
(54)

0.012 / 0.531
(26)

0.010 / 0.246
(20)

0.005 / 0.151
(10)

0.058 / 0.815
(121)

0.088 / 1.159
(184)

0.083 / 1.454
(174)

0.053 / 0.984
(111)

0.014 / 0.616
(29)

0.131/2.155
(275)

0.092 / 1.834
(193)

0.104 / 2.429
(217)

0.086 / 2.025
(180)

0.101 / 1.385
(211)

0.062 / 1.041
(130)

0.000 / 0.026
(1)

0.000 / 0.034
(1)

0.000 / 0.000
(0)

d
0.340 / 3.647

(718)
0.105 / 1.967

(222)
0.089 / 1.388

(188)
0.059 / 2.511

(124)
0.021 / 0.550

(45)
0.011 / 0.360

(24)
0.007 / 0.100

(15)
0.125 / 1.642

(263)
0.024 / 0.423

(51)
0.017 / 0.308

(35)
0.015 / 0.674

(32)
0.011 /0.186

(24)
0.006 / 0.122

(13)
0.019 / 0.455

(41)
0.041 / 0.970

(87)
0.034 / 0.469

(72)
0.071 / 1.191

(150)
0.001 / 0.076

(3)
0.001 / 0.101

(3)
0.000 / 0.000

(0)

174

e
0.069 / 0.743

(141)
0.035 / 0.652

(71)
0.041 / 0.643

(84)
0.013 / 0.567

(27)
0.013 / 0.329

(26)
0.004 / 0.140

(9)
0.030 / 0.429

(62)

0.059 / 0.784
(121)

0.108 / 1.891
(220)

0.087 / 1.605
(176)

0.012 / 0.524
(24)

0.171 / 2.797
(347)

0.042 / 0.831
(85)

0.126 / 2.948
(256)

0.066 / 1.562
(135)

0.066 / 0.912
(135)

0.047 / 0.782
(95)

0.000 / 0.026
(1)

0.009 / 0.662
(19)

0.000 / 0.000
(0)

f
0.043 / 0.460

(87)
0.016 / 0.304

(33)
0.030 / 0.461

(60)
0.008 / 0.358

(17)
0.002 / 0.064

(5)
0.004 / 0.125

(8)
0.044 / 0.625

(90)

0.086 / 1.130
(174)

0.105 / 1.835
(213)

0.085 / 1.582
(173)

0.021 / 0.942
(43)

0.148 / 2.432
(301)

0.076 / 1.509
(154)

0.108 / 2.528
(219)

0.084 / 1.971
(170)

0.066 / 0.907
(134)

0.058 / 0.974
(118)

0.002 / 0.132
(5)

0.010 / 0.699
(20)

0.000 / 0.009
(1)

g
0.061 / 0.653

(126)
0.020 / 0.370

(41)
0.036 / 0.557

(74)
0.021 / 0.909

(44)
0.010 / 0.249

(20)

0.018 / 0.566
(37)

0.029 / 0.415
(61)

0.101 / 1.337
(210)

0.090 / 1.572
(186)

0.099 / 1.838
(205)

0.013 / 0.559
(26)

0.154 / 2.528
(319)

0.076 / 1.518
(158)

0.105 / 2.468
(218)

0.044 / 1.035
(91)

0.070 / 0.963
(145)

0.042 / 0.704
(87)

0.007 / 0.390
(15)

0.003 / 0.206
(6)

0.000 / 0.000
(0)



Parallel Tetramer : 122 strands 5794 residues
a b c d e f g

L 0.238 / 2.554 0.086/0.917 0.015 / 0.161 0.270/ 2.891 0.043 / 0.458 0.016 / 0.167 0.066 / 0.708

(208) (74) (13) (236) (33) (12) (51)

0.148/2.762 0.027/0.497 0.008/0.151 0.131/2.457 0.043/0.799 0.012/0.218 0.082/1.525

(129) (23) (7) (115) (33) (9) (63)

V 0.222/3.461 0.032/0.504 0.020/0.306 0.115/1.798 0.083/1.291 0.032/0.505 0.039/0.605
(194) (28) (17) (101) (64) (25) (30)

M 0.079 / 3.378 0.027 / 1.136 0.012 / 0.493 0.045 / 1.905 0.008 / 0.332 0.010 / 0.443 0.067 / 2.879
(69) (23) (10) (39) (6) (8) (52)

F 0.049/1.269 0.008/0.209 0.002/0.060 0.051/1.325 0.004/0.100 0.005/0.134 0.010/0.267
(43) (7) (2) (45) (3) (4) (8)

y 0.001/0.036 0.008/0.256 0.005/0.146 0.011/0.362 0.013/0.410 0.018/0.575 0.014/0.451

(1) (7) (4) (10) (10) (14) (11)

G 0.011/0.161 0.039/0.554 0.020/0.276 0.021/0.290 0.110/1.551 0.048/0.676 0.027/0.383
(10) (34) (17) (18) (85) (37) (21)

A 0.119/1.570 0.043/0.564 0.051/0.669 0.094/1.235 0.065/0.853 0.091/1.196 0.027/0.358
(104) (37) (44) (82) (50) (70) (21)

K 0.002/0.040 0.082/1.435 0.109/1.898 0.006/0.100 0.069/1.200 0.092/1.610 0.148/2.582
(2) (71) (94) (5) (53) (71) (114)

R 0.013 / 0.234 0.079 / 1.458 0.104 / 1.928 0.048 / 0.891 0.065 / 1.202 0.053 / 0.987 0.080 / 1.490
(11) (68) (90) (42) (50) (41) (62)

H 0.001/0.051 0.027/1.182 0.021/0.924 0.000/0.000 0.035/1.554 0.013/0.576 0.021/0.921

(1) (23) (18) (0) (27) (10) (16)

E 0.002/0.038 0.111/1.819 0.203/3.332 0.002/0.037 0.122/1.996 0.162/2.658 0.084/1.380
(2) (96) (176) (2) (94) (125) (65)

D 0.000/0.000 0.160/3.172 0.140/2.778 0.000/0.000 0.073/1.442 0.139/2.759 0.047/0.927

(0) (138) (121) (0) (56) (107) (36)

Q 0.001/0.027 0.087/2.031 0.119/2.785 0.067/1.579 0.089/2.093 0.093/2.187 0.115/2.700

(1) (75) (103) (59) (69) (72) (89)

N 0.003 / 0.081 0.054 / 1.278 0.074 / 1.739 0.053 / 1.237 0.073 / 1.707 0.062 / 1.465 0.070/1.646
(3) (47) (64) (46) (56) (48) (54)

S 0.050/0.692 0.081/1.112 0.064/0.872 0.021/0.283 0.067/0.925 0.083/1.140 0.073/0.996
(44) (70) (55) (18) (52) (64) (56)

T 0.050 / 0.844 0.043 / 0.716 0.033 / 0.561 0.056 / 0.938 0.034 / 0.564 0.062 / 1.043 0.027 / 0.456
(44) (37) (29) (49) (26) (48) (21)

C 0.001 / 0.062 0.001 / 0.062 0.000 / 0.000 0.005 / 0.246 0.005 / 0.279 0.001 / 0.070 0.001 / 0.070

(1) (1) (0) (4) (4) (1) (1)

w 0.006 / 0.406 0.000 / 0.000 0.000 / 0.000 0.003 / 0.243 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
(5) (0) (0) (3) (0) (0) (0)

p 0.000 / 0.000 0.001 / 0.022 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000

(0) (1) (0) (0) (0) (0) (0)
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Antiparallel Dimer : 276 strands 8525 residues

0.175 / 1.878
(222)

0.180 / 3.364
(228)

0.077 / 1.205
(98)

0.063 / 2.698
(80)

0.021 / 0.549
(27)

0.066 / 2.073
(83)

0.006 / 0.089
(8)

0.074 / 0.977
(94)

0.043 / 0.759
(55)

0.067 / 1.245
(85)

0.013 / 0.561
(16)

0.043 / 0.699
(54)

0.006 / 0.110
(7)

0.043 / 0.998
(54)

0.017 / 0.390
(21)

0.054 / 0.737
(68)

0.046 / 0.767
(58)

0.003 / 0.170
(4)

0.003 / 0.224
(4)

0.001 / 0.015
(1)

b
0.033 / 0.357

(40)

0.017 / 0.311
(20)

0.021 / 0.324
(25)

0.008 / 0.356
(10)

0.003 / 0.086
(4)

0.007 / 0.211
(8)

0.047 / 0.657
(56)

0.090 / 1.185
(108)

0.110/ 1.921
(132)

0.061 / 1.128
(73)

0.011 /0.481
(13)

0.133 / 2.184
(160)

0.110/ 2.185
(132)

0.062 / 1.443
(74)

0.139 / 3.272
(167)

0.087 / 1.189
(104)

0.056 / 0.934
(67)

0.001 / 0.045
(1)

0.005 / 0.354
(6)

0.001 / 0.016
(1)

c

0.048 / 0.512
(57)

0.031 / 0.580
(37)

0.027 / 0.418
(32)

0.020 / 0.860
(24)

0.013 / 0.346
(16)

0.014 / 0.451
(17)

0.038 / 0.531
(45)

0.137/ 1.811
(164)

0.106 / 1.861
(127)

0.111 / 2.053
(132)

0.012 / 0.522
(14)

0.117 / 1.924
(140)

0.038 / 0.750
(45)

0.051 / 1.197
(61)

0.107 / 2.525
(128)

0.066 / 0.910
(79)

0.057 / 0.955
(68)

0.001 / 0.045
(1)

0.003 / 0.238
(4)

0.002 / 0.032
(2)

d
0.364 / 3.906

(484)
0.084 / 1.562

(111)
0.076/ 1.185

(101)
0.066 / 2.800

(87)
0.028 / 0.718

(37)
0.038 / 1.191

(50)
0.004 / 0.053

(5)
0.151 / 1.984

(200)
0.020 / 0.342

(26)
0.003 / 0.056

(4)
0.022 / 0.971

(29)
0.026 / 0.432

(35)
0.002 / 0.045

(3)
0.027 / 0.635

(36)
0.012 / 0.283

(16)
0.025 / 0.341

(33)
0.038 / 0.631

(50)
0.008 / 0.445

(11)

0.008 / 0.534
(10)

0.000 / 0.000
(0)
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e

0.044 / 0.472
(52)

0.041 / 0.775
(49)

0.029 / 0.448
(34)

0.012 / 0.506
(14)

0.005 / 0.131
(6)

0.012 / 0.375
(14)

0.057 / 0.798
(67)

0.063 / 0.836
(75)

0.104 / 1.819
(123)

0.061 / 1.130
(72)

0.010 / 0.451
(12)

0.136 / 2.233
(161)

0.082 / 1.631
(97)

0.130 / 3.051
(154)

0.074 / 1.752
(88)

0.073 / 0.999
(86)

0.063 / 1.063
(75)

0.001 /0.045
(1)

0.001 / 0.060
(1)

0.001 /0.016
(1)

f
0.048 / 0.519

(57)
0.019 / 0.349

(22)
0.023 / 0.357

(27)
0.014 / 0.581

(16)
0.009 / 0.241

(11)
0.011 / 0.350

(13)
0.021 / 0.299

(25)
0.165 / 2.172

(194)
0.085 / 1.485

(100)

0.065 / 1.214
(77)

0.013 / 0.566
(15)

0.137 / 2.242
(161)

0.077 / 1.537
(91)

0.079 / 1.850
(93)

0.075 / 1.759
(88)

0.089 / 1.225
(105)

0.059 / 0.996
(70)

0.002 / 0.091
(2)

0.003 / 0.241
(4)

0.005 / 0.097
(6)

g
0.105 / 1.129

(124)
0.051 / 0.953

(60)

0.058 / 0.900
(68)

0.042 / 1.815
(50)

0.010 / 0.263
(12)

0.016 / 0.511
(19)

0.021 / 0.299
(25)

0.163 / 2.149
(192)

0.071 / 1.248
(84)

0.083 / 1.545
(98)

0.018 / 0.793
(21)

0.124 / 2.034
(146)

0.025 / 0.507
(30)

0.083 / 1.950
(98)

0.020 / 0.460
(23)

0.046 / 0.630
(54)

0.057 / 0.954
(67)

0.003 / 0.137
(3)

0.003 / 0.181
(3)

0.000 / 0.000
(0)



Antiparallel Trimer : 15 strands 419 residues

L

I

V

M

F

Y

G

A

K

R

H

E

D

Q

N

S

T

C

W

P

0.283 / 3.037
(17)

0.167 / 3.115
(10)

0.200 / 3.115
(12)

0.067 / 2.849
(4)

0.033 / 0.859
(2)

0.017 / 0.527
(1)

0.000/ 0.000
(0)

0.017 / 0.220
(1)

0.017 / 0.291
(1)

0.033 / 0.618
(2)

0.000 / 0.000
(0)

0.017 / 0.273
(1)

0.000/ 0.000
(0)

0.017 / 0.390
(1)

0.000/ 0.000
(0)

0.033 / 0.458
(2)

0.050 / 0.838
(3)

0.050 / 2.688
(3)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

b
0.051 / 0.545

(3)

0.085 / 1.584
(5)

0.051 / 0.792
(3)

0.017 / 0.724
(1)

0.017 / 0.437
(1)

0.000 / 0.000
(0)

0.017 / 0.239
(1)

0.068 / 0.893
(4)

0.119 / 2.074
(7)

0.102 / 1.887
(6)

0.034 / 1.507
(2)

0.136 / 2.223
(8)

0.051 / 1.011
(3)

0.068 / 1.588
(4)

0.051 / 1.196
(3)

0.102 / 1.397
(6)

0.017 / 0.284
(1)

0.000/ 0.000
(0)

0.017 / 1.202
(1)

0.000/ 0.000
(0)

C

0.115 / 1.230
(7)

0.016 / 0.306
(1)

0.033/ 0.511
(2)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.033 / 1.038
(2)

0.033 / 0.462
(2)

0.148 / 1.944
(9)

0.033 / 0.573
(2)

0.016 / 0.304
(1)

0.000/ 0.000
(0)

0.115 / 1.881
(7)

0.066 / 1.304
(4)

0.131 / 3.071
(8)

0.082 / 1.929
(5)

0.098 / 1.351
(6)

0.049 / 0.824
(3)

0.016 / 0.881
(1)

0.000 / 0.000
(0)

0.016/0.310
(1)

d
0.194 / 2.074

(12)

0.097 / 1.809
(6)

0.113 / 1.759
(7)

0.000 / 0.000
(0)

0.065 / 1.663
(4)

0.032 / 1.021
(2)

0.000 / 0.000
(0)

0.097 / 1.275
(6)

0.000 / 0.000
(0)

0.113 / 2.095
(7)

0.000 / 0.000
(0)

0.065 / 1.058
(4)

0.048 / 0.962
(3)

0.065 / 1.511
(4)

0.016 / 0.380
(1)

0.032 / 0.443
(2)

0.048 / 0.811
(3)

0.000 / 0.000
(0)

0.016/ 1.144
(1)

0.000/ 0.000
(0)

e

0.117 / 1.250
(7)

0.017 / 0.312
(1)

0.050 / 0.779
(3)

0.033 / 1.425
(2)

0.033 / 0.859
(2)

0.083 / 2.637
(5)

0.000 / 0.000
(0)

0.017 / 0.220
(1)

0.083 / 1.457
(5)

0.100 / 1.855
(6)

0.017 / 0.741
(1)

0.167 / 2.732
(10)

0.167 / 3.313
(10)

0.033 / 0.781
(2)

0.000 / 0.000
(0)

0.033 / 0.458
(2)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.050 / 3.546
(3)

0.000 / 0.000
(0)

f
0.100 / 1.072

(6)

0.017 / 0.312
(1)

0.050 / 0.779
(3)

0.000 / 0.000
(0)

0.017 / 0.430
(1)

0.000 / 0.000
(0)

0.050 / 0.704
(3)

0.100 / 1.318
(6)

0.067 / 1.166
(4)

0.117 / 2.165
(7)

0.033 / 1.481
(2)

0.067 / 1.093
(4)

0.117 / 2.319
(7)

0.050/ 1.171
(3)

0.117 / 2.745
(7)

0.083 / 1.145
(5)

0.017 / 0.279
(1)

0.000/ 0.000
(0)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

g
0.088 / 0.940

(5)

0.035 / 0.656
(2)

0.035 / 0.547
(2)

0.000 / 0.000
(0)

0.053 / 1.356
(3)

0.018 / 0.555
(1)

0.000 / 0.000
(0)

0.035 / 0.462
(2)

0.123 / 2.147
(7)

0.053 / 0.976
(3)

0.035 / 1.559
(2)

0.175 / 2.876
(10)

0.140 / 2.790
(8)

0.035 / 0.822
(2)

0.035 / 0.826
(2)

0.018 / 0.241
(1)

0.053 / 0.882
(3)

0.000 / 0.000
(0)

0.070 / 4.977
(4)

0.000 / 0.000
(0)
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Antiparallel Tetramer : 6 strands 236 residues
a

0.314 / 3.369
(11)

0.114 / 2.136
(4)

0.114 / 1.780
(4)

0.029 / 1.221
(1)

0.029 / 0.736
(1)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.171 / 2.259
(6)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.029 / 0.468
(1)

0.000/ 0.000
(0)

0.057 / 1.338
(2)

0.029 / 0.672
(1)

0.029 / 0.392
(1)

0.029 / 0.479
(1)

0.057 / 3.072
(2)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

b
0.065 / 0.691

(2)
0.000 / 0.000

(0)

0.000 / 0.000
(0)

0.032 / 1.379
(1)

0.000/ 0.000
(0)

0.032/ 1.021
(1)

0.000 / 0.000
(0)

0.097 / 1.275
(3)

0.065 / 1.128
(2)

0.065 / 1.197
(2)

0.032/ 1.434
(1)

0.226 / 3.702
(7)

0.097 / 1.924
(3)

0.065 / 1.511
(2)

0.065 / 1.518
(2)

0.097 / 1.329
(3)

0.032 / 0.540
(1)

0.032 / 1.734
(1)

0.000 / 0.000
(0)

c

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.032 / 0.502
(1)

0.065 / 2.757
(2)

0.065 / 1.663
(2)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.097 / 1.275
(3)

0.032 / 0.564
(1)

0.065 / 1.197
(2)

0.065 / 2.867
(2)

0.226 / 3.702
(7)

0.065 / 1.283
(2)

0.129 / 3.022
(4)

0.000 / 0.000
(0)

0.097 / 1.329
(3)

0.032 / 0.540
(1)

0.032 / 1.734
(1)

0.000 / 0.000
(0)

d
0.400 / 4.287

(14)
0.114 / 2.136

(4)

0.086 / 1.335
(3)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.086 / 1.129
(3)

0.029 / 0.500
(1)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.029 / 0.468
(1)

0.029 / 0.568
(1)

0.029 / 0.669
(1)

0.029 / 0.672
(1)

0.114/ 1.570
(4)

0.057 / 0.957
(2)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

e

0.086 / 0.919
(3)

0.000 / 0.000
(0)

0.029 / 0.445
(1)

0.057 / 2.442
(2)

0.000 / 0.000
(0)

0.057 / 1.808
(2)

0.000 / 0.000
(0)

0.200 / 2.635
(7)

0.114 / 1.998
(4)

0.171 / 3.180
(6)

0.029 / 1.270
(1)

0.057 / 0.937
(2)

0.086 / 1.704
(3)

0.086 / 2.007
(3)

0.000 / 0.000
(0)

0.029 / 0.392
(1)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

0.000 / 0.000
(0)

f
0.059 / 0.630

(2)
0.029 / 0.550

(1)
0.000/ 0.000

(0)
0.000 / 0.000

(0)
0.029 / 0.758

(1)
0.000/ 0.000

(0)
0.000 / 0.000

(0)
0.059 / 0.775

(2)
0.059 / 1.028

(2)
0.118 / 2.183

(4)
0.059 / 2.614

(2)
0.206 / 3.375

(7)
0.118 / 2.339

(4)
0.147 / 3.444

(5)
0.029 / 0.692

(1)
0.088 / 1.212

(3)
0.000 / 0.000

(0)
0.000 / 0.000

(0)
0.000 / 0.000

(0)

g
0.171 / 1.837

(6)
0.086 / 1.602

(3)
0.057 / 0.890

(2)
0.057 / 2.442

(2)
0.000 / 0.000

(0)
0.000 / 0.000

(0)
0.029 / 0.402

(1)
0.086/ 1.129

(3)
0.086 / 1.499

(3)
0.029 / 0.530

(1)
0.029 / 1.270

(1)
0.057 / 0.937

(2)
0.086 / 1.704

(3)
0.086 / 2.007

(3)
0.000 / 0.000

(0)
0.086 / 1.177

(3)
0.029 / 0.479

(1)
0.029 / 1.536

(1)
0.000 / 0.000

(0)
0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000 0.000 / 0.000
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Predicting helix orientation for coiled-coil dimers
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Table B-1: List of PQS structures in the test set.

PQS ID Strand 1 hep Strand 2 hep

1a36 644-668:A a 684-708:A a

la38 48-66:A d 79-97:A d

lam9_1 366-391:A d 366-391:B d

Iber 117-134:A a 117-134:B a

lbjt 1013-1030:A a 1129-1146:A a

1 cg_2 740-800:C d 1024-1084:D d

1c1g_2 600-674:C d 884-958:D d

1cii 229-281:A a 387-439:A a

lcnt_2 21-38:2 a 159-176:2 a

Icz7_2 300-345:C a 300-345:D a

Idgc 250-274:A a 250-274:C a

1 e7t 358-404:A d 358-404:B d

lecm 7-38:A a 7-38:B a

1 ecr 10-27:A a 110-127:A a

1egw_l 21-38:A a 21-38:B a

lexj 77-116:A d 77-116:B d

1 few 34-65:A a 74-105:A a

1 few 101-118:A a 101-118:B a

Ifos 1 158-190:E d 282-314:F d

Ifos_2 158-197:G d 282-321:H d

1 fs0 32-56:G a 216-240:G a

lfxk 21-45:A a 71-95:A a

Ifxk 7-45:C a 94-132:C a

lgd2_2 101-132:G a 101-132:H a

1gmj_2 60-77:C a 53-70:D a

1go4 501-526:E d 501-526:F d

1go4 494-526:G d 494-526:H d

1h88 299-331:A d 299-331:B d
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lhlo 57-75:A d 57-75:B d

lhw5 117-134:A a 117-134:B a

lili 165-182:P a 253-270:P a

lilr 13-30:B a 151-168:B a

lii8 166-191:A d 712-737:B d

lik9 123-169:A d 123-169:B d

liol 64-95:A a 408-439:A a

livs_2 805-823:B d 840-858:B d

ljbg 84-101:A a 84-101:B a

ljnm 273-305:A d 273-305:B d

Iklf_2 42-66:E a 28-52:F a

lkd8_3 2-33:E a 2-33:F a

lkql 232-270:A a 232-270:B a

lkvk 264-282:A d 290-308:A d

1 lih 58-75:A a 58-75:B a

11lj2 213-230:A a 213-230:B a

11j2 274-299:A d 274-299:B d

1m5i 134-151:A a 214-231:A a

Inkn_1 849-916:A d 849-916:B d

Inkn 2 846-912:C a 846-912:D a

Inkp_l 953-971:A d 253-271:B d

Ino4_2 36-67:D a 36-67:C a

lnt2 84-102:B d 131-149:B d

Inwq 310-335:A d 310-335:C d

lnyh 1285-1337:A a 1285-1337:B a

lo51 109-126:A a 109-126:B a

1 o9c 59-76:A a 85-102:A a

lomi 1110-1127:A a 2110-2127:B a

lorj 1019-1037:A d 1103-1121:A d

lov9 22-39:A a 22-39:B a
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Ip15 1274-1341:A d 1274-1341:S d

1q05 88-105:A a 88-105:B a

1q06 84-109:A d 84-109:B d

1q08 86-111:A d 86-111:B d

lqp9_1l 107-124:A a 107-124:B a

lqsd 13-37:B a 48-72:B a

lqvr_l 399-417:A d 435-453:A d

lqz2 404-422:A d 404-422:B d

Ir6f 153-171:A d 284-302:A d

Ir6t 9-26:A a 36-53:A a

lr7j 66-90:A a 66-90:B a

1rq0_2 435-452:B a 462-479:B a

Islc 992-1009:X a 992-1009:Y a

1s4b 164-181:P a 252-269:P a

1ses 30-47:B a 80-97:B a

lt3j 688-726:A a 688-726:B a

lt6f 2-33:A a 2-33:B a

ltjl_l 41-65:A a 82-106:A a

ltu3_2 807-832:H d 807-832:I d

Itu3_3 811-835:J a 811-835:B a

ltwf 245-262:C a 88-105:K a

luii 99-145:A d 99-145:B d

luuj_2 58-75:C a 58-75:D a

lvp7_1 55-73:A d 55-73:B d

lwle 75-93:A d 128-146:A d

lwlq_l 96-135:A d 96-135:B d

1wu9 193-224:A a 193-224:B a

1x03 212-244:A d 212-244:B d

1x75 366-384:B d 474-492:B d

1xd4_2 205-223:B d 249-267:B d
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lxnp 127-152:A d 134-159:B d

lybz 4-35:A a 4-35:B a

lyf2 178-202:A a 388-412:A a

lyf2 178-195:B a 395-412:B a

lyhn 248-272:B a 248-272:C a

1 yke_l 175-192:A a 94-111:B a

1z0j 736-753:B a 762-779:B a

1zik 2-26:A a 2-26:B a

izil 2-26:A a 2-26:B a

lzke_1 5-22:A a 55-72:A a

lzme 76-93:C a 76-93:D a

lzpy 23-41:A d 53-71:A d

2b5u 333-372:C d 393-432:C d

2bde 340-358:A d 380-398:A d

2br9 53-70:A a 79-96:A a

2btp 48-66:A d 79-97:A d

2d4c_1 216-241:A d 223-248:B d

2d4x 70-94:A a 233-257:A a

2d8e 5-36:A a 5-36:B a

2e7s_4 52-69:G a 52-69:H a

2esh 90-115:A d 90-115:B d

2etn_3 19-36:C a 48-65:C a

2fxo_2 845-905:C d 845-905:D d

2fxo_2 912-957:C a 912-957:D a

2gau 124-148:A a 124-148:B a

2h7v_2 562-580:D d 590-608:D d

2hg4_1 16-33:A a 16-33:B a

2h15 200-224:A a 200-224:B a

2hld_1 3-34:G a 227-258:G a

2iw5 421-445:A a 335-359:B a
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2jdi 3-20:G a 236-253:G a

2ncd 314-345:A a 314-345:B a

2nov_1 361-379:A d 435-453:A d

2o98 907-924:P a 907-924:C a

2ocy 69-87:A d 69-87:B d

2pah 430-447:A a 430-447:C a

bbz2 C EBPbeta+44_CEBPalpha* a a

bbz3 C EBPgamma+35_ATF4* d d

bbz4_ATF_7+55_MAFK* a a

bbz5_ATF_2+10_FOS* a a

bbz6_CREBPA+28_JUN* a a

bbz7_ATF_ 1+52_CREM* a a

bbz7 ATF 1+7 ATF 1 * a a
* Sequences taken from previously published bZIP interaction data.[1] "Strand 1" and
"Strand 2" indicate the residue numbers and chain for the first and second helix of the
coiled coil. "hep" columns indicate the first heptad position of the first and second
helices, respectively.

Table B-2: Chi angle recovery of repacked structures

Repacked Crystal Structure Lowest Energy Ideal

Structure

Antiparallel Core Residues 0.69 ± 0.14 0.60 ± 0.14

Antiparallel Edge Residues 0.60 ± 0.18 0.55 ± 0.16

Antiparallel other residues 0.55 ± 0.15 0.52 + 0.15

Parallel Core Residues 0.68 ± 0.12 0.61 ± 0.097

Parallel Edge Residues 0.56 ± 0.14 0.52 ± 0.13

Parallel other residues 0.56 ± 0.11 0.53 ± 0.11

Values shown are for average repacking performance. This is defined as the fraction of 1
and X2 angles recovered (within ± 400), evaluated on the native crystal structure or the
lowest-energy repacked structure as evaluated by Rosetta on relaxed structures. Chi angle
recovery broken up by core (a or d), edge (e, g) and the remaining other residues (b, c
and f).
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Table B-3. List of ESM energy components

Rosetta Energy Components
Eatr Lennard-Jones attractive term
Erep Linearized Lennard-Jones repulsive term
Esol Lazardis-Karplus solvation model EEF1
Edun Rotamer preference from Dunbrack library
Ehbnd Hydrogen bonding

Epair Statistical-based pair term
From Rosetta documentation

FoldX Energy Components
VdW Surface area based VdW contributions of all

atoms with respect to the same interaction in
solvent

VdWclash Steric overlap between atoms
Elec Electrostatic contribution of charged groups
HDipole Electrostatic interaction with helix dipole
Eleckon Electrostatic contribution between chains

associated with the ko. rate.[2]
SideHbond Side chain hydrogen bonding
BackHbond Backbone hydrogen bonding
SolvP Surface area based solvation energy of polar

groups
SolvH Surface area based solvation energy of

hydrophobic groups
EntropySC Side-chain entropy
EntropyMC Main-chain entropy
From FoldX documentation and references [3] and [4]

GK Energy Components
Eatr Lennard-Jones attractive term
Erep Lennard-Jones repulsive term
GB Electrostatics with Generalized Born screening
EEF Lazardis-Karplus solvation model EEF1
From reference [5]
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Figure B-1: Native coiled-coil variation described using Crick parameterization.

Histogram of the backbone RMSD (Cc-only) between each test-set structure and its

closest Crick backbone.
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Figure B-2: Histogram of the parallel Crick parameters generated by fitting parallel

test-set structures to the best possible Crick backbone. Parameters a) Ro, b) 0 and c)

coo are shown. The mean value of the parameter is indicated in green, and in red are the

values used to generate the parallel-structure templates used for prediction. These

parameters were chosen to span the range of values seen in native structures. As a note,

the values of o sampled were skewed towards larger values because no structure with

oo < -0.07 radians/residue was chosen as the lowest energy structure for any sequence,

parallel or antiparallel.
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Figure B-3: Histogram of the antiparallel Crick parameters generated by fitting

antiparallel test-set structures to the best possible Crick backbone. Parameters a) R0

b) OA, C) B d) wo and e) apz are shown. The mean value of the parameter is indicated in

green, and in red are the sampled values, as in Figure B-2.
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Figure B-4: Antiparallel A and OB correlation for all structures in the test set.

These two parameters were treated independently in antiparallel Crick parameterization,

but showed a strong correlation. As a result, OA was varied in the ideal structure set and

OB was determined using the equation shown in the figure.
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Figure B-5. Component analysis of ESMs and ISMs. Methods and components are as

in Figure 3-3. (a) ISM methods. Sequences are grouped (from top to bottom) as follows:

correct with all three methods, incorrect with ELEC only, incorrect with ELEC and CE

only, incorrect with all three methods. Remaining groups contain sequences not in the

other groups. This figure illustrates the value of including all pairs in RISPcc. (b) ESM

methods, with color scheme and magnitudes as in Figure 3-3.
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Appendix C

Alignment prediction test sets

Test set construction described in section 4.2.2. Accession code and number of total

alignments per sequence are provided. Alignment test boundaries are all sequence from

N- to -C on both strands. Bold regions are known extent with heptad assigned. The >

character denotes continuation of the same sequence on the following line.

Crystal Antiparallel

: la36.0 -- 17 possible alignments
abcdefgabcdefgabcdefgabcd >

N-MMNLQTKIDAKKEQLADARRDLKSAKADAKVMKDAKTKKVVE SKKKAVQRLEEQLMKLEVQATDREENK >
C-NLKSTGLAIQKNEERDTAQVELKMLQEELRQVAKKSEVVKKTKADKMVKADAKASKLDRRADALQEKKADIKTQLNMMSK-N >

dcbagfedcbagfedcbagfedcba >

> QIALG-C

:: a38.0 -- 9 possible alignments
defgabcdefgabcdefga

N-LVQKAKLAEQAERYDDMAACMKSVTEQGAEL SNEERNLLSVAYKNVVGARRSSWRVVSSIE-C
C-FKELLSLVDNCIDRLETEIKERYERA-N

agfedcbagfedcbagfed
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: lalu.O -- 5 possible alignments
abcdefgabcdefgabcdefga

N-LTSSERIDKQIRYILDGISALRKETCNKS-C
C-LARLSSQLFEKFSRLILHTTMDQLWQNQAQLKTLLS-N

dcbagfedcbagfedcbagfed

lbjt.0 -- 9 possible alignments
abcdefgabcdefgabcd

N-YVRLEYYQKRKDHMSERLQWEVEKYSFQVKFIKMIIEKE-C
C-KLDTNWIDKASLKLLNELETEKEQKQKLLKQYREKTLSWIRMGLLY-N

dcbagfedcbagfedcba

:: bmf.0 -- 5 possible alignments
abcdefgabcdefgabcdefgabcdefga

N-LKDITRRLKSIKNIQKITKSMKMVAAAKYARAEREL -C
C-KTIVAQRTRNFTLTLKDIMESANKSANDMATMRASQESTTSEK-N

dcbagfedcbagfedcbagfedcbagfed

:: cii.0 -- 35 possible alignments

C-NKQQTLQQEARTLANRATNLSETVSSLKNRAESIARDNRTQQGLLRAQQADLVALAAGGNKELESLRTDLIGKRREYEALMDA >

> defgabcdefgabcdefgabcdefgabcd >
> N-IEKRDKEITAYKNTLSAQQKENENKRTEAGKRLSAAIAAREKDENTLKTLRAGNADAADITRQ >
> AKKDANQADKQRKEAQEILSRAERPSIRLSDADAFLMRSETHLRLADYGAIETRFGYERLEAQLLRFEQRTIDAADANGARLTKL >
> agfedcbagfedcbagfedcbagfedcba >

> EFRLLQAE-C
> TNEDKERAAIAASLRKGAETRKNENEKQQASLTNKYATIEKDRKEIDSRT-N

:: cii.2 -- 26 possible alignments

N-RSLIEQAEKRQKDAQNADKKAADMLAEYERRKGILDTRLSE >
C-SSIDSLKVSELAAAIAARDKANIKKNIDARYKEYTKLAEEVNRIKKGKAQGAMERALQEAKAGYKESVSKLFETTFNIADKTA >

> abcdeffgabcdefgab fgabcdefgabcdefgabcdefgabcdefgabcd >
> LEKNGGAALAVLDAQQARLLGQQTRNDRAISEARNKLSSVTESLNTARNALTRAEQQLTQQ-C >
> KLEDQKRKEEAIKQNIGSLQNRINEKEKLLANLADNAHKQENTRASLNNRASNVASEASTIKNRADLLRQRLKDWEAVEANYIKK >
> dcbagfedcbagfedcbagfedcbagfedcbagfedcbagfedcbagfedcba >

> DGEV-N

: 1cnt_2.1 -- 5 possible alignments
abcdefgabcdefgabcd

N-RDLCSRSIWLARKIRSDLTALTESY-C
C-QHSSIFRLDHISRVTWQSLEQLVKLGWLKKEF-N

dcbagfedcbagfedcba

:: cxz.0 -- 14 possible alignments
abcdefgabcdefgabcdefga

N-QQQLELERERLRREIRKELKLKEGAENLRRATTDLGRSLGPVELLLRGSSRRLDLLHQQLQELH-C
C-LEQLQQHLLDLRRSSGRLLLEVPGLSRGLDTTARRLNEAGEKLKLEKRIERRLRERELELQQQV-N

dcbagfedcbagfedcbagfed
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: lecm.0 -- 1 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-LLALREKISALDEKLLALLAERRELAVEVGKA-C
C-AKGVEVALERREALLALLKEDLASIKERLALL-N

dcbagfedcbagfedcbagfedcbagfedcba

: lecr.0 -- 4 possible alignments
abcdefgabcdefgabcd

N-LNTTFRQMEQELAIFAAHLEQHKLL-C
C-LESEVTVIHEFTTKLKNIHQIHSVL-N

dcbagfedcbagfedcba

: legw_l.0 -- 3 possible alignments
abcdefgabcdefgabcd

N-QITRIMDERNRQVTFTKRKFGLMKKAYELSVL-C
C-LVSLEYAKKMLGFKRKTFTVQRNREDMIRT I Q-N

dcbagfedcbagfedcba

: lexj.0 -- 2 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcdefga

N-KKAQDLEMEELFAFYTEQERQIREKLDFLSALEQTI SLVKKRMKRQM-C
C-MQRKMRKKVLSITQELASLFDLKERIQREQETYFAFLEEMELDQAKK-N

agfedcbagfedcbagfedcbagfedcbagfedcbagfed

:: few.0 -- 37 possible alignments
abcdef >

N-LSSEALMRRAVSLVTDSTSTFLSQTTY >
C-RLYAEQESEAREEGEEQTKQKLEEIQAEALKTEAKRSLQHVEEVQLKVLQIHNRATISAQDAGTQYAAEAAMESLGVATMWTT >

dcbagf >

> gabcdefgabcdefgabcdefgabcd >
> ALIEAITEYTKAVYTLTSLYRQYTSLLGKMNSEEEDEVWQVIIGARAEMTSKHQEYLKLETTWMTAVGLSEMAAEAAYQTGADQA >
> ELKLYEQHKSTMEARAGIIVQWVEDEEESNMKGLLSTYQRYLSTLTYVAKTYET-N >
> edcbagfedcbagfedcbagfedcba >

> SITARNHIQLVKLQVEEVHQLSRKAETKLAEAQIEELKQKTQEEGEERAESEQEAYLRED-C

:: few.2 -- 18 possible alignments
abcdefgabcdefgabcd >

N-ITEYTKAVYTLTSLYRQYTSLLGKMNSEEEDEVWQVIIGARAEMTSKHQEYLKLETTWMTAVGLSEMAAEAAYQTG >
C-LYAEQESEAREEGEEQTKQKLEEIQAEALKTEAKRSLQHVEEVQLKVLQIHNRATISAQDAGTQYAAEAAMESLGVATMWTTE >

dcbagfedcbagfedcba >

> ADQASITARNHIQLVKLQVEEVHQLSRKAETKLAEAQIEELKQKTQEEGEERAESEQEAYL-C
> LKLYEQHKSTMEARAGIIVQWVEDEEESNMKGLLSTYQRYLSTLTYVAKTYETI-N

:: fs0.0 -- 3 possible alignments
abcdefgabcdefgabcdefgabcd

N-MRKSQDRMAASRPYAETMRKVIGHL-C
C-MAVMRAAQESALNEVVGQYVQSEVYRRLLTDL-N

dcbagfedcbagfedcbagfedcba
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: Ifxk.0 -- 24 possible alignments
abcdefgabcdefgabcdefgabcd >

N-VQHQLAQFQQLQQQAQAISVQKQTVEMQINETQKALEELSRAADDAEVYKSSGNILIRVAKDELTEELQEKLETLQLREKTIE >
C-AEQINVQMEQLKKMVREEQREITKERLQLTELKEQLEETLEDKAVRILINGSSKYVEADDAARSLEELAKQTENIQMEVTQKQ >

dcbagfedcbagfedcbagfedcba >

> RQEERVMKKLQEMQVNIQE-C
> VSIAQAQQQLQQFQALQHQ-N

:: fxk.1 -- 5 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcd

N-LAEIVAQLNIYQSQVELIQQQMEAVRATISELEILEKTLSDIQGKD-C
C-LEEAQPSLKMMIDTIARLNEGMKQLTSELENKQSKISEMADEFNKKIAVGAGV-N

dcbagfedcbagfedcbagfedcbagfedcbagfedcba

: Igmj_2.0 -- 12 possible alignments
abcdefgabcdefgabcd

N-REQAEEERYFRARAKEQLAALKKHKENEISHHAKEIERLQKEIERHKQSIKKL-C
C-LKKISQKHREIEKQLREIEKAHHSIENEKHKKLAALQEKARARFYREEEAQER-N

dcbagfedcbagfedcba

:: h8e.0 -- 3 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefga

N-LKDITRRLKSIKNIQKITKSMKMVAAAKYARAEREL-C
C-KTIVAQRTRNFTLTLKDIMESANKSANDMATMRASQESTTSEK-N

dcbagfedcbagfedcbagfedcbagfedcbagfed

: lili.0 -- 13 possible alignments
abcdefgabcdefgabcd

N-EKSIKMGKRNGLHLSEHIRNEIKSMKKRMSELCIDFNKNLNEDDTSLVFSKAE-C
C-DDLFAAVRSTSKATNLELVFDAHTNYGLLKAVQARLPLLQQLIATNEQKCRTHFAMEMKR-N

dcbagfedcbagfedcba

: lilr.0 -- 5 possible alignments
abcdefgabcdefgabcd

N-IQRLNWMLWVIDECFRDLCYRTGIC-C
C-LVRVAQGAFKEMASLVYFSAFHRVWYKLGQLR-N

dcbagfedcbagfedcba

: li4d.1 -- 6 possible alignments
abcdefgabcdefgabcdefga

N-VSSINTLVTKTMEDTLMTVKQYEAARLEYDAYRTDL-C
C-KHMVKIKNEELFKLKIAVDGRLKEYKDRHAQFTAQA-N

dcbagfedcbagfedcbagfed

: lii8.0 -- 12 possible alignments
defgabcdefgabcdefgabcdefga

N-AILESDEAREKVVREVLNLDKFETAYKKLSELKKTINNRIKEYRDIL-C
C-EKGEWVVFLRVKNEEARVVVESYKGETFEAFIESALEGIKSLAAERALAKYKKVKEILEETFDKAKELDKIEKKV-N

agfedcbagfedcbagfedcbagfed

: liol.0 -- 17 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd >

N-IKGLTQASRNANDGISIAQTTEGALNEINNNLQRVRELAVQSANSTNSQSDLDSIQAEITQRLNEIDRVSGQTQFNGVKVLAQ >
C-LNNVTNGLNTIASNFRNQVAALDSRLTDVQALAADIKQL-N >

dcbagfedcbagfedcbagfedcbagfedcba >

> DNTLTIQVGANDGETIDIDLKQINSQTLGLDTLNVQQKYKVSDTAAT-C

: livs_2.0 -- 4 possible alignments
defgabcdefgabcdefga

N-VEEWRRRQEKRLKELLALAERSQRKL-C
C-LAERIREAQELNEKLRAEEAEVVEKP-N
agfedcbagfedcbagfed
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:: jbg.0 -- 2 possible alignments
abcdefgabcdefgabcd

N-KAALQSQKEILMKKKQRMDEMIQTI -C
C-ITQIMEDMRQKKKMLIEKQSQLAAK-N

dcbagfedcbagfedcba

:: klf_2.0 -- 6 possible alignments
abcdefgabcdefgabcdefgabcd

N-VGDIEQELERAKASIRRLEQEVNQERFRMIYLQTLLAKE- C
C-EKALLTQLY IMRFREQNVEQELRRISAKARELEQEIDGV-N

dcbagfedcbagfedcbagfedcba

:: kvk.0 -- 7 possible alignments
defgabcdefgabcdefga

N-TKALVAGVRSRLIKFPEIMAPLLTSIDAISLECERVLGEM-C
C-TVQCLQDL SAHGVGLANLHHQNMDMLEELVLYQ-N

agfedcbagfedcbagfed

: 118d.0 -- 3 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcd

N-LETKKTTIEEERNEITQRIGELKNKIGDLKTAIEELKKAKGKC-C
C-IEMDIRRLERELESKRDILKALTNKSNNLDLHYKSL-N

agfedcbagfedcbagfedcbagfedcbagfedcba

:: m5i.l -- 11 possible alignments
abcdefgabcdefgabcd

N-LEELEKERSLLLADLDKEEKEKDWYYAQLQNLTKRI DSL-C
C-QSQLLQRIRLIDKEIQQIRAIRRQARKEMDQCTGLQEEMAVRI QRAEYELQRRTMDTQLS-N

dcbagfedcbagfedcba

:: nt2.0 -- 19 possible alignments
defgabcdefgabcdefga >

N-LAVSEKMVEKELRREDRYVVALVKALEEIDESINMLNEKLEDIRAVKESEITEKFEKKIRELRELRRDVEREIEE-C >
C-IKEMVEEIEREVDRRLERLERIKKEFKETIESEKVARIDELKENLMNISEDIEELAKVLAVVYRDERRL >
agfedcbagfedcbagfed >

> EKEVMKESVALAT-N

: lo9c.0 -- 26 possible alignments
abcdefgabcdefgabcd >

N-ENVYMAKLAEQAERYEEMVEFMEKVSNSLGSEELTVEERNLLSVAYKNVIGARRASWRIISSIEQKEESRGNEEHVNSIREYR >
C-LKLIGDCIKSLENEIKSRYERISNVHEENGRSEEKQEISSI >

dcbagfedcbagfedcba >

> SKIENELSKICDGILKLLD-C
> IRWSARRAGIVNKYAVSLLNREEVTLEESGLSNSVKEMFEVMEEYREAQEALKAMYVNEER-N
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: lorj.l -- 17 possible alignments
defgabcdefgabcdefga >

N-LEQIILLYDKAIECLERAIEIYDQVNELEKRKEFVENIDRVYDIISALKSFLDHEKGKEIAKNLDTIYTIILNTLVKVDKTKE >
C-KVEEWAERLDKLIELIKQLEEKTKDVKVLTNLIITYITDL-N >

agfedcbagfedcbagfed >

> ELQKILEILKDLREAWEEVK-C

: lov9.0 -- 3 possible alignments
abcdefgabcdefgabcd

N-AYARELTIEQLEEALDKLTTVVQERKEAEAEE-C
C-EEAEAEKREQVVTTLKDLAEELQEITLERAYA-N

dcbagfedcbagfedcba

: lq05.0 -- 3 possible alignments
abcdefgabcdefgabcd

N-QRHSADVKRRTLEKVAEIERHIEELQSMRDQLLALANAC-C
C-CANALALLQDRMSQLEEIHREIEAVKELTRRK-N

dcbagfedcbagfedcba

: 1q06.0 -- 2 possible alignments
defgabcdefgabcdefgabcdefga

N-SADVKRRTLEKVAEIERHIEELQSMRDQLLALA-C
C-ALALLQDRMSQLEEIHREIEAVKELTRRKVDAS-N

agfedcbagfedcbagfedcbagfed

: 1q08.0 -- 3 possible alignments
defgabcdefgabcdefgabcdefga

N-CQESKGIVQERLQEVEARIAELQSMQRSLQRLNDACCGTA-C
C-ATGCCADNLRQLSRQMSQLEAIRAEVEQLREQVIGKSEQC-N

agfedcbagfedcbagfedcbagfed

: lqsd.1 -- 8 possible alignments
abcdefgabcdefgabcdefgabcd

N-LDIKVKALKRLTKEEGYYQQELKDQEAHVAKLKEDKSVD-C
C-QASTIASRADSVDETGQYTKLFQELDEKFERIKEYLTPLLRKTDDLVEEQKKL-N

dcbagfedcbagfedcbagfedcba

: lqvr_l1.0 -- 38 possible alignments

defgabcdefgab >
N-IDEAAARLRMALESAPEEIDALERKKL >

C-ETVELRVFRAGRLKESLAEVEAELKPLEGYRLEAARNLDYQREALEIERRVEDLRHQAERLKRLIEREREWEARLKAIEETLK >
agfedcbagfedc >

> cdefga >
> QLEIEREALKKEKDPDSQERLKAIEAEIAKLTEEIAKLRAEWEREREILRKLREAQHRLDEVRREIELAERQYDLNRAAELRYGE >
> AIEAEIAKLREQSDPDKEKKLAEREIELQLKKRELADIEEPASELAMRLRAAAEDILDIAKD-N >
> bagfed >

> LPKLEAEVEALSEKLRGARFVRLEVTEEDIAEI-C

: lqz2.2 -- 3 possible alignments
defgabcdefgabcdefga

N-KTQLAVCQQRIRRQLAREKKLYANMFERLAEEE-C
C-EEEALREFMNAYLKKERALQRRIRQQCVALQTK-N
agfedcbagfedcbagfed

lr6f.0 -- 9 possible alignments
defgabcdefgabcdefga

N-DDDILKVIVDSMNHHGDARSKLREELAELTAELKIYSVIQAEINKHLSSSGTIN-C
C-MVSDYKQIFRNLAEIASNFRSTIDSLQTTKQSV-N

agfedcbagfedcbagfed

: Ir6t.0 -- 9 possible alignments
abcdefgabcdefgabcd
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N-LLELFNSIATQGELVRSLKAGNASKDEIDSAVKMLVSLKMSYKAAA-C
C-AKYDEGAAAKYSMKLSVLMKVASDIEDKSANGAKLSRVL-N

dcbagfedcbagfedcba

:: r7j.0 -- 4 possible alignments
abcdefgabcdefgabcdefgabcd

N-MDLEIIRQEGKQYMLTKKGEELLEDIRKFNEMRKNMDQLKEKINSV-C
C-VSNIKEKLQDMNKRMENFKRIDELLEEGKKTLMYQKGEQR I ELDM-N

dcbagfedcbagfedcbagfedcba

:: rq0_2.0 -- 14 possible alignments
abcdefgabcdefgabcd

N-QMKNYGMEYAKIEEIENITNRIKETQEFIELLREEGENELEIEKYEKELDQLYQELLFLL-C
C-LFLLEQYLQDLEKEYKEIELENEGEERLLEIFEQTEKIRNTINEIEEIKAYEMGYNKMQE-N

dcbagfedcbagfedcba

:: s4b.0 -- 12 possible alignments
abcdefgabcdefgabcd >

N-IKRIKKKLSLLCIDFNKN-C >
C-GRRECEARKLEL IVAREQEGLPKLKQALEDLFTAVTQSTKAMNMELVYDAHTHFGLLRSKQARLTVLEKLIASNEEKCRSNFA >

dcbagfedcbagfedcba >

> EEVKR-N

:: ses.l -- 8 possible alignments
abcdefgabcdefgabcd

N-RAIREKGVALDLEALLALDREVQELKKRLQEVQTERNQVAKRVPKA- C
C-LAELRAEKERLAEELRKAEEGLAKGRAI LAEK-N
dcbagfedcbagfedcba

: lt3j.0 -- 4 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcd

N-ATTFARLCQQVDMTQKHLEEEIARLSKEIDQLEKMQNNSKLLRNKAVQLESELENFSKQF-C
C-FQKSFNELESELQVAKNRLLKSNNQMKELQDIEKSLRAIEEELHKQTMDVQQCLRAFTTA-N

dcbagfedcbagfedcbagfedcbagfedcbagfedcba

:: tjl_l1.0 -- 4 possible alignments
abcdefgabcdefgabcdefgabcd

N-EAQLAHFRRILEAWRNQLRDEVDRTVTHMQDE-C
C-VKKLTKEIKKILKRERDRNRLELSFEEEQAAR-N

dcbagfedcbagfedcbagfedcba

:: twf.l -- 3 possible alignments
abcdefgabcdefgabcd

N-VRGIDTLQKKVAS ILLAL-C
C-QLNWETEFNTKLAGLKNIISNCANK-N

dcbagfedcbagfedcba
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: lvp7_1.0 -- 6 possible alignments
defgabcdefgabcdefga >

N-FETALAELESLVSAMENGTLPLEQSLSAYRRGVELARVCQDRLAQAEQQVKVLE-C >
C-ELVKVQQEAQALRDQCVRALEVGRRYASLSQELPLTGNEMASVLSELE >

agfedcbagfedcbagfed >

> ALATEF-N

:: wle.0 -- 13 possible alignments
defgabcdefgabcdefga

N-TWQELRQLREQIRSLEEEKEAVTEAVRALVVNQDNSQVQQ-C
C-FQEELQAEKPYLLTLQKRIERGRARLSQYQPDQQVQSNDQNVVLARVAETVAEKEEELSRIQERLQRLEQWTSII-N

agfedcbagfedcbagfed

: 1x03.0 -- 5 possible alignments
defgabcdefgabcdefgabcdefgabcdefga >

N-RQALEKFDESKEIAESSMFNLLEMDIEQVSQLSALVQAQLEYHKQAVQILQQVTVRLEERI-C >
C-IREELRVTVQQLIQVAQKHYELQAQVLASLQSVQEIDMELLNFMSSEAIEKSEDF >
agfedcbagfedcbagfedcbagfedcbagfed >

> KELAQR-N

: 1x75.1 -- 7 possible alignments
defgabcdefgabcdefga

N-TIFELRKARDRAHILEALAVALANIDPIIELIR-C
C-LIRLLEAIQDLLEKYEDLLKEHELGTLKQLRLDLIAQAQQ-N
agfedcbagfedcbagfed

: lxd4_2.0 -- 3 possible alignments
defgabcdefgabcdefga

N-VKAFMAEIRQYIRELNLII-C
C-VTDEIHGLLKVSLEHIDVIRSFINEV-N
agfedcbagfedcbagfed

:: xnp.0 -- 10 possible alignments
defgabcdefgabcdefgabcdefga

N-INVKMRELAEFLHELNERIREIIEEKRELEEARILIETYIENTMRRLAEENRQI-C
C-IQRNEEALRRMTNEIYTEILIRAEELERKEEIIERIRENLEHLFEALERMKVNI-N

agfedcbagfedcbagfedcbagfed

: lybz.0 -- 1 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-LKLLRKEIDKIDNQIISLLKKRLEIAQAIGKI-C
C-IKGIAQAIELRKKLLSIIQNDIKDIEKRLLKL-N
dcbagfedcbagfedcbagfedcbagfedcba

: lydx.0 -- 7 possible alignments
defgabcdefgabcdefgabcd

N-NKNEQHAIANTLSVFDERLENLASLIEINRKLRDEYAHKLFSL-C
C-LKKLLTDRIVTLSSLEKKYQDLKQDLLFVIKGAKRQ-N

agfedcbagfedcbagfedcba

lyf2.0 -- 6 possible alignments
abcdefgabcdefgabcdefgabcd

N-QKQIAKILTKIDEGIEIIEKSINKLERIKKGLMHKLLTK-C
C-GTLLLEMIKKKMRQLKEKKQKKLEISKDVSSLIKAIQKQ-N

dcbagfedcbagfedcbagfedcba

: lyf2.1 -- 8 possible alignments
abcdefgabcdefgabcd

N-QKQIAKILTKIDEGIEIIEKSINKLERIKKGLMHKLLTK-C
C-GTLLLEMIKKKMRQLKEKKQKKLEISKDVSSLIKAIQKQ-N

dcbagfedcbagfedcba
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: Iz0j.0 -- 8 possible alignments
abcdefgabcdefgabcd

N-EELLLQQIDNIKAYIFDAKQCGRLDEVEVLTENLRELKHTLAKQKG-C
C-QKALTHKLERLNETLVEVEDLRGCQKADFIYA-N
dcbagfedcbagfedcba

: iz0p.0 -- 4 possible alignments
defgabcdefgabcdefgabcd

N-MSYEKEFLKDFEDWVKTQIQVNQLAMATS-C
C-KYNDFKGLLFEYADLKSEYRIFADKARED-N
agfedcbagfedcbagfedcba

:: zke_l1.0 -- 12 possible alignments
abcdefgabcdefgabcd

N-IRKILADIEDSQNEIEMLLKLANLSLGDFIEIKRGSMDMPKGVNEAFFTQLSEEVERLKELINALNKIKKGLLV-C
C-FVLLGKKIKNLANILEKLREVEESLQTFFAEN-N

dcbagfedcbagfedcba

:: zpy.0 -- 13 possible alignments
defgabcdefgabcdefga

N-ETRDMHRAIISLREELEAVDLYNQRVNACKDKELKAILAHNRDEEKEHAAMLLE-C
C-IWELLMAAHEKEEDRNHALIAKLEKDKCANVRQNYLDVAELEERLSIIARHMDRTEDSLEQ-N

agfedcbagfedcbagfed

: 2avr.0 -- 26 possible alignments
defgabcdefgabcdefgabcd >

N-AASLVGELQALDAEYQNLANQEEARFNEERAQADAARQALAQNEQVYNELSQRAQRLQAEANTRFYKSQYQELASKYEDALKK >
C-LNGARLAQIKEFDSIVAKQQEMEAELKKLADEYKSALEQYQSKYFRTNAEAQLRQARQSLEN >

agfedcbagfedcbagfedcba

> LEAEMEQQKAVISDFEKIQALRA-C
> YVQENQALAQRAADAQAREENFRAEEQNALNQYEADLAQLEGVL-N

: 2b5u.0 -- 7 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcdefga

N-AERNYERARAELNQANEDVARNQERQAKAVQVYNSRKSELDAANKTLADAIAEIKQFNRFA-C
C-LNNEASRKKDEKKKRSEMASSLAADADSKEKAAADFAAQKNNVDTQARQAKLGA-N

agfedcbagfedcbagfedcbagfedcbagfedcbagfed

: 2bde.0 -- 13 possible alignments
defgabcdefgabcdefga

N-IEKKIGEAMAIKKELEQKYVDLCTRSIDESSQQYDQEIHDLQLQISTVDLQISRLLQEQNS-C
C-QEQLLRSIQLDVTSIQLQLDHIEQDYQQSSEDISRTCLDVYKQELEKKIAMAEG-N
agfedcbagfedcbagfed
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: 2br9.0 -- 15 possible alignments
abcdefgabcdefgabcd >

N-REDLVYQAKLAEQAERYDEMVESMKKVAGMDVELTVEERNLLSVAYKNVIGARRASWRIISSIEQKEENKGGEDKLKMIREYR >
C-VDLIDCCILKLETEVMQRYERIMKLKDEGGKNEEKQEIS-N >

dcbagfedcbagfedcba >

> QMVET-C

: 2btp.0 -- 11 possible alignments
defgabcdefgabcdefga

N-GTENLYFQSMEKTELIQKAKLAEQAERYDDMATCMKAVTEQGAELSNEERNLLSVAYKNVVGGRRSAWRVISSIE-C
C-YKDLLELVTTCISRLESEVKERYDKI-N

agfedcbagfedcbagfed

: 2d4c_1.1 -- 12 possible alignments
defgabcdefgabcdefgabcdefga >

N-RQALEKFDESKEIAESSMFNLLEMDIEQVSQLSALVQAQLEYHKQAVQILQQVTVRLEERI-C >
C-IREELRVTVQQLIQVAQKHYELQAQVLASLQSVQEIDMELLNFMSSEAIEKSEDF >

agfedcbagfedcbagfedcbagfed >

> KELAQR-N

: 2d4x.0 -- 12 possible alignments
abcdefgabcdefgabcdefgabcd

N-QAQNSQYALARTFATQKVSLEESVLSQVTTAIQTAQEKIVYAGNGTLSDDDRASLATDLQGIRDQLMNLANSTDGNGRYIF-C
C-LESLQTGLEARVTLVNNLSNKLGRNTKDIAAAAKEKEVN-N

dcbagfedcbagfedcbagfedcba

: 2d4y_1.0 -- 10 possible alignments
abcdefgabcdefgabcdefga

N-LRGAQNQSSGLTTRYEQMSKIDNLLADKSSSLSGSLQSFFTSLQTLVSNA-C
C-LQKVVNAQTTSSTKLTSTKNGVDSVLTAYADNFTKNGGVVNSNQLDLLAQ-N
dcbagfedcbagfedcbagfed

: 2d8e.0 -- 1 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-IQALRKEVDRVNREILRLLSERGRLVQEIGRL- C
C-LRGIEQVLRGRESLLRLIERNVRDVEKRLAQI- N
dcbagfedcbagfedcbagfedcbagfedcba

: 2esh.0 -- 1 possible alignments
defgabcdefgabcdefgabcdefga

N-LREILRSLEDMKRRIETLEERIKRVL-C
C-LVRKIREELTEIRRKMDELSRLIERL-N

agfedcbagfedcbagfedcbagfed

: 2etn_3.0 -- 18 possible alignments
abcdefgabcdefgabcd

N-VKLTKAGYERLMKQLEQERERLQEATKILQELMESSDDYDDSGLEAAKQEKARIEARIDSLEDVLSRAVILEEG-C
C-TGEELIVARSLVDELSDIRAEIRAKEQKAAELGSDDYDDSSEMLEQLIKTAEQLREREQELQKMLREYGAKTLK-N

dcbagfedcbagfedcba

204



: 2fup.0 -- 15 possible alignments
abcdefgabcdefgabcdefga >

N-LLDLFAEDIGHANQLLQLVDEEFQALERR-C >
C-RGNRLNAQQCRELLEGLEDGRALLEAGDARERAYRALGERDLSVGAERLIEARARGNRELQQMLPQKAGLLQQLVPLERRELA >

dcbagfedcbagfedcbagfed >

> QFEEDVLQLLQNAHGIDEAFLDL-N

: 2h7v_2.0 -- 18 possible alignments
defgabcdefgabcdefga >

N-KHLDQTHSFSDIGSLVRAHKHLETLLEVLVTLSQQGQPVSSETYGFLNRLAEAKITLSQQLN >
C-FRQLSQRAVDAWSGSRNILISLQAKASEQQQQLTNLQQSLTIKAEALRNLFGYT-N >

agfedcbagfedcbagfed >

> TLQQQQESAKAQLSILINRSGSWADVARQSLQRF-C

: 2h94.0 -- 7 possible alignments
abcdefgabcdefgabcdefga

N-EKHVKDEQIEHWKKIVKTQEELKELLNKMVNLKEKIKELHQQY-C
C-LEQLKEELKGQTEALEDYEKCLATLDRHKSKVLFEA-N

dcbagfedcbagfedcbagfed

: 2hld_1.0 -- 8 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-LKEVEMRLKSIKNIEKITKTMKIVASTRLSKAEKAKISAKKMDEAEQLFYKNA- C
C-NTIVAQRTRNYLISYRNIMDGANKSANDMANRRASIEAAYGQAMATLMQNALT-N

dcbagfedcbagfedcbagfedcbagfedcba

: 2ic6_1.0 -- 4 possible alignments
abcdefgabcdefgabcdefga

N-LKEVQDNITLHEQRLVTTRQKLKDAERAV-C
C-LDALERKLEGLKTELASVAARRSQLT SKN-N
dcbagfedcbagfedcbagfed

: 2jdi.0 -- 8 possible alignments
abcdefgabcdefgabcd

N-LKDITRRLKSIKNIQKITKSMKMVAAAKYARA-C
C-KTIVAQRTRNFTLTLKDIMESANKSANDMATMRASQESTTSEKLSY-N

dcbagfedcbagfedcba

: 2nov_l.0 -- 13 possible alignments
defgabcdefgabcdefga

N-SSYIAHRREVILARSRFDKEKAEKRLHIVEGLIRVISILDEVIALIRASENKADAKENLKV-C
C-FKKKVERLEKKMLNYMTREDGIIAALMAIKERLEAEEEQLVVVDTNTLRYLQLT-N

agfedcbagfedcbagfed

: 2o98.1 -- 5 possible alignments
abcdefgabcdefgabcd

N-FNELNQLAEEAKRRAEIARQRELHTLKGHVESVVKLKGLDIETIQQ-C
C-QQITEIDLGKLKVVSEVHGKLTHLERQRAIEARRKAEEALQNLENF-N

dcbagfedcbagfedcba

: 2pah.l -- 2 possible alignments
abcdefgabcdefgabcd

N-VLDNTQQLKILADSINSEIGILCSA-C
C-ASCLIGIESNISDALIKLQQTNDLV-N

dcbagfedcbagfedcba

Crystal Parallel

: lam9 1.2 -- 6 possible alignments
defgabcdefgabcdefgabcdefga

N-IEKRYRSSINDKI IELKDLVVGTEAKLNKSAVLRKAIDYIRFLQHSNQKLKQENLSLRTAVHKSKSLK-C
N-IEKRYRSSINDKI IELKDLVVGTEAKLNKSAVLRKAIDYIRFLQHSNQKLKQENLSLRTAV-C
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defgabcdefgabcdefgabcdefga

:: ber.0 -- 8 possible alignments
abcdefgabcdefgabcd

N-RSAWVRAKTACEVAEISYKKFRQLIQVNPDILMRLSAQMARRLQVTSEKVGNLAFLDVTGRIAQTLL-C
N-RSAWVRAKTACEVAEISYKKFRQLIQVNPDILMRLSAQMARRLQVTSEKVGNLAFLDVTGRIAQTLL-C

abcdefgabcdefgabcd

: 1clg_2.0 -- 30 possible alignments
defgabc defgabdefgabcdefgabcdefgabcdefgabcdefgab >

N-IKKKMQMLKLDKENALDRADEAEADKKAAEDRSKQLEDELVSLQKKLKATEDELDKYSEALKDAQEKLELAEKKATDAEADVA >
N-IKKKMQMLKLDKENALDRADEAEADKKAAEDRSKQLEDELVSLQKKLKATEDELDKYSEALKDAQEKLELAEKKATDAEADVA >

defgabcdefgabcdefgabcdefgabcdefgabcdfefgabcdefgabdefgab >

> cdefgabcdefgabcdefga >
> SLNRRIQLFEEELDRAQERLATALQKLEEAEKAADESERGMKVIESRAQKDEEKMEIQEIQLKEAKHIAEDADRKYEEVARKLVI >
> SLNRRIQLFEEELDRAQERLATALQKLEEAEKAADESERGMKVIESRAQKDEEKMEIQEIQLKEAKHIAEDADRKYEEVARKLVI >
> cdefgabcdefgabcdefga >

> IESDLERAEERAELSEGKCAELEEEIKTVTNNLKSLEAQAEKYSQKEDKYEEEIKVLSDKLKEAETRAEFAERSVTKLEKSIDDL >
> IESDLERAEERAELSEGKCAELEEEIKTVTNNLKSLEAQAEKYSQKEDKYEEEIKVLSDKLKEAETRAEFAERSVTKLEKSIDDL >

> EDELYAQKLKYKAISEELDHALNDM-C
> EDELYAQKLKYKAISEELDHALNDM-C

: Iclg_2.2 -- 32 possible alignments

N-IKKKMQMLKLDKENALDRADEAEADKKAAEDRSKQLEDELVSLQKKLKATEDELDKYSEALKDAQEKLELAEKKATDAEADVA >
N-IKKKMQMLKLDKENALDRADEAEADKKAAEDRSKQLEDELVSLQKKLKATEDELDKYSEALKDAQEKLELAEKKATDAEADVA >

> SLNRRIQLFEEELDRAQERLATALQKLEEAEKAADESERGMKVIESRAQKDEEKMEIQEIQLKEAKHIAEDADRKYEEVARKLVI >
> SLNRRIQLFEEELDRAQERLATALQKLEEAEKAADESERGMKVIESRAQKDEEKMEIQEIQLKEAKHIAEDADRKYEEVARKLVI >

> defgabcdefgabcedefgabcdefgabcdefgab cdefgabcdefgabcdefga >
> IESDLERAEERAELSEGKCAELEEEIKTVTNNLKSLEAQAEKYSQKEDKYEEEIKVLSDKLKEAETRAEFAERSVTKLEKSIDDL >
> IESDLERAEERAELSEGKCAELEEEIKTVTNNLKSLEAQAEKYSQKEDKYEEEIKVLSDKLKEAETRAEFAERSVTKLEKSIDDL >
> defgabcdefgabcdefgabcdefgabcddefgabgefgabcdefgabcdefg defga >

> EDELYAQKLKYKAISEELDHALNDM-C
> EDELYAQKLKYKAISEELDHALNDM-C
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: lclg_2.3 -- 36 possible alignments

N-IKKKMQMLKLDKENALDRADEAEADKKAAEDRSKQLEDELVSLQKKLKATEDELDKYSEALKDAQEKLELAEKKATDAEADVA >
N-IKKKMQMLKLDKENALDRADEAEADKKAAEDRSKQLEDELVSLQKKLKATEDELDKYSEALKDAQEKLELAEKKATDAEADVA >

> SLNRRIQLFEEELDRAQERLATALQKLEEAEKAADESERGMKVIESRAQKDEEKMEIQEIQLKEAKHIAEDADRKYEEVARKLVI >
> SLNRRIQLFEEELDRAQERLATALQKLEEAEKAADESERGMKVIESRAQKDEEKMEIQEIQLKEAKHIAEDADRKYEEVARKLVI >

> defgabcdefgabcd >
> IESDLERAEERAELSEGKCAELEEEIKTVTNNLKSLEAQAEKYSQKEDKYEEEIKVLSDKLKEAETRAEFAERSVTKLEKSIDDL >
> IESDLERAEERAELSEGKCAELEEEIKTVTNNLKSLEAQAEKYSQKEDKYEEEIKVLSDKLKEAETRAEFAERSVTKLEKSIDDL >
> defgabcdefgabcd >

> efgabcdefgabcdefgabcd
> EDELYAQKLKYKAISEELDHALNDMTSI- C
> EDELYAQKLKYKAISEELDHALNDMTSI-C
> efgabcdefgabcdefgabcd

: lcz7_2.0 -- 2 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd

N-VVHLRQRTEELLRCNEQQAAELETCKEQLFQSNMERKELHNTVMDLRGNIRVF- C
N-VVHLRQRTEELLRCNEQQAAELETCKEQLFQSNMERKELHNTVMDLRGNIRVF- C

abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd

:: deb.0 -- 3 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefga

N-YDQLLKQVEALKMENSNLRQELEDNSNHLTKLETEASNMKEVLKQLQGSI-C
N-YDQLLKQVEALKMENSNLRQELEDNSNHLTKLETEASNMKEVLKQLQGSI-C

abcdefgabcdefgabcdefgabcdefgabcdefga

: Idgc.0 -- 5 possible alignments
abcdefgabcdefgabcdefgabcd

N-ALKRARNTEAARRSRARKLQRMKQLEDKVEELLSKNYHLENEVARLKKLVGER-C
N-ALKRARNTEAARRSRARKLQRMKQLEDKVEELLSKNYHLENEVARLKKLVGER-C

abcdefgabcdefgabcdefgabcd

:: fos_1.0 -- 8 possible alignments
defgabcdefgabcdefgabcdefgabcdefga

N-RERNKMAAAKSRNRRRELTDTLQAETDQLEDEKSALQTEIANLLKEKEKLEFIL-C
N-RMRNRIAASKSRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKV-C

defgabcdefgabcdefgabcdefgabcdefga

:: fos_2.0 -- 6 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcdefga

N-RERNKMAAAKSRNRRRELTDTLQAETDQLEDEKSALQTEIANLLKEKEKLEFIL-C
N-RMRNR IAAS KSRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKV-C

defgabcdefgabcdefgabcdefgabcdefgabcdefga

:: ft9.0 -- 6 possible alignments
defgabcdefgabcdefgabcd

N-LVEATERTEVRFADIRTFEQKLQTCPSMAWGLIAILGRALTSCMRTIEDLMFHDIKQ-C
N-LVEATERTEVRFADIRTFEQKLQTCPSMAWGLIAILGRALTSCMRTIEDLMFHDIKQ-C

defgabcdefgabcdefgabcd

: 1gd2_2.0 -- 5 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-SKRKAQNRAAQRAFRKRKEDHLKALETQVVTLKELHSSTTLENDQLRQKVRQLEEELRIL-C
N-SKRKAQNRAAQRAFRKRKEDHLKALETQVVTLKELHSSTTLENDQLRQKVRQLEEELRIL-C

abcdefgabcdefgabcdefgabcdefgabcd

:: go4.0 -- 5 possible alignments
defgabcdefgabcdefgabcdefgabcdefga

N-AEQSFLFSREEADTLRLKVEELEGERSRLEEEKRMLEAQLERRALQGDYDQSRTKVLHMSL-C
N-AEQSFLFSREEADTLRLKVEELEGERSRLEEEKRMLEAQLERRALQGDYDQSRTKVLHMSL- C

defgabcdefgabcdefgabcdefgabcdefga

:: go4.1 -- 5 possible alignments
defgabcdefgabcdefgabcdefga
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N-SREEADTLRLKVEELEGERSRLEEEKRMLEAQLERRALQGDYDQSRTKVLHMSL-C
N-SREEADTLRLKVEELEGERSRLEEEKRMLEAQLERRALQGDYDQSRTKVLHMSL-C

defgabcdefgabcdefgabcdefga

: lh88.0 -- 4 possible alignments
defgabcdefgabcdefgabcdefgabcdefga

N-RERNNIAVRKSRDKAKMRNLETQHKVLELTAENERLQKKVEQLSRELSTLRNLF-C
N-RERNNIAVRKSRDKAKMRNLETQHKVLELTAENERLQKKVEQLSRELSTLRNLF-C

defgabcdefgabcdefgabcdefgabcdefga

: lhlo.2 -- 4 possible alignments
defgabcdefgabcdefga

N-LQGEKASRAQILDKATEYIQYMRRKNHTHQQDIDDLKRQN-C
N-LQGEKASRAQILDKATEYIQYMRRKNHTHQQDIDDLKRQN-C

defgabcdefgabcdefga

: lhw5.0 -- 6 possible alignments
abcdefgabcdefgabcd

N-RSAWVRAKTACEVAEISYKKFRQLIQVNPDILMRLSAQMARRLQVLAEKVGNL-C
N-RSAWVRAKTACEVAEISYKKFRQLIQVNPDILMRLSAQMARRLQVLAEKVGNL-C

abcdefgabcdefgabcd

: lik9.0 -- 2 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga >

N-IRELIAYALDTIAENQAKNEHLQKENERLLRDWNDVQGRFEKAVSAKEALETDLYKRFILVLNEKKTKIRSLHNKLLNAAQER >
N-IRELIAYALDTIAENQAKNEHLQKENERLLRDWNDVQGRFEKAVSAKEALE T DL-C >

defgabcdefgabcdefgabcdefgabcdefgabdefgabcdefga >

> EKDIKQ-C

: ljld_l.0 -- 6 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcdefga

N-REKKKKILAERRKVLAIDHLNEDQLREKAKELWQTIYNLEAEKFDLQEKFKQQKYEINVLRNRI-C
N-LELAGLGFAELQDLARQLHARVDKVDEERYDIEAKVTKNITEIADLTQKI-C

abcdefgabcdefgabcdefgabcdefgabcdefgabcdefga

: ljnm.0 -- 3 possible alignments
defgabcdefgabcdefgabcdefgabcdefga

N-RMRNRIAASKSRKRKLERIARLEEKVKTLKAQNSELASTANMLREQV-C
N-RMRNRIAASKSRKRKLERIARLEEKVKTLKAQNSELASTANMLREQV-C

defgabcdefgabcdefgabcdefgabcdefga

:: joc.0 -- 4 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcdefgabcd

N-LLERCLKGEGEIEKLQTKVLELQRKLDNTTAAVQELGRENQSLQIKHTQALNRKWAEDNEVQNC-C
N-LLERCLKGEGEIEKLQTKVLELQRKLDNTTAAVQELGRENQSLQIKHTQALNRKWAEDNEVQNC-C

defgabcdefgabcdefgabcdefgabcdefgabcdefgabcd
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:: kql.O -- 2 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcd

N-VEELLSKNYHLENEVARLKKLVDDLEDELYAQKLKYKAISEELDHA- C
N-VEELLSKNYHLENEVARLKKLVDDLEDELYAQKLKYKAISEELDHA-C

abcdefgabcdefgabcdefgabcdefgabcdefgabcd

: llih.0 -- 8 possible alignments
abcdefgabcdefgabcd

N-NELRQQQSELTSTWDLMLQTRINLSRSAARMMMDASNQQSSAKTDLLQNAKTTLAQAAAHYANFKNM-C
N-NELRQQQSELTSTWDLMLQTRINLSRSAARMMMDASNQQSSAKTDLLQNAKTTLAQAAAHYANFKNM-C

abcdefgabcdefgabcd

: 11j2.0 -- 4 possible alignments
abcdefgabcdefgabcd

N-IPQQQAHIAELQVYNNKLERDLQNKIGSLTSS-C
N-MHSLQNVIPQQQAHIAELQVYNNKLERDLQNKIGSLTSS-C

abcdefgabcdefgabcd

: 11j2.1 -- 2 possible alignments
defgabcdefgabcdefgabcdefga

N-PLHAFDDLESVIRNLISDYDKLFLMFKGLIQRS-C
N-PLHAFDDLESVIRNLISDYDKLFLMFKGLIQRS-C

defgabcdefgabcdefgabcdefga

:: nkp_l.0 -- 9 possible alignments
defgabcdefgabcdefga

N-KVVILKKATAYILSVQAEEQKLISEEDLLRKRREQLKHKL-C
N-LQGEKASRAQILDKATEYI QYMRRKNHTHQQDIDDLKRQNALLEQQV-C

defgabcdefgabcdefga

: lno4_2.0 -- 4 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-QSERTEALQQLRVNYGSFVSEYNDLTKSHEKLAAEKDDLIVSNSKLFRQIGLT-C
N-QSERTEALQQLRVNYGSFVSEYNDLTKSHEKLAAEKDDLIVSNSKLFRQIGLT-C

abcdefgabcdefgabcdefgabcdefgabcd

:: nwq.0 -- 5 possible alignments
defgabcdefgabcdefgabcdefga

N-SNEYRVRRERNNIAVRKSRDKAKQRNVETQQKVLELTSDNDRLRKRVEQLSREL-C
N-SNEYRVRRERNNIAVRKSRDKAKQRNVETQQKVLELTSDNDRLRKRVEQLSREL-C

defgabcdefgabcdefgabcdefga

: Inyh.0 -- 4 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd

N-LSFVDIVLSKAASALDEKEKQLAVANEIIRSLSDEVMRNEIRITSLQGDLTFTKKCLENARSQISEKDAKINKL-C
N-LSFVDIVLSKAASALDEKEKQLAVANEIIRSLSDEVMRNEIRITSLQGDLTFTKKCLENARSQISEKDAKINKL-C

abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd

: 1o51.0 -- 3 possible alignments
abcdefgabcdefgabcd

N-LDLLMKDRELLLFFLKDVSEHFRVVSEKLFFL-C
N-LDLLMKDRELLLFFLKDVSEHFRVVSEKLFFL-C

abcdefgabcdefgabcd

: lomi.0 -- 7 possible alignments
abcdefgabcdefgabcd

N-DTETSVGYYNLEVISEQATAYVIK INELKELLSKNLTHFFYVFQTLQKQVSYSLAKFNDF-C
N-DTETSVGYYNLEVISEQATAYVIKINELKELLSKNLTHFFYVFQTLQKQVSYSLAKFNDF-C

abcdefgabcdefgabcd
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:: pl5.0 -- 12 possible alignments

defgabcdefgabcdefgab >
N-LDDITDSNTTEILTSVDVLGTHSQTGTQQSNMYTSTQKTELEIDNKDSVTECSKDMKEDGLSFVDIVLSKAASALDEKEKQLA >
N-LDDITDSNTTEILTSVDVLGTHSQTGTQQSNMYTSTQKTELEIDNKDSVTECSKDMKEDGLSFVDIVLSKAASALDEKEKQLA >

defgabcdefgabcdefgab >

> cdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga
> VANEIIRSLSDEVMRNEIRITSLQGDLTFTKKCLENARSQISEKDAKINKLMEKDFQVNKEI-C
> VANEIIRSLSDEVMRNEIRITSLQGDLTFTKKCLENARSQISEKDAKINKLMEKDFQVNKEI-C
> cdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga

: lqoO.C -- 4 possible alignments
defgabcdefgabcdefgabcd

N-VLVSARRISEEMAKLKQKTEQLQDRIAGQARI NQAKVLLMQRH- C
N-VLVSARRISEEMAKLKQKTEQLQDRIAGQARINQAKVLLMQRH- C

defgabcdefgabcdefgabcd

: lqp9_1.0 -- 2 possible alignments
abcdefgabcdefgabcd

N-ELLKDNELKKLRERVKSL -C
N-WAEEAEKELLKDNELKKLRERVKSL-C

abcdefgabcdefgabcd

: lslc.l -- 7 possible alignments
abcdefgabcdefgabcd

N-KDIEILRRENEELTEKMKKAEEEYKLEKEEEISNLKAAFEKNINTERTLKTQAVNKLAEI-C
N-KDIEILRRENEELTEKMKKAEEEYKLEKEEEI SNLKAAFEKNINTERTLKTQAVNKLAEI-C

abcdefgabcdefgabcd

: lt6f.0 -- 5 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-SQYWKEVAEKRRKALYEALKENEKLHKEIEQKDNEIARLKKENKELAEVAEHVQYMAEL I -C
N-SQYWKEVAEKRRKALYEALKENEKLHKEIEQKDNEIARLKKENKELAEVAEHVQYMAELI-C

abcdefgabcdefgabcdefgabcdefgabcd

: ltu3_3.0 -- 4 possible alignments
abcdefgabcdefgabcdefgabcd

N-AQRLQTELDVSEQVQRDFVKLSQTLQVQLERIRQADSLERIRAILN- C
N-AQRLQTELDVSEQVQRDFVKLSQTLQVQLERIRQADSLERIRAILN-C

abcdefgabcdefgabcdefgabcd

: luii.0 -- 2 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga

N-WKEVAEKRRKALYEALKENEKLHKEIEQKDNEIARLKKENKELAEVAEHVQYMA- C
N-WKEVAEKRRKALYEALKENEKLHKEIEQKDNEIARLKKENKELAEVAEHVQYMA-C

defgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga

: lukl_1.3 -- 6 possible alignments
defgabcdefgabcdefgabcd

N-SINDKIIELKDLVMGTDAKMHKSGVLRKAIDYIKYLQQVNHKLRQENMVLKLANQKN- C
N-SINDKIIELKDLVMGTDAKMHKSGVLRKAIDYIKYLQQVNHKLRQENMVLKLANQKN-C

defgabcdefgabcdefgabcd

: luuj_2.0 -- 2 possible alignments
abcdefgabcdefgabcd

N-LEKKWTSVIRLQKKVMELESKLNEA-C
N-LEKKWTSVIRLQKKVMELESKLNEA-C

abcdefgabcdefgabcd
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: lwlq_1.0 -- 4 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcdefga

N-WKEVAEQRRKALYEALKENEKLHKEIEQKDSEIARLRKENKDLAEVAEHVQYMAEVIERLS -C
N-WKEVAEQRRKALYEALKENEKLHKEIEQKDSEIARLRKENKDLAEVAEHVQYMAEVI ERLS-C

defgabcdefgabcdefgabcdefgabcdefgabcdefga

: lwu9.0 -- 2 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-AAELMQQVNVLKLTVEDLEKERDFYFGKLRNIELICQEN-C
N-AAELMQQVNVLKLTVEDLEKERDFYFGKLRNIELICQEN- C

abcdefgabcdefgabcdefgabcdefgabcd

: lyhn.0 -- 2 possible alignments
abcdefgabcdefgabcdefgabcd

N-FEQILQERNELKAKVFLLKEELAYFQRELLTD- C
N-FEQILQERNELKAKVFLLKEELAYFQRELLTD-C

abcdefgabcdefgabcdefgabcd

: lyke_l.l -- 8 possible alignments
abcdefgabcdefgabcd

N-HQSRESLIMLLEEQLEYKRGEIREIEQVCKQV-C
N-AEEQLRKIDMLQKKLVEVEDEKIEAIKKKEKLLRHVDSLIEDFVDG-C

abcdefgabcdefgabcd

: lytz.0 -- 5 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcd

N-LRDKAKELWDWLYQLQTEKYDFAEQIKRKKYEIVTLRNR I DQA-C
N-LQELSKKLHAKIDSVDEERYDTEVKLQKTNKELEDLSQKLFDLRGKFKRP- C

defgabcdefgabcdefgabcdefgabcdefgabcd

:: zme.0 -- 3 possible alignments
abcdefgabcdefgabcd

N-IVVSTKYLQQLQKDLNDKTEENNRLKALLLER-C
N-IVVSTKYLQQLQKDLNDKTEENNRLKALLLER-C

abcdefgabcdefgabcd

: 2aze.0 -- 5 possible alignments
abcdefgabcdefgabcdefgabcdefga

N-CQNLEVERQRRLERIKQKQSQLQELILQQIAFKNLVQRNRHAE - C
N-LEGLTQDLRQLQESEQQLDHLMNICTTQLRLLSEDT-C
abcdefgabcdefgabcdefgabcdefga

: 2c91.0 -- 3 possible alignments
defgabcdefgabcdefgabcdefgabcd

N-RYKNRVAARKSRAKFKQLLQHYREVAAAKSSENDRLRLLLKQM-C
N-RYKNRVAARKSRAKFKQLLQHYREVAAAKSSENDRLRLLLKQM-C

defgabcdefgabcdefgabcdefgabcd

: 2coh.0 -- 3 possible alignments
defgabcdefgabcdefgabcd

N-LKDLAQHLSQGLAEAYRRIERLATQRLKNRMAAALL- C
N-LKDLAQHLSQGLAEAYRRIERLATQRLKNRMAAALL- C

defgabcdefgabcdefgabcd

211



: 2dfs.0 -- 9 possible alignments
abcdefgabcdefgabcdefgbcdefggabcdefgabcdef fgabcdef >

N-MNNLEITYSTETEKLRSDVERLRMSEEEAKNATNRVLSLQEEIAKLRKELHQTQTEKKTIEEWADKYKHETEQLVSELKEQNT >
N-MNNLEITYSTETEKLRSDVERLRMSEEEAKNATNRVLSLQEEIAKLRKELHQTQTEKKTIEEWADKYKHETEQLVSELKEQNT >

abcdefgabcdefgabcdefgdcdegabdefgabcdefgabcdefg fgabcdef >

> gabcdefga
> LLKTEKEELNRRIHDQAKEITETMEKKLVEETKQLELDLNDERL-C
> LLKTEKEELNRRIHDQAKEITETMEKKLVEETKQLELDLNDERL-C
> gabcdefga

: 2e7s_4.0 -- 13 possible alignments
abcdefgabcdefgabcd >

N-LEEQLNKSLKTIASQKAAIENYNQLKEDYNTLKRELSDRDDEVKRLREDIAKENELRTKAEEEADKLNKEVEDLTASLFDEAN >
N-LEEQLNKSLKTIASQKAAIENYNQLKEDYNTLKRELSDRDDEVKRLREDIAKENELRTKAEEEADKLNKEVEDLTASLFDEAN >

abcdefgabcdefgabcd >

> NLVADARMEKYAIEILNKRLTEQLRE-C
> NLVADARMEKYAIEILNKR-C

: 2fmy_1.0 -- 2 possible alignments
defgabcdefgabcdefgabcd

N-SLNMVKVLGDLLKNSLTIINGLVFKDARL-C
N-SLNMVKVLGDLLKNSLTIINGLVFKDARL-C

defgabcdefgabcdefgabcd

: 2fxo_2.0 -- 9 possible alignments
defgabcdefgfgabcdegabcdefgabdefgabcdefgabcdefgabcdefga >

N-REKEMASMKEEFTRLKEALEKSEARRKELEEKMVSLLQEKNDLQLQVQAEQDNLADAEERCDQLIKNKIQLEAKVKEMNKRLE >
N-REKEMASMKEEFTRLKEALEKSEARRKELEEKMVSLLQEKNDLQLQVQAEQDNLADAEERCDQLIKNKIQLEAKVKEMNKRLE >

defgabcdefgaefgafgabde abcde fgabedefgabdef defga >

> DEEEMNAELTAKKRKLEDECSELKRDIDDLELTL-C
> DEEEMNAELTAKKRKLEDECSELKRDIDDLELTL-C

: 2fxo_2.1 -- 11 possible alignments
abcdefgabcdef >

N-SAEREKEMASMKEEFTRLKEALEKSEARRKELEEKMVSLLQEKNDLQLQVQAEQDNLADAEERCDQLIKNKIQLEAKVKEMNK >
N-SAEREKEMASMKEEFTRLKEALEKSEARRKELEEKMVSLLQEKNDLQLQVQAEQDNLADAEERCDQLIKNKIQLEAKVKEMNK >

abcdefgabcdef >

> gabcdefgabcdefgabcdefgabcdefgabcd
> RLEDEEEMNAELTAKKRKLEDECSELKRDIDDL- C
> RLEDEEEMNAELTAKKRKLEDECSELKRDIDDL- C
> gabcdefgabcdefgabcdefgabcdefgabcd

: 2gau.0 -- 13 possible alignments
abcdefgabcdefgabcdefgabcd >

N-EALLKGNTSFCRYFLKALAKELGYAERRTVTLTQKHVRGRLAETLLILKENFGFENDGATLSIYLSREELATLSNMTVSNAIR >
N-EALLKGNTSFCRYFLKALAKELGYAERRTVTLTQKHVRGRLAETLLILKENFGFENDGATLSIYLSREELATLSNMTVSNAIR >

abcdefgabcdefgabcdefgabcd >

> TLSTFVSERMLALDGKRIKIIDCDRL-C
> TLSTFVSERMLALDGKRIKIIDCDRL-C
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: 2gzh.0 -- 2 possible alignments
abcdefgabcdefgabcdefgabcdefga

N-YEEVLQELVKHKELLRRKDTHIRELEDYIDNLLVRV-C
N-YEEVLQELVKHKELLRRKDTHIRELEDYIDNLLVRV-C

abcdefgabcdefgabcdefgabcdefga

: 2hg4_1.0 -- 2 possible alignments
abcdefgabcdefgabcd

N-EEKLRRYLKRTVTELDSVTARLREV-C
N-EEKLRRYLKRTVTELDSVTARLREV-C

abcdefgabcdefgabcd

: 2h15.0 -- 2 possible alignments
abcdefgabcdefgabcdefgabcd

N-VNVLKLTVEDLEKERDFYFGKLRNIELICQEN- C
N-VNVLKLTVEDLEKERDFYFGKLRNIELICQEN-C

abcdefgabcdefgabcdefgabcd

: 2hv8_2.0 -- 2 possible alignments
abcdefgabcdefgabcdefga

N-AEISSVSRDELMEAIQKQEEINFRLQDYIDRIIVAI-C
N-RDELMEAIQKQEEINFRLQDYIDRIIVAI-C
abcdefgabcdefgabcdefga

: 2iw5.1 -- 8 possible alignments
abcdefgabcdefgabcdefgabcd

N-KHVKDEQIEHWKKIVKTQEELKELLNKMVNLKEKIKELHQQYKEAS-C
N-VEAVSANATAATTVLRQLDMELVSVKRQIQNIKQTNSALKEKLDGG-C

abcdefgabcdefgabcdefgabcd

: 2ncd.0 -- 3 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-TEELLRCNEQQAAELETCKEQLFQSNMERKELHNTVMDLRGN I RVF -C
N-TEELLRCNEQQAAELETCKEQLFQSNMERKELHNTVMDLRGN I RVF -C

abcdefgabcdefgabcdefgabcdefgabcd

: 2ocy.l -- 18 possible alignments
defgabcdefgabcdefga >

N-QLIESVDKQSHLEEQLNKSLKTIASQKAAIENYNQLKEDYNTLKRELSDRDDEVKRLREDIAKENELRTKAEEEADKLNKEVE >
N-QLIESVDKQSHLEEQLNKSLKTIASQKAAIENYNQLKEDYNTLKRELSDRDDEVKRLREDIAKENELRTKAEEEADKLNKEVE >

defgabcdefgabcdefga >

> DLTASLFDEANNMVADARKEKYAIEILNKRLTEQLREKDTLLDTLTLQLKNLKKV-C
> DLTASLFDEANNMVADARKEKYAIEILNKRLTEQLREKDTLLDTLTLQLKNLKKV-C

: 2ocy.2 -- 17 possible alignments

N-STQLIESVDKQSHLEEQLNKSLKTIASQKAAIENYNQLKEDYNTLKRELSDRDDEVKRLREDIAKENELRTKAEEEADKLNKE >
N-STQLIESVDKQSHLEEQLNKSLKTIASQKAAIENYNQLKEDYNTLKRELSDRDDEVKRLREDIAKENELRTKAEEEADKLNKE >

> abcdefgabcdefgabcdefgabcdefga
> VEDLTASLFDEANNMVADARKEKYAIEILNKRLTEQLREKDTLLDTLTLQLKNLKKVM-C
> VEDLTASLFDEANNMVADARKEKYAIEILNKRLTEQLREKDTLLDTLTLQLKNLKKVM-C
> abcdefgabcdefgabcdefgabcdefga

: bbz2 C EBPbeta+44_CEBPalpha -- 12 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcd

N-SKAKKSVDKHSDEYKIRRERNNIAVRKSRDKAKMRNLETQHKVLELTAENERLQKKVEQLSRELSTLRNLFKQL-C
N-GKAKKSVDKNSNEYRVRRERNNIAVRKSRDKAKQRNVETQQKVLELTSDNDRLRKRVEQLSRELDTLRGIFRQL- C

abcdefgabcdefgabcdefgabcdefgabcdefgabcd

: bbz3_CEBPgamma+35_ATF4 -- 12 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcdefga

N-SSSMDRNSDEYRQRRERNNMAVKKSRLKSKQKAQDTLQRVNQLKEENERLEAKIKLLTKELSVLKDLFLEHAHNL- C
N-AKVKGEKLDKKLKKMEQNKTAATRYRQKKRAEQEALTGECKELEKKNEALKERADSLAKEIQYLKDLIEEVRKAR-C

defgabcdefgabcdefgabcdefgabcdefgabcdefga
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abcdefgabcdefgabcdef >
N-RAAASRCRQKRKLWVSSLEKKAEELTSQNIQLSN >

N-VKKEAGENAAALSDDELVSMSVRELNQHLRGLTREEVVRLKQRRRTLKNRGYAASCRIKRVTQKEELERQRVELQQEVEKLAR >
abcdefgabcdefgabcdef >

> gabcdefgabcdefgabcd
> EVTLLRNEVAQLKQLLLAH-C
> ENSSMRLELDALRSKYEALQTFARTV-C
> gabcdefgabcdefgabcd

: bbz5_ATF_2+10_FOS -- 8 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcd

N-RKFLERNRAAASRCRQKRKVWVQSLEKKAEDLSSLNGQLQSEVTLLRNEVAQLKQLLLAH-C
N-RIRRERNKMAAAKCRNRRRELTDTLQAETDQLEDEKSALQTEIANLLKEKEKLEFILAAH-C

abcdefgabcdefgabcdefgabcdefgabcdefgabcd

: bbz6_CREBPA+28_JUN -- 11 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcd

N-RKFLERNRAAATRCRQKRKVWVMSLEKKAEELTQTNMQLQNEVSMLKNEVAQLKQLLLTH-C
N-SQERIKAERKRMRNRIAASKCRKRKLERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNHVNSGCQLMLTQQLQ-C

abcdefgabcdefgabcdefgabcdefgabcdefgabcd

: bbz7 ATF1+52_CREM -- 8 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-REAARECRRKKKEYVKCLENRVAVLENQNKTLIEELKTLKDLYSNK-C
N-EEATRKRELRLMKNREAARECRRKKKEYVKCLENRVAVLENQNKTLIEELKALKDLYCHK-C

abcdefgabcdefgabcdefgabcdefgabcd

: bbz7_ATF_1+7_ATF_1 -- 3 possible alignments
abcdefgabcdefgabcdefgabcdefgabcd

N-REAARECRRKKKEYVKCLENRVAVLENQNKTLIEELKTLKDLYSNK-C
N-REAARECRRKKKEYVKCLENRVAVLENQNKTLIEELKTLKDLYSNK-C

abcdefgabcdefgabcdefgabcdefgabcd

bZIPs

: bzO_FOS+27 JUNB -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ELTDTLQAETDQLEDEKSALQTEIANLLKEKEKLEFILAAHR-C
N-ERIARLEDKVKTLKAENAGLSSTAGLLREQVAQLKQKVMTH-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bzlO0_FOS+28_JUN -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ELTDTLQAETDQLEDEKSALQTEIANLLKEKEKLEFILAAHR-C
N-ERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNH-C

fgabcdefgabcdefgabcdefgabcdefgabcd
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: bzlO0FOS+48_JUND -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcde

N-ELTDTLQAETDQLEDEKSALQTEIANLLKEKEKLEFILAAHR-C
N-ERISRLEEKVKTLKSQNTELASTASLLREQVAQLKQKVL SHV-C

fgabcdefgabcdefgabcdefgabcdefgabcde

: bzll_FRA1+27_JUNB -- 4 possible alignments

fgabcdefgabcdefgabcdefgabcdefgabcd
N-ELTDFLQAETDKLEDEKSGLQREIEELQKQKERLELVLEAHR- C
N-ERIARLEDKVKTLKAENAGLSSTAGLLREQVAQLKQKVMTH-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bzllFRAI+28_JUN -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ELTDFLQAETDKLEDEKSGLQREIEELQKQKERLELVLEAHR-C
N-ERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNH-C
fgabcdefgabcdefgabcdefgabcdefgabcd

: bzll_FRA1+48_JUND -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcde

N-ELTDFLQAETDKLEDEKSGLQREIEELQKQKERLELVLEAHR- C
N-ERISRLEEKVKTLKSQNTELASTASLLREQVAQLKQKVLSHV-C

fgabcdefgabcdefgabcdefgabcdefgabcde

: bz14_ATF_6+14_ATF 6 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdef

N-EYMLGLEARLKAALSENEQLKKENGTLKRQLDEVVSENQRLKV- C
N-EYMLGLEARLKAALSENEQLKKENGTLKRQLDEVVSENQRLKV-C

fgabcdefgabcdefgabcdefgabcdefgabcdef

: bzl4_ATF_6+19_XBP_1 -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-EYMLGLEARLKAALSENEQLKKENGTLKRQLDEVVS ENQRLKV-C
N-ARMSELEQQVVDLEEENQKLLLENQLLREKTHGLVVENQEL-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bzl5_CREB3+63_BBF2 -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg

N-VYVGGLESRVLKYTAQNMELQNKVQLLEEQNLSLLDQLRKLQAMVI E I SNKTSS-C
N-EYVECLEKKVETFTSENNELWKKVETLENANRTLLQQLQKLQTLVTNKISR-C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg

: bzl6_unknown_+16 unknown_1 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdef

N-EYIDGLESRVAACSAQNQELQKKVQELERHNISLVAQLRQLQTLIAQTSNKAAQT ST-C
N-EYIDGLESRVAACSAQNQELQKKVQELERHNISLVAQLRQLQTLIAQTSNKAAQT ST-C

fgabcdefg fgabcdefgabcdefgabcdefgabcdefgabcdef

: bzl6_unknown_+63_BBF2 -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg

N-EYIDGLESRVAACSAQNQELQKKVQELERHNISLVAQLRQLQTLIAQTSNKAAQTST-C
N-EYVECLEKKVETFTSENNELWKKVETLENANRTLLQQLQKLQTLVTNKISR-C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg

: bz8_MAFB+41 C MAF -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefga

N-QQKHHLENEKTQLIQQVEQLKQEVSRLARERDAYKVKCEKLANSG-C
N-QQRHVLESEKNQLLQQVDHLKQEISRLVRERDAYKEKYEKLVSSGFREN-C

fgabcdefgabcdefgabcdefgabcdefgabcdefga
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: bzl9_XBP_1+19_XBP_1 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ARMSELEQQVVDLEEENQKLLLENQLLREKTHGLVVENQE L - C
N-ARMSELEQQVVDLEEENQKLLLENQLLREKTHGLVVENQEL -C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bzl9 XBP 1+43_HCF -- 5 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ARMSELEQQVVDLEEENQKLLLENQLLREKTHGLVVENQEL -C
N-EYVMGLESRVRGLAAENQELRAENRELGKRVQALQEE SRYLRAVLANETGL- C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bzl_C_EBPepsilon+l _CEBPepsilon -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-RRILETQQKVLEYMAENERLRSRVEQLTQELDTLRNLFRQI-C
N-RRILETQQKVLEYMAENERLRSRVEQLTQELDTLRNLFRQI-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bzl_C_EBPepsilon+38_DDIT3 -- 5 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-RRILETQQKVLEYMAENERLRSRVEQLTQELDTLRNLFRQI-C
N-EKEQENERKVAQLAEENERLKQEIERLTREVEATRRAL I DRMVNLHQA- C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz20_NFE2L3+42_MAFG -- 5 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-DIILNLEDDVCNLQAKKETLKREQAQCNKAINIMKQKLHDL-C
N-TQKEELEKQKAELQQEVEKLASENASMKLELDALRSKYEALQTFARTVARS-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz20_NFE2L3+55_MAFK -- 5 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-DIILNLEDDVCNLQAKKETLKREQAQCNKAINIMKQKLHDL-C
N-TQKEELERQRVELQQEVEKLARENSSMRLELDALRSKYEALQ TFARTVAR-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz22 NFE2L1+42_MAFG -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefga

N-DTILNLERDVEDLQRDKARLLREKVEFLRSLRQMKQKVQS LYQEV-C
N-TQKEELEKQKAELQQEVEKLASENASMKLELDALRSKYEALQTFARTVARS -C

fgabcdefgabcdefgabcdefgabcdefgabcdefga

: bz22_NFE2L+55_MAFK -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefga

N-DTILNLERDVEDLQRDKARLLREKVEFLRSLRQMKQKVQSLYQEV- C
N-TQKEELERQRVELQQEVEKLARENSSMRLELDALRSKYEALQTFARTVAR- C

fgabcdefgabcdefgabcdefgabcdefgabcdefga

: bz23_NFE2+23_NFE2 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdef

N-ETIVQLERELERLTNERERLLRARGEADRTLEVMRQQLTELYR-C
N-ETIVQLERELERLTNERERLLRARGEADRTLEVMRQQL TELYR- C

fgabcdefgabcdefgabcdefgabcdefgabcdef

: bz24_NFE2L2+42_MAFG -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefga

N-ENIVELEQDLDHLKDEKEKLLKEKGENDKSLHLLKKQLSTLYLEV- C
N-TQKEELEKQKAELQQEVEKLASENASMKLELDALRSKYEALQTFARTVARS-C

fgabcdefgabcdefgabcdefgabcdefgabcdefga
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: bz24_NFE2L2+55_MAFK -- 4 possible alignments

fgabcdefgabcdefgabcdefgabcdefgabcdefga
N-ENIVELEQDLDHLKDEKEKLLKEKGENDKSLHLLKKQLSTLYLEV-C
N-TQKEELERQRVELQQEVEKLARENSSMRLELDALRSKYEALQTFARTVAR- C

fgabcdefgabcdefgabcdefgabcdefgabcdefga

: bz26_BACH1+42_MAFG -- 5 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-DCIQNLESEIEKLQSEKESLLKERDHILSTLGETKQNLTGL- C
N-TQKEELEKQKAELQQEVEKLASENASMKLELDALRSKYEALQTFARTVARS-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz26_BACH1+55_MAFK -- 5 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-DCIQNLESEIEKLQSEKESLLKERDHILSTLGETKQNLTGL-C
N-TQKEELERQRVELQQEVEKLARENSSMRLELDALRS KYEALQTFARTVAR- C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz27_JUNB+29_p21SNFT -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ERIARLEDKVKTLKAENAGLSSTAGLLREQVAQLKQKVMT H-C
N-QKADKLHEEYESLEQENTMLRREIGKLTEELKHLTEALKEHEKMC-C

fgabcdefgabcdefgabcdefgabcdefgabcd

:: bz27_JUNB+47_BATF -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ERIARLEDKVKTLKAENAGLSSTAGLLREQVAQLKQKVMTH-C
N-QKADTLHLESEDLEKQNAALRKEIKQLTEELKYFTSVLNSHE-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz28_JUN+29_p21SNFT -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNH - C
N-QKADKLHEEYESLEQENTMLRREIGKLTEELKHLTEALKEHEKMC-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz28_JUN+47_BATF -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNH-C
N-QKADTLHLESEDLEKQNAALRKEIKQLTEELKYFTSVLNSHE- C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz29_p21SNFT+38_DDIT3 -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefga

N-QKADKLHEEYESLEQENTMLRREIGKLTEELKHLTEALKEHEKMC- C
N-EKEQENERKVAQLAEENERLKQEIERLTREVEATRRALIDRMVNLHQA-C

fgabcdefgabcdefgabcdefgabcdefgabcdefga

: bz29_p21SNFT+48_JUND -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcde

N-QKADKLHEEYESLEQENTMLRREIGKLTEELKHLTEALKEHEKMC-C
N-ERISRLEEKVKTLKSQNTELASTASLLREQVAQLKQKVL S HV-C

fgabcdefgabcdefgabcdefgabcdefgabcde

: bz2 C EBPbeta+38_DDIT3 -- 5 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-MRNLETQHKVLELTAENERLQKKVEQLSRELSTLRNLFKQL-C
N-EKEQENERKVAQLAEENERLKQEIERLTREVEATRRAL I DRMVNLHQA-C

fgabcdefgabcdefgabcdefgabcdefgabcd
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: bz31_TEF+31_TEF -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefg

N-LKENQITIRAAFLEKENTALRTEVAELRKEVGKCKTIVSKYETK- C
N-LKENQITIRAAFLEKENTALRTEVAELRKEVGKCKTIVSKYETK-C

fgabcdefgabcdefgabcdefgabcdefgabcdefg

: bz31_TEF+60_DBP -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefg

N-LKENQITIRAAFLEKENTALRTEVAELRKEVGKCKTIVSKYETK-C
N-LKENQISVRAAFLEKENALLRQEVVAVRQELSHYRAVL SRYQAQ-C

fgabcdefgabcdefgabcdefgabcdefgabcdefg

: bz32_E4BP4+32 E4BP4 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcde

N-LNDLVLENKLIALGEENATLKAELLSLKLKFGL IS-C
N-LNDLVLENKLIALGEENATLKAELLSLKLKFGLIS-C

fgabcdefgabcdefgabcdefgabcde

: bz35_ATF4+44 CEBPalpha -- 5 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-AEQEALTGECKELEKKNEALKERADSLAKEIQYLKDLIEEVRKARGKKRV-C
N-QRNVETQQKVLELTSDNDRLRKRVEQLSRELDTLRG I FRQL - C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz38_DDIT3+44_CEBPalpha -- 5 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-EKEQENERKVAQLAEENERLKQEIERLTREVEATRRAL I DRMVNLHQA-C
N-QRNVETQQKVLELTSDNDRLRKRVEQLSRELDTLRGI FRQL-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz38_DDIT3+47_BATF -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcde

N-EKEQENERKVAQLAEENERLKQEIERLTREVEATRRAL I DRMVNLHQA- C
N-QKADTLHLESEDLEKQNAALRKEIKQLTEELKYFTSVLNSHE-C

fgabcdefgabcdefgabcdefgabcdefgabcde

: bz38_DDIT3+60_DBP -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefg

N-EKEQENERKVAQLAEENERLKQEIERLTREVEATRRAL I DRMVNLHQA-C
N-LKENQISVRAAFLEKENALLRQEVVAVRQELSHYRAVLSRYQAQ- C

fgabcdefgabcdefgabcdefgabcdefgabcdefg

: bz3_C EBPgamma+33_ATF5 -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabc

N-QKAQDTLQRVNQLKEENERLEAKIKLLTKELSVLKDLFLEHAHNLAD- C
N-AEGEALEGECQGLEARNRELKERAESVEREIQYVKDLLIEVYKARSQ-C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabc

: bz3 C_EBPgamma+35 ATF4 -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabc

N-QKAQDTLQRVNQLKEENERLEAKIKLLTKELSVLKDLFLEHAHNLAD- C
N-AEQEALTGECKELEKKNEALKERADSLAKEIQYLKDLIEEVRKARGKKRV-C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabc

: bz3_C_EBPgamma+38_DDIT3 -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabc

N-QKAQDTLQRVNQLKEENERLEAKIKLLTKELSVLKDLFLEHAHNLAD- C
N-EKEQENERKVAQLAEENERLKQEIERLTREVEATRRALIDRMVNLHQA- C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabc
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: bz3_CEBPgamma+47_BATF -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcde

N-QKAQDTLQRVNQLKEENERLEAKIKLLTKELSVLKDLFLEHAHNLAD-C
N-QKADTLHLESEDLEKQNAALRKEIKQLTEELKYFTSVLNSHE-C

fgabcdefgabcdefgabcdefgabcdefgabcde

: bz3_CEBPgamma+6_CREBPA -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefg

N-QKAQDTLQRVNQLKEENERLEAKIKLLTKELSVLKDLFLEHAHNLAD- C
N-VWVMSLEKKAEELTQTNMQLQNEVSMLKNEVAQLKQLLLTHKDC- C

fgabcdefgabcdefgabcdefgabcdefgabcdefg

:: bz41 C MAF+41 C MAF -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabcde

N-QQRHVLESEKNQLLQQVDHLKQEISRLVRERDAYKEKYEKLVSSGFREN-C
N-QQRHVLESEKNQLLQQVDHLKQEISRLVRERDAYKEKYEKLVSSGFREN-C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabcde

: bz43_HCF+43_HCF -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg

N-EYVMGLESRVRGLAAENQELRAENRELGKRVQALQEESRYLRAVLANETGL-C
N-EYVMGLESRVRGLAAENQELRAENRELGKRVQALQEESRYLRAVLANETGL-C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg

: bz44_CEBPalpha+44_CEBPalpha -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-QRNVETQQKVLELTSDNDRLRKRVEQLSRELDTLRG I FRQL - C
N-QRNVETQQKVLELTSDNDRLRKRVEQLSRELDTLRG I FRQL-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz47_BATF+48_JUND -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcde

N-QKADTLHLESEDLEKQNAALRKEIKQLTEELKYFTSVLNSHE- C
N-ERISRLEEKVKTLKSQNTELASTASLLREQVAQLKQKVL S HV-C

fgabcdefgabcdefgabcdefgabcdefgabcde

: bz49_CREBH+49_CREBH -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdef

N-EYIDGLETRMSACTAQNQELQRKVLHLEKQNLSLLEQLKKLQAIVVQS TS-C
N-EYIDGLETRMSACTAQNQELQRKVLHLEKQNLSLLEQLKKLQAIVVQS TS-C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdef

: bz4_ATF_7+27_JUNB -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-LWVSSLEKKAEELTSQNIQLSNEVTLLRNEVAQLKQLLLAHKDC- C
N-ERIARLEDKVKTLKAENAGLSSTAGLLREQVAQLKQKVMTH-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz4_ATF_7+28_JUN -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-LWVSSLEKKAEELTSQNIQLSNEVTLLRNEVAQLKQL L LAHKDC - C
N-ERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNH - C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz4_ATF_7+48_JUND -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcde

N-LWVSSLEKKAEELTSQNIQLSNEVTLLRNEVAQLKQLLLAHKDC-C
N-ERISRLEEKVKTLKSQNTELASTASLLREQVAQLKQKVL SHV-C

fgabcdefgabcdefgabcdefgabcdefgabcde
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: bz51_CREBdelta+51_CREBdelta -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdef

N-EYVKCLENRVAVLENQNKTLIEELKALKDLYCHKSD-C
N-EYVKCLENRVAVLENQNKTLIEELKALKDLYCHKSD-C

fgabcdefgabcdefgabcdefgabcdef

: bz51_CREBdelta+52_CREM -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdef

N-EYVKCLENRVAVLENQNKTLIEELKALKDLYCHKSD- C
N-EYVKCLENRVAVLENQNKTLIEELKALKDLYCHKVE-C

fgabcdefgabcdefgabcdefgabcdef

: bz52_CREM+52_CREM -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdef

N-EYVKCLENRVAVLENQNKTLIEELKALKDLYCHKVE-C
N-EYVKCLENRVAVLENQNKTLIEELKALKDLYCHKVE- C

fgabcdefgabcdefgabcdefgabcdef

: bz59_HLF+59_HLF -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefga

N-LKENQIAIRASFLEKENSALRQEVADLRKELGKCKNILAKYEARH-C
N-LKENQIAIRASFLEKENSALRQEVADLRKELGKCKNILAKYEARH-C

fgabcdefgabcdefgabcdefgabcdefgabcdefga

: bz5_ATF 2+28_JUN -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-VWVQSLEKKAEDLSSLNGQLQSEVTLLRNEVAQLKQLLLAHKDC - C
N-ERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNH - C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz63_BBF2+63_BBF2 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg

N-EYVECLEKKVETFTSENNELWKKVETLENANRTLLQQLQKLQTLVTNKISR-C
N-EYVECLEKKVETFTSENNELWKKVETLENANRTLLQQLQKLQTLVTNKISR-C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg

: bz6_CREBPA+27_JUNB -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-VWVMSLEKKAEELTQTNMQLQNEVSMLKNEVAQLKQLLLTHKDC-C
N-ERIARLEDKVKTLKAENAGLSSTAGLLREQVAQLKQKVMT H - C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz6_CREBPA+28_JUN -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-VWVMSLEKKAEELTQTNMQLQNEVSMLKNEVAQLKQLLLTHKDC-C
N-ERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNH - C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz6_CREBPA+48_JUND -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcde

N-VWVMSLEKKAEELTQTNMQLQNEVSMLKNEVAQLKQLLLTHKDC -C
N-ERISRLEEKVKTLKSQNTELASTASLLREQVAQLKQKVL SHV-C

fgabcdefgabcdefgabcdefgabcdefgabcde

: bz7 ATF_1+51_CREBdelta -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdef

N-EYVKCLENRVAVLENQNKTLIEELKTLKDLYSNKSV- C
N-EYVKCLENRVAVLENQNKTLIEELKALKDLYCHKSD-C

fgabcdefgabcdefgabcdefgabcdef
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: bz7_ATF_1+52_CREM -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdef

N-EYVKCLENRVAVLENQNKTLIEELKTLKDLY SNKSV- C
N-EYVKCLENRVAVLENQNKTLIEELKALKDLYCHKVE-C

fgabcdefgabcdefgabcdefgabcdef

:: bz7_ATF 1+7_ATF _1 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdef

N-EYVKCLENRVAVLENQNKTLIEELKTLKDLYSNKSV-C
N-EYVKCLENRVAVLENQNKTLIEELKTLKDLYSNKSV- C

fgabcdefgabcdefgabcdefgabcdef

: bz8_FOSB+27_JUNB -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ELTDRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHK- C
N-ERIARLEDKVKTLKAENAGLSSTAGLLREQVAQLKQKVMTH-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz8_FOSB+28_JUN -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ELTDRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHK- C
N-ERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNH-C

fgabcdefgabcdefgabcdefgabcdefgabcd

:: bz8_FOSB+48_JUND -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcde

N-ELTDRLQAETDQLEEEKAELESEIAELQKEKERLEFVLVAHK-C
N-ERISRLEEKVKTLKSQNTELASTASLLREQVAQLKQKVLSHV-C

fgabcdefgabcdefgabcdefgabcdefgabcde

: bz9_FRA2+27_JUNB -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ELTEKLQAETEELEEEKSGLQKEIAELQKEKEKLEFMLVAHG-C
N-ERIARLEDKVKTLKAENAGLSSTAGLLREQVAQLKQKVMTH-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz9_FRA2+28_JUN -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcd

N-ELTEKLQAETEELEEEKSGLQKEIAELQKEKEKLEFMLVAHG-C
N-ERIARLEEKVKTLKAQNSELASTANMLREQVAQLKQKVMNH-C

fgabcdefgabcdefgabcdefgabcdefgabcd

: bz9 FRA2+48_JUND -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcde

N-ELTEKLQAETEELEEEKSGLQKEIAELQKEKEKLEFMLVAHG-C
N-ERISRLEEKVKTLKSQNTELASTASLLREQVAQLKQKVL SHV-C

fgabcdefgabcdefgabcdefgabcdefgabcde

: bzCC156+CC156 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdef

N-QRMKQLEDKVEELLSKNYHLENEVARLKKLVGDAAR- C
N-QRMKQLEDKVEELLSKNYHLENEVARLKKLVGDAAR- C

fgabcdefgabcdefgabcdefgabcdef

: bzCC163+CC163 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefg

N-LKEKELESSIHELTEIAASLQKRIHTLETENKLLKNLVLS SGET-C
N-LKEKELESSIHELTEIAASLQKRIHTLETENKLLKNLVLSSGET-C

fgabcdefgabcdefgabcdefgabcdefgabcdefg
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: bzCC40+CC40 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcde fgabcdefgabcd

N-NKLQVLEETIESLSKVVKNYETKLNRLQNELQAKESENHALKQKLETLTLKQASV-C
N-NKLQVLEETIESLSKVVKNYETKLNRLQNELQAKESENHALKQKLETLT LKQASV-C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcd

: bzCC66+CC163 -- 4 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefg

N-QKNFENMNKLQNLNTQINKLRDRIEQLNKENEFWKAKLNDINEIKS-C
N-LKEKELESSIHELTEIAASLQKRIHTLETENKLLKNLVLSSGET-C

fgabcdefgabcdefgabcdefgabcdefgabcdefg

: bzSCbZ_1+SCbZ_1 -- 2 possible alignments
fgabcdefgabcdefgabcdefgab

N-ERLEELEKKEAQLTVTNDQIHILKKENELLHF-C
N-ERLEELEKKEAQLTVTNDQIHILKKENELLHF- C

fgabcdefgabcdefgabcdefgab

: bzSCbZ_8+SCbZ 8 -- 2 possible alignments
fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga

N-TRIQVLEEKVEMLHNLVDDWQRKYKLLESEFSDTKENLQKSIALNNELQKAL- C
N-TRIQVLEEKVEMLHNLVDDWQRKYKLLESEFSDTKENLQKSIALNNELQKAL - C

fgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefga

Parallel Heterodimers

: ljld_1.0 -- 6 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcdefga

N-REKKKKILAERRKVLAIDHLNEDQLREKAKELWQTIYNLEAEKFDLQEKFKQQKYEINVLRNRI-C
N-LELAGLGFAELQDLARQLHARVDKVDEERYDIEAKVTKNITEIADLTQKI- C

abcdefgabcdefgabcdefgabcdefgabcdefgabcdefga

: lyke_l.l -- 8 possible alignments
abcdefgabcdefgabcd

N-HQSRESLIMLLEEQLEYKRGEIREIEQVCKQV-C
N-AEEQLRKIDMLQKKLVEVEDEKIEAIKKKEKLLRHVDSLIEDFVDG-C

abcdefgabcdefgabcd

: lytz.0 -- 5 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcd

N-LRDKAKELWDWLYQLQTEKYDFAEQIKRKKYEIVTLRNR I DQA- C
N-LQELSKKLHAKIDSVDEERYDTEVKLQKTNKELEDLSQKLFDLRGKFKRP- C

defgabcdefgabcdefgabcdefgabcdefgabcd

: 2aze.0 -- 5 possible alignments
abcdefgabcdefgabcdefgabcdefga

N-CQNLEVERQRRLERIKQKQSQLQELILQQIAFKNLVQRNRHAE-C
N-LEGLTQDLRQLQESEQQLDHLMNICTTQLRLL SEDT- C

abcdefgabcdefgabcdefgabcdefga

: 2iw5.1 -- 8 possible alignments
abcdefgabcdefgabcdefgabcd

N-KHVKDEQIEHWKKIVKTQEELKELLNKMVNLKEKIKELHQQYKEAS-C
N-VEAVSANATAATTVLRQLDMELVSVKRQIQNIKQTNSALKEKLDGG-C

abcdefgabcdefgabcdefgabcd
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bbz3-C-EBPgamma-r35_ATF4 -- 12 possible alignments
defgabcdefgabcdefgabcdefgabcdefgabcdefga

N-SSSMDRNSDEYRQRRERNNMAVKKSRLKSKQKAQDTLQRVNQLKEENERLEKIKLLTKELSVLKDLFLEHL-C
N-KKELKLKENTARRKREELGEKLKNAKRDLKIYKLEVKRC

defgabcdefgabcdefgabcdefgabcdefgabcdefga

bbz5-ATF2+1-lOFOS -- 8 possible alignments
abcdefgabcdefgabcdefgabcdefgabcdefgabcd

N -RKF LERNRAAAS RCRQKRKVWVQSLEKKAEDLSSLNGQLQSEVTLLRNEVAQLKQLLLAH-C
N-RIRRERNKMAAAKCRNRRRELTDTLQAETDQLEDEKSALQTEIANLLKEKEKLEFILAAH-C

abcdefgabcdefgabcdefgabcdefgabcdefgabcd

*giI2ll9236IpirI ,I37984+gill86772.Q.O -- 14 possible alignments

abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabc>
N-IDDLKDQIVDLTVGNKTLLDIDNTRMTLDDFRIKFEMQNLRQGVDADINGLRQVLDNLTMEKSDLEMQYETLQEELMALKK >

N-INNLRRRVDQLKSDQSRLDSELKNMQDMVEDYRNKYEDEINKRTNAENEFVTIKKDVDGAYMTKVDLQAKLDNLQQE IDFLTA >

abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabc>

" NHKE-C
" LYQA-C

giI5477491spIP13645IKlCJ_+giil86772.0.Q -- 14 possible alignments

abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabC
N-IDDLKNQILNLTTDNANILLQIDNARLAADDFRLKYENEVALRQSVEADINGLRRVLDELTLTKADLEMQIESLTEELAYLKK >

N-INNLRRRVDQLKSDQSRLDSELKNMQDMVEDYRNKYEDEINKRTNAENEFVTIKKDVDGAYMTKVDLQAKLDNLQQEIDFLTA >
abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabc>

> NHEE-C
> LYQA-C
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