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Abstract

We use Fibonacci heaps to improve a parametric shortest path algo-

rithm of Karp and Orlin, and we combine our algorithm and the method of

Schneider and Schneider's minimum-balance cilgorithm to obtain a faster

minimum-balance algorithm.

For a graph with n vertices and m edges, our parametric shortest path

algorithm and our minimum-balance algorithm both run in 0(nm +
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n^logn) time, improved from 0(nm log n) for the parametric shortest

path algorithm of Karp and Orlin and O(n^m) for the minimum-balance

algorithm of Schneider and Schneider.

An important application of the parametric shortest path algorithm

is in finding a minimum mean cycle. Experiments on random graphs

suggest that the expected time for finding a minimum mean cycle with

our algorithm is 0{n log n + m).

1 Introduction

The body of the paper contains fi%e sections. The first section describes the

parametric shortest path problem and an algorithm for solving it that runs in

0{nm + rj- logrj)-time on an n-vertex graph with m edges The algorithm is

based on an 0(nm log n)-lime algorithm of Karp and Orlin [K081], modified

to take advantage of the Fibonacci heap data structure of Fredman and Tarjan

[FT87].

The second section describes the minimum mean cycle problem and how the

parametric shortest path algorithm can be used to solve it.

The third section describes the minimum-balauice problem and an algorithm

for solving it that runs in 0{nm + n^ logn)-time. The algorithm combines

the method of Schneider and Schneider [SS87], which yields a straightforward

0(n-m)-time algorithm for the problem, with the parametric shortest path al-

gorithm.



The fourth section describes the results of implementing the parametric

shortest path algorithm for finding a minimum mean cycle and running it on

random graphs The results suggest that the expected time for the parametric

shortest path algorithm to find a minimum mean cycle is close to 0(m+ n log n),

and that even for small graphs the algorithm is faster than the 0(nrn)-time al-

gorithm of Karp [Kar78].

A solution to the parametric shortest path algorithm is given by a sequence

of trees, which our algorithm generates but does not store. The final section

discusses how the trees may be implicitly stored so that any tree in the sequence

can be generated quickly. Also considered in the final section are generalizations

of the problems to which our algorithms still apply.

2 Parametric Shortest Paths

The parametric shortest path problem is a generalization of the standard single-

source shortest path problem in which some of the edge costs have a parameter

subtracted from them. An instance of the problem is specified by giving a

weighted, directed graph G = ( V, £, c), a source vertex s with all vertices reach-

able from s, and a subset E' of the edges representing those edges whose costs

have the parameter subtracted from them. Specifically, a particular value A of

the parameter yields the weighted, directed graph Gx = {V,E,c- \8e'), where

(c- X6E'){e) = c(e) - A(5£-(e), and 6E'{e) = 1 if e € £" and otherwise. (We



adopt the convention that tlie parameter is subtracted because then influence

on shortest paths in the graph increeises with the parameter.)

The problem is to determine a shortest path tree in Gx for every A such that

shortest paths in Gx are well defined. It is well known that shortest paths in

Gx are well defined if and only if Ca contains no negative-cost cycle. Thus the

problem is to determine a shortest path tree for each Gx such that A G [—oc, A'],

where A* is ais large as possible such that G>. has no negative-cost cycle. If Ga

has no negative-cost cycle for all A, then we take A* = oo. In Goc. we take

shortest paths to be those that are shortest in G among those that have the

maximum number of parcimeterized edges. Similarly, if Gx has a negative cost

cycle for all A, we take A* = — oc, and take shortest paths in G_oo to be

those that are shortest in G among those which have the minimum number of

parameterized edges.

A solution to the problem is given by a finite sequence of trees To,7"i, . . . ,

7"^

and a finite non-decreasing sequence of real numbers — oo = Aq < Ai < • • <

\k = A' such that T, is a shortest path tree in Gx for all A in [A,,A, + i]. A

solution could also be given by a sequence of trees and strictly increasing real

numbers. The algorithm we give may produce sequences with some A, equal to

A,^.]. If the second type of solution is desired, such A, and the corresponding 7;

can simply be removed from the sequence.

Applications of the parametric shortest path problem include the minimum

concave-cost dynamic network flow problem [G085], matrix scaling [OR85,



SS89], and the minimum mean cycle and minimum balancing problems, dis-

cussed below.

2.1 An Inductive Method

A natural metliod for soivmg the parametric shortest path problem is to proceed

tree by tree. That is, determine To and then inductively determine successive

A, and T,. This is the method that we use.

The first tree To for Aq = — oc can be determined by finding a shortest path

tree from s by running any standard 0(nin)-time algorithm on Gq, where q <

— 5Zeg£ k(e)|- For this value of the parameter, paths with fewer parameterized

edges always cost less than paths with more, so a shortest path tree in Gq is also

a shortest path tree in G-oo The shortest path algorithm that is used must be

able to detect the case when a negative cost cycle exists (shortest paths are not

well defined), for this will be the case if A' = — oo.

2.2 Pivot Paths

Next we consider the induction step. Suppose that tree T is a shortest path

tree from s in G\. Consider increasing the parameter from A until it reaches a

value A' beyond which T ceases to be a shortest path tree. The reason that T

ceases to be a shortest path tree is that some path p not in T from s to some

vertex v becomes shorter than its counterpart t^ (the path from s to v) in T.

In order for this to happen, p must be equal in cost to t^ in Gas and have more



parameterized edges than <i, . We call A' the ptvoi point from T, and any such

path p a pivoi path for T.

How can we find a pivot path — a shortest path in Gy with more param-

eterized edges than the corresponding path in T — without knowing A'? One

way would be to consider each path p from s with more parameterized edges

than its corresponding path in T. Of these paths, if we choose one that first

will become equal in cost to its corresponding path in T as the parameter is

increcised, we will have a pivot path.

Once we know a pivot path p for T, we can determine the pivot point A',

because the costs of p and f, can coincide at only one value of the parameter.

In Gy, p and its counterpart <, '" ^ *re both shortest paths, and thus they

and their corresponding prefixes are all of equal cost. Thus all paths in T U p

are shortest paths. If we obtain the subgraph T' by deleting all edges of T that

lead into vertices of p and adding the edges of p, then, provided T' is a tree, it

is a shortest path tree in Gx'.

To make sure we are making progress in discovering the subgraph T' , we

will rule out degenerate pivot paths - those with a proper prefix with fewer

parameterized edges than the corresponding path in T or with a zero cost cycle

with no parameterized edges. From any degenerate pivot path we can construct

a non-degenerate pivot path by replacmg the offending proper prefix by the

corresponding path in T, or by deleting the offending cycle. For the rest of the

paper when we refer to a pivot path we will mean a non-degenerate pivot path.
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This gives us the following algorithm. Determine an initial shortest path tree

To for C-oo Look for a (non-degenerate) pivot path p for Tq. If there is none,

stop. Otherwise, use this patli to determine the pivot point and a subgraph T'

.

If T' is not a tree, stop. Otherwise take T' to be the next shortest path tree

and continue.

If the algorithm stops because there are no pivot paths, then the current

shortest path tree will continue to be a shortest path tree indefinitely as the

parameter is increased, and X' = oc.

Otherwise, the algorithm may stop because T' is not a tree. The subgraph

T' is formed by replacing the edges in the tree T into the vertices on the pivot

path with the pivot path edges Thus T' can only fail to be a tree if it contains

a cycle, and can only contain a cycle if the pivot path p contains a cycle. But if

p. a shortest path, contains a cycle, it must be a zero cost cycle. Since p is non-

degenerate, the cost of the cycle must be decreasing with the patfaxneter. Thus

the graph will have a negative cost cycle for any larger value of the parameter,

and A- = A'.

Thus, if the algorithm terminates, it gives a correct sequence of trees and

intervals. To bound the number of trees produced by the algorithm, consider

the number of parameterized edges on the path into each vertex in T and T'.

By the construction of T" and the non-degeneracy of the pivot path, the path

in T' into a vertex contains at least as many parameterized edges as the path

in T. Furthermore, at least one vertex in T' has more parameterized edges on



its path in T' . Thus the algorithm produces at most n^ (actuaJly n{n — l)/2)

trees.

2.3 A faster implementation

First, we will reduce tlie number of potential pivot paths the algorithm checks.

Suppose there is a (non-degenerate) pivot path, and let p denote its shortest

prefix that is still a pivot path. Let v denote the destination vertex of p. Any

proper prefix of p is not a pivot path, yet is a shortest path in Gx' and has at

least as many parameterized edges as the corresponding path in T . Thus each

proper prefix of p has the same number of parameterized edges as its counterpart

in T, and if we replace any proper prefix of p by its counterpart in T, we obtain

a pivot path. In particular, if we replace the largest proper prefix of p by its

counterpsirt in T . we obtain a pivot path that consists of a path in T followed

by an edge (necessarily not in T). For each edge e = (u.r) we let p(e) denote

the path in T from s to u followed by the edge e. Thus if any pivot path exists,

some p(e) is a pivot path. We call any such p(e) a canonical pivot path.

In order to find a canonical pivot path quickly, we will associate with each

edge e = (u, i) the value of the parameter, if any, at which the cost of the path

p(e) becomes equal to the cost of t^. Since t^, is of cost no more than p(e) for

the current value of the parameter, this value will exist if and only if p(e) has

more parameterized edges than t^,. In this case we call the value the key of the

edge. Otherwise the key of the edge is talcen to be infinity. More specifically,

8



let c{p) denote the cost of a path p in G, and let 6e'{p) denote the number of

paireimeterized edges on p, so tliat c{p) — X6e'(p) 's 'h^ cost of a path p in Gx'-

Then the key of e is

c{p{e))-c{t,)

^E'(p(e))-6E'(t.)

provided 6E'(p{e)) > ^E'iU)' and infinity otherwise.

Since p(e) is just i^ followed by e, we can calculate edge keys in constant

time if we maintain, for each path t^, the values c(tu,) and 6E'{tw)- When

a pivot occurs and the tree changes, we can find (and update) the vertices

for which these values change by depth-first search from the end of the pivot

path. Furthermore, these values only change for a vertex when it acquires a

new shortest path, so the time to maintain these values over the course of the

algorithm is proportional to the number of shortest path changes over the course

of the algorithm.

This gives us an implementation running in O(n^tn) time — maintain the

tree T, the values cf^^ ) and (!>£'(<u,), and perform each of the at most n^ pivots

by choosing the minimum edge key in 0(m) time to define a pivot path.

If we store the edge keys in a standard heap data structure, the time to

find each minimum is reduced to O(logn), so the total time to find minimum

keys is reduced to 0(n^ log n). The time to maintain the keys increases to

O(logn) per key change, but since the key of an edge is changed only when

one of its endpoints acquires a new path, the total number of edge key changes

during the course of the algorithm is at most 2nm. Thus the totad time spent

9



maintaining keys is 0{nm\ogT}). This implementation of the algorithm, which

is the implementation given by Karp and Orlin [K081], therefore runs in time

0{nm logn).

2.4 Vertex Keys

A complete, but different, exposition of the 0(nm log n)-time algorithm de-

scribed above was given by Karp and Orlin in 1981, before the discovery by

Fredman and Tarjan of the Fibonacci heap data structure [FT87] in 1984. The

advantage of the F-heap data structure is that the time taken to decrease or

insert a key is 0(1) in the amortized sense [Tar85]. The time taken to find the

minimum key or increase a key is (9(logn) in the amortized sense. Although

there are graphs yielding Q{nm) key increases, so that storing the edge keys

in an F-heap does not immediately give a faister algorithm, we can still use an

F-heap to our advantage.

To do this, we associate with each vertex v a key which is the minimum of

the keys of the edges entering v. This is the value of the parameter at which

the cost of one of the potential pivot paths p(e) into v will first become equal

to the cost of the current path into v. With this value we associate the edge e.

The minimum vertex key still yields a canonical pivot path. When a pivot

occurs, and a vertex acquires a new shortest path, what effect does that have

on the vertex keys? Recall that when a vertex acquires a new shortest path, it

has more parameterized edges. Its cost is the same as the old path at the pivot

10



point, but is decreasing faster with the parameter. How the key of a vertex

V changes depends on whether the patli into v changes and how the potential

pivot paths into t change. Suppose the vertex does not acquire a new shortest

path and none of the potential pivot paths into it change. In this case the key

remains the same. If the vertex does not acquire a new shortest path but some

potential pivot into it changes, then the new potential pivot path is decreasing

faster than the old. In this case, the new path will overtake the current path

into t sooner, so if the vertex key changes, it will only decrease.

If a vertex acquires a new shortest path, and none of the potential pivot

paths change, then the new shortest path, which is decreasing in cost faster,

will not be overtaken as soon as the old Thus in this case the key will increase.

For the remaining case, note that the number of parameterized edges on each

new shortest path exceeds the number on the old path by the same amount.

Thus in this case the key will stay the same if the potential pivot paths which

determined the minimum value previously also change, and otherwise the key

will increase.

To summarize, a vertex key is the minimum of the keys of the edges into

the vertex. The algorithm stores with each vertex key the edge whose key

determines the value of the vertex key. As before, the algorithm determines

a pivot path from the minimum key, computes the new tree T' , and updates

the values c(<u,) and (!'£'(<„) for each if which acquires a new shortest path. To

maintain the vertex keys, for each vertex which acquires a new shortest path the

11



algorithm examines the keys of the edges coming into the vertex and takes the

new vertex key to be the minimum (possibly increasing the key), and checks the

key of each outgoing edge to see if it has decreased below the key of the vertex

at the other end, and if it has, it updates that vertex key. It then continues

pivoting, as before.

The purpose of this modification is that now the algorithm needs to do

fewer increase key operations in the worst case, so that the time taken by the

algorithm is reduced by stormg the keys in an F-heap. In particular, we will see

next that the time taken to maintain keys, which dominates the time taken by

the algorithm, is reduced to 0{nm + n^ logn), from 0(nm log n).

2.5 Running time

To bound the time taken by the algorithm, we note that the initialization of the

data structures takes 0(^n) time, plus 0(nm) time if a shortest path algorithm

needs to be run to determine the initial tree. To bound the remaining time,

we will associate each operation involved in updating the data structures with

a shortest path change to some vertex, and then bound the total number of

shortest path changes during the course of the algorithm. We give a shghtly

more detailed analysis them necessary, which will be useful in section 5.

Let m^ and j^ denote the degree of vertex w and the number of shortest path

changes ("jumps") to w in the course of the algorithm. Once pivoting begins,

finding a pivot path takes amortized time O(logrj). At each pivot some vertex

12



changes path, so the time for finding pivot paths is 0(logn ^^, j^.)- After a pivot

is found, for each vertex which changes path the shortest path information for

the vertex is updated, the edges into and out of the vertex are examined, the

vertex key may be increased, aind the vertex keys of adjacent vertices may be

decreased. Thus each time w changes path the amortized time to maintain the

data structures is 0(logn + m^.). (Recall that the amortized times for increeise

key and decrease key operations in the F-heap are, respectively, 0(\ogn) and

0(1) ) Thus the time taken by the algorithm after initialization is bounded by

a constant times

^ ju 77iu + log n^ j„, ( 1

)

u w

< n 2^ ?7Ju + log n
2_J jw

< 2nr7j + Ti- logn. (2)

Thus the algorithm always runs in time 0{nin + n- logn).

3 The Minimum Mean Cycle Problem

The mimmuTn mean cycle problem for a graph with cycles is to find a directed

cycle in the graph that minimizes the average cost of the edges on the cycle.

The average edge cost of such a cycle is called the mintmum cycle mean. So-

lutions to this problem are needed in a minimum-cost circulation algorithm of

Goldberg and Tarjan [GT89] and in a graph minimum-balancing algorithm of

Schneider and Schneider [SS87]. The problem has been studied by Karp [Kar78],

13



who gave an 0(nm)-Ume dynamic programming algorithm, and by Ahuja and

Orlin [A088], who gave an 0{\/nm\ognC)-time scaling algorithm. (Here C

is the maximum of the edge costs, which must be integers for the Ahuja-Orlin

algorithm to work correctly.)

As Karp and Orlin [K081] have observed, the minimum mean cycle prob-

lem can be solved using an algorithm for the parametric shortest path problem.

Before we discuss how, we introduce the concept of a potential for a graph.

Potentials are related to the dual variables arising when path and flow prob-

lems are formulated as linear programs. They are also an inherent part of the

minimum balance problem that we discuss in the next section.

A potential is an assignment of real-valued weights to llie vertices of the

graph. Such a potential acts to change the edge costs of the graph, as follows.

The cost of an edge e = (u, i) has the weight of u added to it and the weight of r

subtracted from it. Thus potential tt : V —« 9? acting on the graph G = ( V, E, c)

produces the graph G' = (T, £,c'), where c'(e = (u,v)) = c(e) + tt(u) — ir{v).

One useful aspect of potentials is that they do not change shortest paths or

costs of cycles.

It is well known that for any graph with no negative-cost cycle, there is a po-

tential for which the resulting graph has all non-negative edge costs. Specifically,

we fix a source vertex s in the graph C from which all vertices are reachable. (If

there is no such vertex in the original graph, we introduce an artificial source

vertex with zero-cost edges to all other vertices. The minimum mean cycle is

14



unchanged by this alteration ) Let 7r(r) be the cost of the shortest path from s

to V. Then the well known inequality n(v) < 7r{u) + c(e) holds for every edge

e = (u.v)- The cost of edge e in G" is therefore non-negative. Furthermore,

if e lies on a shortest path, or on a zero-cost cycle, then equality holds in the

above relation, so the transformed edge cost is zero. We call ir a shortest path

potential for G.

Using the notation of section 2, with E = £", let Gx denote the graph G

with A subtracted from all edge costs, and let A* denote the largest A such that

shortest paths in Cx are well defined. As shown earlier, if A' ^ oo, then Gx-

has a zero-cost cycle, but no negative-cost cycle. It follows that if we apply the

shortest path potential tt for Gx' to Ga-, we obtain a graph with a zero-cost

cycle and non-negative edge costs. If we then add A' to all edge costs, we obtaun

the graph G'. It follows that G' has a cycle C with each edge of cost A*, and

that no edge in G' has cost less than A'. Thus C is a minimum mean cycle

of mean cost A* in G'. Since potentials do not change cycle costs, C is also a

minimum mean cycle in G, and the minimum cycle mean in G is A*.

Thus to solve the minimum mean cycle problem it suffices to obtain a short-

est path potential for Gx' Such a potentieil is easily obtainable from the last

shortest path tree produced by the parametric shortest path eilgorithm run on

G with all edges parameterized. In this case the algorithm stops because it

discovers a zero-cost cycle in Gx- , which in turn is a minimum meain cycle in

G. Thus the minimum mean cycle problem is easily reduced to the parametric

15



shortest path problem.

As a side note, the introduction of an artificial source vertex with zero cost

edges into all the other vertices is useful even if an original source vertex is

available. An initial shortest path tree from the sirtificial source vertex is given

by the zero cost edges, so there is no need to solve an arbitrary single source

shortest path problem. This variant corresponds to the sourceless parameterized

shortest path problem, where shortest paths independent of source into each

node are computed rather than shortest paths from a particular source. This

variation also applies to Karp's minimum mean cycle algorithm [Kar78] and

simplifies it by removing an initial strongly connected components computation.

In practice, however, partitioning the graph into strongly connected components

might reduce the solution time.

4 The Minimum Balance Problem

We say a subset of the vertices of G is mintmvm-balanced if the minimum cost

among edges entering the subset is the same as the minimum cost among edges

leaving the subset. The mtntmum balance problem for a strongly connected

graph G = (V,E,c) IS to determine a potential tt such that, in G', each subset

of the vertices other than £ or is minimum-balanced. Such a potential is

said to minimum-balance G. Schneider and Schneider introduced an equivalent

problem [SS87] in connection with matrix balancing, and they gave an O^n^m)-

16



time algorithm. Our algorithm, wliicli runs in time 0{nm + n^logn), can be

viewed as a faster implementation of Schneider and Schneider's algorithm.

To solve the mminium balance problem, note that finding a shortest path

potential n and a minimum mean cycle C is a step towards minimum-balancing

the graph. In G" each subset of vertices that C enters and leaves has edges

entering and leaving of cost exactly A', and no entering or leaving edge has cost

less than A'. Consider contracting C to a single new vertex v in C, deleting

self-loops but retaining multiple edges, to obtain the graph H. Let /? be a

potential that minimum-balances H . If H has only one vertex, can be taken

to be any function; otherwise it can be obtained recursively. The edges of //"

are all of cost no less then the minimum cycle mean of H . which is in turn no

less than A*, the minimum cycle mean of G.

To complete the minimum-balancing, we can essentially just add the poten-

tials TT and 3. Consider extending the potential /? for H to the potential q for

G' defined by

{/3(i) u; on C;

0{w) otherwise.

The effect of q on G" is as follows. Each edge in G' that corresponds to an edge

in H becomes of cost equal to the cost of the corresponding edge in H^ . The

other edges, joining vertices on the cycle G, remain unchanged in cost. Thus if

a subset of the vertices is entered and left by C, it is entered and left by edges

of cost A*, which are minimum. Otherwise, the edges entering and leaving the

subset correspond to the edges entering and leaving the corresponding subset

17



of tlie vertices of //, and so the subset is correspondingly minimum-balanced.

Thus the potential n + a minimum-balances G.

In summary, the minimum-beJancing algorithm repeatedly finds and con-

tracts a minimum meam cycle until the graph contains only one vertex. Each

time the cycle is contracted, a shortest path potential is computed for the cur-

rent graph The minimum-balancing potential is computed by adding together

the shortest path potentials, appropriately extended.

At this point we have reduced the minimum-balance problem to a series of

at most n problems involving finding minimum mean cycles and shortest path

potentiails. By notmg that Karp's 0(nm)-time algorithm for finding minimum

mean cycles can be extended to yield shortest path potentials, Schneider and

Schneider [SS87] obtained an 0(n-m)-time algorithm.

4.1 A Hybrid Algorithm

The successive graphs computed by the above method are closely related. By

modifying the parametric path algorithm to contract the minimum mean cycle

it discovers and continue, we obtain a faster algorithm.

Suppose that we run the parametric shortest path algorithm on G with an

arbitr2Lry source s and E = E' . Since G is strongly connected, the algorithm

will terminate, having produced A* and a tree 7* that is a shortest path tree in

(7a* • This is sufficient to obtain a shortest path potential for Gx-, as required

by the first iteration of the minimum-balance algorithm.

18



The minimum-balance algorithm would next adjust the edge costs of G by

applying the shortest path potential n, contract the resulting graph around

the discovered minimum mean cycle, and continue. Consider what happens if

instead of stopping the parametric shortest path algorithm at this point, we try

to continue it through the adjustment and contraction.

First, to what extent can we maintain the shortest path tree? We have a tree

T that is a shortest path tree in Gx'- Since potentials preserve shortest paths,

T is also a shortest path tree in C = GJ.. We would like a shortest path tree

in G'/C, G' contracted around C. By properties of the shortest path potential,

we know that edge costs in G' are non-negative, and that edges on C or T are

of zero cost in C. It follows that T/C, the tree T contracted around the cycle

C, has all zero cost edges in G'/C. Since C consists of a single edge not in T

together with a path in T, T/C is a tree in G'/C. Thus T/C is a shortest path

tree in G'/C.

Once the shortest path tree T/C is constructed, we can completely recom-

pute the secondary data structures, including c(tui) and ^^'(^uj) for each vertex

If, the F-heap of vertex keys, and the mapping of which edges have determined

which vertex keys, in 0{m) time. We are then ready to proceed with the induc-

tive step of the parametric shortest path algorithm, modifying the tree pivot by

pivot until the next minimum mean cycle is found.
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4.2 Termination and Running Time

The algorillim continues pivoting and contracting, cadculating the requisite

shortest path potentials at each contraction, until the graph contains only a

single vertex. Note that the initial graph and thus all subsequent graphs are

strongly connected. Thus every graph with at least two vertices will have a

cycle with a parameterized edge, and so the only way a sequence of pivots can

stop is by discovery of a minimum mean cycle.

Since at most n contractions can take place, the time spent by the dgorithm

performing contractions and reinitializing data structures following a contrac-

tion is 0{mn). The remaining time is spent pivoting from one tree to the next

between contractions The analysis of the parametric path algorithm bounding

the number of pivots and the time spent maintaining the data structures after

each pivot in terms of the number of path changes continues to apply here. Each

pivot still results in some vertex acquiring a new path, and each operation main-

taining the data structures is associated with a path change for some vertex.

To obtain the same worst case bound (2), it suffices to note that the number of

shortest path changes during the course of the algorithm is still bounded by n

per vertex.

Consider, as the minimum balance algorithm proceeds, the number of ver-

tices in the graph minus the number of pcirameterized edges on the shortest path

to a vertex w. Every lime the path changes as the result of a pivot, this quan-

tity decreases, and contraction does not increase it. Furthermore, the qucintity
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initially is at most n and on termination is non-negative. Thus it is decreased

at most n times, and the number of path changes associated with u; is at most

n.

5 Expected Running Times

Although there are graphs for which the worst-case bounds for the parametric

shortest path and minimum balance algorithms are tight, one might suspect

that for many, if not most, graphs the bounds are not tight. In the case of the

minimum balance algorithm, it may be that, for most graphs, most vertices do

not acquire Q{n) new shortest paths throughout the course of the algorithm,

either because when a vertex acquires a new shortest path that path tends to be

substantially longer thain the old one, or because the contracted cycles tend to be

larger than constauit size. Smce the work done in the parametric shortest path

algorithm is essentially the work done in the minimum badance algorithm before

the first contraction, one might expect that the work done by the parametric

shortest path algorithm would be even less.

To explore this, consider the behavior of the parametric path algorithm as

used for finding a minimum mecin cycle on random graphs. We can rewrite the

bound (1) as follows:

< maxm^ ^;,i, -l-logn^ju
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Figure 1: Average number of shortest path changes per vertex when finding a

minimum mean cycle

= ^ jw f max TTJ^ + log n

j

(3)

With high probability, the maximum degree of a random graph is 0(^ + logTj),

so that it remains only to estimate the number of path changes when the algo-

rithm is run on random graphs.

To do this, we have run the sourceless variant of the algorithm on random

graphs of n nodes and m edges with each of the n(n — 1) edges equally likely to

be present. For each n and m. we took ^ or fifty tri2ils, whichever weis larger,

and averaged the number of path changes in each trial. Figure 1 shows the

average number of path changes per vertex for the parametric path algorithm
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for finding a minimum mean cycle.

The results suggest that the expected number of path changes for the para-

metric path algorithm is 0{n). If this is true, then the parametric path algo-

rithm yields a minimum mean cycle algorithm with worst case time 0{nTn +

n^ log n) and expected time 0(m + n log n), and the minimum balance algorithm

has worst caise time 0{nm + n^ log n) and expected time o{nm + n^ log n).

We make this argument precise in the following lemma and corollary.

Lemma 1 Given a random graph uith n nodes and m edges, the probabiliiy

that no veritT is of degree higher than 3— + it log n Z5 no more than 2n~^'*'^

.

Proof. If 3^ > n. then clearly the lemma holds. Assume that m < ^n^. The

number of graphs with n nodes and ni edges with a given vertex of degree d is

/

9d

2n - 2
\

/

/
n{n - l)-(2n-2)

\

= 9d-V

\

2n-2-d

m — 1

m — d

d n{n-l)-(2n-2)-im-d)
2nm

d-^n(n — i)

3m >

< 9d-i-T, TT-
d(n - 3)

Thus letting q = [;22lJ Jot d > q, gj < ^g^.^ < pa2-(''-"). Thus the number

of graphs with a given vertex of degree greater than or equal to d = a + k log n

is bounded by

t>d
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Thus the probabiUty that a given vertex is of degree a + k log n or more is less

than 2rj"*, so the probability that some vertex is this degree or higher is less

than 2n-*+'. Q

Corollary 2 If the erpecitd number of path changes is 0{n), then the expected

running time of the algorithm is 0(in + n log n).

Proof. Let R be the running time of the algorithm on a random graph, let B be

the quantity Ylw J^ (max^ m^ + logn), let D be the event that all vertices of

the graph have degree less than 3-^ + 2 logn, and let J be the number of path

changes. Then bounds (2) and (3) and lemma 1 give

EiR) < E{B) = Pr[D]E{B\D) + Pt[D]E{B\D)

< E{J X O (— + \ogn) \D) + -0{nin + 7i-iogn)

= 0(m + nlogn)f-^^^^ + l

= 0(,n + .logn)(^ + l

= 0{m + n log n).

D

Figure 2 shows the ratio of the average time for our minimum mean cy-

cle algorithm to the average time of Karp's 0(rjm)-time minimum mean cycle

algorithm, which runs in time Q(nm) for all graphs.

Although we did not implement the scaling minimum mean cycle algorithm

of Ahuja and Orlin [A088], experience with a related algorithm suggests that
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Figure 2; Ratio of average time to average time for Karp's algorithm

even if the scaling algoritlim runs in expected time 0{n + m) for some reason-

able distribution of graphs, the constants involved would be larger than those

observed for our algorithm [Sch89].

We also tested the minimum balance algorithm. As figure 3 shows, it appears

that the number of contractions for a non-sparse random graph is about n/2.

In the algorithm as described, the contraction step, which takes 0(m) time per

contraction, appears to be the bottleneck, giving a running time of ©(nm). The

totjj time for contraction cem be reduced to 0{m + nlogn) by using a vairiant

of the union-find data structure of Tarjan [Tar 79]. The time for zidding the

partial potentials is similarly reduced, so this modification should remove the
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Figure 3: Average number of contractions per vertex

bottleneck. As of yet we have not estimated the expected running time of the

modified algorithm.

6 Final Remarks

One question not addressed by our parametric path algorithm is the form in

which the solution is produced. Recording the sequence of trees explicitly would

take space and time 6(n^) in the worst case of 0(n^) trees, and recovering a tree

for a particular value of the parameter would require locating the value in the

sequence of intervals, which can be done easily in logn time. Alternatively, we
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can store for eadi vertex the values of the parameter at which the parent changes

and which vertex becomes the parent at each change. Then in the worst case

the space is 0{n') and any tree can be recovered in 0(n log n) time by searching

for the parent of each node individually with a binary search. For most graphs,

the number of times each vertex changes parent is probably constant, so this is

probably an even better solution in practice.

On a different note, a number of generalizations of our algorithms are pos-

sible. The parametric path algorithm may be generalized to handle the case

when the edge costs are more general functions of the parameter. In particu-

lar, if the edge costs are concave functions of the parameter with derivative in

the set —A', . .
. , —1,0, then essentially the same algorithm works, provided the

functions are stored so that for each function we can tell for successive values

of the parameter what the current value and derivative are and when the next

decrease in derivative will occur. For instance, if we allow the initial graph to

contain multi-edges, and each multi-edge is given as a list of edges with cost

functions of constant derivative in [— A',
. .

.
, 1,0], in order of decreasing deriva-

tive, then pivots still occur when the shortest path into a vertex changes, and

each such change decreases the derivative of the cost of the path into the vertex.

Essentially the same analysis applies to show that the number of path ch£mges

to each vertex is in this case at most An, and the algorithm produces at most

A'n^ trees in time 0{I\nm+ A'n^logn).

Surprisingly, the parametric path algorithm may also be generalized to allow
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concave edge cost functions with positive derivative as well. If the functions are

concave functions of the parameter with derivative in the ramge [—A', .., A'], then

the same argument shows that essentially the same transition from one shortest

path tree to the next still occurs. In this case finding an initial shortest path

tree is more difficult, however, because an initial value of the parameter for

which shortest paths are well defined is not so easy to come by.

If all edge cost functions are non-negative at some point (say zero), then we

can start by finding a shortest path tree in Go and proceed by increasing the

parzimeter, generating trees in sequence as before, until some cycle becomes of

zero cost. Then we can return to Go and proceed by decreasing the value of

the parameter to generate the initial part of the sequence of trees in reverse.

We leave open the problem of finding an initial value of the parameter in the

general case.

We also might consider generalizing the minimum balance problem by allow-

ing the algorithm to proceed with arbitrary parameterizations. The analysis of

the running time still holds, but in this case we know of no natural interpretation

of the problem the algorithm is solving.
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