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Abstract

A two-period (0 and T) Arrow^Debreu economy is set up with a general

model of uncertainty. We suppose that an equilibrium exists for this

economy. The Arrow-Debreu economy is placed in a Radner [31] setting;

agents may trade claims continuously during [0,T]. Under appropriate

conditions it is possible to implement the original Arrow-Debreu

equilibrium, which may have an infinite dimensional commodity space, in a

Radner economy which has only a finite number of securities. This is

done by opening the "right" set of securities markets, a set which

effectively completes markets for the continuous trading Radner economy.





1.0 Introduction

Event tree A of Figure 1 depicts a simple information structure.

Let's momentarily consider an exchange economy with endowments of and

preferences for (random) time T consumption which depends on the state

U) e J2 chosen by nature from the final nodes of this event tree. A

competitive equilibrium will exist under standard assumptions (Debreu

[3], Chapter 7) including markets for securities whose time T consumption

payoff vectors span R . This entails at least five security markets,

while intuition suggests that, with the ability to learn information and

trade during [0,T], only three securities which are always available for

trading ( long-lived securities [9]) might be enough to effectively

complete markets. (This is the maximum number of branches leaving any

node in the tree. The reasoning is given by Kreps [10], and in an

alternative form later in this paper.) One major purpose of this paper

is to verify this intuition for a general class of information

structures, including those which cannot be represented by

Event Tree A Event Tree B

ta»

f2 ~ oi^f a^> u)j> (i^, ii^

t-o t=T

Figure 1 Event Trees
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event trees (such as the filtrations generated by continuous-time

stochastic process.) In some cases, where an Arrow-Debreu style

equilibrium would call for an infinite number of securities, we show how

a continuous trading Radner [16] equilibrium of plans, prices and price

expectations can implement the same Arrow-Debreu consumption allocations

with only a finite number of long-lived securities.

A comparision of Event Trees A and B, intended to correspond to the

same Arrow-Debreu economy, obviates the role of the information structure

in determining the number of long-lived securities required to "span" the

consumption space, or the spanning number . (This term is later given a

precise meaning.) Since all uncertainty is resolved at once in Event

Tree B, the spanning number is five (instead of three for Event Tree A).

Roughly speaking, the maximum number of "dimensions of uncertainity"

which could be resolved at any one time is the key determining property.

This vague concept actually takes a precise form as the martingale

multiplicity of the information structure (See Appendix.) A key result

of this paper is that the spanning number is the martingale multiplicity

plus one. The "plus one" is no mystery; in addition to spanning

uncertainty, agents must have the ability to transfer purchasing power

across time.

The notion that certain securities are redundant because their

payoffs can be replicated by trading other securities over time, yielding

arbitrage pricing relationships among securities, was dramatized in the

Black-Scholes [1] option pricing formula. Provided the equilibrium

price process for one security happens to be a geometric Brownian Motion,

and for another is a (deterministic) exponential of time, then any

contingent claim whose payoff depends (measurably) on the path taken by

the underlying Brownian Motion, such as a call option on the risky
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security, is redundant and priced by arbitrage. This discovery curiously

preceded an understanding of its simpler logical antecedents, such as

corresponding results for event tree information structures. Only in the

past few years have the implications of the spanning properties of price

processes (e.g. [10]), the connection between martingale theory and

equilibrium price process (e.g. [5]), and the mathematical machinery for

continuous security trading ([6]) been formalized.

In all of the above mentioned literature, the takeoff point is a

given set of security price processes (implicity embedded in a Radner

equilibrium). Here we begin more primitively with a given Arrow-Debreu

equilibrium, one in which trading over time is not of concern since

markets are complete at time zero. From that point we construct the

consumption payoffs and price processes for a set of long-lived

securities in such a way that agents may be allocated trading strategies

allowing them to consume their original Arrow-Debreu allocations within a

Radner style equilibrium. In short, we implement a given Arrow-Debreu

equilibrium by continuous trading of a set of long-lived securities which

is typically much smaller in number than the dimension of the consumption

space.

The paper unfolds in the following order. First we describe the

economy (Section 2) and an Arrow-Debreu equilibrium for it (Section 3).

Section 4 provides a constructive proof of a Radner equilibrium which

implements a given Arrow-Debreu equilibrium under stated conditions,

based on a martingale representation technique. Section 5 characterizes

the spanning number in terms of the martingale multiplicity. Section 6

discusses the continuous trading machinery, some generalizations, and two

examples of the model. Section 7 adds concluding remarks.
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2, The Economy

Uncertainty in our economy is modeled as a complete probability space

( n, F, P). The set fl constitutes all possible states of the world

which could exist at a terminal date T > 0. The tribe F is the a

-algebra of measurable subsets of Q, or events which agents can make

probability assessments of based on the probability measure P. Events

are revealed over time according to a filtration F =

Jf , t e [0,T]V , a right-continuous increasing family of sub-tribes

of F, where F = F and F„ is almost trivial (the tribe generated by

fl and all of the P-null sets). The tribe F^ may be interpreted as

2
the set of all events which could occur at or before time t.

Each agent in the economy is characterized by the following

properties:

(i) a known endowment of a perishable consumption good at time zero,

(ii) a random (or state-dependent) endowment of the consumption good at

time T, and

(iii) preferences over consumption pairs (r,x), where r is time zero

consumption and x is a random variable describing time T consumption

(x(uj) in state oj e Ji)

.

We will only consider consumption claims with finite variance. The

2 2
consumption space is thus formalized as V = R x L (P), where L (P) is

the space of (equivalence classes) of square-integrable random variables

on ( fl, F, P) with the usual product topology in V given by the

2
Euclidean and L norms.

The agents are indexed by a finite set I =
f 1, . . ., Ij. The

preferences of agent i e I are modeled as a complete transitive binary

relation^, on V C V, the i-th agent's consumption set.
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The whole economy can then be summarized by the collection

3
where v = (r. , x . ) e V. is agent i's endowment.

3. Arrow-Debreu Equilibrium

An Arrow-Debreu equilibrium for ^ is a non-zero linear (price)

functional T: V -> R and a set of allocations (v e^.; i eD

satisfying, for all i e I,

V* ^^v' V v' e^^ =|v eV^: -iCv) ^ "^"^i}}
>

/* e?^, "Kv) > -Kv*) V V ^ v^V.

Z V 4 Z V . (3.1)

i=l i=l

We will assume that preferences are strictly monotonically increasing

(in the obvious product ordering on V) so that (3.1) holds with equality

and 4* is a strictly positive linear functional. Since V is a Hilbert

4
lattice, this then implies that 4* is a continuous linear functional

on V, which can therefore be represented as an

element (a, ^ of V itself, or:

>F (r,x) = ar +
j{

x(w) I (w)P(dw) ¥(r, x) eV.

Without loss of generality we can normalize f by a constant so that

E( ^ = 1, in order to construct a probability measure Q on ( J^ F) by

the relation

Q(B) =
Jg^ (w) P(dw) VB e F.

Equavalently, Q is defined by the Radon-Nikodym derivative ^= dQ/dP.

This leaves the simple representation

iCr, x) = ar + E*(x) ¥(r, x) eV, (3.2)

where E denotes expectation under Q, so the equilibrium price of any
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2. ,
consumption claim x e L (P) is simply its expected consumption payoff

under Q. For this reason we call Q an equilibrium price measure .

For tractability we will want any random variable with finite

variance under P to have finite variance under Q, and vice versa. A

sufficient condition is that Q and P are uniformly absolutely continuous ,

denoted QJ^P (Halmos [4], p. 100) , or equivalently, that the

Radon-Nikodym derivative dQ/dP is bounded above and below away form zero.

A second regularity condition which comes into play is the

separability of F under P. Given Q2;P> it is then easy to show the

separability of F under Q by making use of the upper essential bound on

dQ/dP.

Since uniform absolute continuity of two measures implies their

equivalence (they have the same null sets), we can use the symbols "a.s."

(for "almost surely") indiscriminately in this paper.

4. Radner Equilibrium

A long-lived security is a consumption claim (to some element of

2
L (P)) availaible for trade throughout [0,T]. A price process for

long-lived security is a semi-martingale on ( fl, F, P). In general

the number of units of a long-lived security which are held over time

defines some stochastic process Gon (J2, F, P). We will say is

an admissible trading process for a long-lived security with price

process S if it meets the regularity conditions:

(i) predictability (defined in Appendix), denoted 9 eP,

(ii) 0eLp[S] =((i) ef: E( ^4^ d[S]^) < coj,

where [S] denotes the quadratic variation process for S (Jacod [8]), and

Q

(iii) jOiS is well defined as a stochastic integral.

The stochastic integral L Q(s)dS(s) is a model of the gains (or
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losses) realized up to and including time t by trading a security with price

process S using the trading process 0. Interpreted as a Stieltjes integral,

this model is obvious, but the integral is in general well defined only as a

stochastic integral. This model, formalized by Harrison and Pliska [6], is

discussed further in Section 6, as are the other regularity conditions on 9.

Taking S = (S^^,. . . ,S^) (N ^ ") as the set of all long-lived

security price processes, any corresponding set of trading processes

9= ( Q, , . • •, £U) must meet the accounting identity:

e(t7s(t) = 0(ofs(O) + jj 0(s/dS(s) Vt e[0,T] a.s. (4.1)

meaning the current value of a portfolio must be its initial value plus

any gains or losses from trade incurred. [The shorthand notation in

(4.1) should be obvious.] We'll adopt the notation e(S) for the

space of trading strategies 0= (0,, ... , (^) meeting the

regularity conditions (i)-(ii)-(iii) for each long-lived security and

satisfying (4.1).

A Radner equilibrium for p, is comprised of:

(1) a set of long-lived securities claiming d = (d^^, . . . , d^)

(N ^ oo) with price processes S = (S^, . . . >S„),

(2) a set of trading strategies e6(S), one for each agent i £l

and

(3) a price a e R for time zero consumption, all satisfying:

Budget Constrained Optimality for each i eX •

it '• i''\v
/ r - (0) S(0), X. + (T)d ) is A -maximal in the budget set:

i Cr^ - 0(0)^5(0) , x^ + 0(T)d) £V^ : 0ee(S)] ,
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and Market Clearing:

I

Z 0^(t) = VtE [O.T] a.s.
1=1

2
The space of square-integrable martingales under Q, denoted/T? q' 1*-^

2
multiplicity, denoted M(lf|^); and an orthogonal 2-basis for

2 2
It? , say m = (m^, , . . t^) , N = M(Wf ) ^ <^ are all

defined in the appendix. The following powerful representation theorem plays

a major role in demonstrating a Radner equilibrium for /.

Theorem 4.1 For any x erW^j there exists G= (9,, • • ., GL)

,

2
where eL^[M ] 1 ^n ^ N, such that

x^ =
jj GCSWmCs) Vte [0,T] a.s.

Proof ; The theorem is an immediate consequence of the definition of m as

2
an orthogonal 2-basis for»M„. (See Jacod [8], Chapter 4). Q.E.D.

2
We should remark that when Qj^P, the spaces LqI™ ] and

L [m ] are identical, because of the bounds on ,^ . It is also
p n dP

implicit here that a martingale under Q is a semi-martingale under P,

which can be checked in Jacod [8], Chapter 7, along with the existence

2
of fo dm as a stochastic integral on ( a F, P) whenever Q eL [m ],

•• n n o •» n n

We now have the main result.

*
Theorem 4.2 : Suppose ('!', (v. ). J is an Arrow-Debreu equilibrium

for f^CW.l.o.g. f has the representation (a,Q) given by (3.2)). Provided

Q^P and F is separable under P, ^ has a Radner equilibrium which implements

the Arrow-Debreu allocations and is Pareto efficient.
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Proof

;

The proof takes four steps:

1. Specify a set of long-lived securities.

2. Announce a price for time zero consumption and prices for the long-lived

securities.

3. Allocate a trading strategy to each agent which generates that agent's

Arrow-Debreu allocation and which, collectively, clears markets.

4. Prove that no agent has any incentive to deviate from the allocated

trading strategy.

Of course if the Radner equilibrium consumption allocations are the same

as the Arrow-Debreu equilibrium allocations, they must be Pareto efficient.

2
Step 1; Select the following elements of L (P) as the claims of the

available long-lived securities:

'o-'^

d = m (T) Ix n ^N = M(nf-) ,n n ^ ^ \Q

where 1^ is the indicator on J^ and m = (m^ ,m^) is an

2
orthogonal 2-basls forJTtQ. [Since Qi^P, the final values ni (T) are

2
elements of L (P).]

9
Step 2: Announce the price processes S (t) to be an RCLL version of

E [d IF ] , 4: n ^ N. That is, each long-lived security's

current price is the conditional expectation (under Q) of its consumption

value. There is obviously some forethought here, for the result is S^ = 1

and S =m,l^n^N, implying the last N price processes are

2
themselves an orthogonal 2-basis for t/l „ suggesting their ability to

II II

span" all consumption claims which are not actually available for trading.

The first security serves as a "store-of-value" , since its price is constanti

We also announce a as the price of time-zero consumption.

*
Step 3: For any agent i, 1 ^ i ^ I-l, let e. = x - x . Then the process
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x^(t) = E*(e^lF^) - E*(e^), t e [0,T] (4.2)

where E (e. I F ) is an RCLL version of the conditional expectation,

2
is an element of Of (given Qi^P), which can be reconstructed

via Theorem 4.1, for some ^ e Lp [S ], 1 <: n ^ N, as

N .

x^(t) = Z Jq ej (S)dS^(S) Vte [0,T]. a.s. (4.3)
n=l

In order to meet the accounting restriction (4.1), we set the following

trading process for the "store-of-value" security

ef>(t) = Z (^ e^ (s)dS (s) - 0^(t)S (t) t e [0,T]. (4.4)
\J - •'U n n n n

n=l

Of course
J

ff dS E since S = 1.

A technical argument showing a e/P is given as Appendix Lemma A.l,

which then implies G^ eLpLSp], and in turn, = ( ^, . . . , (^) e e[S).

Substituting (4.4) into (4.3), noting that m^(0) = Vn, then implies

^(t)^S(t) = 0^(0)^3(0) +
J^

^(S)^dS(S) Vt e[0,T], a.s. (4.5)

confirming (4.1). Evaluating (4.5) at times T and 0, using the definitions of e^

and X., yields:

IT ^ *
(T) S(T) + X. = X a.s.

and

0^(0)^3(0) = E*(x* - x^)

=
'i' (0, x^) - ^(O, x^) = (r^ - r^)a,

the last line making use of the budget constraint on the Arrow-Debreu

allocation for agent i. Thus by adopting the trading strategy G),

and faced with a time-zero consumption price of a, agent i can consume

precisely (r., x.) - v..

The above construction applies for 1 ^ i ^ I-l; for the last

I-l
^

agent let &" = -Z . By the Kunita-Watanabe [11] inequality,
i=l
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Q(S) is a linear space, so £ GCS). Market clearing is

obviously met by construction. To complete this step it remains to show

T * * *
that er generates the consumption allocation (r_, x-j.) = v^,

but this is immediate from the linearity of stochastic integrals and

market clearing in the Arrow-Debreu equilibrium.

Step 4; We proceed by contradiction. Suppose some agent j el can

* *
obtain a preferred allocation (r, x) *^. (r., x .) by adopting

a different trading strategy e e(S). Then the Arrow-Debreu

* *
price of (r, x) must by strictly higher than that of (r., x .) , or

ar + E (x) > a r . + E (x.) ,

and substituting the Radner budget constraint for r and x,

a rj - Q(of SCO) + E* [x. + G^o/sCO) +
jj G(t/dS(t)]

ie i:

> a r . + E(x.)
,

or J J

a r , + E (x.) > a r, -I- E (x.). (4.6)

** T X r T
The last line uses the fact that E [ J:

Q(t) dS(t)] = since
J
0(

2

dS

is a Q-martingale for any e 6[S), from the fact that P^

is closed under stochastic integration of this form (see Jacod [8],

Chapter 4). But (4.6) contradicts the Arrow-Debreu budget-constrained

* *
optimality of (r., x.). This establishes the theorem.

Q.E.D.

5. The Spanning Number of Radner Equilibrium

The key idea of the last proof is that an appropriately selected and

priced set of long-lived securities "spans" the entire final-period

2
consumption space in the sense that any x e L (P) can be represented

in the form:

E*(x|F ) = 0(t)^S(t) = 0(O)"'"s(O) + j5 0(S)'^dS(S) VtefO.T], a.s. (5.1)
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where S = (Sq, . . . , S ) is the set of (N + 1) security price

processes constructed in the proof and 6 e 0(S) is an appropriate

trading strategy. As examples in the following section will show,

2
this number N + 1, the multiplicity of Wl ^ plus one , can be

2
considerably smaller than the dimension of L (P). But is this the

"smallest number which will work", or the "spanning number", in some

sense? To be precise, we will prove the following result. (We still

assume Q^P and the separability of F.)

Proposition 5.1 ; Suppose long-lived security prices for f^ are

square-integrable martingales under Q, the equilibrium price measure

for P^ . Then the minimum number of long-lived securities which

2
completes markets in the sense of (5.1), is M(>'1^q) + 1.

2
Proof ; That M(*'1r,) + 1 is a sufficient number is given by

construction in the proof of Theorem 4.2. The remainder of the proof is

devoted to showing that at least this number is required.

2
If M(*l1„) = 00, we are done. Otherwise, suppose S =(S, , . . . , S„)

K < "i is a set of square-integrable Q-martingale security price

processes with the representation property (5.1). By the definition of

2
multiplicity, it follows that K ^M(W ). It remains to show that K

2= M(iy? ) implies a contradiction, which we now pursue.

T 2
Let X = k + 1 S(T) e L (P), where k is any real constant and 1 is

a K-dimensional vector of ones. If S has the property (5.1) there exists

some 0e 6(5) satisfying (5.1) for this particular x. Furthermore,

since S is a vector of Q-martingales,

(xiF^) = k + l's(t) = k + 1 S(0) + j^ l'dS(s) V t e IO,T] a.s.

T * T
Since 0(0) S(0) = E (x) = k + 1 S(0), equating the right hand sides

of (5.1) and (5.2) yields

E





-13-

jj0(s/dS(s) =
jj l"^dS(s) Vt e [0,T] a.s.

Lemma A. 2, which is relegated to the appendix due to its technical

proof, then implies

Q !at e [0,T] : 0(t) = l] > 0.

Since QJ^P, the same event has strictly positive P-probability , and

equating the second members of (5.1) and (5.2) yields

P [at e [0,T] : l^S(t) = l'^S(t) + kj > 0,

an obvious absurdity if k ^ 0. Q.E.D.

The reader will likely have raised two points by now. First, having

2
shown that the "spanning number" is M(W|q) + 1 when long-lived

security prices are square-integrable martingales under Q, what do we

know about the "spanning number" in general? From the work of Harrison

and Kreps [5], we see that a "viable" Radner equilibrium must be of the

form of security price processes which are martingles under some

probability measure. Their framework, somewhat less general than this,

was extended in Huang [7] to a setting much like our own. We leave it to

readers to convince themselves that the same conclusions can easily be

drawn here. We have chosen to announce prices as martingales under Q,

rather than some other probability measure, as this follows the natural

selection of a numeraire claiming one unit of consumption in every state

(dQ in the proof of Theorem 4.2). Other numeraires could be chosen; if

a random numeraire is selected then in equilibrium security prices will

be martingales under some other probability, say P, and the "spanning

number" would be M(Ol a) + 1 (if the proper regularity conditions are

2
adhered to). Does this number differ from M(WIq) + 1; that is, can

the martingale multiplicity for the same information structure change

under substitution of probability measures? Within the class of
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equlvalent probability measures (those assigning zero probability to the

same events), this seems unlikely. It is certainly not true for event

trees. We put off a direct assault on this question to a subsequent

paper. We will show later, however, that if the information is generated

2 2
by a Standard Brownian Motion, then MClp) = M(Bl^).

The second point which ought to have been raised is the number of

securities required to implement an Arrow-Debreu equilibrium in a Radner

style model (dropping the requirement for complete markets). For

example, with only two agents, a single security which pays the

differences between the endowment and the Arrow-Debreu allocation of one

of the agents will obviously allow the two to trade to equilibrium at

time zero. This is not a very robust regime of markets, of course. By

fixing such agent-specific securities, any perturbation of agents'

endowments or preferences which preserves Arrow-Debreu prices may

preclude an efficient Radner equilibrium. Agents will generally be

unable to reach their perturbed Arrow-Debreu allocations without a new

set of long-lived securities. A set of long-lived securities which

completes markets (in the sense of (5.1)) is contrastingly robust,

although our selection still depends endogenously on Arrow-Debreu

prices. It remains a formidable challenge to show how markets can be

completed by selecting the claims of long-lived securities entirely on

the basis of the (exogenous ) information structure. There are no

economic grounds, of course, precluding the selection of security markets

from being an endogenous part of the equilibrium. This would indeed be

an interesting problem for future theoretical and empirical research.

6.0 Discussion

In this section we discuss some definitional issues, generalizations

of the model, and some specific examples.
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6.1 The gains process and admissible trading strategies

2
Why Is Lq[S] the "right" restriction on trading strategies

against a security with price process S? Why is the stochastic integral

2

J
9iS, for e e Lq[S] then the appropriate definition of

12
gains from such a stragety? The trading strategies required to

represent certain claims In the general case could never be carried out

in an actual securities market. No broker or floor trader could move

quickly enough.

Following Harrison and Pliska [6], we will say that a predictable

trading strategy Is simple , denoted 9 e A, if there is a

partition =| t. , t, , . . . ,t ,, t = TJof [0,T] and bounded
K. V 1 n-1 n J

random variables jh.V , h. e F^^ , satisfying

e(t) = h^, t e (t^t^ + 1].

A simple trading strategy 9, In words, is one which is piecewise

constant and for which 9(t) can be determined by information up to, but

not including, time t. This is not an unreasonable abstraction of "real"

trading strategies. The gains process / 9iS, for e A, is

furthermore defined path by path as a Stleltjes Integral. That is, the

gains at time t, are

t. i-1

Jo^
0(s)dS(s) = Z 0(t.)[S(t ) - S(t )],

j=0 J J J

simply the sum of profits and losses at discrete points in time.

2 2
We will give the space >»7^ the norm, for m eB| ,

* 1/2
II m II 2 = E ([ml.)

"'

^

% ^

2 2 T 2
and LplS] the semi-norm, for GeLolS], II II „ = E( C0(t)d[S] ).

^ ^ l2[S] ^

2
Proposition 6.1: For every trading strategy GLp[S] there exists
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2
a sequence 9 of simple trading strategies converging to 9 in L [S]

(in II • II j2 rci)» For any such sequence, the corresponding gains

processes f 9 dS converge to J 9IS ini*»^.
•" n ^Q

Proof ; This is the way Ito orginally extended the definition of

stochastic integrals. His theorem uses the fact that A is dense in

2
L [S] and shows that 9 -»

| QiS, 9 e A, extends uniquely

2 2
to an isometry of Lq[S] in fW . These facts can be checked, for

instance in Jacod [8], Chapter 4. Since
X,
^s assumed to be

bounded above and below away from zero, the semi-norms II • II 2 , , and
l-p iS

J

II' II T2r„, are equivalent, and the result is proved. Q.E.D.

Interpreting this result, for any self-financing strategy 9 there

is a sequence of simple trading strategies converging (as agents are able

to trade more and more frequently) to Q, with the corresponding gains

processes converging to that generated by 9. The sequence of simple

strategies can be chosen to be self-financing by using the same

construction shown in Section 5 for a store-of-value strategy.

2
In what way have we limited agents by restricting them to Lp[S]

trading strategies? It is known, for instance, that by removing this

constraint the so-called "suicide" and "doubling" strategies may become

13
feasible. A suicide strategy makes nothing out of something almost

surely, which no one would want to do anyway. A doubling strategy,

however, generates a "free lunch", which shouldn't happen in

2
equilibrium. It can't happen for any Lp[S] strategies since these

generate gains which are martingales (under measure Q). There is some

2
comfort in knowing that since a doubling strategy is not in L [S],

which is a complete space, there is no sequence of simple (or even

2
general L [S]) strategies which converges to a doubling strategy in

the manner of Proposition 6.1.
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6.2 Some Generalizations

There is of course no difficulty in having heterogenous probability

assessments, provided all subjective probability measures on ( J^ F) are

uniformly absolutely continuous. This preserves the topology of the

consumption space across agents.

As a second generalization, we could allow the consumption space to

be R X L^(P) for any q e [1, ") , relaxing from q = 2. The

allowable trading strategies should be relaxed to L^[S^], as defined by

Jacod [8], (4.59), since there is no guarantee of an orthogonal q-basis

for yn^. It is a straightforward task to carry out all of the

proofs in the paper under both of these generalizations. [All interesting

specific models of uncertainty we are aware of are for q=2].

It is also easy, but cumbersome, to extend all of our results to an

economy with a finite number of different consumption goods and with

production.

6.3 Economics on Event Trees

Any filtered probability space iO,, F, P) for which F contains

a finite number of events for all t can be represented by an event tree

,

as in Figure 1 (after adding probabilities in the obvious manner).

For finite horizon problems, the terminal nodes of the tree can be

treated as the elements of fl. They are equal in number with the

contingent claims forming a complete regime of Arrow-Debreu "simple

securities". Yet, as the following proposition demonstrates, a complete

market Radner equilibrium can be established with far fewer securities

(except in degenerate cases). Since integrability is not a consideration

when ii is finite, we can characterize martingale multiplicity directly

in terms of the "finite" filtration F, limiting
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consideration to probability measures under which each w e ^has

strictly positive probability.

Proposition 6.2; The multiplicity of a finite filtration F, under any

of a set of equivalent probability measures, is the maximum number of

branches leaving any node of the corresponding event tree, minus one.

The proof, given in the appendix, presents a simple algorithm for

constructing an orthogonal martingale basis for ( J^ F, Q). Just as

in Section 4, a complete markets Radner equilibrium exists provided there

are markets for long-lived securities paying the terminal values of these

orthogonal martingales (one for each) in time T consumption, and one

(store-of-value) long-lived security paying one unit of consumption for

each to £ ^

By drawing simple examples of event trees, however, it soon becomes

apparent that many other choices for the spanning securities will work.

This is consistent with Kreps [10]. His Proposition 2 effectively states

that if an Arrow-Debreu equilibrium exists, a necessary and sufficient

condition for a complete markets Radner equilibrium is that at any node

of the event tree the following condition is met: The dimensions of the

span of the vectors of "branch-contingent" prices of the available

long-lived securities must be the number of branches leaving that node.

Kreps goes on to state the number of long-lived securities required for

implementing an Arrow-Debreu equilibrium in this manner must be at least

K, the maximum number of branches leaving any node, consistent with the

"spanning number" (the multiplicity plus one) demonstrated in the

previous proposition. Kreps also obtains the elegent genericity result:

except for a "sparse" set of long-lived securities (a set of measure zero

in a sense given in the Kreps article), any selection
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of K or more long-lived security price processes admits a complete

markets Radner equilibrium with the original Arrow-Debreu consumption

allocations. This result seems exceedingly difficult to extend to our

general continuous time model.

One should beware of taking the "limit" (by compression) of finite

filtrations and expecting the spanning number to be preserved. For

example, we have seen statements in the finance literature of the

following sort: "In the Black-Scholes option pricing model it is to be

expected that continuous trading on two securities can replicate any

claim since Brownian Motion is the limit of a normalized sequence of

coin-toss random walks, each of which has only two outcomes at any

toss." If this logic is correct; it hides some unexplained reasoning.

For example, two simultaneous independent coin-toss random walks generate

a martingale space of multiplicity three (four branches at each node,

minus one) , whereas the corresponding Brownian Motion limits (Williams

[18], Chapter 1) generate a martingale space of multiplicity two .

Somehow one dimension of "local uncertainty" is lost in the limiting

procedure.

6.4 A Brownian Motion Example

This subsection illustrates an infinite dimensional consumption space

whose economy (under regularity conditions) has a complete markets Radner

equilibrium including only two securities.

Suppose uncertainty is characterized, and information is revealed, by

a Standard Brownian Motion, say W. To be precise, each o) c J2

corresponds to a particular sample path chosen for W from the continuous

functions on [0,T] (denoted C[0,T]) according to the Wiener measure P on

F, the (completed) Borel tribe on C[0,T]. The probability space, then.





-20-

is the completed Wiener Triple ( fl, F, P) , and the filtration is the

family F =| F;t e [0,T]T , where F is the completion of the

Borel tribe on C[0,t]. For conciseness, we'll call ( fl, F, P) the

"completed filtered Wiener triple." More details on this framework are

given in the first chapter of Williams [18].

To construct a complete markets Radner equilibrium from a given

Arrow-Debreu equilibrium, as in Section 4, we need an orthogonal 2-basis

f or P^ , where Q is an equilibrium price measure for the underlying

economy. In this case we can actually show that a particular Standard

Brownian Motion on ( fl, F, Q) is just such a 2-basis

1

It is a well known result (e.g. [11]) that the underlying Brownian

rvi 2
Motion W is a 2-basis for"7 „. Assuming Q J^iP, an RCLL version of

the process

Z(t) = e(-|2-| FJ, t e [0,T]

is a square integrable martingale on (i2, F, P), with E [Z(T)] = 1. Then

2
by Theorem 4.1 there exists some p e Lp[W] giving the representation:

Z(t) = 1 +
jj p (s)dW(s) Vt e [0,T] a.s.

It follows from Ito's Lemma that, defining the process r|Ct) = p(t)/Z(t),

we have the alternative representation:

Z(t) = exp/jJ rT(s)dW(s) - -^ jj T?(s)dsJ Vt e [0,T] a.s.

From this, the new process

W (t) = W(t) -
jj T<s)ds, t e [0,T] a.s. (6.1)

defines a Standard Brownian Motion on ( f2, F, Q) by Girsanov's

Fundamental Theorem (Liptser and Shiryayev [12], P. 232). It remains to

* 2
show that W is itself a 2-basis for l^^, but this is immediate

from Theorem 5.18 of Liptser and Shiryayev [12], using the uniform

absolute continuity of P and Q. This contruction is summarized as

follows

.
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Proposition 6.3 ; Suppose W Is the Standard Brownian Motion underlying

the filtered Wiener triple ( Ji F, P) and Q » P. Then W defined

by (6.1) is a Standard Brownian Motion on (^ F, Q) which is a

2-basis for J^L In particular, M(rt{^p) = MCO^q).

In short, by marketing just two long-lived securities, one paying

W (T) in time T consumption, the other paying one unit of time T

consumption with certainty, and announcing their prices as their

*

conditional expected consumption payoffs under Q (W (t) and 1

respectively at time t), a complete markets Radner equilibrium is

achieved.

This example can be extended to filtrations generated by vector

diffusion processes. Under well know conditions (see, for example, [4])

a vector diffusion generates the same filtration as the underlying vector

of independent Standard Brownian Motions. An orthogonal 2-basis for

2
rf\ is then simply these Brownian Motions themselves ([10]). By

generalizing the quoted result from Liptser and Shiryayev [12] (Theorem

5.18), one can then demonstrate a vector of (equally many) Brownian

2
Motions on (Q, F, Q) which generates every element of *V^q as in

Theorem 4.1, Since the manipulations are rather involved, and the

results raise some provocative issues concerning the "inter-temporal

capital asset pricing models" (e.g. [14]) which are also based on

diffusion uncertainity, we put off this development to a subsequent paper.

7. Concluding Remarks

We are working on several extensions and improvements suggested by

the results of this paper.
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The first major step will be to demonstrate the existence of

continuous trading Radner equilibria "from scratch", that is taking

endowments and preferences as agent primitives and proving the existence

of an equilibrium such as that deomonstrated in Theorem 4.1. In

particular the existence of an Arrow-Debreu equilibrium and the property

Q -^ P must be proven from exogenous conditions, rather than assumed. A

full-blown Radner economy is also being examined, one with consumption

occuring over time rather than at two points, and T.

The Brownian Motion example of Section 6, as suggested there, is

being extended to the case where uncertainty is characterized by a vector

of diffusion "state-variable" processes. This will allow us to tie in

with, and provide a critical re-evaluation of, the inter-temporal capital

asset pricing models currently in vogue in the financial economics

literature.

We left off in Section 5 by characterizing the spanning number in

terms of (endogenous) Arrow-Debreu prices, through the equilibrium price

measure Q. Our next efforts will be directed at showing that, subject to

regularity conditions, martingale multiplicity is invariant under

substitution of equivalent probability measures, allowing us to gain the

spanning number exogenously as M( 0^ ) + 1.
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Appendix on Martingale Multiplicity

What follows is a heavily condensed treatment, taken mainly from

Chapter 4 of Jacod [8].

A square-integrable martingale on the filtered probability space

(a F, P) is an RCLL F-adapted ^^ process X =|x^; t e [0,T]V

with the properties:

(i) E [X(t)^] < CO for all t e [0,T], and

(ii) E [X(t) IF ]
= X(s) a.s. for all t ^s.

The first property (i) is "square-integrability" , the second (ii) is

"martingale", meaning roughly that "the expected future value of X given

current information is the current value of X."

The space of square-integrable martingales on (ii F, P) which are

2 2
null at zero (X(0) = 0) is denoted W p. The spaces O^p and

2
L (P) are in one-to-one correspondence via the relationship between some

X eMp and X e L^(P):

X(t) = E[x|F^] t e [0,T],

where all RCLL versions of the conditional expectation are

indistinguishable, and therefore identified.

An F-adapted process is termed predictable if it is measurable with

respect to the tribe/P on J2 x [0,T] generated by left-continuous

F-adapted processes. At an intuitive level, 6 is a predictable process

if the value of 9(t) can be determined form information available up to,

but not including, time t, for any t e [0,T].

Two martingles X and Y are said to be orthogonal if the product XY is a

martingale. From this point we'll assume that F is a separable tribe
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under P. In that case the path breaking work of Kunita and Watanabe

[11] shows the existence of an orthogonal 2-basis fort/I^, defined as

a minimal set of mutually orthogonal elements of rt7 with the

representation property stated in Theorem 4.1. By "minimal", we mean that

2
no fewer elements of 111 p have this property. The number of elements

of a 2-basis, whether countable infinite or some positive integer, is

2 2
called the multiplicity of ''I p, denoted M( 117 p) .

The following lemma makes a technical argument used in the proof of

Theorem 4.1.

Lenuna A.l; Suppose the process X is defined by

N

Z

n=l

where
J dS is a stochastic integral of a predictable process

with respect to a semi-martingale S , for 1 ^ n ^ N < cc^

Then X is predictable.

Proof: For any left-limits process Z, let Z(t-) denote the left limit of

Z at t e [0,T], and the "jump" of Z at t by ^(t) = Z(t) - Z(t-),

where we have used the convention that Z(O-) = Z(0).

Then we can write

N

^ ^ T 1
X(t) = Z ] t Q (s)dS (s) - (s)S (s)L t e [0,T]

,

_,l,"'Un n n n-*

x(t) = z f f^~e (s)ds (s) - e (t)s (t) + e (t)^ (t)!
_il-'On n nn n n-*
n-1

since A it 6 (s)dS (s)) = 6 (t)AS (t) by the definition of a

stochastic integral. Then, using ^(t)S^(t) = e^(t) [s^(t-) + ^j^(t)J ,

we have

N

X(t) = Z fjj fl (s)dS^(s) - ^(t)S^(t-)] , t e[0,T].
n=l

Since U 9 dS and S (t-) are left-continous processes, and therefore
•"0 n n n
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predlctable, and 9 (t) is predictable, we know X is predictable since

products and sums of measurable functions are measurable. Q.E.D.

2
For any two elements X and Y of ffl -p, let ^X,Y) denote the unique

predictable process with the property that XY- 0^,Y) is a martingale and

<X,Y>Q = 0.

2
Lemma A. 2; Suppose (m, mj^) are elements of "I „ with the

representation property given in the statement of Theorem 4.1, where

2 2
N = M(n7^) < <^ If e and &, are elements of L^[m ], 1 xn ^N

vQ n ^n Qn*^
satisfying (with the obvious shorthand)

jj
e^dm =

jj (j7dm V t e [0,T] a.s. (a.l)

then

Q[3t e [0,T] : 0(t) = 4<t)} > 0.

Proof

;

Jacod [8] shows the existence of a predictable positive

semi-definite N x N matrix valued process c and an increasing predictable

2
process C with the propery, for any cl> S e L [m ],

1 4: n ^ N,

<jjdra, je'^dm > ^= J Qa(s)'"c(s)S(s)dC(s) V t £ [0,T] a.s. (a. 2)

The process C also defines a Doleans measure (also denoted C) on

(fix [0,T],(P) according to

C(B) =
J / l„((4s) dC((4s) Q(dai) V B e(P.

i2[0,T]

By (4.43) of Jacod [7], the matrix process c reaches full rank, and is

thus positive definite, on some set B e(Pof strictly positive C

measure. But, by (a.l) and (a. 2),

Jq [ e(w.s) - 4)(w,s)] c(w,s) [ 0(w,s) - ())(w,s)] dC(w,s)

=0 ¥ t G [0,t] a.s. (a. 3)
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Ignoring without loss of generality the Q-null set on which (a. 3) does

not hold, this implies that 9Cw,t) = ({)(w,t) for all time points of

increase of C on B , which have strictly positive Q-probability since

*
the projection of B on J^ must have strictly positive Q measure to

have strictly positive C-measure. Q.E.D.

Proof of Proposition 6.2;

Let N denote the maximum number of branches leaving any node of the

event tree minus one. The proposition will be proved by constructing an

orthogonal martingale basis for the space of martingales on this

filtration consisting of N processes, m, , . . ., mj^. Any martingale

on a finite filtration is determined entirely by its right-continuous

jumps at each node in the corresponding event tree. Denote the jump of

m . at a generic node with L departing branches by the vector 6.
~

J J

(6-1, . . • ,6.t)« That is, 6. e R represents the

random variable which takes the real number 6.-, if branch 1 is the

realized event at this node. Let p = (p^, . . ., p ) eR denote

the vector of conditional branching probabilities at this node.

The processes m, , . . • > hIm are then mutually orthogonal

martingales if they satisfy the following two conditions at each node:

(i) p^6. "=0, j = l,2, . . . ,N (zero mean jumps, the martingale

property) , and

(ii) 5.[p](5, =0 Vj ^ k, where [p] denotes the diagonal

matrix whole 1-th diagonal element is p^ (mutually uncorrelated

jumps, implying mutually orthogonal martingales).

We construct the processes m , . . . , m^ by designing their jumps

at each node of the event tree, in any order, taking m.(0) = ¥..

At a given node (with L branches), it is simple to choose non-zero
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vectors &,..., 6r_, in R satisfying

Aj[p]6j = j = 1, . . . L - 1, (a. 4)

where A. is a i x L matrix whose first row is a vector of ones and
J

whose k-th row is iS _- . This cannot be done for j ^ L if

1/2
A,[p] is a full rank L x L matrix (its rows are non-zero and

mutually orthogonal). Instead, let &.,... &^ each be zero

vectors. One can quickly verify that this construction meets the

conditions (i)-(ii) for m- , . . . , m^^ to be mutually orthogonal

martingales. They are non-trivial since there is at least one node with

N + 1 branches. They form a basis (in the sense of stochastic

integration) for all martingales since at each node (with the obvious

notation) the subspace <6eR : 6p = 0t has the linearly

independent spanning vectors (&,... 4 -i
) • (That is, the

jump of any given martingale at this node is a linear combination of the

jumps of those martingales in (m,, . . ., m„) "active" at this

node,) At least N martingales are needed for a martingale basis since at

some node this subspace has dimension N, by definition of N.

Q.E.D.

As a simple example, consider a finite-state space Markov chain

information structure. Transition posibilities given by the matrix

n-c-rr^ a=l,...,n
0(3 (3-1,.. .,n '

where it « is the probability of one-step transition from state a

to state 6. Let tt^ denote the a - th row of II and (S? e R

the vector of jumps of the process m. at any node correspondint to state

a, j = 1, . . . , n - 1. We'll assume at least one row of n has no zero

elements. Then the multiplicity of the space of martingales on this Markov

chain is n - 1, and m^ , . . . , m _^ is an orthogonal martingale basis

provided, for a= 1> • . . > n.
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IT 5.-0 j-1, ...,n-l
J

and 6? [ it"] ^ j j' k.

.3 .3 .4

.3 .3 .4

.3 .3 .4

corresponding to conditions (i) - (ii) above, and 5r ?*

Voi, v.. If, for instance.

n =

then the two martingales m, and m« are an orthogonal martingale

basis, where, at any node, m.^ jumps +2 if state 1 occurs at the next

step, +2 if state 2 occurs, and -3 if state 3 occurs, or 6,
=

(2, 2, -3); and ^ = (1, -1, 0) describes the state contingent jumps

of m2 at any node. To further illustrate, if state 2 occurs at time 1,

state 3 at time 2, and the chain terminates at time 2.5, the sample path

for m, is

m/t) =

m|(t) = 2

mj;(t) = -1

4 t < 1

1 ^ t < 2

2 ^ t .^ 2.5.
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NOTES

1. Merton [15] is also seminal in this regard. Similar results were obtained
by Cox and Ross [2] for other models of uncertainty.

2. This is sometimes misleadingly interpreted as the "state of information
at time t, whereas it is more reasonably treated as the set of all

possible states of information at time t.

3. While it is conventional to assume that consumption allocations and

endowments are restricted to be positive (elements of the positive cone

of V), it is a matter of indifference to our model whether or not this
restriction is adopted.

4. See Schaefer [17].

5. Sufficient conditions for this can be given when preferences can be

represented by Von Neumann-Morgenstern utility functions, in terms of

bounds on marginal utilities for time T consumption. We do not pursue

this here since we are taking ^ as a primitive, rather than deriving it

from preferences.

6. A tribe F is said to be separable under P if there exists a countable

number of elements B]^, B2, ... in F such that, for any B eF
and e >0 there exists B^^ with P{_B^j^l< e, where A

deontes symmetric differences.

7. See, for example, Jacod [8] for the definition of a semi-martingale.

This is not in the least restrictive.

8. Memin [13] lists sufficient conditions, but in this paper condition (ii)

is sufficient for (iii) , so we do not need to repeat that list here.

9. By "RCLL", we mean a process whose sample paths are almost surely

right-continuous with left limits.

10. Note that E (x IF^) = x a.s.

11. This is easily done for event trees. From this proof of the Proposition

it is apparent that a selection of consumption payoffs for long-lived

securities can be designed which (generically) completes markets for any

Arrow-Debreu equilibrium prices.

12. These are questions raised by Harrison and Pliska [6].

13. See Harrison and Pliska [6], p. 250 and Kreps [9].

14. By a slightly more subtle argument, we could have reached the same

conclusions under the weaker assumption that P and Q are merely

equivalent, but QJ^P is needed for other reasons in Theorem 4.1.

15. A process X = [x^., t c [0,T] (
is adapted to P = [ Fj.; t e [0,T]j

if Xj- is measurable with respect to Fj. for all t e [0,T].
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