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Abstract

The results of a theoretical and experimental investigation of the free modes that

propagate on the strip transmission line are reported. A Fourier integral solution is

obtained for the free modes. Since the integrals must be solved by numerical methods,

approximate equations for the phase velocity, attenuation, and the characteristic

impedance are developed for the "two-conductor" H-E mode. It is shown that a static

assumption for the H-E mode is good only as a first approximation. In the course of

the discussion, it is proved that the only free modes that may exist on any n-conductor

system of arbitrary but constant cross section in homogeneous and simply connected

space are TEM modes.

Previously known methods for the determination of the guide wavelength and attenu-

ation required that the standing waves of the strip transmission line be known. It was

found that these could not be measured directly. Since precedent measuring methods

were found to be inadequate, a new simple method for measuring the attenuation of any

transmission line through a junction is presented.



I



I. INTRODUCTION

Conventional microwave systems are bulkier, heavier, and costlier than is desirable

in applications to airborne equipment. These limitations have prompted the investiga-

tion of various types of miniaturized microwave systems. If such a structure is to be

an acceptable substitute for present-day systems, it should possess the following

propertie s:

(1) The ohmic and dielectric losses should be low for efficient transmission of
power.

(2) The radiation must be negligibly small to achieve low cross talk.

(3) The fields of the dominant mode must be confined to a small region about the
system so that the system will be electrically and physically small.

(4) The system should propagate energy in essentially only one mode for simplicity
of design within the desired frequency band.

(5) For ease in production, the transmission line should not be critical to small
changes in the physical constants of the system.

The proposed structure should also be lightweight and compact.

The conventional microwave transmission systems are the waveguide and coaxial

line. Although the waveguide has good electrical properties, it does not fulfill the

requirements given above because of its bulk, expense, and weight. The coaxial line

does not meet the requirements because of its high cost and high loss for miniature

sizes (approximately 0. 6 db/ft at S-band frequencies with teflon dielectric). Also, both

systems require couplings at every junction; this requirement increases the loss of the

junction, narrows its bandwidth, and greatly increases the cost of production.

One of the first proposed miniature microwave transmission lines was the dielectric

coated wire (the Goubau line), which propagates energy as surface waves somewhat sim-

ilar to the Sommerfeld wave (1). Although this structure is physically small and has a

low attenuation, it does not meet the criteria set forth: the fields of the dominant E-mode

are not confined to a small region about the wire, making the line electrically large;

a discontinuity will cause radiation, making it difficult to support the line and increasing

cross talk.

With none of these structures can a given microwave network be mass-produced

cheaply and simply. Printed circuits, since their introduction early in 1945 for low-

frequency application, have been demonstrated to be amenable to efficient and cheap

manufacture. Thus, a microwave structure which could be produced by conventional

printed circuit techniques would be desirable.

Several types of printed microwave transmission lines have been suggested. Among

the proposed structures are: the "dielectric sandwich" (2), which consists of a con-

ducting metal strip separated from parallel ground planes on either side of it by dielec-

tric sheets (Fig. 1); the "high-Q line" (3), which consists of conducting metal strips

placed on either side of a thin dielectric sheet supported between two parallel ground

planes (Fig. 2); the "air-strip line" (4), which consists of a metal strip supported above
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Fig. 1 Fig. 2

Sandwich line. High-Q line.

Fig. 3 Fig. 4

Air-strip line. Microstrip line.

a ground plane by a dielectric sheet above the strip (Fig. 3); and the "strip line" (5),

in which a metal strip is separated from a ground plane by a dielectric sheet (Fig. 4).

The major purpose of this report is to contribute to the analysis of the electrical

properties of the strip line.

II. SURFACE WAVES

Before a mathematical analysis is given, a heuristic analysis of the structure will

present some knowledge of the types and the characteristics of the free modes that may

be expected to propagate on such a structure. By "free (or natural) modes" will be

meant those modes whose propagation constants, n', are determined solely by the geo-

metrical and electrical constants of the system.

Consider, first, the strip line (Fig. 4) with the conducting metal strip removed.

The types of free modes that this type of structure will support may be studied from an

analysis of an infinite ground plane covered with a dielectric sheet of thickness, d. The

free modes for such a structure are surface waves whose fields decay exponentially

from the surface of the dielectric sheet (6, 7). As opposed to closed boundary struc-

tures, the dominant surface-wave mode is an E-mode that may propagate down to zero

frequency. Also, for decreasing frequency, dielectric thickness, or dielectric constant,

the longitudinal component of the field decreases more rapidly than the transverse com-

ponents, and the exponential decay of the fields from the surface of the dielectric sheet

is less rapid (4). Thus, the wave approaches a plane wave, and the energy distributes

itself more evenly over all space. Therefore, as the frequency, dielectric thickness,

or dielectric constant is decreased, the surface-wave E-mode becomes more difficult

to excite, and the coupling of a given antenna (such as a conducting metal strip on the

surface of the dielectric) to this mode decreases.

The next order surface-wave mode that may propagate is an H-mode. This mode

will begin to propagate at a frequency wd = c/dX , where c is the velocity of light in
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free space (3 X 108 meters/second), d is the thickness of the dielectric sheet, X is the

electric susceptibility of the dielectric sheet, and wd is the divergence frequency of the

H-mode. The term divergence frequency is used instead of cut-off frequency because

below this frequency the mode does not exist; that is, there are no H-mode solutions of

Maxwell's equations (8). This is as opposed to closed boundary structures, where the

mode still exists below its cut-off frequency but with a real propagation constant.

Thus, if for a given maximum frequency and dielectric constant it is desired that no

higher order surface waves exist, the dielectric thickness must be less than

d= c (i)d - 1/z (1)
oidX

III. THE H-E MODE

In addition to perturbing the surface waves, a conducting metal strip will intro-

duce a "two-conductor" mode. This is the free mode of main interest, since its fields

should be confined to a small region about the strip. It is recognized that this mode will

be a TEM mode perturbed by the presence of the dielectric sheet, for it is proved in

Appendix III that the only possible types of free modes on parallel-wire transmission

lines are TEM modes. Thus, if the electric susceptibility of the dielectric sheet were

zero, the TEM mode would be the only type of free mode that could exist. As the elec-

tric susceptibility is increased, in addition to introducing the perturbed surface waves,

the TEM mode will be perturbed, and both longitudinal E and H fields will be intro-

duced. The "two-conductor" mode should thus be more properly called an H-E mode.

However, since most of the energy of the wave may be expected to be within the dielec-

tric sheet, the H-E mode may be expected to retain many of the properties of a TEM

wave. (It will be shown later that for the cases of interest, approximately 90 per cent

of the total energy of the wave is in the dielectric sheet.)

A. THE PHASE VELOCITY OF THE H-E MODE

For example, since the phase velocity of a TEM wave is independent of frequency,

the phase velocity of the H-E mode may be expected to be essentially constant with

respect to frequency. This expectation has been experimentally verified by measure-

ments of the guide wavelength over a range of frequencies of 3-10 kMc/sec for various

strip widths and dielectric thicknesses (Fig. 5). Since this graph is in hyperbolic coor-

dinates, the phase velocity is proportional to the slope and may therefore be written as

vo 1/Kl/2
e

where K e is defined as an effective dielectric constant. Also note that all the graphs

pass through the origin. Since the field solution of the H-E mode must approach the
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Fig. 5

Guide wavelength of the dominant H-E mode vs. frequency.

static field solution as the frequency approaches zero, the phase velocity may be

expected to be given by

1 (3)

(0 LC)/ (3)

where L is the inductance per unit length, and C is the capacitance per unit length.

Since the presence of the dielectric does not affect the inductance, the expression may

be written as

1 c (4)
0 (LaC ) 1/2 1/2

where a = C/C o is the ratio of the capacitance per unit length with the dielectric sheet

present to the capacitance per unit length with the dielectric sheet removed. If Eq. 4

is true, then from Eq. 2 it is required that

a =Ke (5)

The quantity CO may be computed exactly by conformal mapping techniques (9) and is

given by the equations

203.2 K' (6)
o 12Tr K

R = 4[K' E' ( k) - E' F' (, k)] (7)
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Capacitance per unit length of a strip above a ground plane.

where sin2 = (K' - E')/[K'(1 - K )] and

C is the capacitance in micromicrofarads per foot

R is the ratio of the strip width to the height of the strip above the ground plane

k is the modulus of the elliptic integrals

K is the complete elliptic integral of the first kind

K' is the complete complementary integral of the first kind

E' is the complete complementary integral of the second kind

F'(p, k) is the complementary elliptic integral of the first kind

E'(P, k) is the complementary elliptic integral of the second kind.

A plot of C vs. R is given in Fig. 6. The capacitance, C, per unit length with the

dielectric sheet present may also be computed by conformal mapping techniques (10);

but since the equations become extremely complicated and difficult to solve, it was

measured on a capacitance bridge instead of being computed. Table I shows that the

agreement between a and K e is within 1 per cent, which is within experimental error.

Thus, it has been verified that the phase velocity may be determined by static consid-

erations and is given by Eq. 3.

Since the phase velocity may be determined by static considerations, one might

expect that the fields of the H-E mode would look very much like the static fields, and

that all other parameters could be determined by static considerations. However, care

must be taken in this line of thought because the phase velocity is determined by an

5
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Table I

Polystyrene
Strip width dielectric thickness K a

(inches) (inches)

0.375 0.125 2.23 2.25

0. 188 0. 125 2. 10 2.09

0.094 0.125 1.94 1.95

0.375 0.054 2.32 2.3

0.153 0.054 2.10 2.11

integral of the fields over the complete cross section. Thus, one may be incorrect in

his assumption of the fields by a considerable amount and yet he may calculate the cor-

rect phase velocity from the assumed field pattern. For example, the Hon and the Eln

modes in a circular waveguide both have the same cut-off frequency and phase velocity,

and yet their field patterns and other parameters (such as attenuation and impedance)

are entirely different. Hence, one may not say a priori that because the phase velocity

may be determined by static considerations, the field pattern and all other parameters

may be determined by such an assumption.

In order to check the validity of the static field assumption for the H-E mode, a

mathematical analysis is required. One method of solution is to expand the fields into

some complete set so that each component is a solution of Maxwell's equations. This

set may then be summed in such a manner that the boundary conditions are satisfied.

In the search for an appropriate set, a series was chosen for which each component

satisfied the boundary conditions for a sinusoidal current distribution on the surface of

the dielectric without the strip. A Fourier integral of all such currents was then formed

so that it represented the fields caused by a current that is different from zero only over

the region occupied by the strip. Since the strip was assumed to be narrow as compared

with a wavelength, it sufficed to make the tangential component of the electric field zero

only at the center of the strip.

The details of this analysis are given in Appendix III. In the analysis, no transverse

currents were assumed to exist in the strip. This approximation follows from the

assumption that the strip is narrow as compared with a wavelength. For, if transverse

currents do exist in the strip, they will be zero at each edge of the strip, and they can-

not differ very much from zero at any place in the strip. The assumptions made in the

analysis thus become more exact as the width of the strip in wavelengths is decreased.

From this analysis, the propagation constant may be determined by calculating the

roots of Eq. III-39. Calculations at several frequencies and for several geometries have

been found to check with the measured values within experimental error of 1 per cent.

The fields may then be calculated from Eqs. III-40 and III-41. If a static field is

assumed, these calculations indicate that the static field will reasonably approximate

6
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mation for the H-E mode.

the H-E mode in region A of Fig. 7, but within region B the transverse fields become

of the same order of magnitude as the longitudinal fields. Thus, the static field assump-

tion may be used only as a first approximation in the design of strip line components.

B. THE CHARACTERISTIC IMPEDANCE OF THE H-E MODE

For structures in homogeneous media (such as waveguides), it is usual to define the

characteristic impedance as the ratio of the transverse electric field to the transverse

magnetic field. Since the strip transmission line is only regionally homogeneous, this

ratio will be a function of position and thus its use will be of little value. Instead, the

definition that will be adopted is

= (8)o I

where I is defined as the total longitudinal current in the strip, and V is the integral

of the electric field from the ground plane to the strip along the axis of symmetry of the

cross section (the path a-b shown in Fig. 8). This definition is particularly useful when

the strip line is thought of as being fed by a source between the "terminals" a-b. The

integral equation for the characteristic impedance defined by Eq. 8 is given in Appen-

dix IV. It is noted there that the arbitrary factor, N, has been set equal to unity; thus,

the low-frequency impedance will differ from that calculated from the equation

Z °= l/cCo(Ke)l/ by a normalization factor.

0 0 e~~~~~~~~~~~~~I.

I.o

0.8

0.6
o

< 0.4

0

0.2
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Fig. 8

Characteristic impedance of the microstrip line as a function of frequency.
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Figure 8 shows the variation of the characteristic impedance with frequency up to

10 kMc/sec for a strip line with polystyrene as the dielectric sheet (K = 2. 54). It is

observed that the characteristic impedance, contrary to what may be expected from

static considerations, decreases approximately linearly with frequency. Although the

decrease in impedance is quite small over limited ranges of frequency (less than

1000 Mc/sec), it is appreciable over extended frequency ranges. The impedance, it is

further observed from Fig. 8, decreases at a rate of approximately 4 per cent per

thousand megacycles independently of the zero frequency impedance. Thus, for a strip

line with a polystyrene dielectric sheet, the impedance may be written as

= 12 [1 - 40 X 10- 6 f] f _< 10 kMc/sec (9)
cCO (Ke ) 1

where f is the frequency in megacycles per second.

C. THE ATTENUATION OF THE H-E MODE

In addition to dielectric and ohmic losses, there will be some energy loss caused by

coupling to the surface-wave E-mode and radiation of the line. Since any finite open-

boundary structure must radiate (11), the radiation losses of the strip transmission line

may not be completely eliminated, but by keeping the spacing between the strip and the

ground plane small as compared with the wavelength (less than one-tenth of a wavelength)

it has been found that the radiation is negligibly small. From the previous discussion

on surface waves, it is seen that the coupling to the surface-wave E-mode may be

reduced by decreasing the separation between the strip and the ground plane and by

using dielectric materials with low dielectric constants. Under these restrictions, one

may then expect that the main losses will be the dielectric and ohmic losses.

Because of the difficulty in solving the integral equations of Appendix III for the fields

of the H-E mode, they were not used to determine the attenuation. Instead, the attenu-

ation for a strip transmission line with polystyrene as the dielectric was measured at

several frequencies and for several geometries. The measurements were made by the

techniques described in Section IV. It will be observed that the attenuation, as measured

in this manner, includes not only the dielectric and ohmic losses as losses charged to the

H-E mode, but also the energy lost through the coupling to the surface waves and the

radiation of the line. Thus, the measured attenuation will not correspond exactly to the

actual attenuation constant of the H-E mode. However, these measurements are real-

istic in the sense that the measured attenuation will determine the actual loss of avail-

able energy in the H-E mode. The results of the measurements are tabulated in Table II.

Also tabulated in Table II are the calculated values for the attenuation of a TEM wave

that would propagate if all space were filled with the same dielectric material as that of

the dielectric sheet below the strip. The approximate equations for this attenuation are

8



Table II

Strip width, 0. 375 inch; polystyrene thickness, 0. 125 inch;
loss factor of polystyrene, 0. 001.

Frequency (Mc/sec)

4800

5810

6810

7000

7570

8461

am(db/ft)

0.3

0.3

0.5

0.9

0.9

1.2

aTEM(db/ft)

0. 3

0. 4

0. 5

0. 5

0. 5

0. 6

Strip width, 0. 154 inch; polystyrene thickness, 0. 054 inch;
loss factor of polystyrene, 0. 001.

Frequency (Mc/sec)

4000

6000

7000

8582

am(db/ft)

1.0

1. 1

1.4

1.6

aTE M(db/ft)

0. 4

0.6

0.7

0.8

given (12) by

aTEM = a + ad ad =1/2 d() 1/ Z)

c 8 69 (E/Z%)1/Z
2 2 p

db/unit length

where p = [ 2 - 1 + 2(P Z - 1)1/2, [i = 1 + t/d, d = X tan , a is the conductivity of

the conductors, R = W/d is the ratio of the width to the height of the strip above the

ground plane, and t is the thickness of the strip. By comparing the values for the atten-

uation of the TEM wave, aTEM, with the measured attenuation of the H-E mode, am ,

it is observed that

aTEM - am 2aTEM

It is thus seen that aTE M may be used as a first-order approximation for am. Also,

since the measured attenuation increases for decreasing dielectric thickness, we may

conclude that the energy lost from coupling to the surface-wave E-mode and radiation

of the line is negligible as compared with the dielectric and ohmic losses.

9
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D. GENERAL REMARKS ON THE H-E MODE

In the introduction it was pointed out that an essential property of a miniaturized

microwave transmission line is that the fields of the dominant mode must be confined

to a small region about the system. A measure of how well the fields of the H-E mode

are confined would be the percentage of the total energy of the H-E mode that is within

the dielectric region. By the use of a variational principle for the propagation constant

of any cylindrical system (13), this percentage has been found to be given approximately

by the equation (see Appendix V)

I K Xe

Wt X Ke

where Wi/W t is the ratio of the energy in the dielectric region to the total energy of the

wave, X = K - 1 is the electric susceptibility of the dielectric sheet, and Xe = Ke - 1 is

the "effective" susceptibility of the H-E mode.

From the values of Ke given in Table I, it is seen that approximately 90 per cent of

the total energy is within the dielectric region. Thus, for the strip transmission line,

the fields of the H-E mode are confined to a small region about the strip.

In summary, it has been found that the strip transmission line will support surface

waves in addition to the desired "two-conductor" H-E mode whose fields are confined

to a small region about the strip. However, if the dielectric sheet is kept less than the

critical thickness given by Eq. 1, then the only surface-wave mode that may propagate

is the E-mode. Although the coupling to this mode is small, it may be further decreased

by using a lower dielectric constant or a thinner dielectric sheet under the strip. By

measurement techniques to be described in Section IV, the phase velocity of the H-E

mode has been found to be independent of frequency and may be determined from static

considerations by Eq. 4. The attenuation has been found to be of the same order of

magnitude as for coaxial cables and may be approximated by Eq. 10. By a mathematical

analysis of the strip transmission line, however, it was determined that a static approxi-

mation of the fields may be used only as a first-order approximation to the actual fields

of the H-E mode. Also, the characteristic impedance decreases with increasing

frequency; it is given by Eq. 9 for a strip transmission line with polystyrene as the

dielectric.

Thus, the strip transmission line is a desirable system in applications where low

cost, compactness, and ruggedness are the prime considerations. For those applica-

tions where a higher Q system is desired, the air-strip line (Fig. 3) should be inves-

tigated.

10
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IV. EXPERIMENTAL DETERMINATION OF THE PROPAGATION CONSTANT

A. MEASUREMENT OF THE STANDING WAVE

In developing and checking the theory of the strip line, the two quantities of main

interest were the guide wavelength and the attenuation of the line. Conventional meas-

urement techniques depend, for the determination of these quantities, upon the meas-

urement of the standing waves along the line. However, as was shown in Section II, in

addition to the fields of the desired H-E mode, the fields about the strip line will be

composed of undesired radiation and surface-wave fields. These undesired fields decay

much less rapidly from the surface of the dielectric than those of the H-E mode. Thus,

even though there is relatively little energy in the undesired fields, a short distance

from the strip, their magnitude will be of the same order as that of the fields of the

desired H-E mode. Any measurement, therefore, of the fields above the strip line will

result in a complex beat pattern and not the desired standing-wave pattern of the H-E

mode (Fig. 9). Conventional measurement techniques are thus not suitable for the deter-

mination of the guide wavelength or the attenuation of the strip line, since they depend

upon a knowledge of the standing waves of the mode for which these quantities are

desired.

B. MEASUREMENT OF THE INPUT IMPEDANCE

Since only the fields of the H-E mode will be concentrated about the strip, a small

discontinuity on top of the strip may be expected to scatter mainly the H-E mode and

only negligibly the other fields. Thus, a possible method of measuring the desired

,, 1.0
U-

j

40

I 0.6z
0

- 0.4

_j Q2
,A 

I I ! I I I I I I .
_0 2 4 6 8 10 12 14 16 18

DISTANCE (CM)

Fig. 9

Distribution of magnetic field along the strip. Strip width, 3/8 inch;
polystyrene sheet thickness, 1/8 inch; frequency, 10 kMc/sec.
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quantities would be to measure the variation of the input impedance to the line as a

small discontinuity is moved along the strip with the line terminated in a matched load.

A plot of the input impedance on a Smith chart as the discontinuity is moved would be a

circle centered at the point (1 + jO). How well the points lie on a circle would be a

measure of how much of the surface-wave E-mode was also reflected. Twice the dis-

tance that the discontinuity was moved to complete the circle would correspond to the

guide wavelength. If the measurements were then repeated with the discontinuity a dis-

tance L further from the source, another circle would be obtained with the same center

but with a smaller radius than the first. The attenuation would be given by

R2
aL = 1/2 In 11 nepers (12)

where R 2 and R 1 are the radii of the larger and smaller circles, respectively. However,

the input impedance to the line cannot be measured directly, since this would require a

knowledge of the standing waves of the H-E mode, which cannot be directly measured.

If the strip line were fed by a coaxial cable, for example, it would not suffice to meas-

ure the standing waves in the coaxial line: the junction between the coaxial line and the

strip line would not necessarily be reflectionless and the circle diagrams would be

altered. The usual procedure involved when such difficulties arise (which occurs in

practically all such measurements) is to determine the impedance matrix characterizing

the junction and then calculate the impedance of the load terminating the junction from

measurement of the input impedance of the junction and the load. This procedure is

laborious and requires a knowledge of all the impedance elements representing the four-

terminal network of the junction, even though they are not desired. From a study of the

general properties of two-port junctions, a method has been developed by which the

attenuation and the guide wavelength may be determined in a simple manner from a few

measurements, without the necessity of determining any of the junction's scattering

matrix elements.

C. THE SCATTERING MATRIX OF A JUNCTION

Consider a junction between any two guiding systems, indicated symbolically in

Fig. 10. The two systems do not need to be identical. For example, one could be a

coaxial line or waveguide; the other, the strip line. If the junction is linear, it may be

INPUT JUNC TION OUTPUT I
TERMINALS JNTO TERMINALS JUNCTION

2 2

Fig. 10 Fig. 11

Schematic representation A two-port junction terminated
of a two-port junction. by a load, r Z.

12
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completely described by the scattering matrix, S, of the junction

S1] 1 S12

[ S]= S j22L.I
where the matrix elements have the following definitions:

S11 is the reflected wave at terminal 1 resulting from a unit

terminal 1 when the junction is matched at terminal 2.

S12 is the transmitted wave at terminal 2 resulting from a unit

terminal 1 when the junction is matched at terminal 2.

S22 is the reflected wave at terminal 2 resulting from a unit

terminal 2 when the junction is matched at terminal 1.

S21 is the transmitted wave at terminal 1 resulting from a unit

terminal 2 when the junction is matched at terminal 1.

To determine how the junction alters the circle diagrams suppose

is terminated in a load characterized by a reflection coefficient, 2.

wave incident at

wave incident at

wave incident at

wave incident at

that the junction

The reflection

coefficient, r, measured at the input terminals, may then be expressed in terms of

r2 and the elements of the scattering matrix, S. Figure 11 is a schematic representa-

tion of this condition. The arrows indicate the directions of propagation for a unit wave

incident at terminal 1. The total outward wave at terminal 2 is denoted by a. The wave

incident on terminal 2 is therefore ar 2 ; that reflected from the input is Fl. Thus, from

the definitions of Sij given above, there follows

(13)a = S12 1 + S22 ar2

and

(14)
1 = S 1 1 + S1 2 'ar Z

Solving Eqs. 13 and 14 for rl, we have

Sll + (lZsl 1 - SllS2z) r 2
1 1 - S2 2 r 2

(15)

This is a relation between two complex numbers, rl and r 2 , of the form

=AZ + B
CZ + D

where W and Z are complex variables, and A, B, C, and D are complex constants.

It is recognized that Eq. 16 is a linear fractional transformation that maps the Z-plane

into the W-plane (14). Some of the well-known properties of this type of transformation

required for our discussion are:

a. If straight lines are considered as limiting cases of circles, the linear fractional

transformation maps circles in the Z-plane into other circles in the W-plane, generally

13

(16)

__ II� I



with different radii and centers.

b. The mapping of points from the Z-plane into the W-plane is conformal. That is,

if two curves in the Z-plane intersect at a given angle, their images in the W-plane will

intersect at the same angle and with the same sense.

c. There exists a one-to-one correspondence between the Z-plane and the W-plane.

d. The cross ratio is invariant. That is, if four points, Z 1, Z 2, Z 3, and Z 4 , in

the Z-plane, and their images, W 1, W 2 , W3 , and W4 , in the W-plane, are considered,

the ratio

(Z 3 - Z)(z 4 - Z2 ) (W 3 - W 1)(W 4 - W2 )
(Z 3 - Z2)(Z- Z1 ) (W 3 - W 2 )(W 4 - W 1 )

is invariant under the mapping of the form of Eq. 16.

D. THE CROSS-RATIO METHOD OF MEASURING ATTENUATION

From these properties of linear fractional transformations, certain effects of the

junction upon the circle diagrams immediately become evident. Refer to Fig. 12. When

a load with a reflection coefficient

rL = YL exp(jlL)

is viewed through a transmission line of length s and propagation constant jy = a + j,

-

G2_

t -e \ < 8--arg S2 2

r, -PLANE

Fig. 12

Original circles in the r2-plane; transformed circles in the rl-plane.
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the reflection coefficient seen at the input to the line is

F2 = YL exp(-Zas) exp[j(4 L - Ps)]

Thus, as s is varied by a half wavelength, a circle G 2 is obtained on the Smith chart

about the point 1 + jO and radius R2 = YL e as If r2 is mapped by the linear frac-

tional transformation of Eq. 15 (that is, when the measurements are made through a

junction), the image points in the Fl-plane will also lie on a circle G1 but with a differ-

ent center and radius. However, since there exists a one-to-one correspondence

between the P 2-plane and the Fl-plane, varying s by a half wavelength will also com-

plete the circle in the rl-plane. Thus, twice the distance that the discontinuity is moved

to complete the circle as seen through the junction will correspond to the guide wave-

length. If the load were now moved a distance L further down the transmission line,

the reflection coefficient seen at the input to the line would be

r = YL exp[-2a(L+s)] exp j[ L - 2P(L+s)]}

As s is varied, a second circle G2. would be obtained in the r 2 -plane with the same

center as the first, but with a radius of R 2 = YL e Thus, the ratio of the radii

of the two circles in the rZ-plane is

R 2 = 2aL

If F2 is now mapped by the same linear fractional transformation as r2, a second circle

G1 in the 1 -plane would be obtained which would be smaller than but not concentric to
the first. By the use of the invariance of the cross ratio, it will now be shown that the

attenuation constant, a, may be determined without having to transform from the rl

plane back into the rZ-plane (that is, without having to know the scattering matrix of

the junction).

If the cross ratio is to be used, four separate points in the rl-plane and their cor-

responding images in the r2-plane must be chosen. Since the exact mapping is not

known (that is, the scattering matrix elements of the junctions are not known), the cor-

responding images of points cannot be determined. However, from the property of

conformality, since any diameter of the circles G2 intersects G2 orthogonally, its image

in the F 1 -plane must be an arc intersecting the circles G 1 orthogonally and in the same

sense. The image of every diameter must be an arc with this property. In particular,

if we let

r2 = p exp(jO) = p exp(-j arg S22)

It is assumed here and for the rest of the discussion that the attenuation per one-
half wavelength is negligibly small. If this were not true, a spiral instead of a circle
would be obtained as s is varied. This condition, however, will be true for all trans-
mission lines of practical interest.

15
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so that Eq. 15 is written

S1ll + (S12S21 - S 11S2 2 )p exp(-j arg S22)
rI 1 - p IS221

this particular diameter in the rZ-plane (p varying) will map into a straight line in the

Fl-plane; thus, the diameter in the r2-plane oriented so that 0 = -arg S22 maps into a

straight line in the Fl-plane that intersects the circles G 1 orthogonally. This line in

the rl-plane can only be that line joining the centers of the two circles G 1.

Let the intersections in the I-plane be called W1, W2, W3, and W4, and let the

points of intersection in the r 2 -plane be called Z 1, Z 2, Z 3, and Z 4 . Since the scat-

tering matrix is unknown, the angle 0 = - arg S22 is unknown. It is also not known

whether the image of W 1 is Z 1 or Z 4. However, in forming the cross ratio with these

points, this knowledge is not required. For the moment, then, assume that the image

of W 1 is Z 1. In the Fl-plane, the cross ratio is

(W 3 - W 1 )(W4 - W2 ) (D-C)(d+C) (19)
(W 3 - W)(W - W) Dd (19)

where D and d are the diameters of G1 and GI, respectively, and C is the distance

between W3 and W4 . In the r 2 -plane, the cross ratio is

a a
(z 3 - z )(Z - Z1) ( Rz R 2 (0)

3 )( 4 1)= 4 RR' 4 R/R'

It is now observed that if the points Z, Z2 Z 3, and Z 4 , were relabeled Z, Z Z

and Z , respectively, Eq. 20 would be unchanged. Thus, it is immaterial whether the

image of W 1 is Z 1 or Z 4. Now, substituting Eq. 18 into Eq. 20, we obtain

[1 + exp(2aL)] 2

X =
4 exp(2aL)

or

2X - 1 = cosh 2aL

Solving for aL, we obtain

aL = 1/2 cosh - (2x - 1) ( 1)

A plot of aL vs. x is given in Fig. 7. It will be observed that in making the measure-

ments, any discontinuity may be used as long as its coefficient of reflection does not

vary as it is moved along the transmission line. Thus, if the reflection coefficient of

the discontinuity is not unity, the transmission line beyond the discontinuity must be

terminated in its characteristic impedance. Usually, any gradually increasing lossy

termination will be satisfactory. It is observed that only three measurements are

required for three positions of the discontinuity to determine each circle. However,

16
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0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 b

aL (DB)

Fig. 13

The cross ratio, X, vs. attenuation.

to decrease experimental error and to insure a good distribution of data, at least five

points should be plotted on the Smith chart for five positions of the discontinuity spaced

equally along a half wavelength in the transmission line.

Thus, if the attenuation of a transmission line is desired, and measurements are to

be made through any junction (such as connectors, adapters, cables, etc.), the attenu-

ation may be determined by plotting two circles on a Smith chart in the usual manner

and measuring X = (D-C)(d+c)/Dd. The attenuation for the distance L may then be

obtained from Fig. 13. If the scattering matrix of the junction or of a discontinuity along

a transmission line is desired, it may also be determined by a graphical analysis (15).

E. DESCRIPTION OF APPARATUS

Since most commercial plastics use Apoxy resin (loss factor of approximately 0. 03

at S-band frequencies) for a binder, they were not used in the manufacture of the strip

transmission line for the attenuation and wavelength measurements. Instead, the strip

line was constructed by chemically depositing a thin layer of silver on both sides of a

polystyrene sheet (16, 17). The silver layer was used as an electrode to electroplate

copper to a thickness of 0. 006 inch ± 0. 001 inch. The polystyrene sheet was then cut

to a width of 5 inches and a length of 26 inches. To make the structure rigid, the poly-

styrene sheet was glued to a quarter-inch steel plate of like dimension. The strip was

milled, parallel to one side of the steel plate, from the copper on the free side of the

polystyrene sheet, and a coaxial coupling was attached (Fig. 14). In order to decrease

reflections, a gradually increasing lossy termination made of Thiokol PRI compound

17
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Fig. 14

Exploded view of the test bench and strip line.
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Fig. 15

Assembled view of the test bench with the strip line in place.
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(K = 8. 4, tan 6 = 0. 22 at X-band frequencies) was placed on the strip line, as shown

in Fig. 14.

For measurements of the strip line, a special test bench was designed to move

accurately a discontinuity on the strip (Fig. 15). The discontinuities were made of

silver plated brass slugs that were maintained in proper geometrical orientation, as

well as in intimate contact with the strip, by a slug bar. A cylinder made of Eccofoam

plastic, into which a short piece of X-band waveguide was fitted, securely held the slug

bar. The cylinder was held by a brass collar that rode on a guide bar fixed parallel to

the strip and moved by a millimeter micrometer. Behind the slug, a piece of Thiokol

PRI compound was attached to the Eccofoam cylinder to insure that any reflections from

the termination of the strip line would be absorbed and not interfere with the measure-

ments. Thus, the discontinuity is isolated from the termination of the strip line.

19
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APPENDIX I

DEFINITION OF NOTATION USED

In Appendices II-V some of the notation used for the electromagnetic field is not

standard. As an aid to the reader, this appendix is devoted to a brief notation discus-

sion.

In determining the field solutions for any system, the fundamental equations that must

be solved subject to the boundary conditions are the Maxwell equations

V x E = -jkH

V X H = jk']E

where k2 = wo(wE - j), r2 = -/(WE - j), and =1

If the free mode solutions of a cylindrical structure of arbitrary cross section are

desired, the solutions may be obtained in terms of the scalar potential functions (for

the E-modes) and 4i (for the H-modes) that satisfy the two-dimensional scalar Helmholtz

equation

T 0 + p2 0 0 (I-1)

In terms of these scalar functions, all the field quantities may be determined. Thus,

for the E-waves

E T = V(z) T (x, y) (I-2)

E = L(z) (x, y) (I-3)
z

where

e (x, y) = -VT (X, Y) (I-4)

The other field quantities for the E-mode may be determined as follows: From the

equation

a
VE =VT ET + E =0

we obtain, by the use of Eqs. I-1 through I-4

V(z) p2 ( _ j yL(z) = 0

Thus
2

L(z) = . V(z) (I-5)

The longitudinal component of Maxwell's equation

VX H = j kE

21
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may be written as

VT X HT = j kEz

where

H = T= I(x y) (1-6)

Upon substituting Eqs. I-i through I-6 we obtain

I(z) [VT Te(x, y)] = j kEz

2 p 2

I(z) P 4 = kI 2- V(z)

Thus

I(z) = k- V(z)

The fields of the E-modes are therefore

Be = V(z) Te(x, y)

p2P
E = y V(z) (x, y)

z j

He = kr V(z) Te(x, y)

where

T(x, y) = z XT(x, y)

T (x, ) = -VT4

y2 k2 Zy =k -P

and (x, y) is a solution of

a a
VT~ + P = O

By a similar process, the fields may be obtained for the H-modes as

h h
HT = I(z) T 2 (x, y)

p2
Hz = jy I(z) h(x, y)

E T = AL I(z) Th(x, y)
T Y 1

22
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where

Th(x, y) = - X TZ(x, y)

h
T2 (x, ) = -VT 

and +(x, y) is a solution of

2 +p2 O
\lTy+P y=O

23
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APPENDIX II

PROOF THAT THE ONLY TYPES OF FREE MODES POSSIBLE ON PARALLEL-

WIRE TRANSMISSION LINES ARE TEM MODES

Consider an n-conductor system of arbitrary but constant cross section in homo-

geneous and simply connected space. If higher order modes are to exist, the equation

that must be satisfied is the two-dimensional scalar Helmholtz equation

2 2
VT + p2 = 0 (II-1)

with the boundary condition that, on the conducting surfaces, either = 0 (for E-waves)

or a/an = 0 (for H-waves).

From Green's first theorem in two dimensions we have

J[ T + VT b VT da =f T nds (11-2)

Let = and = . From Eq. II-2

f [ T b + I I VT4J da= .( a /an ds (11-3)

Choose the area, A, to be the infinite cross section. Since the total energy in a

cross section is finite, the fields will be zero at infinity. Also, either or a/an is

zero on the conducting surfaces. Thus

J'* 8/an ds = 0

and from Eq. II-3, therefore,

VT da = - VT 112 da (II-4)

2 2
By substituting the value of VT from Eq. II-1 and solving Eq. II-4 for p2, one obtains

p2 f IVT 1 da
P 2(I-5)

fll8m112 da

Equation II-5 states that if higher order free modes are to exist, P 2 must be a posi-

tive real quantity. However, in order for the total energy over a cross section to be

finite, P must be imaginary, and thus 2 must be negative. But this is in contradiction
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to the requirements imposed upon P 2 by Eq. II-5. Thus, no higher order free modes

may exist. It is observed that the TEM wave satisfies the Laplace equation

2
VT ) = 0

where is a constant on the conducting surfaces; thus, the proof given above is not

valid for the TEM wave.

It has therefore been proved that the only types of free modes possible on any

n-conductor system of arbitrary but constant cross section in homogeneous, simply

connected space are TEM modes.
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APPENDIX III

THEORETICAL ANALYSIS OF THE STRIP TRANSMISSION LINE

Since the strip represents a discontinuous boundary condition to be satisfied, the

solution for the fields will be obtained by first solving for the fields that would be caused

by a sinusoidal current distribution on the surface of the dielectric. A Fourier integral

of all such sinusoidal currents will then be formed so that it represents the fields caused

by a current which is nonzero only over the region occupied by the strip.

In the analysis, the following assumptions will be made:

(1) The ground plane and the dielectric sheet are infinite in extent.

(2) The strip is very narrow as compared with a wavelength.

(3) The strip is infinitesimally thin.

The solution will be exact for an infinitesimally thin wire and approximate for a

strip.

Consider the system shown in Fig. III-1.

y

REGION 2

z/~/|yzd Fig. III- 

REGION I Strip transmission line.

CONDUCTOR 

Assume a current density to exist on the interface between regions 1 and 2 (plane

of y = d).

K(x, z) = i K cos ax e- j Yz (III-1)Z Z

The current density, K(x, z), will generate H-E waves which may be expressed as a

linear combination of E- and H-waves. Thus, in the notation developed in Appendix I,

for E-waves

Ee = V(z) Te (x, y) (III-2)
T 2

Ez = pZ/jy V(z) (x, y) (11-3)

HeT = wE/y V(z) Te (x, y) (III-4)
T 2\4~' IZ

where

T2(x,y) = X T(x, y) (III-5)

Te (x, y) = -VT (x, Y) (III-6)T1 (II6
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V(z)= N e- j YZ (III-7)

and for H-waves

h h
HT I(z)T 2 (x, y) (III-8)

H = P /jy I(z) (x, y) (11-9)

ET = w/y I(z) T(x, y) (III-10)

where

T l(x, y) = T2h(X, y) X(I-1)

h
T 2 (x, y) = -T (x' Y) (III- 12)

I(z) = N e - jYZ (III- 13)

where N is an arbitrary constant and either or i satisfies the Helmholtz equation.

Since X E = 0 on the conductor (plane of y = 0), (x, y) must have a sin 1ly depend-

ence in region 1. Also, since a/an(iX H) = 0 on the conductor, (x, y) must have a

cos P 1Y dependence in region 1. Thus, we may write

ml(x, y) = A cos ax sin Ply y d (III-14)

2 (x, y) = B cos ax exp[-(y-d) P2] y > d (III- 15)

1 (x, y) = C sin ax cos Ply y < d (III-16)

2(x, y) = D sin ax exp[-(y-d) P2] y d (III-17)

a and y are the same for both regions and are given by the exciting current; 1 will be

different.

y =k2 _ pk -P

p2 = a + P

2 2k = LE

To determine the coefficients A, B, C, and D, we will use the boundary conditions that,

at y = d,

H =H (III- 18)
z1 = Z2

E = E (III- 19)
Z1 Z2
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E = E (111-20)
X1 x2

H - H = K(x, z) · (111-21)x 1 x z

From Eqs. 111-9, II1-16, and II1-17, we have, at y = d

H = P1/jy C sin ax cos Pld
1

Hz = P/jy D sin ax
2

Thus, upon substituting into Eq. III- 18,

D = (P 1 /P 2 )2 C cos Pld (III-22)

Now, from Eqs. 111-3, II1-14, and III-15, we have, at y = d

E = P1/jy A cos ax sin P1 d (III-23a)
z 1

E = P /jy B cos ax (III- 3b)
z2 z

Thus, upon substitution into Eq. III-19,

B = (P 1 /P 2 )2 A sin Pld (111-23)

From Eq. III-20, we have, at y = d

Eh + E e = Eh + Ee (III-24)
X x 1 x1 x2 2

Now, however,

Eh hE -
x =T x

and thus from Eqs. III-10, III-11, and III-12, we have

Eh = w/y I(z) aW/ay (III-25)
X

Also, from Eqs. III-2 and 111-6

Ee = -V(z) a/ax (III-26)x

Thus, by substituting Eqs. III-25 and 111-26 into III-24 we have, at y = d

W[L/y I(z) ail1 /ay + V(z) a 1l/ax = WC/Y I(z) a 2 /ay + V(z) az 2/ax (III-27)

Thus, by substituting Eqs. III-14 through III-17 into III-27, remembering that V(z) = I(z),

28
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there results with the use of Eqs. II1-22 and III-23

B a1 - - + D ¥ EkP l tan d - 2 0 (III-28)

To obtain the other relation between B and D, use will be made of the boundary con-

dition specified by Eq. III-21. From this equation we have

He +Hh He -Hh = K · (III-29)
x1 x 1x Zx Z z

Now, from Eqs. III-4, III-5, and III-6

He = HT - = we/y V(z) a3/ay (III-30)

And also, from Eqs. III-8 and III-12

Hh = HT i = -I(z) 4/ax (III-31)

Thus, upon substitution of Eqs. III-1, III-30, and III-31 into III-29, we have, at y = d

WE 1 /Y a 1 /ay - ay8/8x - EZ/y aBZ/ay + aq 2 /ax = K cos ax (III-32)

Thus, by substituting Eqs. III-14 through III-17 into III-32 there results with the use of

Eqs. III-22 and III-23

B ¥ P1 ctn dd + D a [( - = K( (111-33)01PLP 1 = Z

We now have two equations, Eq. III-28 and Eq. III-33, involving only B and D. These

may be solved for B resulting in the equation

K [(P) tan d 2]

B 2 (III -34)

We have assumed, in this derivation so far, that 2 and Y2 satisfy the Helmholtz equation

TOZ 2 2 0)~z + P2E) = 0

2Since the fields in region will decay, P2 will be found to be a real negative quantity.2 Z
It will be convenient, however, to redefine P so that it is a positive real quantity.

Therefore, let
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2 2P = -P2 3

The Helmholtz equation in region 2 thus becomes

2 2
VT 0 - P3 02 =

and

2 2 2 2 2
Y k P = +P1 1 2 3

where

2 2 2P =P +a
I I

2 2 2
2 2-

We now observe that for the free modes of the system

k2 < y<k 1

where

2 2
k = ALE

Equation III-35 will be true for the free modes of any open boundary structure.

We may now rewrite Eq. III-34 in terms of P 3. Thus

-K
z y

LP1) tan 
ta i P (111-36)

a2[( + 1 + [(
- Y )

tan Pd + Z L( P1 ctn 1 d - l 

For the strip transmission system, it will be assumed that the strip width is much

less than a wavelength, so that the current may be assumed to be constant across it. It

will further be assumed that the current in the strip flows only inthe longitudinal direc-

tion (in the z-direction). We note that under these restrictions, the current, plotted as

a function of x, will appear as a rectangular pulse which may be represented as a

Fourier integral.

Let the strip width be 26. Then the current

K = K
LO

Kz =f

-oo < x

-6 < x
6 < x

Kz(a) cos ax da

30
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00

K (a) = I

- 00o

K (a) = K sin a6
Kz(a)- = i~ 

K cos ax dxz

(III-37)

It is now required that the boundary condition that X E = 0 on the strip be satisfied.

However, since the strip width has been assumed to be much less than a wavelength, it

will suffice to make Ez = 0 only at the center of the strip (x = 0, y = d) instead of over

the range -6 < x 6. It will thus be required that

00-ooEz(O, d) da = 0

Substituting Eq. III-23b, there results

00

J-00

PZ/jy B da = 0

However, since P2 /jy is not a function of a and noting from Eq. III-36 that B is an even

function of a, we need only require that

00

J0
B da = 0 (III- 38)

Thus, substituting Eqs. III-36 and III-37 into Eq. III-38,

equation for the strip transmission line is

0

P 3 2 [Z sin a6
l[ tan d + a

p23 + 1+ a [(p)2 tan d [

we find that the determinantal

da

=0

(P)2

vPI

Ez P2
ctn 1Id - E~1

(111- 39)

Equation III-39 determines those values of the free

y = n, for the strip transmission line, where

mode propagation constants,

2 2 2
y k P1 1

2 2 2
Y =k +P 32 3

31
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2
P1

= a2 + > 

2 2
P 3 = P2

2-a >0

2 2k =o 

The fields are then given by:

For y < d

2NP 

-= jyn exp(-jynZ)
00

Np2 

HZ = jy 1 exp(-jy z)
z1~~~~~~~o

A cos ax sin Ply da

C sin ax cos ply da

= N exp(-jynz)

00oo

C + aAJ
Yn

sin ax sin Ply da

00

Hx = N exp(-jynz) 10 { 1
1 A

Yn

E = N exp(-jynz) f o 1 aYf Yn
H

Y1
= N exp(-jynZ) 00

100

- aC}

c -PA}

1 A
"Yn

+ Pc}

cos ax cos Ply da

cos ax cos Ply da

sin ax cos Ply da

and for y > d

NP 2
N P3

Ez2 -- Jy exp(-jynz)

2NP 

Hz=jyn exp(-jynZ)

-oo

10

00

B cos ax exp[-(y-d),3 2 ] da

D sin ax exp[-(y-d)p 2 ] da

= N exp(-jyn z)
znff V n

D + aB} sin ax exp[-(y-d)p 2 ] da

32
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H
X2

E
Y2

H
Y2

-00oo
N exp(-jynZ)oo

= N exp(-jynz) f
00N exp(-jyn

= N exp(-jy z) f
{Za D

z B
Yn

B - aD}

+ p 2B}

+ p2 D}

cos ax exp[-(y-d)P2] da

cos ax exp[-(y-d)P 2 ] da

sin ax exp[-(y-d)Pz] da

where, from Eqs. III-22, III-23, and III-28

A = -(P3/P1 )2 B csc [11d

¥n (P3 1(¶) + 1] a sec P 1 d

tan i31d+ l
ii]

B

¥ 'n ( 37 1]I

P1 1

aB

tan P1d + -
I p 

and B is given by Eq. III-36.
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APPENDIX IV

THE CHARACTERISTIC IMPEDANCE OF THE STRIP TRANSMISSION LINE

The characteristic impedance of the strip transmission line may be defined as

V
o I

where I is defined as the total longitudinal current in the strip, and V is the integral

of the electric field from the ground plane to the strip along the axis of symmetry of

the cross section. Thus

z
0

d

Jo
8

f-8

Ey(O, y) dy
(IV-1)

K(x) dx

Since the current density was assumed constant across the strip,

6

6 K(x) dx = 26K

From Eq. III-40e of Appendix III, let N = 1; then

(IV-2)

00

E (0, y) = {
na

'Yn

C - P 1 A} cos P1 da

C - IA]

d

cos P1 y d d a

C - A} sin Did da

However, from Eqs. III-42a and III-38 of Appendix III

A sin 1d da = 0

Thus

o00

= f Ha C sin Did da
DlOn 

(IV-4)
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(IV-3)

00

V=-

o00

nLa

[La
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Equation III-42b in Appendix III could be directly substituted into Eq. IV-4. However,

since it was established in Section III that the phase velocity of the H-E mode is not a

function of frequency, we may write for the H-E mode

z 2 (IV-5)
'Y =(VLE 

where Ee is defined as an "effective" permittivity. Thus, by use of this definition of 

2 2 2

3)2 y _ k2 Xe (IV-6)

1 z z x Xe

where Xe is the "effective" electric susceptibility and X is the electric susceptibility

of the dielectric sheet.

By the use of this definition, the equation for V becomes, after substituting

Eqs. III-42b, III-36, and III-37 of Appendix III,

V = XeX1Kz (/ )1/21

7'(X - Xe ) Z

tan D1d sin a6d
da

(IV-7)
e E Xe ¢EPz Zd -

X1 - Xe E a 2 1 X a I PI X1 - Xde E1Pd
e

However,

( ) 1/2 = 1ZOr

(Ke)l/2

where K e is the "effective" dielectric constant = Xe + 1. Thus, upon substituting

Eqs. IV-7 and IV-2 into Eq. IV-1, the expression for the characteristic impedance

becomes

120 XeX

Zo L(K )i/2 ( - X )2

tan p dI sin a 

31 a(I8)

X X (IV-8)
XXe + I L el-Xtan 3d+l e ctnPld - j

e a 1 - Xel I Xl - Xe E1 1P
e
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where

2 ~2 2 2

2 2 2 (e e 2
2 = P 3

+ a (E= - 2 )+

Since the integrand is an even function of a, twice the integral from zero to infinity

has been taken.

Equation IV-8 thus determines the characteristic impedance for the H-E mode of the

strip transmission line. At zero frequency, the characteristic impedance is thus

120 XeX

o (KL/2 (X - Xe)

00 tanh ad sin a da

I a a5 (IV-9)

X,1 i K Xe I Xe
-(1 Xe + Xe tanh ad - - Xe ctnh ad

X1 X e

Since N has been arbitrarily set equal to one, the zero frequency characteristic imped-

ance as defined by Eq. IV-9 will differ, by a normalization factor, from that calculated

by the equation

Z= (L/C) /

where L is the inductance per unit length and C is the capacitance per unit length of

the strip transmission line.
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APPENDIX V

A VARIATIONAL APPROACH TO THE STRIP TRANSMISSION LINE

Let the electric field, , and the magnetic field, J be

= E(x, y) ej(wt -Yz)

A= H(x, y) e ( wt - Yz)

A variational expression for the propagation constant, y, may then be written in terms

of E and H (13).

f E JE da + da + is H da + E* V XHda- jf H* V X E da

Y (v-1)

H i XE da - E i XH da

where, from Maxwell's equations

VX E - jy z X E = - jH (V-2)

VX H- jy X H = jEE (V-3)

Since, by the nature of a variational expression, the percentage error in y will be

considerably less than the percentage error in the trial field, we will assume a plane

wave as the trial field.

Thus, let

E = -V (V-4)

and therefore

H = -y/ iz X VI (V-5)

Upon substituting Eqs. V-4 and V-5 into Eq. V-l,

2
f o jS I I I I da +xEJ IIVf IIda + 1 iz XVI 12da

e I i z XV l 2 da + (V-6)

where S is the total cross sectional area, s is that portion of the cross sectional area

occupied by the dielectric sheet, and X = K-1 is the electric susceptibility of the dielec-

tric sheet. However, since

I wish to thank Mr. A. D. Berk, of this Laboratory, for suggesting the application
of the variation principle to the strip transmission line.
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liz X Vl Z da = I 1v Z da

Eq. V-6 may be written as

2 k [X
~2-=k2 1{-X

O

(V-7)

where k = 1LEo. It is observed from Eq. V-7 that the propagation constant may be
0 0

expected to be proportional to frequency and thus may be written as

2 2
Y = LEe

where Ee is defined as an "effective" permittivity. In terms of this definition, Eq. V-7

may be rewritten as

fI I V | 2 da

Xe =X (V-8)

I I ZV| |da

where Xe is the "effective" electric susceptibility. From Eq. V-8 we may expect that

for small electric susceptibility of the dielectric sheet, Xe will increase linearly with

X.

Since the stored electric energy per unit length is

We = E E E da

we may write

V l|ll da -= 1 (V-9)

f |V 12 da= 1 + o (V-10)
0

where W1 is the stored electric energy per unit length in the region occupied by the

dielectric sheet, and WO is the stored electric energy per unit length in the region above

the dielectric sheet. Substituting Eqs. V-9 and V-10 into Eq. V-8 the relation

W 1 KXe

W + W XKe (V- )
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is obtained where X = K - 1 is the electric susceptibility of the dielectric sheet, and

Xe = Ke - 1 is the "effective" electric susceptibility of the H-E mode.
Equation V- 11 is an approximate expression for the ratio of the energy stored in the

dielectric region to the total stored energy of the H-E mode.
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