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Abstract:

Exchange rates, like many other financial time series, display substantial het-

eroscedasticity. This poses obstacles in detecting trends and changes. Un-

derstanding volatility becomes extremely important in studying financial time

series. Unfortunately, estimating volatility from low frequency data, such as

daily, weekly, or monthly observations, is very difficult. The recent availabil-

ity of ultra-high frequency observations, such as tick-by-tick data, to large

financial institutions creates a new possibility for the analysis of volatile time

series. This article uses tick-by-tick Deutsche Mark and US Dollar (DM/$)

exchange rates to explore this new type of data. Unlike low frequency data,

high frequency data have extremely high negative first order autocorrelation

in their return. A model explaining the negative autocorrelation and volatil-

ity estimators using the high frequency data are proposed. Daily and hourly

volatility of the DM/$ exchange rates are estimated and the behaviors of the

volatility are discussed.

KEY WORDS: Financial time series; tick-by-tick data; heteroscedastic-

ity.

'The author thanks Professor David Donolio for his advice and helpful comments. The
author also thanks Morgan Guaranty Trust Company for providing the data for this research.



1 INTRODUCTION
There is considerable literature analyzing the behavior of exchange rates. How-

ever, structural exchange rate modeling has not been very successful. By

studying monthly data, Meese and Rogoff (19S3a,b) have shown that a ran-

dom walk model fits at least as well as more complicated structural models.

Empirical studies such as those by Hsieh (19SS) and Diebold (1988) have

shown that daily returns are approximately symmetric and leptokurtic (i.e.,

heavy tailed). The autocorrelations are weak but not independent and identi-

cally distributed (i.i.d.). One explanation for the heavy tailed distribution is

the hypothesis that data are independently distributed as a normal distribu-

tion whose mean and variance change over time (Friedman and Vandersteel

1982, Hsieh 19S8 and Diebold 1988). Since market volatility depends infor-

mation flow and the amount of "'information flow" is not constant over time.

There is no reason to believe that the variance of the price changes is con-

stant over time. Clark (1973) and many others (Mandelbrot and Taylor 1969,

Praetz 1972) have argued that observed returns come from a mixture of nor-

mal distributions. If the random variable A', denotes the daily return of the

price, the conditional distribution of A( given information is:

A-,k~A^(//./(^-<)) (1)

where a,'( is all the information available at time t. The quantity cj( could be

the number of transactions (Mandelbrot and Taylor 1969), or trading volume

(Clark 1973).

One parametrization of this conditional heteroscedasticity was first studied

by Engle (1982). Engle approximates the volatility by

p

f(^'t) = Oo + ^a,{.\\_,- p.)\ ao>OQ, >0, i = l p (2)

It is called the autoregressive conditional heteroscedasticity (ARCH) model

since the heteroscedasticity is represented in an autoregressive fashion.

Because the ARCH model exhibits the conditional heteroscedasticity present

in financial time series and is mathematically easy to manipulate, it has been

used to analyze many financial time series. Previous studies found that the

ARCH model provides a close approximation of many financial time series.

Since then many other parametrizations, such as the generalized autoregres-

sive conditional heteroscedasticity (GARCH) model (BoUerslev 1986), have

been proposed. They capture some characteristics of the volatility such as
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volatility clustering. However, like other parametric models, the parameters

need to be estimated. The volatility estimates from ARCH, G.A.RCH models

are often lagged because the historical data are used.

The availability of high-frequency data has opened up new possibilities

in estimating volatility. Tick- by- tick data provide us with a near continuous

observation of the process. It gives us the chance to study volatility in great de-

tail. Understanding volatility is the key issue in the conditional heteroscedas-

ticity model ( 1
) and any other financial time series models. This paper explores

tick-by-tick data and uses the data to estimate and study volatility.

2 HIGH-FREQUENCY DATA
Because of fast growing computer power, gathering financial data is easier than

ever. Data are no longer recorded daily or weekly. Many large institutions

began to collect so called tick-by-tick exchange rate in the early eighties.

In contrast to stock markets, foreign exchange markets have no geograph-

ical location, and no "business-hour" limitations. Traders negotiate deals and

make exchanges over the telephone. The transaction prices and trading volume

are not known to the public. The exchange rates used for most research are the

quotes from large data suppliers such as Reuters, Telerate, or Knight Ridder.

Any market- maker can submit new quotes to the data suppliers. The quotes

are then conveyed to data subscribers' screens. The data suppliers cover the

market information worldwide and twenty-four hours a day. The quotes are

intended to be used by market participants as a general indication of where

exchange rates stands, but does not necessarily represent the actual rate at

which transactions are being conducted. It is possible for some participants to

manipulate indicative prices occasionally and create a favorable market move-

ment. However, since a bank's reputation and credibility as a market-maker

emerges from favorable relations with other market participants, it is generally

felt that these indicative prices closely match the true prices experienced in the

market.'^ Goodhart and Figliuoli (1991) studied minute-by-minute exchange

rates (the closing tick of a minute) from Reuters. They found that the se-

ries exhibited (time varying) leptokurtosis, unit roots, and first-order negative

correlation. The paper used only three days' data from Reuters.

In this study, tick-by-tick data for the entire year of 1990 are used. The

data are provided by Morgan Guaranty Trust Company (J. P. Morgan). They

-Reader who is unfamiliar witii this type of data in foreign exchange markets may want

to read Goodhart and Figliuoli's (1991) paper for details.



Table 1: A Sample of Tick-by-tick Exchange Rates
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Figure 1: Original Quotes From the Reuters and Telerate.
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Figure 2: X'alidated Quotes.



Table 2: Summary .Statistics of Tick-bv-tick Returns
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Figure 3: Sample Kuitoses of Return of Different Frequencies.

Figure 4: First-order Autocorrelations of Return of Different Frequencies.



There are also updating noises in quotes. To be visible in the market, traders

keep updating their quotes. The new update is often slightly different from

the previous quotes even if the market price remains the same. Typographical

errors are another source of noise. Summarizing these arguments, I assume

the following process for the exchange rate:

S(t) = d{t) + B(T(t)) + t, (.3)

where S{t) is the logarithm of the exchange rate, B{-) is the standard Brow-

nian motion, both d{-) and r(-) are assumed deterministic functions, r(-) has

positive increments, and e, is the mean zero random noise independent to the

Brownian motion B(.). The noise, f(, is a combination of several sources that

were mentioned above. No distribution assumptions have been made for this

noise. It could be a very general stochastic process. This extra noise causes

most of the negative autocorrelation in high frequency data.

Let X{s,t) = S{t) - 5(.'')' the return in interval [sj]. Then

A'(.s.n =//(.s./) + a(.../)Z, + e, -63 (4)

where Zi is a standard normal random variable, a^(s,t) = r(/) — t{s) and

li{g,t.) = d(t) — d(s). The \-ariance of the return is:

Var(.V(.s. /)) = a'{.,J) + //; + i]l - 2c{sJ)

where r]f — V'ar(et) and c[s,t) = Cov(ts.tt). When |^ — <| increases, a^{sj)

increases as well. For large \s — 1\. the variances of noises become negligible, so

does the noise. X{s, t) beha\es just like a random walk. When \s — t\ decreases

to near zero, a--{sj) diminishes. The return. X{sJ). is the difference of two

noises. The sample first order autocorrelation of such series is about -50%.

When we study high-frequency data, the noise is no longer negligible. An

autocorrelation of -47% for the D.M/S exchange rate indicates that the level

of noises is very high in tick-by-tick data.

There are several difficulties in analyzing the process (.3). One of the diffi-

culties is lack of information about T(t). which I call the cumulative volatility.

a^{t — 6,t) = T(t) — T(t — 6) is called the (^-increment of volatility or simply

6-volatility. In the next section, I will devote my attention to estimating the

volatility increment.

3 VOLATILITY ESTIMATION
In this section, 1 will concentrate 011 estimating the volatility of a given time

[a,b], T{b) — r(fl). The function -(/) can be estimated increment by increment.



I first derive an optimal estimator of the volatility based on the assumption of

constant variance and zero mean. For simplicity, I also add normal assump-

tions on the noise component. A more generalized result will be given in later

of the section. Proofs of the theorems are listed in appendix A.

Theorem 1 Assume that {S{t,).i = 0.1,.. .,/i} is a series of observations

from the process

S(t) = B(T(t)) + e, (.5)

where e(_,i = l,..,n, are independent and identically distributed with normal

distribution and T{t) = a^t + h. Let A', = S[t^) - S{t,_i). Then the maximum
likelihood estimator of a- is

where

p = and p -

This MLE is not unbiased. However, noticed that p and p' are very close

for large n, I can have an unbiased estimator by eliminating the factors (1 —

/>p')/(l-p^) and /,//.':

^\. = (l/,OX:(A7 + 2A-,A-._i). (7)

Theorem 2 Under the assumptions of Theorem 1, the mean and variance of

the estimator (7) are:

Ea\, = a^ (8)

and

I? n-*

\^r[a\;) = (l/„)a^(6+16-4 + S-^) + V/n^ (9)

where rf is variance oftt,.

From (9), I find that variance of cr^^^ can be optimized by properly adjusting

the variance ratio rj^/cr^. Since aggregation increases the variance cr^, I apply

estimator (7) to A',,fc = S{i) - S[i - k).i - k/2k n where I assume that n

is multiple of /-. Let

'^"'^'.^ = - E (A?., + 2AaA-,_,,,). (10)

Estimator (10) is unbiased and the variance is given in following theorem:



Theorem 3 Under the assumptions of Theorem 1

The variance is minimized at k = [(2;/^)/( 3a-)] or k = [(27?^)/( 3a-)] + 1,

where [x] rounds x down to the next integer.

Since the noise t( is indepeiiclent. tlie \ariance of the estimator can be

further reduced by averaging the estinmtor (7) using overlapping returns:

a 2

ku
1= 1

^(A7,, + 2A-,,,A-,_,,,) (12)

In fact, it can be proved that:

2 ^4

Varia') <-a'{6k+ 16^ + 3-^) + iij'/n' (13)
/; kn- k^a'^

The abo\'p three theorems assumed i.i.d. noises and constant variances.

However, if I relax all these assumptions, I can still have a nearly unbiased

estimator. Suppose that wr ha\'e observations {5(i,),« = —2^', — 2A' + 1 n]

from process (3). The variances of the returns are not necessarily constant.

The noises can be nonstationary. Under minimal assumptions, I propose to

estimate the volatility r(/„) — r(/o) by: , .

V(i,.tn) = \Y.{Xl, + -2X,,,X,_,,,) (14)
A'

1=1

Theorem 4 Assume Cov(e,^.Lt^_J=() for all i . Then

EV(tQjn) = r(tn)-T(to)

+ Y.^i/k)[a'(t, _,_,,!,_,) -a'(/„_, + ,,/n-J]
1 = 1

+(i/^')i:'['/L-'/L,]

n

1=1)

where ri^{t) = \'aiiti ).



The only assumption I have made in this theorem is that of uncorrelated

noises. Since

n

'^[fi-{t,J,_k)+Mtnt,-k-)^'(t,-k,U-2k)] < :3max{|/i(^,/,_;.)|}[fi(n.) -f/(0)]

i=fc

the last term in (15) is negligible in high frequency data if the drift d(t) is

smooth in interval [^o-^n]- Therefore, for large n, the estimator (14) is ap-

proximately unbiased if no jumps occurred in the time interval [/o,<n]. This

estimator is also easy to update when new data become available. It will allow

us to estimate the volatility r(/) dynamically.

4 ESTIMATING VOLATILITY OF
EXCHANGE RATES

In this section, I estin^ate the volatilities of DM/S exchange rates at different

frequencies. By examining these estimates, I want to evaluate my assumptions

about the exchange rates as well as the volatility estimator. Again, 1990

DM/$ exchange rates are used. The data have one discontinuity: in the week

of August 13, the data base was shutdown due to a power outage in lower

Manhattan. The return for that week is set at zero, as is the volatility estimate.

To choose the parameter k, I estimated the variance ratio r/^/cr^ to be

approximately (i. .Minimizing the upper bond of variance (13), I have k = 6.

Using all available tick-b\'-tick data, I first estimate the volatility of the DM/$
exchange rate in entire 1990. The estimate is .010349. To verify this estimate,

I compared it to the estimate under the Brownian motion assumption. If the

data had no noise and followed a Brownian motion, the quadratic variation

i = k

would be a standard estimator of the volatility. When the quadratic variation

is used on data with noise, it overestimates the volatility. .As the sample fre-

quency decreases, so does the bias. The expectation of the quadratic variation

is:

(n/k)

1=1

(n/k)

= r{tn) - T{to) + Y, [lL + '/u-_.
- c{t,kJ^k-k] + ^l''{t,kJ,k-k)]{lQ)

i=\

10
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Figure o: Quadratic Variations Using n-tick Returns

VVlien Ct's are uncorrelated and f.i's arewhere c{t,t;Ja-k] = Cov((.,,^., e(,,_,

negligible,

in/k)

17)

(=1

which decreases as k increases. I plotted Qk against k in Figure 5. Both axes

have a logarithmic scale. When the frequency is low, the c[uadratic variation

is about the same as our estimate e.xcept for a high variation due to a small

sample size. At a high frequency, the bias is tremendous. When A- = 1, the

quadratic variation is about thirteen times the size of our estimate. Therefore,

from (17), the total variance of the noise is about six times the total volatility

which confirmed our early estimate of the ratio.

To estimate daily volatilities, I need to define the start and the end of

a day since the foreign exchange market is a twenty-four hour international

market. I choose 24 hours from 0:00 Greenwich Mean Time (GMT) as a day

because that 0:00 GMT is 9:00am Tokyo time and 24:00 GMT is 7:00pm New
York time. This twenty-four hour period covers most activities of the world

market. There are average more than 7,000 ticks per day in weekdays. There

are many fewer ticks on weekends and holidays. For small n, the volatility

estimate from (14) could be negati\'e. If such is the case, I let the estimate go

to zero to avoid negative volatility. The daily volatility estimates of DM/S are

11
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Figure 6: Daily Volatility Estimates of 1990 DM/$
'S

plotted in Figure 6.

A good volatility estimator should be able to catch market turbulences.

High volatility estimates should indicate unusual activities in the market. In

examining the daily volatility estimates, I found such correlation. There are

six volatility estimates above .0001. There are on .January 4, 5, 30, July

12 and .August 2. 3. 1990. On all these six days, there is significant news

released. On January 4 and 5, the German central bank surprisingly intervened

in the foreign exchange market and pushed the dollar lower. On January 30, a

wild market followed a rumor that Mr. Gorbachev was considering resigning

as secretary of the former Soviet Communist Party. On July 12, the dollar

tumbled because possible lower interest rate by the US Federal Reserve. On
August 2 and 3, the Dollar had another wild ride as the news of Iraq's invasion

of Kuwait spread around the world. However, large volatility does not always

mean a large change in price. The daily changes for above six days were -

0.0537, 0.0162, 0.0212. -0.017S. 0.0058 and -0.0074 respectively. On August 2

and 3, the exchange rate only changed 58 and 74 points that are about the

average. The price changes prior to .\ugust 2 were not large either. Therefore

if an ARCH model is used, these activities will be missed.

Another way to check the assumption of our model for exchange rates (3)

and the accuracy of our volatility estimates is to test normality of scaled daily

returns. When a model (3) provides a good approximation and the volatility

12



Daily Returm Rescaled Daily Returm

-1 1

Quftnolej o( Sttndtrd NonDftl

-1 1

Qutnales o1 Stuidtrd Norn^4l

Figure 7: Q-Q |-'l(jt of Daily Returns

Table 3: Basic Statistics of Daily Returns

Mean V,-ar. Skew. Kurt. KS-Test

X 320

Y=X/(j 320

SE

-3.1e-4 3.62e-5

-6.0e-2 1.17e+0

(.000) (.0')3)

-.429 6.25

-.329 3.20

.137) (.274)

1.275(p= .00)

0.7SS(p=.13)

estimate is accurate, the rescaled daily retiu'n Y] — XJa^ should be close to a

standard normal random variable. Noise is negligible since I am studying daily

returns here. Excluding zero volatility estimates (all on Saturdays), I plot Q-Q
normal plots for both return .V, and rescaled return Y, in Figure 7. The basic

statistics of both A', and \\ are shown in Table 3. The standard errors are

also given in the parentheses. Table 3 also shows the Kolmogorov-Smirnov

goodness-of-fit test for normality. If we compare the statistics in column A',

and column Vj, we see that V, is iiuich closer to having a normal distribution.

It indicates that the volatilit\- estimates are reasonably good and the process

(3) well describes the high frequency observations of the exchange rates.

The daily volatility estimates can be used in many other ways. For ex-

ample, we can use them to check calendar effects on daily volatilities. Seven

average daily volatilities are calculated. The results are listed in Table 4 as



Tabl<> I: .\\'erage Daily Volatility
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Hourly Returns Scaled Hourly Remrni

2 2

Qat&dlu of Studwd NoRTv&l
-2 2

Quannlec of Sttndtid Normtl

Figure 10: Q-Q Plot of Hourly Returns

Table 5: Basic Statistics of Hourly Returns

Mean \'ar. Skew. Kurt.

X 4377 -4.3e-5 2.2Se-6 -.255

Y=X/cT 4377 -6.4e-3 ').13e-l .038

SE (.014) (.020) (.037)

KS-Test

8.32 3.S47(p=.00)

2.95 1.604(p=.00)

(.074)
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reduces. High frequeiic\' data ran he used to estimate the volatility in high

frequency with reasonable^ ])rc(isioii. In contrast to other volatility estima-

tors, our volatility estimator mainly uses the data within the period we are

interested in instead ot historical data. This allows us to capture the market

volatility cjuickly without d(May. The estimate is nearl\' unbiased when prices

have no jumps. The Q-Q normal plot of rescaled daily or hourly returns by

the volatility estimates shows an almost straight line, which other volatility

estimators can not achie\e.

If we consider volatility as a stochastic process, we can have the same dis-

cussions as we did in this paper by condition on \-olatiIity. .'\fter we obtained

the volatility estimates, wc can fiuther sludy the \'olatility process itself. For

e.xample, we can stud\' the (list libutioii of the daily volatility, the dynamic

structure of the daily process. Oui' study indicates that daily volatility can be

appro.ximated by a lognormal distribution. Therefore, we can apply regular

ARIMA techniques on the logarithm of volatility for modeling and forecasting

the volatility. Unlike estimating .ARCH coefficients, where we often run into

divergence in MLE iterations, estimating .ARIM.A. coefficients for volatilities

are much easier. The volatility forecasting is also impro\-ed. Besides, these

volatility estimates can l)e iis(>d in many other ways. Since the sample mean

and the sample variance ot i.i.d. normal \'arial)les are independent, it is easy

to image that the daily volatility estimator is little dependent on daily re-

turn. This property enables us to do research on relations between the market

volatility and market price movement.

17



APPENDIX A: PROOF OF THEOREMS

Proof of Thtonin I:

Under assumptions of the theorem,

is a normal random \-ariable with mean zero and \'ariance r" = (7^ + 27/^, where

7/^ is the variance of e,,. A', has the first lag autocorrelation p = —if I
v^

. The

likelihood function of A', is

L{s\p-X, V„) = /(.V„|A„_,)/(A„_,|A'„_,).../(A,|A'o)

Notice that A,|A,_i is also a normal \'ariable with mean /3A,_i and variance

^2 = v\l -/9-), I have

" (A,-/.A,_,)\

1=1 ~^
L[s\p-X, VJ = (27r.^)-"/-exp(-^

The log-likelihood function is

^{sKp:X, Vj = -^log(2;r.^)-f:'-'^'-^-^-
^-

The partial derivative of the likelihood function with respect to p is

^^
^f^

(-V, -P-V,-i)-V,-i

dp t^
,^

Setting the derivative equal to zero and solve for p. I have

._ z:l,-v-v,-i

Similarly, for .s^ I have

d( n
,

" (A,-/)A,_,) 2

ds' 2s' ^
(̂ = 1

=

or

= ^±(X.-pX,_,f

1 /i n n

" 1=1 !=1 1=1

18



Substituting p by p in above formula. I have

" 1=1 1=1

= -i:x^i-pp)

where

"^ " T.U -V; •

It is easy to sliow that

a-' = r-(l +->) = .s^(l +-2/))/(l -/)-)

Therefore, the maximum lii<elilioocl estimator of a^ is

^' = -E-V(i + --^/^-•n 1

»e---'^-
'" [y-'p']

D-V;.2.V,.V,.,|-<'-'^^''
" :t[ p [^ - p-)

Proof of Thtoretn 2:

E(1/»)XI(A7 + -2.V,.V,_,) = (l//OE(V«r(-^'') + -EA',.V,_,

1=1 1=1

n

1 = 1

and

Var(a\0 = ( l//7)'Var X^(A'; + 2.V,A',_i)

1=1

+2(TZ,_,e,, - 2CTZ,_,t,,_, - 2e(,e(,_, + 2e,,_,e(,_J + e]^ - el

= -a'(6 + 16-4 + 8-^ ) + —;/'.
n a*^ (7' /i-

Proof of Thforem S:

19



Since Var(.V,.^) = ha'. (^)) iinpli(\s that

V^r{k-a\;,) = -{ka'fiG + IG-^ + S-^) +
2

;/ a- ka'' /?•

or

The variance reaches minimmii when

Proof of Theorem .{:

n

1=1

= [n/J-^(/o)l
k-\

II

APPENDIX B: VALIDATION PROGRAM

There are many reasons to have outliers in the original data set shown in

Figure 1. Most cjuotes are typed in by humans, there are unavoidable keying

errors. Most outliers I found are these types of errors. Outlier also could

be caused by large bid and ask spreads. In such a case, at least one of bid

or ask prices does not reflect the true market price and becomes an outlier.

Occasionally, electronic errors also mak(^ outliers. The following program is

designed to remove above three t\pes of outliers:

A cjuote is considered as an outlier and remo\ed from the time series if

i) a rate is more than 5 or less than 1. or

ii) bid and ask spread is more than 50 points, or

20



iii) a rate is above or below its iieiglibor prices lj\' more than a certain

threshold.

For (iii), I carry out two regressions using ten bid prices on each side of

the data. If the current bid [nice is higher or lower than c-point from both

regressions, it is considered an outlier, where c is range from 15 to 30 points

dependent on the \-ariances of the neighbor points. Whenever an outlier is

detected. I go back ten steps and icpeat abo\-e procedure.

21
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