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Abstract

The subject of this paper is a two-station mixed queueing network with two customer types:

"Open" customers enter the network at station 1 and depart the system after receiving service.

Meanwhile, a fixed number of "closed" customers circulate between stations 1 and 2 indefinitely.

Such a mixed queueing network model can represent a single-stage production system that

services both make-to-order and make-to-stock customers. We present fluid and diffusion limits

for this network under the first-in-first-out service discipline. We find that the heavy traffic limit

of the workload process at station 1 is a reflected Brownian motion (RBM) on a finite interval.

This result is surprising in light of the behavior of the original mixed network model, in which

the workload at station 1 need not be bounded.

KEYWORDS: mixed queueing networks, make-to-order production, make-to-stock production, dif-

fusion approximation, reflected Brownian motion, performance analysis.
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Figure 1: A Two-Station Mixed Queueing Network

1 A Two- Station Mixed Queueing Network

This paper is devoted to the analysis of the network pictured in Figure 1. which consists of two

stations serving both "open" and "closed" customers. Open customers enter the network at station

1 and depart the network after being served. Closed customers, on the other hand, circulate between

stations 1 and 2 for service. Because there are no external arrivals of closed customers nor are there

departures, the number of closed customers in the network remains constant in time We denote

by .V the number of closed customers in the system.

Let A be the arrival rate of open customers at station 1 and let mo be the mean service time of

these customers. Set mi and m2 to be the mean service times of closed customers at stations 1 and

2, respectively. We will aissume throughout this paper that mj < m2- From Chen and Mandelbaum

[3], one can verify that the relative throughput rate of closed customers is l/m2. Consequently, we

can define the "relative" traffic intensities at stations 1 and 2, repsectively, to be

mi
pi = Amo +

P2 = I.

m2
:i 1)

:i.2)

For each finite N, the actual throughput rate of closed customers is given by a'^/m2. where oy is

a number strictly less than one. Moreover, the actual traffic intensities are given by

Pi = Amo + —^mi
m2

P2 = Qr^-

(13)

(1.-1)

One expects that the traffic intensity at station 2 approaches 1 as the number of closed customers

increases; that is, Oy — 1 as A^ — oo and accordingly, equations (1.1)-(1.2) can ht^ taken as

approximations of (1.3)-( 1.4) when N is large.

We are interested in the process 1^1(0. defined to be the total amount of work found at station

1 at time /. In addition, let ('o(0 and Ui(t) be that part of the workload corresponding to open and
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closed customers, respectively. We will show in this paper that when station 1 is nearly saturated,

namely

Pj = Amo H »s 1,
m2

the following approximation holds when the closed customer population A'^ is large:

« iW^{-),Uoi-)M:{-)). (1.5)

Here, l^i'() is a reflected Brownian motion on the interval [0, 1712] with drift and variance parameters

9- = N(\mo +— -l) (1.6)

2

CT- = Xml(cl + ct) + '^ic\ + c^^. (1.7)

Moreover, the partial workloads corresponding to open and closed customers live in fixed propor-

tions according to

t^oC) = (^ - 1) ^i'(*) = AmotVrCO- (1.8)

These results seem counterintuitive in light of the behavior of the original mixed queueing network,

where the workload process at station 1 need not be bounded above and the partial workloads are

not subject to deterministic relationships. On the other hand, neither (1.5) nor (1.8) should be

completely surprising if one is familiar with certain properties of queueing networks in heavy traffic.

Our goal in this paper is to prove a heavy traffic limit theorem that justifies the approximation

stated in (1-5).

For the reader to better understand the contributions of this paper, it is helpful to cast our

results within the context of diffusion approximations of open and closed queueing network models.

Queueing networks are said to be "multiclass" if the service time distribution as well as the routing

of customers at each station can depend on the class designation of the customer. In "single-

class" networks, customers at each station are indistinguishable, meaning their service times are

identically distributed and all customers at each station follow the same routing mechanism. For

single-class networks with Markovian routing, Reiman [19] proved that the diffusion limit of the

workload processes is a reflected Brownian motion in the positive orthant. Peterson [18] proved

a similar result for multiclass networks in which the routing is deterministic and feedforward. In

the same work, Peterson also showed that the class specific workloads at each station are given

by fixed proportions of the overall workload at that station. The feedforward structure, which

essentially requires that all customers travel from lower numbered stations to higher numbered

ones, turns out to be an important restriction. The generalization of Petersons work to include

routing with feedback has proved to be quite difficult and the source of the difficulties contains

deep and subtle theoretical issues. In the case of a multiclass single-queue network with feedback.



Reiman [20] was able to prove a theorem to justify the approximation of the workload process

by a one-dimensional reflected Brownian motion, and the proof due to Reiman was subsequently

simplified by Dai and Kurtz [7]. With insights drawn from these results. Harrison and Nguyen

(12, 13] proposed a Brownian system model to approximate a general multiclciss queueing network

with feedback. The Brownian system model proposed by Harrison and Nguyen is. in essence, a

reflected Brownian motion on the nonnegative orthant, and it was generally thought that such an

RBM was well defined for any queueing network. Indeed, Dai and Nguyen [8] have shown that

if the vector of wokload processes were to converge to any continuous limit, then that limit must

be the Brownian system model described in [12, 13]. However, an example by Dai and Wang [9]

conclusively verified that there exist queueing networks for which Harrison and .Nguyen's Brownian

approximation do not exist. Whitt [23] provided another example that further illuminated the

irregularities and nonconvergence of the workload process. Due to the work of Taylor and Williams

[21], much progress has been made toward identifying sufficient and necessary conditions for the

existence and uniqueness of RBM's. However, the convergence of open multiclass queueing networks

with feedback remains a wide open question.

Similar progress has been made in the area of diffusion approximations for closed queueing

network models. Chen and Mandelbaum [3, 4] have proved fluid and diffusion limit theorems

for single class closed queueing networks with .Markovian routing. In particular, the diffusion

limit of the workload process in such a network is an RBM on a simplex. Extension of Chen

and Mandelbaum's work to the multiclass networks involves the same difficulties as in the open

counterpart. Dai and Harrison [6] propose a diffusion approximation for a closed manufacturing

system, but with the restriction that all job classes which are served at a station share a common

service time distribution. From Taylor and Williams [21], one can verify that there exists (in a

weak sense) a unique RBM corresponding to the proposed approximation. However, there are no

proofs to verify that the workload processes in fact converge to the said RBM.

In light of these results, one may suspect that mixed queueing network models, as a combination

of open and closed queueing networks, will exhibit similar properties under the diffusion limits.

That is, the diffusion limit of the workload process can be cast in the form of a reflected Brownian

motion, and in particular, the workload due to closed customers can be expressed as an RBM

on an interval. Moreover, one can conclude from the theory of multiclass queueing networks that

the class-specific workload proceses at each station live in fixed proportions, so that the workload

processes due to open and closed customers at station I are deterministically related It then

follows from these observations that the workload process at station 1 must be an RBM on a finite

interval. Because station 1 is in essence a multiclass station, however, the proof of this network

is substantially more intricate than the corresponding proof of the single-class open and closed

networks. One may therefore view mixed queueing networks as an intermediate stepping stone

between the well understood single class networks and the more challenginR multiclass queueing

models.



The remainder of the paper is organized as follows. Before we turn to problem formulation

and proof, we discuss in the next section a make-to-order/make-to-stock production system that

is naturally modelled by the mixed queueing network under study. Section 3 defines the processes

that we use in our analysis. Our main results are stated in Section 4, and the proof of the limit

theorems are then given in Sections 5 and 6. These proofs rely on the properties of a certain pair of

mappings, which we discuss in the Appendix. Our approximation scheme is based on a refinement

of the Brownian limit, which we discuss in Section 7. Finally, Section 8 contains the results of

several numerical experiments.

We end this section with some technical preliminaries. The space D''[0,oo) is the r-dimensional

product space of functions / ; [0,oo) —* ^^ that are right continuous on [0,oo) and have left limits

on (0,oo). The space D''[0,oo) is endowed with the Skorohod topology [2]. For A"" a sequence

of processes in D'"[0,oo) and .Y £ D''[0,oo), we write X"=^X to mean A'" converges to A' in

distribution.

All vectors will be envisioned as column vectors. We use the letter e to denote a (column)

vector whose components are all ones. The dimension of e should always be clear from context.

On occasion, we will also write e{t) to mean the identity map e{t) = t. Again, there should be no

confusion as to the appropriate interpretation of the letter e.

For/: [0,oo)^$R, set

11/11,
= sup |/(s)|,

0<s<(

and for a vector-valued function f = {fi, f2, , fr)' ' [0, >2) — 3?'", we let

lt = (ll/illt,...,IIMI.)'.

A sequence of functions {/"} converges to a function / uniformly on compact sets (u.o.c.) if for

each t > 0, ||/" — f\\t
— as n —> oo. We say that / is continuous at x if x" ^ x u.o.c. implies

that /(x") —> f{x) u.o.c. Finally, for a sequence of functions {-A"} on D'"[0,oo) and A' a process in

D''[0,oo), we write X^ —* X u.o.c if almost surely, X"' converges to A' uniformly on compact sets.

2 A Make-to-order/Make-to-stock Production system

Production systems are typically categorized as "make-to-order" or "make-to-stock," corresponding

to the two scenarios in which new jobs are triggered by customer orders or by replenishment orders

for finished goods inventory, respectively. In a make-to-order system, a new job is released into the

system each time a customer places an order. A make-to-stock system, on the other hand, maintains

a finished goods inventory from which customer demands are filled. Each order fulfillment from

inventory triggers a job release in the system; hence, the total number of "jobs" in the system,

either in the form of orders waiting to be processed or as finished goods inventory, does not change

over time.
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Figure 2: A Make-to-order/Make-tostock Production System

It is more often the case, however, that production systems employ a combination of both make-

to-order and make-to-stock operations. Figure 2 shows such a system with a single processing stage.

We make the cissumption that orders for make-to-stock products that cannot be filled due to lack

of inventory are simply lost (no backlog). One can employ the mixed queueing network in Figure 1

to model this system, where make-to-order products are represented by open customers and rlosed

customers take the place of make- to-stock products. Station 1 naturally represents the production

center and we use station 2 to model the finished goods inventory from which make-to-stork orders

are serviced. A service at station 2 signals that a make-to-stock request has been filled, whirh iii

turn triggers a replenishment order for station 1: that is, a departure from station 2 then proceeds

to station 1. In this case, a closed customer at .station 1 represents an order for make-to-stork

products, whereas a closed customer at station 2 takes the form of a finished good.

We note that station 2 only approximates the demand process for make-to-stock pro<luris

In particular, consider a time interval [<i,<2] during which the finished goods inventory is enipiv

During this time period, make-to-stock requests continue arriving with i i d. mterarrival iiiii>'s

The first order to be filled is the first one to arrive after t2- Denoting by t' the arrival time if ilus

order, it is clear that t' — <2 does not, in general, have the same distribution as other interarri\.ii

times. That is, the first service time of a busy period at station 2 should be characterized \<\ in

"excess life" distribution. However, this difference is not significant in the sense that both systems

can be shown to converge to the same heavy traffic limit (see Iglehart and Whitt [16]).

The subject of this paper is the behavior of such a system as the workstation operates umi-r i hf

first-in-first-out policy. There are, of course, several other policies that should be considered I't

example, make-to-order products (or similary, make-to-stock products) may receive higher pn-'niv

One can employ an "Order-up-to" policy in wiiirh a batcii of .V — ii make-to-stock recin-'-is -ir-'



sent to the workstation whenever the inventory level n falls below some critical level n' . Another

interesting option is to process the two product types on cyclical basis.

In this example, the parameter A corresponds to the rate at which make-to-order products are

requested. Similarly, mo and mi are the mean processing times for make-to-order and make-to-

stock products, respectively. Finally, the demand rate for make-to-stock products is given by l/m2.

It is natural, in the context of this example, to consider only cases in which mi < m2-

3 The System Processes

Let (Q, !F, P) be a probability space on which are defined four independent sequences of independent

and identically distributed (i.i.d.) random variables {u{i),i = 1,2,...}, {vk{i),i = 1,2,...}, k —

0, 1,2, where these random variables are positive and have unit mean. We denote by c^ and c^. the

squared coefficients of variation (SCV) of u(i) and Vk{i), respectively. We will find it convenient to

designate open customers as customers of class 0, closed customers at station 1 as class 1 customers,

and closed customers at station 2 as class 2. With this categorization, we set the interarrival time

sequence of open customers to be {X~^u{i),i = 1,2, . . .} and we denote by moi'o(0 the servici^ time

of the i open customer at station 1. Service time sequences for closed customers at stations 1

and 2 are defined as {mit;i(j),f = 1,2,...} and {m2V2{i),i — 1,2,...}, respectively. With these

definitions, one interprets A as the arrival rate of open customers and mo as the mean servict^ time

of open customers at station 1. Similarly, the mean service time of closed customers at stations 1

and 2 are mi and m2, respectively.

Setting u(0) = 0, define the arrival process for o'pen customers at station 1 as

AqU) = max{j > : u{0) + + u(i) < Xt}. (3 1)

Next, let Bj{t) be the amount of time that server j has spent working up to time t. At station 1 . this

time is divided among the two customer types, and we denote by To(t) and 2i(<) the amount nf time

server 1 has devoted to open and closed customers, respectively. (Clearly, Bi{t) = To{i) + T\{l)
)

Let Sk{t), k = 0, 1,2, be the counting process associated with class k service times.

Skit) = ma\{i > : mfci>fc(0) + + rrikVkii) < t). (3 2)

The arrival processes for class 1 and 2 customers, respectively, are then given by

Ai{t) = S2{B2{t)), A2it) = Si{T,{t)). ir.i)

Denote by I4(t), ib = 0, 1,2, the partial sums process for class k service times,

Vkit} = ^7nkVkii}. '31)

:=1



Setting

Mk(t) = VkiAkit)) = mkVk{l) + + mkVk(Ak(t)), (35)

it follows from (3-l)-(3.5) that Mif(t) is the amount of immediate work from riass k customers who

have arrived to the associated station by time t. If we now define

Li{t) = Mo(i) + \fi(i), L2(t) = M2(t), (3.6)

then L,{t) is the immediate workload iii|)ut process for ail customer classes at station i.

We will assume throughout the paper that Qo(0) = Q\{0) = and (32(0) = N; that is, the

system starts with all closed customers at station 2 and no open customers in station I. Letting

W^,(<) denote the workload process for station i, defined to be the remaining service time associated

with all those customers at station i at time t. either queued or receiving service, we have

W,{0) = 0, Wm = V2{Nl (3.7)

and

W,(t) = W,(0) + L,(t)-B,(t). (3.8)

Defining I,(t) = / — B,{t) to be the cumulative idleness process at station i and

X,(t) = L,(t) - t (3.9)

to be the workload netflow process, write (3.8) as

W,{t) = W,{0) + X,{t) + I,(t). (3.10)

We require the idleness processes satisfy the following properties:

/, is continuous and nondecreasing with /,(0) = (3-11)

/, increases only at times t when IV',(/) = U. (3-12)

The first statement is a simple consequence of the properties of an idleness process, and the second

statement holds for any work-conserving system. That is, it states that the server remains idle only

when there is no work to be processed. The vector processes A', IV, I, U.Q are then dpfined in the

obvious manner.

It remains to characterize the "allocation" processes T{t) = (To{t),T\(t))' . Let r](t) denote the

arrival time of the customer currently in service at station 1 if W\{t) > and set ri(t) = t otherwise.

With FIFO service discipline, we must have

Tk(t) = Mk(riU)) + eik(f), (313)



where fifc(f ) is the amount of service the current customer has received if that task is of class k and

eik(t) = otherwise. The amount of work at station 1 associated with open and closed customers

are denoted by Uq and Ui ,
respectively, and are given by

Uo{t) = Mo{t) - Toit) = Mo{t) - Moiriit)) - eio(0 (3.14)

Uiit) = Miit) - Tr{t) = M,(t) - Mi(q{t)) - en(t) (3.15)

Next, define Qk(t) to be the queue length process associated with class k customers (including any

customer who may be in service). It follows from the previous definitions that

Qo{t) = Aoit) - Ao{r]{t)) (3.16)

Qi(t) = Ai{t) - Arirjit)) (3.17)

Q2(<) = N + A2{t) - A2irj{t)). (3.18)

As we expect, Qi(f) + Q2(0 = Qii0) + Q2{0) = ^, so the number of closed customers in the network

does not fluctuate in time. Furthermore, Q2(0 is completely determined by Qi(t). Finally, observe

that

r^(t)^t-\\\{ii{t)) + e2{t), (3.19)

where 62(0 '^ 'f W'lO = and otherwise is equal to the remaining service time of the customer

currently occupying station 1.

The limit theorems proved here apply to systems that satisfy conditions of "heavy traffic," and

in order to rigorously state these conditions, we require the construction of a "sequence of systems"

to be indexed by n. Recall that the interarrival times and service times for the network are defined

in terms of the basic sequences of unitized random variables {u{i) : ; > 1}, {i'A:(') : ' > 1},

fc = 0, 1, 2. To construct a sequence of networks we further require sequences of positive constants

{A("',n > 1}, {mj^ ,n > 1}, fc = 0,1,2. In the n"' system of the sequence, the interarrival times

and service times are taken to be u'"'(f) = u(!)/A'"' and v]^ (i) = m]^ i'/ic(')' respectively. For

the n system, A'"' is the arrival rate of open customers and m)^ is the mean service time of the

various customer designations. Define the relative traffic intensities pj as in (1.1)-(1.2) using A*"'

and nii^ in place of A and m^. Finally, the closed customer population of each network in the

sequence is set to be n, that is, we define AT*"' = n.

The convention here is to denote a parameter or a process associated with the n'" system by the

superscript "(")"
• For example, Aq refers to the external arrival process of open customers in the

n system. The results in this paper apply to processes that have been "scaled." Let A'*"' denote

a "generic" process associated with the n"" system. The "fluid scaled version" and "diff"usion scaled

version" of the process A"*"', denoted as A" and A", respectively, are defined via

A"(<) = -A(")(n') and X"(/) = -A<")("^0-
n n



We also define

.V"(0 = \x^"Hri^t) = --V"(<)
n^ n

It IS assumed that the following conditions hold for the input processes of the network. First,

the arrival rates and mean service times converge to finite constants, A*"' -^ A and m^" — mfc,

i = 0, 1,2. This implies that p," —. pj = Amo + mi/m2 Furthermore, it is assumed that there

exists —oo < 9 < oo such that

n(p',"'-l) —.^asn^oo. (3.20)

Condition (3. 20) is called the heavy traffic condttton. It requires that as the the number of closed

customers becomes large, the relative traffic intensity at station 1 must become approximately 1.

Moreover, the rate of convergence is "sufficiently fast."

The following two theorems are direct consequences of the functional strong law of large num-

bers, Donsker's Theorem and the functional central limit theorem for renewal processes:

Theorem 3.1 .4s n — oo, W''2'(0) — mo almost surely and

where .4^(0 = Xt, Vo{i) = mot. V; = m,t. l'/ = m^t. S'o = ^t. S', = ^t . S'^ = ^t.

Theorem 3.2 iA^,V^,V{',V.p)=>{A^,Vo ,Vi' ,V{) where A^ Js(0,Ac^) Brownian motion and V^

is (0,m^c^) Brownian motion, k — 0.l.'2.

The following result, which establishes that "remainder" terms converge to zero under scalmg, will

be needed in our proofs. For j = 1,2, let

fu(0=-4:;'(n'0, e-^(i) = -e[';\nt),
n

and

^2(0 = -4"'(n'0. r,{t) = -e["\nt).
n n

Lemma 3.3 For j = 1,2 and each t > 0, \\('^j()\\t — 0, \\^ji-)\\t ~ 0, Ikji)!!' - ^' ""(^

lkl()l|. -0 asn-^oo.

Proof. It follows from the definitions of fij(() an<l f^(t) ihat

< fi,(0 < max »noio(')+ max miii(i)~ l<i<.4o(() I<i<52(<)

< e2(/) < max rM|ii(;)~
1<I<.^-J(()

An application of Lemma 3.3 from Iglehart ami \\ liiti [16] proves the lemma.



4 The Limit Theorems

Theorem 4.1 (The Fluid Approximation) If the heavy traffic condition (3-20) holds, then

(W^",/",Q",r')^(iy*,r,Q',f') u.o.c.

where

W,'{t) = (4.1)

W;{t)^m2 (4.2)

Qoii) = 0, Q'lit) = 0, Qm = 1 (4.3)

/,•(<) = i;(t) = 0, (4.4)

f*it) = Xmot, T^{t) = —t. (4.5)

Theorem 4.2 (The Diffusion Approximation) Ff the heavy traffic condition (3.20) holds, then

(IV",r,C/",Q") =^ {W'J',U',Q'}

where

W:it)=Cx{t} + r{t)-^i;(t) (4.6)

^j is a {6,a'^) Browntan motion (4.7)

py;(0 = m2 - ^^^(O (4.8)

C/o-(0 = XmoW^it), U'{t) = ^P^i'(i), C/2(0 = W2(t) (4.9)
771.2

QUO = — f^fc'(0, k = 0.1/2
'

(4.10)

/* is continuous and nondecreasing with /*(0) = (4.11)

/' increases only at times t with W*{t) = 0. (4.12)

Equations (4.6)-(4.8),(4.11), and (4.12) characterize IV{ as a one-dimensional reflected Brovvnian

motion on the interval [0,m2] with drift 9 and variance a^ , where 9 and a^ are given by (3.20)

and (1.7), respectively. Properties (4.9) and (4.10) e.^press the deterministic relationships between

queue lengths, partial workloads, and overall workloads that are characteristic of Brownian limits

of queueing networks (for example, see [12, 13]).

In Section 1, we noted that the boundedness of the (limiting) workload process at station 1 can

be viewed as a consequence of the "heavy traffic nii.xing principle." This principle, which is born out

in equation (4.9), states that in the heavy traffic limit, the class specific workloads at each station

are deterministically proportional to the overall workload at that station. We can develop another

rationale for explaining the boundedness of the workload process at station 1, which perhap.s may

10



be more intuitive, by considering the arrival process to this station. Open customers arrive to

station 1 at rate A While station "2 is not empty, the arrivals of closed customers to station 1

resembles a renewal process with rate l/mj. When all closed customers are at station 1. however,

the arrival process for closed customers are temporarily "turned off," and for that period of time,

the rate at which work arrives falls below the critical heavy traffic level. That is, during the period

of time in which station 2 is empty, station 1 displays "non-heavy traffic behavior."

Let IT be the steady state distribution of \V^ , and set

/?, = lim \i;{t)
t—'OO t

We have the following result from Harrison [10].

Theorem 4.3 (Proposition 5.5.5. [10]) Set b = m2. If 9 = 0, then 3i = 32 = (T^/2b and tt is

the uniform distribution on [0.6]. Otherwise, setting k = 29/(7^,

^2 = ^-—E, (4.13)

and Tr{dz) — p{:)d: where

p«6 _ 1' '"" 1 _ g-«6'

pi^) = -pfzi (''')

The following deterministic time change theorem, due to Whilt [22], will be helpful in proving

our results.

Theorem 4.4 (Deterministic Time Change Theorem) Let {/n,n > 1} ind {c„,n > 1} he

sequences inn where Cn is nondecreastng with Cn{0) = 0- If {fn,Cn) converges u.o.c. to a continuous

pair (f,c), then /n(cn(0) converges u.o.c. to f{c{t)).

5 Proof of tlic Fluid Ai)proximation

Lemma 5.1 for each t > 0, ||tVi"(-)||( — a.s n — •x,.

Proof. The lemma is proved via a bounding argument in which W^ is bounded above by a

sequence of open queues with two customer types and 1. Recall the definitions of the processes

Aq and S2 from (3.1) and (3.2). We denote by .4o the arrival process of type customers

and wp let type 1 customers arrive according to the renewal process ^j The sequence of service

11



times for class k customers is given by {m)^ Vk(i),i > 0}, and as in (34), we denote by V^. the

associated partial sums process. Defining

X^-)it) = l/o'"'(4"*(0) + vf>(55"'(0)-< (5.1)

Zi^)(t) = ^(")(i) + y(")(<) (5.2)

y(")(<) = sup {x^"n«)}~

.

(5.3)
0<s<t * -'

this queue provides an upper bound for station 1 in the sense that

< Wl''\t) < Z(")(<) for all t > 0. (5.4)

Applying the fluid scaUng to x^"^ equations (5.1)-(5.3) become

nt) = Ki<it)) + KiS^{t))-t (5.5)

z"(<) = x^{t) + y"{t) (5.6)

y"(t) = sup {xT- (5.7)
0<i<t

It follows from Theorem 3.1 and the Deterministic Time Change Theorem 4.4 that ||x"(.)||f
—

almost surely for each < > as n — oo. Because the mappings (5.6)-(5.7) are continuous,

ll^"(-)ll(
-^ 0. and it follows from (5.4) that for each t > 0, ||W^r()i|( ^ almost surely as n — oo.

I

Proofof Theorem 4.1 Because |B,"(0-flr(s)l < l*-s| and |77(i)-T;"(s)| < |<-s| almost surely,

we can conclude from the Arzela-Ascoli theorem that there exists a subsequence nt, fc = 1, 2, . . . on

which Tq'' , T"*, B"*, and Sj* converges almost surely to continuous limits and the convergence

is uniform on compact sets. Denote the corresponding limits by Tq , T*, 5', and flji respectively.

Observe that I^{t) = t - B^{t), hence /f*
-^ /• u.o.c. where /*(<) = t - B'{t).

Applying the fluid scaling to equations (3.8) and (3.16)-(3.19), we have

W^(t) = W^{0) + V^^{SnB^it)))-B^{t) (5.8)

QS(f) = i"(0-i"(r)"(0) (5.9)

Q'iit) = S^iB^{t))-S^{B^iri''{t))) (5.10)

Q^{t) = l-Q'^it) (5.11)

;j-(t) = t-Wi'{fj^it)) + ^{t). (5.12)

From equation (5.12), we have

limsup||.-rj"(.)||, < limsup||P^i"(77"(-))||( + limsup||e-^(.)||,
n—*oo n—-oo

< limsup||^^i"(.)||i + limsup||6-^(.)||i
n—'oo n— oo

< 0, (5.13)

12
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where the first inequality follows from the observation that Tj(t) < t and the last inequality is a

result of Lfmma 3 3 and Lemma 51. Scaling (313) in the fluid convention, we obtain

T?it) = l/,"(5?(fl2"(7j"(0))) + f7i(0-

Applying Theorem (3.1), the Deterministic Time Change Theorem 4.4, Lemma 33, and (5.13), it

follows that T^ — r* u.o.c. where

TZit) = \mot and f,-(f) = ^flj'CO.
1712

Again applying Theorem (31) and Theorem 4.4 to (5.8)-(5.1 1), we get (W2''.Q'"') — (iVj'Q*)

u.o.c. where

W^{i) = ^2 + —f^{t) - fljC) = ^2 (5.14)
mi

and

Q5(O = 0, QI(O = 0, Q\{t)=\. (5.15)

Finally, (5.14) implies that there exists a finite n' and positive e such that IV'^''(0 ^ ^ ^s- for

all < > and n/t > n*. Because I^ may increase only at times t for which tV2'(0 = 0, it follows

that /2"*(0 = for all < > and n^ > n*. Hence. /^(O = 0, S.J(0 = t, from which it follows

that T7(0 = ^<, Si'(0 = t, and /,'(0 = l^it) = for all i > 0. Because each subsequence

of (PV", /",Q", T") contains a convergent subsequence and each of these subsequences in turn

converges to the limit described in Theorem 4.1, we may conclude that (IV, /",Q", T"") itself

converges to the same limit . I

6 Proof of the Diffusion Approximation

We begin with the definition of "centered" processes

/ij,"'(0 = .4i"'(0
- A(")< V;'"*(0 = i;<"'(/)-m<.'''f

»7<")(0 = r?(")(<)_<.

Centering (3. 13) and (3.19) in this way, we obtain

Txit) = V,(S2{B2{T](t)))) + m,S2{B2(n(t))) - —hinii)) +—m + ^u(f)
77)2 '"2

rri 1

= Vi(S2{B2{rj{t)m+ miS2{B2{r](t))) - —hinV))
U}2

-—Wi(n(t)) + —(2{t) + (u(t)
mj mj

13



= V,iS2{B2{n{t)))) + m,52(52(r,(<))) - — X,(r,(0) - —hivit))
(712 m2

-^/2(r?(0) +—e2(0 + fn(<)- (6.1)
m2 m2

Next, set

6(0 = VoiMt)) + moAo{t) + ViiS2{B2it))) + miS2iB2{t))+(xino + — -\)t (6.2)
V m2 J

6(0 = t^2(0) + V'2(5i(Ti(O)) + m25,(Ti(<)) + — V'i(52(fl2(r?(0)))
m.\

+m2S2{B2{ri{t))) - Unit)) + £2(0 + — eii(0- (6.3)
mi

One can invoke (6.1)-(6.3) together with the observation that /i(f) = /i(rj(0) to express the netput

processes (3.9) as

Xi{t) = 6(0-— ^2(0 (6.4)
m2

^2(0 = 6(0-A(0-(l-— )/2('7(s)). (6.5)
V m2/

Applying the diffusion scale to (3.10)-(3.12), we have the following expressions for the scaled work-

load process:

(n)

w'r(o = -er(o - ^/2"(o + /r(o (6.6)

7712

wm = ait) - hit) + f 1 - -J^j i^i^it) - /2"(r?"(0)) + -j;^i2(t) (6.7)

/" is continuous and nondecreasing with /"(O) = (6.8)

/" increases only at times t when Wp{t) = 0. (6.9)

where

6"(0 = Ki^oit)) + r"|,"'/iS(0 + Vi"(52"(fl2"(0)) + ml"'52"(SJ(0) +

^^ + AHm<"' - 1

j
nf (6.10)

= = = (")= = =
6"(0 = W^2"(0) + V'2"(5r(Ti"(<))) + m<"'5r(7r(0) + ^Vr(5J(B2('?"(O)))

TTlj

= = = (")

+m^2^S^iB^{ri'^(t))) - ^r('?"(0) + f5(0 + ^^11(0, (6.11)

,,""(<) = t + -W^i^-it)) + -e^(t). (6.12)
n n

By the Skorohod representation theorem, we may and will assume henceforth that the convergence

in Theorem 3.2 holds u.o.c.

14



Lemma 6.1 For each t > 0,||r7"() - ||( — as n — oo.

Proof. Let Z'"' be the process defined in Lemma 51, and note that Z" -~ Z' uo.c. where Z'

is a one-dimensional reflected Brownian motion with drift /i and variance cr^ . Because ir|" (<) <

hmsup
II

• -n''{-)\\t < hmsup -UPV^H'T"!))!!. + Hmsup -||f?()||,
n— CO n—"oo 1 n—'OO H

< limsup-!-||PVr(-)lk
n—'oo n

< Hmsup -||Z,"()||,
n— oo Ti

= 0.

Lemma 6.2 ^" ^ ^' u.o.c. as n —> oc where ^' is{9.(t^) Broitnian moftoi} nnrf^^iO = '"j— m"(')

Proof. The convergence of ^" follows from from (3.20), Theorem 3.2, Theorem 4.4, and Li nima

6.1. Define

(,7(0 = V2"(5T(:^(0)) + "'2'''^2"(B?(r7""(/))) ((113)

(")= = =

C2"(0 = ^Vr(52"(fl?(r/"(0))) + m^"'Sr(77(/)). (6 11)

An application of Theorem 1 in Iglehart and Whitt [1.5], shows that S" —*• —m,~^^^V' u.o c Fmm
Theorem 3.2, Theorem 4.1, and the Deterministic Time Change Theorem, we can conclude from

(6.13)-(6.14) that ||C()II( — as n — :c for each / > and i = 1.2. Writing

^2"(o = 1^7(0) + cr(n + C2"(o - s^r(rr(o) + f^o + -jto '"i^'^'
2 ,n

ml'1

the theorem follows as a result of Theorem 31, Lemma 33, and Lemma 61. I

Lemma 62 implies that e'^"(<) > m2/2 for all n sufficiently large. For the purpose <,{ .>iir

proof, we may therefore assume that ^" £ D^ ,2 '^o'" ^" " - ^ From (6 .5). we may also ciiiicln.l.-

that 4J(0- /"(O - (1 - "«*r'/"i2"V2'( '?"{«)) has no jumps downward, from which it follow. 1I1..1

the assumption of Lemma 9.7 is satisfied because /" is a nondecreasing process. Finallv. iictmn

that 17" £ A, we conclude from Theorem 91 that there exists a unique pair of processes (II " /''
I

satisfying (6.6)-(6.9), and that (WJ") is given by the mapping (IT",/") = (*. *)(4"- »?")

15



Proof of Theorem 4.2 From Lemmas 6.1-6.2, (^".^J.rj") -^ (^t.^^rj*) u.o.c. where ^j is {9,cr^)

Brownian motion, ^2J{t) = m2 — ^i{t), and q'{t) = t. Because Brownian motion is almost surely

continuous, it follows from Theorem 9.1 that ($,^) is continuous at {^',t]'), hence {I^,W^) —*

(/*, W) u.o.c. where {I',W') = ($, *)(r, v')- Specifically, we have from Lemma 9.2,

I' is nondecreasing and continuous with /*(0) =

/* increases only at times t with W*{t) = 0,

implying Wi is a one-dimensional reflected Brownian motion on the interval [0,m2] with drift 9

and variance cr^.

Next, observe from (3. 19) and (5. 13) that ;)" —» t)' u.o.c. where 77*(f) = -W'(i). Centering

(3.14)-(3.15), we obtain

USit) = Mo"(t)-Mo"('?'"(0)-A(")m("'^"«)

U^{t) = M,"(0-Mr(/?"(f))--J;^'?"(0,
7712

with

Mo(<) = Kr(^o(0) + m<,"'.4S(0

= = = (")

Because Brownian motion is continuous, it follows from Lemma 61, Theorem 3.1, Theorem 3 2.

and Theorem 4.4 that ||A/,"(-) - MP(jfi-))\\t -^ a.s. for each t > and i = 1,2. Thus, U^ — TJ

and (/" — [/j* u.o.c. where

Uoit)^\moWi{t) and u;{t) = —Wi{t).
1712

Similarly, noting that

Qlit) = iS(f)-.4S(r,"(0)-A(")77"(0

1

QUO = .4^(<)-.4!,'(^"(<))-^^"(<)

Qlit) = A^it) - A^rj-it)) - -^nt)

where

A-,{t) = S^{B^{t))--L^I^{t) and .45(0 = 5r(T,"(0)--|;^rr(0,

16



it follows that Q" — Q' u.o.c. with

Qo(0 = xw;(t) = —u:(t)
"'0

g-(0 = -Ltv7(o = — c/,-(o

r7i2

and the proof of Theorem 4.2 is complete.

7 Refining the Brownian Approximation

We now turn to the following important question: Given a mixed network with parameters A. c^,

m,, and c^, i = 0, 1,2, and a finite number ;V of closed customers, how do we obtain performance

estimates for the network using the theory developed in the previous sections? Theorem 4.2 suggests

the following approximation for the workload process at station 1:

j^(Wr{N'')^\V'{) (7.1)

where IV'j* is an RBM on the interval [0,m2] whose drift 6' and variance a^ are given by (1.6) and

(1.7), namely,

9' = .V (xmo + — - 1

V m2

m?
a^ = Xml{cl + cl) + ^{cl + cl).

m2

By reversing the scaling in equation (7.1), one obtains the approximation

W{)^\V{) (7.2)

where W is an RBM on the interval [0,m2N], whose drift /i is given by

H = Xmo + —^ - 1. (''S)
in 2

and whose variance is again cr^. We then apply Theorem 4.3 to obtain the steady-state distribution

of W and other performance measures of interest. In particular, writing W''('^5o) to mean the

random variable associated with the stationary distribution of the process {n'(f)./ > 0} and

setting 6 = rriiN, k = 2^/ct^
, we have

=1, ** ,L - - otherwise.
EW{oo) =

{ ,' ,
--,. (71)
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Morover, the throughput rate obtained from the Brownian approximation is given by ajm^ where

a = J "^; V2M ^
(7.5)

I
1 - ^ \T^ otherw.se.

Equations (7.2), and (7.4)-(7.5) in particular, form one possible approximation for a two-station

mixed network. As was noted in previous works on heavy traffic approximations (for example,

[6, 12, 13]), however, one typically needs to "refine" the Brownian limit in order to obtain good

performance estimates. The approach to developing our refinement is to arrive at an approximation

method that, as much as possible, yields estimates that agree with the exact solutions in those

special czises for which the exact solutions are known. Henceforth, our results will be benchmarked

against the following special case.

From the theory of quasi-reversible queues [17] (see also [1]), the mixed network in Figure 1 has

product form solutions if

mo = mi = m, and (7-6)

Ca = Co = c? = c^ = 1- (7.7)

In this case, observe that

(? = 2m(l -K/j).

Denoting by P(fc, /) the steady-state probability oik open customers at station 1, / closed customers

at station 1, and N — / closed customers at station 2, we have

P(fc,/) = Gf ^1' NoSi (7.8)

where
m

rjo - Am, /yi = ,

and G is the normalizing constant

G=(i-^)f:(-^)
TT'c.y^ -'70/
/c=0

and Let us write Qo(oo) to mean the steady-state random variable associated with the process

{Qo(0'^ ^ 0}i ^nd similarly, let us use Qi(oo) to mean the steady-state headcount of closed

customers at station 1. From (7.8), we obtain the following statistics:



and

a' = l-^P(n,.V)

.V

(Recall that a'/mj is the throughput rate of closed customers.) In particular, if p = r;o + ^i = 1.

equations (7.9)-(7.11) simplify to

Eg, = J (7.13)

Finally, when p < 1, we have the following limit as the number of closed customers in the system

mcreases:

lim EQo = (7.15)
NTco 1 - '/O - ^1

lim EQ, = '^-^

(7.16)
Ntoc I - ^0 - 71

Refinement 1: Replace b by m2N/a.

We justify this modification via the following argument. The idleness process at station 2

increases whenever that station is empty, or equivalently, at times t when Q\(t) = .V. By the

"functional" Little's Law which follows from equations (4.9)-(4.10), we have Q\[t) = (l/m2)\'V{t),

interpreting l/m2 as the throughput rate of closed customers. This refinement essentially replaces

the naive throughput rate by the approximated throughput rate a/m^. In the case p = U. it can

be verified from (7.5) and (7.14) that a^ = 2m and the refinement gives

in \-2bj

= 1-f (7.17)

from which we obtain

a
V + 1

Note that in this case, the Brownian appro.ximation agrees with the exact solution (7.14)

Refinement 2: Set Q,(/) = [& /m2)W (t) /p

.
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This modification of equations (4.9) and (4.10) consists of two parts. First, the throughput

rate used in the so called "functional" Little's Law is taken to be d/m2 rather than l/m2. Second,

a weighting factor of l/p is then applied to the relationship between queue length and workload

processes. As noted in Section 6 of [13], empirical experience suggests that a better approximation

may be obtained with such a refinement. Writing Qi(oo) to mean the random variable associated

with the stationary distribution of the process {Qx{i)J > 0}, we have in the special case of /i = 0,

EQi(oo) = ^EPV(oo)
m2p
a { m2N

7712 p V 2Qf

N_

2
'

which agrees with (7.13). Moreover, it follows from (7.4) that when // < 0, the approximation is

asymptotically exact as A^ — oo:

1

lim EQi(oo) =
N—'oo rn2p

1 - % - J?! l^-
= lim EQi(oo).

oc

Refinement 3: Set Qo{t) = XWit)/p.

This refinement is essentially identical to the previous one, in that a factor of l/p is introduced.

It can also be shown that with this modification, the approximation is asymptotically exact as

N —> oo whenever p. < 0,

lim EQo(oo) = -\-f-iV-»oo p \ Ip

no = lim EQo(co).
1 - '70 - ^l '^^<:

However, note that we do not obtain the exact solution for finite N , even when p = 0, since

EQo(oo) = -ElV(:c.)
P

A /m2,V

p \ '2a

'to / .V + 1

1 -
'to V 2

where the last equality follows because rjo + '/i = I
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To summarize, our approximation procedure consists of replacing the workload process by W . an

RBM on the interval [O^m^N/a] with drift /i and variance a^ given by (73) and (1.7), respectively.

The queue length processes are then approximated via the mappings

Qo{t) = -rV(/) (7.19)
P

Qi(0 = -^W{t). (7.20)
m2p

Note that the formulation of the approximation includes the quantity d, which itself must be

approximated. In order for the approximation to be consistent, we must now show that there

exists a unique < d < 1 that satisfies equation (7.5) for o// ranges of the parameter set A, c^, m,,

and c^, i = 0,1,2.

Theorem 7.1 Let b = m2N/a. Then there exists a unique < d < 1 that satisifes (7.5).

Proof. For /i = 0, it is easily verified from (7. .5) that the unique solution is given by

a =
N + o-2/2mi

Consider /i < 0. We need to show that there exists a unique solution r S (0. 1 ) to the transcendental

equation

/(x)= (l-e-"/")(l-r)--^/i = (7.21)

where

a.?^ (7.22)

First, observe that /(I) = — (m2/mi)/i > 0. Next, f(x) >d as j ], 0. Finally, differentiating

(7.21), we obtain

df{i)
[ + e-"/^ [[ - ax-'^{[ - x)) . (7.23)

dx

Because a < 0, it follows that df(x)/dx > for < J < 1 and consequently there exists a unique

solution X G (0, 1) to (7.21) (see Figure 3). The proof for ^ > proceeds similarly. I

8 Numerical Examples

The subject of this section is the performance of the refined approximation described in Section

7. Using product-form networks (namely, those whose parameters satisfy conditions (7.6)-(7.7),

we compare estimates obtained from the Brownian approximation against exact solutions. Our

theory predicts that the approximations are asymptotically exact, that is, as the number of closed
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Figure 6. In all cases, the approximation is within 1% of the exact solution for N > 15. As we also

expect, the quality of the approximation increases as p\ becomes closer to 1

Figures 7 and 8 display the queue lengths of open and closed customers at station 1, respectively,

for System 2. One can see that the approximations are good even for intprmediate values of N

.

The accuracy of these estimates are clarified in Figures 9-12. The queue length of open customers

is the performance measure of interest in Figures 9 and 10. As Figure 10 shows, the estimates are

with 10% of exact solutions for N > 5. Finally, Figures 11-12 displays estimates for queue length

of closed customers. Figure 11 bears out our expectation that when pi is closer to 1, larger values

of N are required for good estimates. Here, the estimates perform poorly for small values of A^,

but in all cases, ^V > 15 gives estimates that are 10% from exact solutions.

9 Appendix

This section is devoted to characterizing some mappings that are used in the proofs of Sections 5-6.

Some of the results here are adapted from the work of Chen and Mandelbaum [5].

Fix £ > 0. Let D^[0,<] be the set of x € D that satisfy the following conditions: (i) j:(0) > 0;

(ii) X hcis no downward jumps; and (iii) e'i{s) > e for all s £ [0, t]. Define C^ to be the continuous

functions in D^ , namely,

C^ = {j e C^ : j(0) > 0, e'r(s) > ( for ail / > o}

Denote by A the set of functions a € D that have the following properties: (i) a is nondecreasing;

(ii) < a{t) < t for all t > 0; (iii) for each finite t, there is a finite number of subintervals

= So < si < • • • < s,v = < and constants < oq < ai < a2 < • • such that either a(1) — i

or a{t) = a, for t £ [s,_i,s,). In particular, observe that e(<) = f is an element of A For

X = (xi,j;2) G Dj, a £ A, and < c < 1, let u' = (u'i,[r2), y — {y\.y2) be a solution of the

mapping (w,y) = {^.^)(x,a) defined by the following properties:

wi{t) = <l>i{x, a){t) = xi(t) + yiit) - cy2{t) (9.1)

W2{t) = ^2{i.a)(t) = X2{t) - yi(0 + ( 1 - c){y2(i) - y2{a(t))) + cy^it) (9.2)

yi are nondecreasing with y,(0) — (9.3)

y, increases only at limes t where w,(t) = (9.4)

Observe from (9.1)-(9.2) that

e'w{t) = e'x{f) + (1 - r){y2{t) - .V2(n(0)) > e'x{t) (9.5)

due to the monotonicity of 2/2. The main result of this section is the proof of the following:
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Theorem 9.1 For each x £ D^ and a G A, there exists a unique pair of processes {uj,y) that

satisifes (9-l)-(9.4)- In other words, the mapping ($,^) is well defined on D^ x A. Moreover, if

x € Cj and a{t) — t, then ($, 'J') is continuous at {x,a). Finally, y — '^(i,a) is a continuous

process if X2 — {I — c)(y2 ° a) has no jumps downward.

The following is a special case of Theorem 2.5 of Chen and Madelbaum [5].

Lemma 9.2 Suppose that x G D^ and a{t) = t. Then {w,y) are uniquely defined by (9.1)-(9.4),

and {w,y) is uniquely given by

wi{t) = xiit) + yi{t) - cy2it)

W2it) = X2{t) - yi{t) + cy2{t)

yi{t) = sup {xi{s) - cy2{s)}~
0<3</

y2it) = - sup {x2(s) - yi(s)}~
C 0<s<(

Moreover, fixing a(t) = t, "^ is continuous on C^.

Lemma 9.3 Given x G D and a G A, define

fi{z){t) = sup {x{s) - {l - c)z{a(s)}}- (9.6)
0<s<t

f2{z){t) = - sup {x(s) + (l-c)(z(s)-z(a(s)))}-. (9.7)
C 0<s<t

There exists a unique solution to (9.6) and the solution uniquely satisfies (9.7).

Proof. The key to the proof is the observation that a{t) < t, from which we obtain

\\h{z){-)-f,{z'){-)\\i < {l-c)\\z{a{-))-z'{a{-))\\t

< (l-c)||z(.)---'(.)||t.

Hence, /i is a contraction mapping in x and there exists a unique solution to (9.6). Denote by

the fix point solution of (9.6) and observe that

z{t) = sup {x{s) — (1 — c)z{a{s))}~
0<s<t

= sup {x{s) + (1 - c)(z(5) - z{ais))) - (1 - c)z(s)r
Q<a<t

< sup {x{s) + (1 - c)izis) - z{a{s)))}- + (1 - c) sup {---(s)}"
0<s<t 0<s<t

= C/2('Z) + (1-C)Z(0,
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where the first inequality follows because z is nonnegative and the last equality is a result of the

monotonicity of r. Therefore, z{t) < f2{-){t) On the other hand, noting that

z(t) + xis)-{l-c)z{a(s))>0

for all < s < <. we have

f2(~)(t) = - sup {x(s)-ll- c)z{a{s)) + z(s)- cz(s))-
C 0<j<(

> - sup {
— c;(s)}~

c 0<s<.t

= ^(0.

and 2 is a solution of (9.7). Now let z' be another solution of (9 7) We have

fi(z'){t) = sup {x(s)-(l-c)z'(a(s))}-
0<3<t

= sup {x{s) + {l-c){z'is)-z'{a{s)))-{l-c)z'{s)}-
0<s<t

< sup {x{s) + {l-c){z'{s}-z'{a{s))) + cz'{s)}- + sup {---'(s)}"
0<3<t 0<s<t

= At)

and

Mz'){t) = sup {xis) + {I- c)(z'(s)-z'{ais)))-i\-c)z'(s)}
0<s<(

> sup {-;'(«)}"
0<3<(

= -''(0

because i(s) + (1 - r)(z'{s) - z'{a(s))) + cz'(s) > for all s > 0. We have shown that :' is a >;ohiiion

to /i , but /i h;i-s a unique solution so we can conclude that z' — z. I

Remark: Suppose that a{t) = for all t > and x{0) > It then follows from Lemma 'J :} lii.ii

z{t)= sup {j(a)}- = - sup {x(s) + (l -c)r(s)}" .

0<a<t C o<j<(

Lemma 9.4 Given x 6 D? and a e A, suppose that (ir.y) is the unique solution of (9.1)-('J i ) ""

the interval [0,r). Thm there exists a unique extension of(u'.y) to the interval [O.r].
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Proof. To extend the definition of {w, y) to the endpoint r, observe from (9.2)-(9.4) that (u(r) —

"^('")iy(^) - y('"~)) satisfy

wi{t) = (wi{t-) + xi{t) - xi(r-)) + (y^ir) - yi(r-)) - c(y2(r) - y2(r-)) (9.8)

u;2(r) = {w2{r~) + X2(r) - 12(1"")) - (1 - c){y2{T~) - y2ia{T~ )))

+ (1 - c) (y2(r) - y2(a(r))) - (yi(r) - yi(r-)) (9.9)

+c(y2(r)-y2(r-)) (9.10)

y.(r)-y.(^")>0 (9.11)

Mr)'(y(r)-y(r-))=0. (912)

Because

e'iwir-) + x{t) - i(r-)) - (1 - c) (y2(r-) - y2(afr-))) + (1 - c) (y2(r) - y2(a(r)))

= e'.c(r) + (y2(r)-y2(a(r)))

> e'i(r) > 0,

where the first inequality is a result of (9. 5), it follows from Theorem 4.3 of Chen and Mandelbaiim

[5] that (9.8)-(9.12) produces a unique solution for y{r) — y{T~). I

For X £ T) and a G A, define the mappings

u(0 = yi(x,a)(t) = sup {x(s) + {I - c){u{s) - u(a{s)}})- ('J 13)
0<j<t

v{t) = g2{x,a)(t) = x{t) + il-c){u{t)-uia(t)) + cuit). (9 11)

For a sequence Tk, k = 1,2,..., let us define the "shifted" processes

x'^it) = v{n) + x{t + Tk) - x{n)

u^'it) = u{t + Tk)-u(Tk)

(uo «)*=(<) = u{a{t + Tk))-u{aiTk))

v''{t) = v(t + Tk).

It is straightforward to verify from (9.13)-(9.14) that

u''(t) = yf(x^a)(0 = - sup {x^ is) + il-c){u'' is) -{no a)' (s))}~ (D !.->)

C 0<s<t ^ '

v^{t) = g^^{x\a){i) = x^{t) + {\-c){u\t)-{uoa)^(t)) + cuHt). i9l(3>
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Remark: If we define the mappings

/i,(z,a)(0 = - sup {x(s)}- (9.17)
C 0<j<«

/.2(x,a)(0 = x(t) + cfn{x,a)(t), (918)

it is clear that (/ii./jj) is a special case of (31,92) with a equal to e where e(t) = < is the identity

map.

Lcmnia 9.5 For each / G Dj and a G A, (here exists a pair of functions (w,y) that sattstfes

(9.1)-(9.4).

Proof. Noting that it suffices to set f = 1. we first prove the lemma for i G C\. Fi.x < i5 < 1/2.

We may cissume without loss of generality that it'2(0) > 1/2 (otherwise, it follows from i £ C\ and

(9.5) that ifi(O) > 1/2 and we proceed similarly).

For an increasing sequence of times Tjt, k = 1,2 and a pair of functions (u\y) satisfying

{iv,y) = (<I>, vl')(x, a), it will be necessary to refer to the following "shifted" processes:

x*(0 = w,{Tk) + x,{t + Tk)-x,{Tk) (9.19)

y*(<) = y,{t + n)-y,(Tk) (9.20)

{y2oa)'(t) = y2(a(t + n))-y2{a{Tk)) (9.21)

u;*(0 = wit + n). (9.22)

It is straightforward to verify that the mappings (9.I)-(9.2) yield

u{-(0 = xt(0 + y{''(0-cy2'(0 (9-23)

w^it) = j:^(0-yf(0 + (l-c)(y^(0-(y2oa)'--(0) + cy^'(<); (9.24)

moreover,

and

e'w''{t) = e'x^t) + (1 - c)(y^(0 - (y2 o a)'(t)) (9.2.5)

e'l^O + (l-c)(yl^(t)-(y2oa)''(t)) = e'w(Tk) + e'x(t + n)-e'x(n)

(1 - c)(y2{t + Tk) - y2{n)) - (1 - c)(y2(a(< + T,)) - y2{a{n)))

= e'x{t + n) + (l-c)(y2(t + n)-y2(a{t + Tk))), (9.26)

where the equality follows directly from equation (9.5)

Set To = 0, y^(t) = 0, and ob.serve that by monotonicity, y2('i(0) = for all / > U. Define y^

by the mapping (9.17), namely, y? = /ii(r?,a), and let w° be given by equations (9.23)-(9.24) with
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fc = 0. Observe that j/j and hence w^ are uniquely defined by Theorem 2.2. 3 of Harrison [10]. For

fc = 0, set

tk+i = inf{t > : e'x*(0 + (1 - c){y^{t) - (yj o a)'=(t)) - w^t) < 6}. (9.27)

If f 1 = oo then we are done so let us cissume <i < oo. First, note from (9.25) that e'x°(0) + (1 —

c)(y2(0)-y2(a(0)))-t«i(0) = w^{0) > 8. Let [0,si) be the first interval associated with the function

a. If a takes a constant value over this interval, then (y2 o a)''{t) = for < < si. On the other

hand, if a is the identity map over this interval, then y2{t) — (y2 ° a)'^(0 = on [0,si). In either

case, we may conclude that e'x''{t) + (1 - c)(y2(0 ~ (2/2 o a)''(<)) - u;f (<) has no negative jumps on

[0, Si) because x has no downward jumps and y^ is nondecreasing. Hence, we may conclude that

h > 0. Moreover, w^{s) = e'x°{s) + (1 - c){y^{s) - y^ia{s))) - w^{s) > 6 for x € [0,<i], and we

have shown that {w,y) = {w'^,y^) is a solution of (9.1)-(9.4) over the time period t £ [0,<i]. Define

Tk = ti + . . . + tk and observe that for k = 0,

wi{Tk+i) = Wiitk+i)

> e'x''itk+i) + (1 - c){y^(tk+i)- {y2oaf{tk+i)) - 6

= e'x{Tk+i) + (1 - c)(y2(Tfc+i) - y2(a(Tk+,))) - 6

> 1-6 > 8, (9.28)

where the first equality follows from (9.26) and the last inequality follows from (9.5) and the

monotonicity of y2.

We now shift time to 7\ via the mappings (9.19)-(9.2I) setting I: = I. Set y\(t) — and

let y2 be defined by (9.15), namely, y2 = 3j(x2,a). The functions w\, yl are then defined using

(9.23)-(9.24) with k = I. Let [s;_i,s/) denote the interval corresponding to the function a that

contains Ti. If a{t) takes a constant value over this interval, then (y2 o a)^{t) = for t < si — Ti.

If, on the other hand, a{t) = t, then y2(0 — (y2 ° a)HO = for < < s/ — Ti . Thus y2 is uniquely

defined over the interval [0, s; — Ti) whether a{t) = t, in which case we invoke Theorem 2.2.3 of

Harrison [10], or a{t) takes on a constant value, in which case the remark following Lemma 9.3

applies. The definition of (u;, y) can then be extended to the endpoint S( — Ti using Lemma 9.4.

Using the special structure of a, where a is either a constant or the identity map over intervals of

time, one can thus uniquely define {y^,w^) for all t >0. For A: = 1 let

tk+x = inf{t > : e'x^it) + ( 1 - c)(y2'(0 - y'2ia{t))) - w^^it) < ^}- (9.29)

By the definition of Ti, we have from (9.28) that w\(0) = wi{Ti) > 6 and consquently e'x^(O) +

(1 — c)(y2(0) — 2/2(^(0))) ~ "^2(0) — "^{(O) > ^- ^^^ "^^.n use the same argument as before to show

that e'x*^(<) + (1 - c)(y2(f) — (y2 o a)*^(0) — ^t(0 has no jumps downward, from which we may

conclude ^2 > 0. In addition, w\{s) = e'x^{s) + {l-c)(y](s)-{y2oa)^{s))- wl{s) > 6 for s G [O.f^]-

Define for ifc = 1

'
y{t) 0<i<Tk

y{n) + y^{t-n) t>Tk.
y(0 =

<i
'_,

. ,,, ^, _-^~ (9-30)
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The pair {w,y) thus constructed is a solution of (9 l)-(9.4) over the time period t g [0, r2] Finally,

observe that for it = 1,

> e'i*(<fc+, ) + ( 1 - c)(y2*(/fc+, ) - (y2 o a)*((t+, )) - 6

= e'xin+i) + {I - c)(y2(n+i) - y2(a(n+i))) - 6

> 1-6 > 6. (9.31)

Iterating in this way, we can construct a pair {w,y) that satisfies (9.1)-(9.4) on the interval

[O.Tfc]. In particular, if fc is even, set j/2(0 = ^"'^ ^^^ y\ — ''i(^f.'j)- If ''^ 's odd, we set y^(t) =

and let y* = g'l{x2,a). In either case, w'' is defined according to (9.23)-(9.24). Similarly, we use

either (9. 27) or (9.29) to define tk+\ depending on whether k is even or odd, respectively. The

process (w,y) on the interval [0,T)t] is then constructed via the concatenation map given in (9.30)

and property (9. 22). Our construction for i G Cj is thus complete if we can show that for each

fixed t, there exists finite n' with Tn« > t. To do so. let us suppose to the contrary that there is

some finite t for which Tn < t for all " > 1 If t is even, we have the following inequality due to

(9.5) and the definition of Tk

a-,(7fc+,) - 1*^1(7;) > \-6 + e'x{Tk+x)- e'x(Tk) + {\ - c){y2{Tk+,) - y2(a(Tt+, )))

-(\ - c)(y2{n) - y2(a(Tk))y,

for k odd, we have

u'2(7it+,) - u;2(7;.) > ^ - 6 + e'x(n + i)- r'r{n) + (1 - c)(y2fT;.+ , ) - y2{a(Tk+i)))

-(I - c)(y2(Tk) - xj2(a(Tk))).

Because a G A, there are a finite number of intervals partitioning [0,<] sucli that a is either the

identity map or a constant value over each subinterval From the finiteness of these subintervals.

there must be an interval [s/_i,S() such that Tk G [^/-i.s/) for all k > k' . For such k. either

(1 - C) [(y2(T^+,) - y2(«(n + , ))) - U2{Tk) - y2(a(Tk))] =

or

(1 - c)[(y2(71. + ,) - y2(a(n+,))) - i'MT,) - '/i(.i(r,))] = (I - c)(y2(r,+, )
- y2(Tk)) > 0,

depending on whether a is the indentity map or a constant value on this subinterval, respectively.

In either case, we may conclude that for all k > k'

.

max sup {wj{t) - wj{s))> - - f' ->i\\Ax sup \xj(f) - Xj(s)\. (932)
J Tk<t<t<Tk+i 2 J r»<3<<<Tt+i
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It is straightforward to extend identity 2.8.G. of Ciien and Mandelbaum [5] to this setting, which

states that

sup (w(t) - w{s)) < sup |j;(<) - x(s)|. (9.33)

"S'^'^" u<s<t<v

Substituting (9.33) in (9.32), we have

max sup \xj{t)-Xjis)\>l(l--8] >0. (9,34)

However, x is uniformly continuous on [0,t], so there exists 77 > such that

max \xj{t) - Xj{s)\ <
3 f 2

~
V

for all s,t E [0,t] with |s — <| < t). The inequality (9. 34) together with the assumption that T^ < t

for all k > k* imply that T^ > tj for all k > k' . However, this contradicts the finiteness oft.

It remains to extend the construction to r G Dj. This is done by noting that x has only a finite

number of jumps over each interval [0,<]. Lemma 94 is then applied to show that tliere exists a

unique extension at each jump point of x. I

Lemma 9.6 Lei x and a satisfy (he conditions Theorem 9.1. Then (9.1)-(9.Ji) have a unique

solution.

Proof. The proof proceeds as in the proof of Proposition 2.4 of Chen and Mandelbaum [.5]. Let

{w,y) be the process constructed in the proof of Lemma 9.5, and let (w',y') be another process

satisfying (9.1)-(9.4). Suppose we can show that

1. y and y' coincide on [0, S] for some 5 > 0;

2. if y(r) = y'(7') at some < > 0, then the also two coincide on [r, r + 6] for some positive 6;

3. if y{t) = y'{t) on t e [0, r) then y{T) = y'(r).

Defining

T = sup{< > : y(s) = y'{s) for all < s < /},

it follows from (1) that r > 6. Suppose r < oc. Then (3) holds hence y and y' coincide beyond r.

This contradicts the definition so we can conclude that r = 00. The proof now rests on establishing

(l)-(3).

The proof of (1) follows from the construction y" in the proof of Lemma 9.5. The proof of (2)

then follows from (1) by applying a time shift as 111 the proof of Lemma 95. The proof of (3) is an

application of Lemma 9.4 I
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Lemma 9.7 If X2{) — (1 - c)(y2oa)() has no downward jumps where (u),y) satisfies (91)-(94),

then y is continuous.

Proof. We only need to show that y(t) = y{t~) for all t > Consider the problem posed in

(9.8)-(9. 12) of Lemma 94. As argued in the proof of this Lemma, there exists a unique solution for

y(t) — y(t~). Because X has no downward jumps, u;i(r~) + ii(r) — ri(r~) > iii(r~)>0. Moreover,

because we assume that X2{-) — (1 — c)(j/2 o a)() has no negative jumps,

W2it-) + J-2(0 - X2ii' )
- ( 1 - c) (y2(a(0) - y2(a(r ))) + ( 1 - c) (yjCO - y2(r ))

> w2{t-) + il-c)(y2(t)-y2(t-))

> U!2{t~)>0.

Hence, y{t) — y{t~ ) = is the unique solution. I

Let us define the modulus of continuity

u„Ax)= sup |x(r)-r(s)|. (9.35)
0<r.3<(.|r-l|<r)

Lemma 9.8 Let x. x' £ D and a, e £ A where e{t) — t. Define

{u,v) - {9i,g2){x,a), (i/, v') = (yi, yj)!-^', e),

and

{u'^v') = (yf,y.t)(x*.a), (u'.v''') = {glg'^){x'' ,e).

Fix t > and set

We have the following inequalities:

ll"()-"(a())||, < -u;,,,(x), (9.36)
c

||u*(.)-(uoa)*(-)||, < -a;,,+r.(-r), (9.37)
c

||u*(.)-»''()lk < l\\x''()-x''()\\, + 2(^^y,,^TAr). (9.38)

l^^(-)-v'^)||, < 2\\x''{)-x'''{)\U + 4(^^^^r,.,+n(x). (9.39)

Proof. From Lemma 9.3, we have the equivalent representation

u{t)=gi{x,a}{t)= sup {j:(s) - ( 1 - c)u(a(s))}- . (9.40)

0<3<t
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With (9.40), we have

< u{t) - u{ait)) = sup {ix{s) - x{a{t))) - {I - c)(u{a{s)) - u(a(a{t))))}-
a(t)<s<.t

< sup \x{s) - x{a(t))\ + {I - c) sup \u{a{s))- u{a{a{t)))\.
a(t)<s<t a{t)<s<t

Thus

||u(.)-ti(a(.))||t < u,r,A^) + {I - c)\\u{a{-)) - u{a{a{-))}\\t

< u;,,,(x) + (l-c)|lu(.)-u(a(.))||t

and equation (9.36) is proved. Equation (9.37) is proved similarly by observing that

\\u^{-) - (u o a)'=(.)||t < ||"(- + Tk) -u{a{- + n))\\t + |u(Tfc) - u(a(T^))|

< 2||u(.)-u(a(.))||,+ r,

2
< -w^,i+Tfc(^)

where the last inequality is an application of (9. 36).

Next, we obtain from (9.15) and (9.37)

ll"'(-)-"''(-)ll^ < -\\x>'i-)-x''(-)\\t + ^\u'(-}-{uoa)\-)\\t
c c

< -J\x'{-)-x''i)\\t + 2(^'^y,,+TA^).

Finally, observe that

li'^'(-)
- v''{-)\\t < Wx'i-) - x''{-)\\, + c\\u'(-) - u''{-)\U + +(1 - c)\W'{-) - (u oa)'{-)\

< 2\\x'{-)-x''i-)\\, + 4(^^y,,+T,{^)

and the proof of the lemma is finished.

Lemma 9.9 Suppose that x E C^ and a(t) = t. Then ^ is continuous at (x,a)

Proof. Fix t > 0. We will make use of the procedure described in the proof of Lemma 9.5 to

construct the processes {w,y) — ($, ^)(a;,a) in the interval [0,<]. Let 8 be the postive constant

used in the procedure, Tk the sequence of (increasing) times obtained from the construction (tk —

Tk — T)t-i), and let n* the (finite) number of iterations required to construct {w,y) up to time

t. We may assume that Tn« = t. Denote by {w ,y ) the shifted processes defined on the k

iteration (starting with iteration 0). We write (u*^,u^) to mean the processes obtained by applying
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to (z',a') the same mappings used in nhtaining (u'*, y*). Wp then define {v,u) by the concatenation

procodure in (9.30):

i n{t) < t <Tk
"0 = { ,

~ ~ 9-41)

and w(t + Tk) = w^(t) for < < < /*+i.

Fix ( > 0. We want to show that there exists rj > such that for any x' £ C^ and a' g A with

\\z' - x\\t < n and [W - a||, < q, then

||vl',(i',a')-*,(x,a)||, <f.

Note that

||*,(i',a') - *.(x,a)||, < ||*.(x'.a') - *.(x'.«)||, + ||*.(x',a) - vJ/.fi-, a)||,. (9.42)

From Lemma 9.2, we can conclude that there exists rji > such that

||v]/.(x',a)-*.(i,a)||, <'-

for any \\x' — j;||( < r/i . If we can show thai there exists r/2 > such that \\a' - a\\t < 772 implies

\\^,{x',ci')-^.{r\a)\U<'-,

then the lemma is proved by setting rj = min(r/i . r;2). Because i' is continuous, there exists »72 >

such that

f / c^ \ f A-l

and

"...(-')<*
[8
(i^)(i^)..(if^)]"', (M4,

where /I = 1 + 2/c. We assume henceforth that \\a' — a\\t < r?2-

We first .show that (iv,rj) and (I'.ii), constructed as described previously, satisfy the following

condition:

max||y,(.)-ti,(.)||T, <2(i-^) |' i!_l L^^ ^^ ( /

)

(9.45)

From (9.45) and (9.43), we can conclude

max||y,(-)-u,()||, <2(^—^j ( -^—
^j-

j a-^ ,,
( x' )< ^,

so the lemma is proved if we can establish tho processes we constructed satisfy {v. u) = (<I>, *)(j' .
a ).

First, we prove (9. 45). Define

a*(0 = w^(k)(n) + r\(t+Tk)-x\{n)

0\t) = v,(k){n)^A(t^Tk)-x\[n)
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where j(ib) = 1 if ifc is odd and_7(ib) = 2 if A: is even or zero. In either case, observe that a (t) — l3 (t) =

^m{Tk)- i>j(k)iTk) so

l|a'(-)-/?*(-)llt < l|yi(-)-"i(-)llT. + ||yi(-)-"i(-)llT.

< 2max||y,(.)-u,(-)||T,. (9.46)

We proceed by induction and the observation that

sup \y,{t) - u,{t)\ < |y,(Tfc) - Uj{Tk)\ + ||y,^(-) - u'^{-)\\t.

From (9.38) and (9.46), we can conclude

max sup \yj(t)-Uj{t)\< (l + -)ma.x\\yji-)-Uj{-)\\T,+-2(^-^]u>r,^j{x'). (9.47)

It is straightforward to verify that

max sup \yj{t) - Uj{t)\ = \\yji-) - Uj{-)\\t,

< 2(—2-) w^2,ri(-r')-

Equation (9.45) thus follows with an inductive argument.

It remains to show that {v,u) as constructed satisfy {v,u) = (<t>, ^)(j:', a'). To do .so, it is

enough to show that v'-,f,Jt) > for < < < ^fc+i, where j{k) = 2 if t is even and j{k) = I if A: is

odd. It suffices to do so for k even, for the argument for the case of k being odd proceeds similarly.

Because e'x'{t) = e'w{t), we have

\\e'x'{- + n)-vU-)-uj'2i-)\W,, = l|u^f(-)-t'i'(-)lk,.

= \\92i<^'.e)C)-g',{p',a')(-)\\t,^^

< 2\\a'i-) - l3'{-)\\tk+, + 4 (^i^) ^,„T., (^')

< 4max||y,(-)-Uj(-)||T, +4(^^)u;,„r,^(x')

< 6.

Here, the first inequality follows from (9.39); the second inequality is a result of (9.46); and the last

two inequalities follow from (9.45) and (9.44), respectively. Hence, by the definition of 7^.,

e'x'it + Tk) - vi{t + n) > W2{t + Tk)-6>0
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for < < < ^+1. But

V2{t + Tk) = e'z'{t + Tk) + {l-c){u:i{t + n)-U2(a{t + n)))-Vi{t + Tk)

> e'r'{t+n)-vx(t + n)

>

and the theorem is proved. I
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