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ABSTRACT

MICROWAVE SPECTRUM OF THE WATER MOLECULE

by
DESMOND WALTER POSENER

Submitted to the Department of Physics on May 4, 1953,
in partial fulfillment of the requlirements for the
degree of Doctor of Philosophy.

Centrifugal distortion theory applicable to the water
molecule and its lsotopic modifications has been rederived,
apparently eliminating misprints and errors now present in
the literature. Using infrared data with this theory,
rotational constants and distortion parameters have been
calculated for the molecules H20, DQO and HDO, and the

resulting theoretical transition frequencies compared with
those obgerved in the microwave region.

Theoretically calculated parameters have also been used
to obtaln Q-branch frequencles in HDO; while the frequenciles
computed directly are considerably different from those
observed, a simple method 1s avallable for relating the two
sets with very good accuracy. Analysis of the method leads to
the inference that the theoretical distortion corrections are
very nearly the true ones, and that reasonable agreement (by
which 1s meant the best avallable by convenient methods of
computation) with experiment can be obtained by a simple (and
small) variation of the effective moments alone. The resulting
parameters also account satisfactorily for the known |AJ| =1
transitions in HDO, whose frequencles are still better
explained by a further small change in the theoretical
effective moments together with a rather large variation of
another distortlion constant. The detalled discussion of the
procedure used indicates the consistency of the results is
good.

For this type of molecule centrifugal distortion effects
are so large that approximate methods of calculatlon have
only a limited usefulness; the validlty of the Hillger-
Strandberg-Kivelson-Wilson approximation for the calculation
of Q-branch frequencies in HDO is discussed in detall.
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The results for HDO give the following effective
reciprocal moments of inertia: a = 7,039610,0005 x 105 Mc/sec,

b = 2.7360+0.0005 x 10° Mc/sec, ¢ = 1.9186+0.0005 x 10° Mc/sec,

New transltions observed in the microwave spectra of D20
and HDO are: D0 220—i-313, 10,919.39%0.05 Mc/secs
HDO 8,c—#=8, 24,844.77+0.05 Mc/secy HDO 1055910,
8,836.9510.1 Mc/sec; HDO 1lg,=11gs, 22,581.1%0.2 Mc/sec,
A line previously reported, at 26,880.38%0.05 Mc/sec, 1is
identiflied as the 624—&717 transition of HDO.

Thesls Supervisor: M.W.P.Strandberg

Title: Assoclate Professor of Physlcs
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I
INTRODUCTION

The rotational spectrum of water¥ has probably been
more thoroughly investigated than that of any other asymmetric
molecule; many examinations of the infrared spectrum have been
carried out, and some are still in progress.

One of the interesting effects observable in the water
spectrum arises from the fact that the molecule is so light
that vibration and rotation cause comparatively large distortilon
to the equilibrium structure, and this has to be taken into
account in any detailed description of the spectrum.

The theory of centrifugal distortion in asymmetric
molecules has been discussed by & number of authors, but very
little comparison with experiment has been carried out because
of the fact (fortunate, or unfortunate, depending on the point
of view!) that most molecules are so heavy that the effects of
distcertion in their spectra are almost entirely negligible.

With its high resolution, microwave spectroscopy offers
the possibility of making a detalled check on the theory.
Furthermore, the water molecule 1s a natural subject to
investigate because the distortion effects are so large. This
thesis 1s a contribution to study along these lines.

Microwave lines of water have been observed sporadically
ever since mlcrowave spectroscopy became a practical

16

proposition in 1946. King, Hainer and Cross have tabulated

* We usually use the word "water" in the generlc sense to

mean H20 and its lsotoplc modifications.




predicted positions of many microwave lines, malnly based on
rigid rotor calculationsj their work is still valid as
indicating possible microwave transitions, though the
predictions are not alwéys accurate in the microwave sense.

One line due to H,O is known, with the possgsibility that

2
one more might be detected in the foreseeable future. No D20
lines had been ldentified prior to this work. The 1sotope
HDO, with its low symmetry, affords a richer spectrum, with
which the interpretive part of this thesis will be mainly
concerned. Since a considerable number of lines is required
for analysls, one of the objects of the present work was to
increase our knowledge of the spectrum, preferably by

systematlic methods, rather than by hit-or-miss searching;

this aim was achleved.

In our discussion we wlll make frequent references to
the theory, of which sufficient is given in Chapters II and
III. Although there is nothing basically new here, 1t 1s
convenlent for reference in a consistent notation, and, more
important, 1s apparently free of the numerous errors and
misprints to be found in the original literature.

So-called "theoretical parameters"™, obtained by putting
numbers (obtained from infrared analysis) into the
theoretical expressions, are given in Appendices B and C.
Many of the intermediate quantitlies computed are also shown,
for ease in checking or extending this work. Unless otherwise

stated, the numerical results are quoted to the number of




significant figures actually used in computing, since
rounding-off errors are readily propagated; it is not meant
to imply that all these figures are meaningfull

The microwave spectra of H2O and DQO are discussed
briefly in Chapters IV and V, respectively. We are still in
no position to relate these systematically to one another,
or to the spectrum of HDO.

Chapter VI, concerned with the microwave spectrum of HDO,
contains the major contribution of this work. New lines in
the spectrum are described, and correlation of the observed
frequencies with theoretical predictions 1is discussed in
detail., A critical study of methods of fitting molecular
parameters to experimental data is given.

The experimental part of the work, mainly concerned
with identification of various transitions, is discussed in

Appendix E.




I
GEOMETRY, NORMAL COORDINATES, AND POTENTIAL FUNCTIONS

OF

THE MOLECULES HEO’ D20, HDO*

1. Egullibrium Geometry
Throughout this work we assume that the equilibrium

structures and potential functions of the three molecules H20,
D20 and HDO are the same, to a sufficient degree of
approximation. ‘

We consider the non-linear molecule XYZ, with the X and

Z atoms either identical (as in H.O and D20) or isotopic (as

2
in HDO), and make the following assignments:

H,0O HDC D,O

2 2
X (3) H D D
Y (1) 0 0 0
z (2) H H D .

Since three points define a plane, the molecule remains
planar at all times, even when vibrating, so we need consider
only a two-dimensional geometry at thlis stage.

First let us choose the coordinate system x*, y' such

31» that the equilibrium position
Y0) my=M '
AN - of the molecule is as shown,
(' n 20 9
iy / Z\ Mz  with the center of mass at the
XG@ L Z(@®)
~a origin. Let M be the mass of
Fie i

the oxygen atom (Y), my and mp

¥ See references 5, 21, 25, 28, 29, 30.




the masses of the hydrogen and deuterium atoms, respectively,

and m the mass of each of two identical atoms (as in H20 or

DQO). Then we have:
ml = =M
m, = m, (= my for HDO; = m for H,0, D20) (I1.1)
Mg = My (= my for HDO; = m for H,O, D20)
Now define
o = my+ my = 2m for H,0, D20)
= my + mx-i-m = M+0o (= M+2m for H,0, D20)
mY(mX+m Mo _ omM (11.2)
B = mx+mY+m =T (= Zpew for Hy0, D,0)
= my = my (20) (= 0 for H,0, D,0)
In terms of the dimensions of the molecule (Fig. 1), we
have
1 vl =5 = w! o !
xq ?3 ? x5 = X
' x2'- Xy = 2? ' (11.3)
J1 =¥ =D =¥y =¥z
with
a = re sin a :
b = r, cos a . (11.4)

Since the center of mass lies at the origin, we have

Tmyxy =

from which we readlly find

0C=ZInm

11yf'l.’




HDO H20, D20
xi %34 0
(2mX+M)a.
x} —5— a
(2mz+M)a
x! -— -a
3 3
(11.5)
' &b B
vy 5 MP
' _ Mb - B
P > 2m ©
' _ M¥b - B
y3 p3 Emb

so the equilibrium moments of inertia are given by

HDO H20, D20
Ix' %t p.b2 ub2 = urgcosza.
Iy, - (n+ i'—%-m—-z-)a2 ome® = 2mr§sin20. (11.6)
L g Leb 0 :

Let x, y be principal axes (x', y' are, of course,
already principal axes for H,0 and D20); then the equilibrium

principal moments are given by the well-known transformation

e _ 2 24 _
Ixx = Ix,x,cos e + Iy,y,sin e EIx,y,slne cos ©

x,sin29 + Iy,y,cos‘?e + 2L, 81n6 cos & (11.7)

e
Tyy = Ix
2I
tan 26 = 3 -x'Iy' .
xlxl y'y!




In this coordinate system, which, for the molecules consldered,

amounts to a 111’ representation¥®, the equilibrium positions of

the nuclel are given by

HDO

e -1
xq T+ (bacos © + obsiné)

e -1
x5 © [(2mX+M)a cos & - Mbsin e]
x§ -1 [(2m2+M) acos® + Mbsiné |
y3 - s 1(sasine - oboos 6)
yg -zt [(2mx+M) asin® + Mbcos 9:
vs 71 [(2m,+M) 2 sine - Mbeos 0]

and we also have, with

— +€ _ ©
xij'xé xJ
yij = yi = Y? ’
HDO

Xqp - acos® + bsine
::13 acos@ + bsine
x23 2a co8 &
Yo asin® + bcos @
y13 - asine + bcos €
y23 - 2a s8iné®

2. The Normal Coordinate Problem

H20 ’ D20

By (11.8)

(I1.8a)

H,O, D,O

2 2

2a
(11.9)

o o

Let us assume the kinetic energy, T, and the harmonic

portion of the potential energy, Vo

, can be written in matrix

# See Appendix C; we will find that ng < 1° < I:z.

yy



form* as
2T = apa . (II.10)
2V =z=uku , (11.11)
(o]

where, for the molecules under consideration, p and K are
certain 3x 3 matrices which will be determined specifically
later, and u is a vector whose components are usually written
as

u
a=|{v]. (11.12)

The normal coordinate problem consists in the
simultaneous diagonalization of p and K so as to express the
quadratic forms (10) and (11) as simple sums of squeres. This
may be carried out by well-known methods®¥*, and we find 1t
convenlent to use the following one,

Let By (= Bes Boo u3) be the characteristic numbers of

B, and let A be the normalized modal matrix of @ such that

ApA =2, (11.13)
where
By 0O O
A=) 0mn, O]. (1I.14)
o 0 p3
Now let -1
y=A4A"u, (II.15)
so that
o7 = Gpa = YARAYy = yAF . (I1.16)

* We use the tilde -~ to indicate the transposed matrix.
#%* See, for example, reference 9, Sections 1.17, 1.25, 2.12.




Since 2T 2 0 always, p 1s positive definite, and the By Will
all be positive,

Now let
X
uE% 0O © pi 0 0
-5 -1 3
M= 0 my® 0 , M- =10 1.7.235 , (1I1.17)
-2
0 0 nyg o o B3
and define
s =Xy . (I1.18)
Since M M1 = A , we now have
YTl -1l o Tew=le .
ot =y Mty =y ly = lyuty =%2.  (11.19)

Further,

2V, =WKu=FAKAy = ENAKAMz = §B3 ,

(11.20)
Wwhere

MAKAN . (II.21)
2 (_ 2 2 2
Now let of (= wl, o7, wB) be the characteristic numbers

of B, and let R be the (orthogonal) normalized modal matrix
of B, so that

m§ 0 o
EBR=BR'BR=e=| O wg o |, (I1.22)
0 0 cn%
and let
Q=R"1x . (11.23)
Then
2V, = Bz = GRBRQ = Qeq ,

(II.24)
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and
RRQ =3é ) (1I.25)

o1

oOf =gz =
Hence the transformation

=Rz =ruly =rawaa =P, (11.26)

with
Ppl=plnlal (II.27)
or,
a=PQ , (I1.28)
with
P =ANR , (11.29)

simultaneously reduces the forms (10) and (11) to the forms

or = Q& = &2 + e+ 8, (11.30)
>

2V = qoQ = wng + nge + cn%Q% . (IT1.31)

o

If the Lagrange equations of motion are now set up, using
(30) and (31) for the kinetic and potential energles, it

wlll be readily seen that they describe simple harmonic

motlon:
d (3T oV _
af(aéi)-ﬁ-aqi—o,
or
oo 2 _
G v oy =0,

which describes simple harmonic motion of angular frequency
Dy . Thus the normal coordinate problem reduces to finding
the coordinates Q~l for which the motion of the system can be

described, in general, as a superposition of simple harmoniec




——

11

motlons.
Here the Q‘i are the normal coordinates of the system, and

the w, are the normal angular frequencles

i

®, = 2mvy . (11.32)

3., Coordlinate Transformations and the Kinetie Energy Matrix

In the vibrating molecule, let the instantaneous

coordinates of the i-th varticle be (x ), and let

10 ¥y
ox,, 0y, be the "displacement coordinates' defined by

= +© — €
Xy = Xy +0xy Vi = ¥y +0¥y - (I1.33)

Since the molecule vibrates about the center of mass, which

remains fixed, we have

=0=2In

1%y 2MyYy (IT.34)

and, in first approximation, the internal angular momentum is

zero since there are no torgues acting:
e e e e e e -
M(x, 8y, =¥, 0%, ) +my (x5 8y,-7, 6x2) +mx(x_5 8y5= ¥ ax3) =0

(11.35)

If we now define a convenient set of "intermediate

coordinates” u, v, w by the relations

HDO H20, D20
u o bx, - %,(mszzﬂxk 6x3) ox, = %(Onc2+éac3 )
v byy - i(m, by emy oy5) 8y - B(oy,r oy5) (II.36)

w 6x2 - Cuc3 6x2 - 613
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then the conditions (34) and (35) enable us to solve for the

bxi etc. in terms of the u, v and w. In matrix notation, with

u defined as in (12), if we write

x =Fu , (11.37)

where

- -

6x1
6x2
bx

byi ’
6y2
6y3

(11.38)

the transformation matrix P is glven by

ey

F = !‘y) , (11.39)
where
ﬁ 0 0 ]
m.
£ o | - B o —o_?—‘ ] (11.40)
- B . Dz
. o © o _
and
-~ O % V 0 -
e
p(y) = Myl - _p_ﬁl 5(_3_22 (11_41)
Ty %53 Mg Xo% X 3
| Mg bRy Tgip
| %3 My Xox X o3 |

Now, the kinetic energy of the vibrating molecule 1is
given by
- 22«2
27 = §m1(xi+ yi) , (11.42)




and since

Xy = &%y

¥y

=6§'1,

13

(I1.43)

we can use (37) to express the kinetic energy in terms of the

Intermediate coordinates w. After some algebra, we find --

ctf.

where

=t

(10) --

2T = :pi R

ME (y2)2 o M2 S e
s O, AR
My Mz X0z iy Mz X3
ofﬁﬁ fz%
- 2
mezx§3 My ¥ X5
e e
ALY _MX T
X2 X2
23 23

N

2
2

=
L\é“

X231
*23
4nkmza2
2

2
2

O’X23 ]

(T1.44)

. (11.45)

The displacement coordlnates x are related to the

normal coordinates Q through the transformations (37) and

(28):

where

x =Fu =FPQ=0Q ,

U=FP =

Now let us write®*

Oxy

byi

[

— (x)
- mi2 § LisQ

J-

e

o)

]

s ?

(I1.46)

(11.47)

(11.48)

* The literature normally uses an italic "2 " where we have
"L", for typing purposes we find it convenient to use the
present notation.
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or,
IT1.49
oy = ll.y) U(y)
where
5 %
my 0 © M* O ¢
5 %
m = ) mg_ c = 0 m; © , (11.50)
i 1
c O© m% 0 ¢ m§
and

I£X) -ﬂ(x) ’

Isy) - lﬂ(y). (I1.51)

4, Potential Function

It is desirable to express the potential energy as a
function of the displacements of the nuclel from theilr
equilibrium positions, since in this form it should be
practically independent of isotopic modifications of the
molecule.

Of the two types of coordinate systems which are
suitable for this -- central-force and valence-force =-- we
choose the central-force one, where the coordinates are the
changes in the distances between each pair of nuclel.

Let
= [(xi-x3)2+ (yi_yj)z]% (II.52)

be the distance between the i-th and j-th particles, with
e _ 2 2|% -
8y = [(xi-xg) + (y‘{-yj)] (xlj-ryfJ , (II.53)

which 1s the equilibrium distance. Also let

.
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- _ <®
Tyy = 85y - 8y (II.54)
be the relative displacement from equilibrium; the rj_j are

thus the required coordinates, With

cx1J = bxy = bx, , (11.55)
we have
2 _ 2 2
8y = (xi-xj) + (yi-yj)
= (xigj"'yigj) +2(x_,t:J 6x13+yij °y1j) + (Caxi.1 )2 + (63'13 )2

P33 (sf’J )2 + 2(x13 6"13”’13 6y13) , to first order,
80 that
e 1
Sy4 % 85y + s_e‘(xijbxij"'yij byij) ,
and

1
Tyg =84y = sijz;—e-—(xijbxij«q-yijbyij) . (11.56)
1]

We will denote the set of coordinates rij by »:

1 r2
F=r, | =] rg ] (I1.57)
T3 To3z

From (56), using the bxlj and byij calculated by means

of (37), and the x,, and yy4 8lven by (9), together with the

1)
obvious relations

e _ _ e e _
=r = 853 = 28 , (11.58)

we can calculate the components of » in terms of the

intermediate coordinates m; we write
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r=%Tu , (11.59)
with
L(x, My1y12) Pliga, %13, _‘ix__( , 12723,
re 2 mz 03 ré M mg X o3 x12 x23
Myy By X Y= ¥
1| Logyepid Mg Ry i Tt
MyX o3 e + Bx¥o3 e 23
Moyey deey
1923 _ 1723 2a_
i 2mxmza x23 emxmza ::23 x23 ]
(11.60)

Using (28), we can also write r in terms of the normal
coordinates:
r=Tu =TPQ=8Q , (11.61)
where

8 =TP . (11.62)

We can now get down to the business of handling the
potentlal functlion. In terms of the rij’ the harmonlie, or
quadratic, portion of the potentlal energy function may be

written in the central-force form

=i ixijklrljrkl , (11.63)

= =1
with J21 4>k

K013 = K110

Kypo3 = Kp310 (II.64)

Ki303 = o333 -

For the type of molecule under consideration, the

o,




3
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potential is invariant to interchange of the nuclei 2 and 3
(1.e. invariant under the symmetry operation T, which refers
to reflection in the x',y'-plane); this interchange results

in the exchange of o and rl}’ so we must have:

K K1313

K003 = K303 -

1212
(11.65)

Thus we can write:

K1212( 10% 13) + Kzaes + 2K 531 5 T3 + 2K 5o P) 547y 5 ) T0g

(11.66)
or,
—-— !
2v_ = (r1+r2)4-K33 34-2K12 1r2+2K13(r1+r2)r3 , (11.67)
il.e.
2vo=i-'x'r . (11.68)
where
! | !
' K11 K'12 '13 I‘:1212 Kio13 ¥io03
K = }2 K:'Ll K'13 = | Kipiz Kip1p Kypos | - (11.69)
K1z K33 K33 Kioo3 K120z Kooz
In terms of the intermediate coordinates m, we have from
(59),
2V = FK'r = u?K'fu = uku , (II1.70)
where
K = ¥K'T? . (11.71)

We now have the harmonic portion of the potential energy

in the required form (10).
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The cubic portion of the potential may be written
v, = }E: Ky 3xT1 T3 (1T1.72)
1€k

In thls work we are interested in the analogous expression in

terms of the normal coordinates:

Vl = Z késcsn QSQS'QS" , (II.73)
s S'ﬁs"
1
where the kg, o, Will be functions of the KiJk and the

transformation coefficients Sij’ since » = 8Q . For purposes

of computation, we find it convenlent to express the

relations between the Kijk and the kés's" in the following
way: let
[ = ] ' 1 ' 7]
K111 K112 %113 [ k117 Kygp K5
K. K. K X k'K
x = | T1e2 Foze Forz | L, 322 ?22 ?23 (11.74)
K133 Koz3 K333 k133 K33 K333
1
| 0 0 Ky | 0 0 K,y
and
- .2 2 2 -
817 81, 813
> 5 2
3 s s
s s s
31 32 33
| 811827 8155925 5938,3




28,1895 2891845 2815815
g = 2351522 2521823 2852523
2851855 285155 28,5+
| 811505*8105271 811853+813551 8155,3+513522 |
Now let
e =k8
=8'a = 8'kxs
=a8'=8k8" .
Then 1t may be verified that
Byp  Byg*rin ByatYyo
g o | PartTar Pao Pas*ros
Bx1tTsp ByotTss Ps3
. © 0 Y13+ Yoot T37 |
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. (I1.76)

(I1.77)

. (11.78)

From the symmetry of the molecules we are dealing with,

as discussed on pp 16-17, it is easlly seen that we must

have

A dlscusslon of the method

K11 =

K

222
K12 = Koo
K113 = ¥oo3
K133 = Ko33 -

(11.79)

of determining the potential

constants from observed infrared data will be postponed until

Section 6.
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For this type of molecule (described by the point group

C,y» With orthorhombic symmetry), we have

%4 = 2( 6% o+ éx3)

u= byl-%(by2+6y3) , (11.80)
6x2 - 6x3
B B
) B o o ) 0 E o
= | - B Y - B B
P L oo 3 ¥ 2 oot a L o,
- B - - B - B
= 0 -3 o cota o 0
(11.81)
We define o
b2 p‘Izz
p o= n(l+ B2 = , (11.82)
oma? I
Npg
then
B O 0
p=|0 u o0}, (11.83)
m
o o 3
and
- %’ sina cosa % sina
? = ﬁ' sina cosa ~ % sina , (I1.84)
) o) 1
so from (71),
" o(K!.-K! )72 0 0 i
117512'T11
' 2(K! +K! )T, .T
X = 0 2(K! +K! )12 a2t |
117%127 %12 . 2K!_T
13 122
1 ]
o 2(K11+K12)T12T13 2(K11+K12)T13
] L
I + 2K35T95 +4E)sTy5 4Ky |

(11.85)

e
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or,
k'3 0 0
K=|o0 K, k) | . (11.86)
A
Also,
A=pn, A=1I, y=u, (11.87)
vhere I is the identity matrix, and
IJ-'%U
z = ﬁ%v . (11.88)
1
mye
(2) W
Thus,
Pp."lk.'j 0 0
B = MKX = 0 pf'lké %(%g)'%kl'}
1 -1
Boy=z , 4 m 1
0 3(55) ® i) 3 Xy
ij o o
=1 0 k, #k, |. (11.89)
] 0 %k4 kl
If we choose
0 0 1
R = sin vy cos ¥ o\, (I1.90)
cos ¥ - siny o

then,




and

provided

[ klcose'r + kgsiney
+ k4sin Yycosy

(ky=ky )sin‘fcos ¥
+~(k4cos r=51n>y)

(k kl)sin'r cos Y

+-2—(k4cos y-sin Y)
klsin Y+ k2cos s

- k4sin~( cos ¥

L 0 0
mi 0 o0
2
o = 0 (.02 0 ’
o o of

(kz-kl)siny cosy + %k4(cos2-r- sing‘{) =

i.e. if

(see also equations 106 and 107).

tan 2y =

K,
1"Ko

k

Then

cn% = klcose'r + kzsiney + k4siny cos Y
a)g = klsinz'r + kgcoszy - k481n~( cos ¥
mg = k3 .
Also,
o u"%
P=HNR-= sin'f p.'%'cos'r 0
cosv - (g)- sinvy 0
and
o Eut"%
o™ o fx¥p %(m) % cosy -~ %(m)'% siny - %p.' %
—’*(m) cos ¥y %( ) siny - 'z_%ﬁp"-%
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o

o i,

=

(rr.91)

(I1.92)

(11.93)

(II.94)

(11.95)

(11.96)

(11.97)




u(y) = i‘y)y = | -

1 (LS L L

ISX) = IU(X) = 2-%003 Y

- Q%cos Y

[ (ﬁ)%siny
£ 2 at® = | - %(%)%sin'r

%
- %(%) siny

i u-%g%nY cosa
%(%) cosy sina

-1
B ®siny cosa
+%(g) cos yYsina

m
(3) cos ¥

i %p.% sinyseca

s-1 = i-u% cos ysec a

-%;% cosec @

23

X -
%’f cos ¥y 0]
- ]f- cos "%cot a
22 Y 2m
-%acos'f '-Qm'-%cota |
(11.98)
0 ]
-2 %s1ny 'ﬁ.}““ -%
2_%91117 -—E‘Iv."%
2m2 -
N : (11.99)
(%) cos ]

—%(%) cosy

o)
—%Eu."%cota
3 2m
-3®) cosy - EgwFoota |
(I1.100)

-3

B “cosycosa ' B

B
-%(g) siny sina ) sin a

p.'%c By cOS O ﬁ
-%(%) sinysina 5 eina
e
-(2) siny 0 ]
(11.101)

%p.% siny seca -%‘p.%s nytana |
+(%) cos ¥

3 3 « -%p%cgsywna
cos ¥ sec

B Y - (3)%siny

%ﬁ; cosec a 0

(11.102)
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6. Determination of Potential Constants from Observed Data

The constants in the harmonlc portion of the potential
energy can be determined from the normal frequencles,
provided the latter are known for two lsotopic species (e.g.
H20 and DZO) seince there are four independent constants
involved, and only three normal frequencies for each molecule.
The normal frequencies are, of course, determined by analysis
of the vibrational spectra, and we do not attempt to do thils
here but merely use results given by other workers.

Thus, Darling and Dennison5

have given the normal
frequencies for HQO and DQO, and we base our calculations on
their work,

From the relations (95) it is readily shown that

o = ]:p(wl-i-coz)] (H) [p.(ml-l-wz)] (D)
1 (u/m)IH)-(u/m)(ﬁT‘
H) D)
! = [ﬁ(m1+w2)]( [@(w1+m2)](
2 (m/u)(H)_(m/u)(D)

(I1.103)

it
!

2 2
P t . B 2
5 = () kg = Troog

kj = + 2[%(1511{2 —w%cng):]%
where the k's refer to equations (86) and (89), and the
superscripts (H), (D) mean the terms concerned are to have
the appropriate values for H20 and DQO, respectively.
Knowing the k's, one can easily work back to the K's of
equations (66) through (69) by means of the relations
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e owt — Ly 2 2
1010 = K3q = E(kgsec o + k'écosec a)

1 2 2
= XK' . = #(k'seca - K coseca)
1213 '12 21; '2 , 3 (II.104)
1203 = K13 = 7_;(]:{,+ - kztana Ysec a

2323

2 o s B )

1ot o Lyt 1.4 2
K33 = kl 2k4t.ancc +Ek2tan a .

One may also calculate the transformation coefficlents

of R (equation 90) by means of the relations

siny = + (===
(11.105)

cosy = + (
which 1n turn can be derlved from the alternative formulae

siny = + 2-%(1-1{%)%

-1 11 (11.106)
cosy = + 2 =(1+x®)*= ,
where
2
(k.-X%.) k. -k.2
x = 12 - (X2, (1I.107)
k2+(k -k )2 @l = 02
IS 1~ %

The cublc potential constants appearing in (72) may be
calculated in the following manner. In the notation of
equation (III.42) we write '

v, = sts,s,qsqs,qs,, , (I1.108)
ss'a"

where the relations between the Qg and our normal coordinates

Qs are given by
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mS%-
ag = (F) q (I1.109)
and those between the k ., . and the kl_, ., of (73) are
3/2
k = (1i k!
sss Wy 888
i
K =k, =k,  =LiBAAf,
sss' ss's s'ss 7 3 wg wg’ “sss’
(11.110)
k — —
ss! S" sl s" s s" ss' 1
=k =k =k :1(_{1_;i..1_é_)kt
8 8 8 8 ss ss s 6 '0g wgrgn’® 88 " ?

where s € s8' < s", and the second of these equations holds
also when s and s' are interchanged.

Quantities simply related to the kss's" are given for
H,0 by Darling and Dennison, and from these the k;s,s" can be
obtained as the coefficients in (73). By applying the
analysis (74) through (78) in reverse -- i.e. using the
inverse transformation matrix 8‘1 throughout in place of 8 --

the Kijk of (72) may be calculated.

T. Nature of the Normal Vibrations

One can get a good picture of the normal vibrations by

lr shows the relation

examining the matrix 8'1, since Q = 8
between the central-force coordinates and the normal
coordinates.

For HQO (D20 will be very similar), we see from Appendix
B, Section 2, that Ql 1s formed primarily from equal
contributions from ryp and rl3, so that @y represents a

stretching vibration along the two O-H bonds in which both
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hydrogen atoms are moving symmetrically in phase; o4 is thus
associated with a symmetrical stretching vibration. Llkewise,

w, corresponds to O-H bond stretching in which the two

3
motions are exactly out of phase, so this 1s an
antisymmetrical stretching vibration. The frequency ®,
corresponds to a bending of the molecule.

The corresponding matrix for HDO is (roughly)

0.0188 1.6597 0.0832 .
8-l = | 1.2863 1.2722 -1.6425 |x 10712 &%
-1.2087 0.1202 =-0.0566

so the main contribution to Ql is from r2 = r13’ and the
freguency @ corresponds primarily to a stretching of the
0-D bond. Similarly, the frequency wB arises almost entirely
from the O0-H bond stretching. The freguency @, is agaln due
to a bending vibration.

The displacement coordinates x (which are referred to
the principal axes coordinate system) may be expressed in
terms of the normal coordinates by means of the matrices U,
and the columns of U give the (relative) displacements of
each nucleus for a particular normal vibration. Using the
components of U one can then make geometrical diagrams
showing the relative amplitudes and directions of motion of
each nucleus. A set of such dlagrams for HDO, based on the

calculations presented here, follows*, They are self-

* For H.O, D.O, see references 5, 7, 28.

2 2
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explanatory, but note should be made of the w, bending

2
vibration, which 1is clearly shown to consist mainly of motion
of the light atoms in a direction almost perpendicular to
their bonds with oxygens; accordingly, one might suppose that
a valence-force potential would be more appropriate than the

central-force type used here.
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III
VIBRATION - ROTATION ENERGY OF MOLECULES

ABRIDGED THEORY

The notation and methods of thls Chapter are based on
those of Nielsen*, though we find 1t convenient to deviate
slightly from his work.

Our aim is to treat primarily the rotation problen,
including vibrational interaction, to the extent that the
theory may be applied to molecules considered in this thesis,

80 we neglect certain aspects of the general theory.

1. The Classical Problem

Let

8, = & + 8, (111.1)

be the instantaneous position vector of the 1-th nucleus, of
mass m, , in the molecule; here 5§ denotes the equilibrium
position vector, and 651 is the vector representing the
displacement from equilibrium.

We neglect all effects due to the finite masses of the
electrons in the molecule.

The components 8y of &, are to be measured in a
coordinate system (g = x,y,z) fixed in the molecule, and thus
in general rotating with angular velocity e about a space-
fixed system whose origin coincides with the origin of the
molecule-fixed (gyrating) system. Accordingly, we are also

% References 24, 25.

pe
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neglecting effects due to translation of the molecule with
respect to the observer; such effects are not of interest
here.

In the gyrating system, the i-th particle has a veloclity
éi; because of the rotation, however, an observer in the
fixed system sees a velocity @& + (@xg,), and the kinetlc
energy T of the nuclel of the molecule is therefore given by

. 2
2T = §m1[51+ (oxgi)] . (111.2)
Since

8, oxg,) = (oxsi)-éi = o (g,x8,) ,
expansion of (2) gives

—— '2 . .
oT = Img + Imy(oxg,) (0xg,) + 20- tm, (g, x8,) .
(111.3)
The first term represents the vibrational energy, the second

the pure rotational energy, and the third the energy of
interaction between rotation and vibration.

It 1s convenient to place certain restrictions on the
gyrating coordinate system. Firstly, we choose the origin to
lie at the center of mass of the nuclei. Secondly, we let the
axes g coincide with the principal axes of the molecule when
all nuclel are in their equilibrium positions. Thirdly, we
observe that in the equilibrium condition there 1s no
internal angular momentum of the molecule. The first and last

of these restrictions are expressed in the relations

fm@ =0, (111.4)
Zml(aixéi) =0, (111.5)
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and these are equivalent to (II.34) and (II.35) of the previous

Chapter. We also note that

8 = &, (111.6)
since é: =0,

The rotational energy term in (3) may be written

to (oxg,): (0xg,) = é:é:’Igg,mng, , (8,8 =x,y,2) (III.7)

where

I = i:mi(gf 8t~ B18Y) (II1.8)

and %ﬂ%’ 1s the Kronecker delta,
Using (5) and (6), the interaction energy term in (3)
becomes
L] - e *
2@ m, (31x 51) = 2m. Emi[(six 651) + (o8, x 651)]
= 2o I m, (58, x 0§,) = 20-M

- III.
2§M8w8 , ( 9)
with
M= )i:mi(bsix o8,) , (II1.10)
and )
M, = §g>;gr,, My €ggr gn OB} T (II1.11)
Here

( +1 1f gg'g" 1s an even permutation of x,y,z
€ rgn = ( -1 4f gg'g" 1s an odd permutation of x,y,z
g8 ( 0 otherwise . (III.12)

Finally, let us write the vibrational energy as

.2
g (I11.13)

b .2=
Brmél =31

where the Q,s are the normal coordinates of the molecule, and}

-
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let the equation

(III.14)

- =k (&)
gy = my" 2 Lyg Qg

define the transformation coefficients® I.(.isg. It follows from

(13) that

(III.15)

gl (e _
§é lé1sI‘f}.s' = Oggr -

In terms of the normal coordinates, we may now wrlte

(11) in the form

M, = - §A(§>) q, (III.16)
where
(8) _ (&)
Ay = §§§§.€gg'g"LisLis' Qg
- ()"
- 52;1 (§§|§1 egg' g'LisLis' Q‘S’
_ ol
Zlss Y o (IT1.17)
with

ﬁS')L(s") . (111.18)

() _ -
Cg - —C(BS')S - %éé:egg'g' 1s™is!

ss!

The kinetic energy (3) now becomes

o7 = glﬁ + 2 Teai 00y + 2N, . (1I1.19)
The momenta Py Pg, conjugate to Q.s and cns, are given by
p, = 'a%%’ P, = -a%r; , (1II.20)
hence
Py = Q - ng(g)mg , (I11.21)
P, = é_‘.'Igg,mg, + M, = éz'xgg,a)g, - EA(S)QS . (III.22)

* These are, of course, the same coefficlents as discussed in
equations (II.48) through (II.51).




Thus (19) becomes

_ 2
T'ﬁ%

or, on rearranging,

oF 2A£5)st + 221
g8
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Sg' 8 8' b

- -5 A8) (g);
2T->:(Qs >:A w)Q +2(21 1 @ §S:As Qs)cng
=3 c P IIT.
ZDPgQg + >£:5 g * (I11.23)
If we use (21) to replace Q by D+ 24é5) Og then (23)
g
becomes
2 (g)
= P
2T g Pg é pSAs mg + é gwg
- (&)
= gps (§ p Ay + Pg)m
2
= P -
2Py + Z(B-pglog
2
= s III.24
Py Ngmg (III.24)
where, using (17),
- - 8 - (e
Pp == I psés =Iz Eo0 QP | o (111.25)

and p, 1s the g-th component of internal (vibrational)

angular momentum.

Here,

I
o e Vgt

zI

I
g

1

ge' ‘g’

CF: )
- 2494, + 2o Al

- 5(z
8

g s)mg' )A(SS)

, (T11.26)
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with
v (&) (&9
Togt = Iggr TASRST . (111.27)
Then,
' - 2 ' ( !
Igg' = %mi(sibgg' = 5151) = g‘;g,ﬁg:é(gsu Qst Q-su
- 1) (25" (g) ple)
= Iggs + ).;a%g Q’S + Es: ;‘-\' [A;“;, ‘g,zfsncsg:&,u]%%'
= Il (II1.28)
where
N _ _ re et N, .8
8‘(;% - a(g‘g) - )fm%[zbgg' é‘: 8.131%18 - (S?S%s* gie L%s)]
(I11.29)
N _ DR ) )
A{gﬁ, =3 [bss' S'z‘L(%'SIS%;, - ﬁigsﬁgs,] , (III.30)
or, from (15),
) _ ) Y
A(gf, = 8ygi Opg - §ﬁ§sﬁ§s, . (111.31)

In (28), I® | is the equilibrium value of the moment of

inertia about the gg'-axes; in (29), gi, g'ie and g‘ie are the

equilibrium coordinates of the 1-th particle on the axes g,

g' and g", respectively.
From (26) we have
N =3I o

g g &g g
80 we may write
Og = 5 Pgg Na

(111.32)

for the inverse transformation. Then (24) can be written
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2T = 2 p° + = N o

. (IT11.33)

L]
wM
o]

EEp_ NN
tEmles & e

Now let us expand the n to terms of the second order

88!
in Qs‘, after some algebra, we find, to this approximation,

that
o 1 e gg") )
B ™ T (1 5 ., = zsf Q - zzéﬁﬁ, , (I1I.34)
gg g'g!
o des) _ e il
= pee -y 8 "8
ss' = Pggr ~ sn sﬂcs'a" Z 1° ) (I11.35)
gn g
Substituting in (33), using the relation
N =P =
g~ g Pg
we have

2T=2p +22p.

ZZ Bagr (B=pg) (Bypg) (III.36)

and, expanding to the same order of approximation,

P° P p p°
2T’.82p2+§ & § _5_s+§_s_
g 8 ot 1€ 1°
g 88 g 88 g “88
(55 Pp
Q + 2

8 ss g'e g8 gg!
}:Z L deslq q (1I1.37)
gsg! st ° ¢
g 858 | s‘s‘

The potential energy may be written
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= %E w§Q§ *z k'ss‘ g% + Z k'ss's"s‘"Qst'Qs"Qs'"
(s g srgsangam , (III.38)

where the k., ., and ki , 4w &re the cublc and quartic.

anharmonic potential constants, respectively, and

w, = 2mv, (I111.39)

where the vg are the normal frequencies (in c¢/sec).

Thus, to the order of approximation which we are

considering, the classical Hamiltonian becomes:

H“'%Ep +!§ -5- Z_&_ﬁ Z__s.

-%ZZIQ I° (gg')QS ZZ (ss')QS

gg g'g' ge' s ss s g
By 2,2
ZZ ss' Qlg + = 5%%
gg' ss' 88 8'8‘

+ 2 k'ssl a Qst' Qsll + 2 k'ssl slls’“ QSIQSIQsﬂ!

(III.40)

where the summation over the last two terms is restricted by

the condition s € s'€ s"g s". The pg are glven by (25) in

terms of the normal coordinates QS and their conjugate

momenta p g°
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2. The Energy Matrix

The quantum-mechanical Hamlltonlan can be obtained from
(40) 1f the quantitles p_, By s Pgs Qy aTe regarded as
operators. The interaction between vibration and rotation
may be considered small enough to allow us to neglect the
non-commutabllity of Ps with p 8; products such as Png, have
to be symmetrized in order that the Hamiltonian be Hermitilan,
but this is automatically achleved by the double summatlon
over g and g' appearing in (40). We need to symmetrize
explicitly only the product pg'Qs’ and replace 1t by

%(ps.Qs-i- Qsp D3 p8 itself contalns the factor Qsps,, which
does not need to be symmetrized since its coefficlent Z‘,’(sgl,
vanishes when 8' = 8.

Accordingly, we may write*
- 1
H= I-Io + H

2
P
_ 2 2.2 z
H, "%E(Ps”’s%) +%E r
g 88

H = H(l) + }1(2)
(III.41)
Pp PP
D 2oy £ g AN
Y = 2 Kggr1an@glaan ~ Z e %ZZ ° 1° 8g Qg
g &8 gg' s “sgggg

8 8'g

P 3
+ Z-I-e—-&é— a(sg,)(pg.Qs+ Q.p.,)
g8 “gg e’

* One may proceed in a more sophisticated mamner, and first
obtaln a general Hamiltonians Darling and Dennisond give,
without derivation, the form
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)
z .ﬁ_ Z Z é;“;' QSQS' + 2 k' ss! sh’"QSQS'QS"QS‘" .

g ses gg 591 | g‘s’
The reasons for the separation of'él) and éQ) will appear
shortly.

In (41) we have not taken into account the possibility
of degeneracles occurring between the normal frequencies wg
because this complicatlion does not arise in the ground states
of the molecules H20, HDO, D20.

It is now convenient to replace Q,B and p, by the

dimensionless coordinates

%
= (%s—) Qg (II1.42)
and their conjugate momenta®
%
P, = (g-;-) P, (I11.43)

then to redefine a dimensionless Py by the relation

Pg (new) = %E = (éms).%ps(om) . (I1I.44)

We also introduce new potential constants k gt and

ss!

k , » where the k are discussed in Section II.6, and

sstgig sgtg"

the k 4 4ign can be treated in a similar manner.

With these changes, the components of the Hamiltonilan

%E;QA(P Py )iy, u'%(l"g,-pg,)v}/4 + 3z &/%su'%psuw‘ +V

where p‘l is the determinant of the Iég,given in (28). It may

be verified, however, that to this order of approximation,
the resulting operator symmetrization is equivalent to (41).

Nielsenzs, equation (II.44a) and thereafter, continues to
use pg, but with the meaning of our p;.




may be written

2
P
= %—z’;gms(pg’-qg) + % ;5—
g &8
1)
H( = Z sstgn Qg% ~ ZM
ggign gsx

(e
- %A%ZZ g"g as% %

8 gg sz'g' @g
(gs')

+ %ﬁ%zz EIS % (p 510g + AP, )

gs' 8 sss%' s

t

R RN i pt

g &8 gg' ss' es 5'5' s s'

5 '592"158 gt s"s"’qsqs' qansln

with

AZ (_l) Css' QgPgr -

ss!

40

(ITII.45)

(ITI.46)

The two terms of H° belong to the harmonic oscillator

and rigld rotor, respectively. Corrections for anharmonicity,

Coriolis interaction, and centrifugal distortion are included

in H', which we will regard as a small perturbation on H,.

In order to calculate matrix elements of H we will

choose the usual representation in which Ho is diagonal in

the vibrational quantum numbers vg and in the rotational

quantum numbers J and M. In this representation, the harmonic
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oscillator matrix elements of dg and p, are given by*

(vs!qslvs+l) = 1(vslps|vs+l) = [%(Vs+1)3%. (ITII.47)

where 1 = v(-1), while the matrix elements of %g are##

(KIPle+1) = - 1(x|2_|k+1) = 34 [J(J+1)- K(K+1)-_]%

(KIleK) =hK

(I11.48)
We note that q  and p, are diagonal in J,K,M and v, (for
s' £ s), while P, 1s diagomal in J,M,v,.

%. Vibrational Dlagonalization

First let us diagonallize the vibratlonal dependence by

conventional perturbation theorv¥##*, 6 We remove matrix

1

elements connecting different states v, v' (where v denotes

the set Vys Vs eee describing a particular vibrational
state) and bring them into each v submatrix. The resulting
matrix, though dlagonal in v, will sti1ll be off-dlagonal 1n

K. We thus have

2
| (vin'lv')]

: 7o) = W) (ITI.49)

(viglv) = (leolv) + (vlg'lv) +
where

W(v) = = (vadlhog , (III.50)
8

* For brevity, we will not list conjugate matrix elements.

#* Weo use the same phase factor as King, Hainer and Crosslsg

this paper is hereafter referred to as KHC I.

##%* The literature usually applles a contact transformation
to diagonalize the Hamiltonian, but for present purposes
it appears simpler to use the straightforward method.
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and we have neglected rotational corrections which are small

compared to the energy differences between vibrational states.
We may now investigate the Hamiltonian (45). The zeroth-

order part, Ho’ gives the usval harmonic oscillator energles,

though the rotational term is still not diagonal in K:

P2
(v|H°|v) = §(VS+%)/ﬁws + %Z;é&- . (III.51)
g &g

In HCJ, all terms except the second are odd in qg Py
hence give no first order correction, but may contribute in
second orders; the second term has no dlagonal matrix elements
since s'# s in (46).

The last of these terms in HC) is a correction to the
second (Coriolis) term, which is itself small (vanishing in
the 1imit of the rigild rotor or non-rotating oscillator). For
the ground vibrational state (v = 0), with which we are
primarily concerned here, this term can be neglected, so we
will not carry 1t through in the calculatlons.

However, this Coriolis correction term, as well as the

cublc potential term 1n k , may connect higher

83'8"
vibrational states by resonancej; the second order perturbation
term gives some denominators W(v)-W(v') of the form W =0y

2ws-ws, , ebtc., so that if wg = 2(1)8 X g1y ete.,

gt ?
portions of the matrix must be dlagonalized by solutlon of
the appropriate secular equations rather than by

conventional perturbation theory. Other simllar resonances
may occur, and the matrix must be examined carefully for each

individual case. Types of such resonance do occur both in H20
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and HDO., Fortunately, however, the ground state 1s not
affected by any of these interactions¥®, so we will not have
to consider the effect further here.

Inspection of‘ég) shows that the terms are even in Qg
Dgys 8O matrix elements dlagonal in v can occur, giving first
order contributions to the energy. As before, resonances may
occur, but again they will not affect the ground state, so

will be neglected here. We willl neglect the term in Dg and

the quartic anharmonic terms, since, belng independent of the
angular momentum operators Pg, they will appear only as
vibrational corrections.

Thus, in the following, we will consider the perturbation

H"=2
s gigh Ie
g £g
PP dee)
.;:. 1 I
- i) EE ) S o,
I’ I we

gt gz met s Us

PR, G%f,)

- -%-AZ £5 22y g9 - (II1.52)
e Leg et 59t st

We will start by computing the first order corrections,
i.e. the diagonal elements of the last term in (52).

The diagonal matrix elements of qgQq: are

(volagag, Ivy) = (vgdle,,, (111.53)

*Because resonance effects occur for denominators of the type

Wgy= Qg s hence with matrix elements of the type

(vs vs,lvs-l Vs‘-l-l): for the ground state the matrix elements

(vs|v§-1) ete. do not exist.




go that

(vig®lv) = - %Z Z(v +%—) SB . (ITI.54)
gg! 85 g'g'

For the second order terms, let us wrilte

t | -
Hy = g's;‘;sg Kggr gn9%9gs >

Z_s_s A T 0y,

g 88 ss!

-%ﬁZIg;ﬁ Z g%

gg g'g' s

Hg

The matrix elements of Hg are

a
(vglHylvge1) = - %A%Z e 25 [—-(v +1):| (II1.55)
ss'Igsags' 8

For Hg we have

- %1[(\7 +1) (v ,-t-l)]% ’
Li[(v +1)v ]%

(v, v, lqsp |v+1v,+l)

v, s'lqs iv-&-l ~1)

so the matrix elements of ps become

1
(v +1) (v.¢#1)]®
(vsvs,lp |v+1v4+1) ‘%Lﬂ‘;ss, (wg=ag - g wsm: :] ’
3 (111.56)
(v+1l)v,|?
\A B,lp lv+1v,—l) %%C( (o +a —ﬁﬁ} ’

hence,
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1
(v_+1) (v _+1)|*®
v [ H v+l 1) Tet o T ]

LL&Z*—CSS, (a) oo [
&

Vs B WO
(11I.57)
i
(v.+1)v |3
Vg S,lH"lv+lv, 1) =—L1ilz—-5~ v (ogh o )[___s,_____g_' .
gPgt
g 88
Finally, for Hl’ we may write
= 3 'y 2
gg:g:kss's"qsqs’qs“ - Eksssq + 329},:' Ko g1g19gg:
* ggg:kss's" Ag9g1%n > (I11.58)

where %!
s‘

means a summation over values of s' different from

s, and g'::' means that in this summation s" 1is to take only

values different from s and from s'. Now,

(v Iqslv +3) = [-:L(v +1) (v2) (v +3)]%
(v, lq3|v +1) = 2(v +1) [‘L(v +l)]%'
(v v ,lqsqs,lv+lv,+l) = [%(v +1) (v +1) (v, ,+2)]%

ss,|qsqﬁ.|v+l v,) =

]

(vg v, lag qs'l v+l v,~2)

(v.v,v

s s s"lqs qs'qs"' vs"']‘ vs""l Vs""':L )

(v, vs,w.é,,lqs Qi+l Rl v,-1) =

(v %valag agaud vl 4rlv, +1) =

(Vg Ve Ve lag Qg el ve*1 V1 Vgu™ 1)

Vit 2)[ (v +1)]%
[-S-(vsﬂ.)vs,(

- 1)] &

[ (v 1) (7 01) (1) ] 2
: %(vs+ 1) (v 1)‘73:]%

—%(v-a-l)v ,(v,;»-l)]%

[g(v +1)v S,,]% .
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The matrix elements of Hi' are then obvious, except perhaps
for the (v8|v3+1) terms; for these we have

3
(vl kg g gag

2 KpaalTg#1) + 3k, (30 8) | [H(r e 1) B,

Thus the off-dlagonal matrix elements of (52) --

excluding the last term -- are

(vs|v8+3) L3 [%—(vs-l-l) (v8+2)(vs+3)]%

(v8|v8+1) : [g(vs+l)ks + 32k (v, +%)

S8 sI SE'B'

(&8")
- %AZ I:g:i’ 8»:% ][%(Vsi-l)]%

gg' gg g'gt s N
P (v +1) (v +1)
lv +1V,+l) : %1{12_5_ (‘8) (o _ws') [ Vgt Vgt ]

Vs Va! e ss" s W, O,
g Tee 88
(vallv.]?
8 st
(v A vs'lv +1v ,-1) : %fuﬁz £ tss'(ws'*ms') [W
g 88

[%(v +1) (v,+1) (vs,+2)]%

(vS Vo lvs-n-l vs-,+2) K gt
(I11.59)

(v, \g,lvs-i-l v,-2) [%(v +1)v s,—l)]%

ss' gt

v g1 (7,01) o) ]

(v, v Gl +l g elygal) @ K

gt s" sg's"|8

(v lv+1v 1Y, -1) s+ k

(v+1) (v ,+1)vs,,}%

8' §' sg's"

(v +1)v (v9'+l)]%

(vg+lly BJ% .

v, 4, Gl 4l v -1y #1) : k

1
8
1
saign |8
(v v.v lvs+l vs,-lvg-l) s k %

g gt sg'gt

L&
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From (59) we get for the second order contributions

(58') (gls"l)

e Rt

&g’ gEm e e'g'Ies"s" ggm s s

(%')
2/{1.% Z Z(V +2")ksss, —-7—
88 8'8' sg'
(g) 3 2
+%5Z—M—Z(v+ gs. ' cn2 2
gz ez Tze s Us wgmag
(111.60)

where H;'r includes all the purely vibrational terms, which
have not been calculated explicitly here. If we now add 1in

(51) and (54), the vibrational diagonalization of the
Hamiltonian gives finally

(vla|v) = E| +%Z—5— lﬁz——ﬁ—g—Z(v-r%)—

8 gg gg glg!
2 (&)
&) 3"0 +°°s' -3/2 &g
X égg ZCSS'CSS' w Bé kSSS' 0)_375
5 s g' gt
1) (emgn)
- gz Z g g‘Pgu gm Z a(gg a(gg
e e 2
55 g zglow Tongn Tmem 57 9
= v 1
=E_ + %gg, %egt Fefer * EL5F 0 Tegeam TefeFertam
= By * R (I11.61)

where Ev is purely vibrational energy, and
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— v 1
Hy = %‘éé gt T T + Eéé:'gz'g‘z Tagrgngm Fg Babgn Fgm (I11.62)
1
ogé, === ;55' - Z(vs+%)b(§5) (111.63)
gg! gt
{e8) ferem)
=2 1 S8 (III.64)
Tegrgigm = = 2 T 6 e e 2 :
Igglglgi Igtlg“ 8,"8"' s ws
ez o)
'b%g') = e - e —ﬁ- A(gi') as eas
Tea g 8 g Tgngn
2 | R
-4 @0 _%s - 34" 3/ ag
ss' ss! 2 2 sss‘ 3/2
Dg
(I11.65)
For the ground vibrational state, when Vg =V, = 0, the
double summation over the third term in (65) gives
s (&'
A | {Aggo g
1 1° o I
(w0 g ggt - gn ang
(g
® a
s b g
Zf(g - 34570,y k ]
T T
(ITI1.66)

If gz Oy , & case which 1s applicable to H2O, a
Corlolils resonance interaction may occur between vibrational
levels, and, apart from other changes, the third term in (65)
will require modification.

Equation (63) defines moments of inertia in the v-th

vibrational state*:

* These are usually called "effective moments of inertia,
but we will reserve this term for use in the next section.

e
.
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-1
v _ e _ 1€ 0]
Lo = Igg[bgg, I, T (vs+%)1$§g

® Igs[bss' + I T (Vs*%)b%gl)] ’ (111.67)

since the QSSQ are small,

We can obtain a useful relation between the Igé of a

planar molecules for this case, with the usual convention

IaS€ L€ I, s (I11.68)
we have
e _ .© e
Ioo=1Iog + Iny o (I11.69)

the c-axis being necessarily normal to the plane of the

molecule. We now define the "inertia defect'¥

_ eV _ iV _ LV
By =T, =I5 =~In |- (111.70)

It 1s readily verified from the definitions (18), (29), (30)
that, for thls case,

(ce) _ ,(e2) (bb)
Rgg' =855 + A5

(o0) _ ga) , )

) - A o (be)
af:" =0 =8

) )
C(:s. = 0 =C(;b8| >

* Our definition follows that of Darling and Dennisons, who
were the first to introduce the quantity; a number of other
writers have used the negative of this.
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so, from (67) and (69), it can be easily shown that

e e e
IOC Iaa Ibb

2
) 2 o
S e |
gt 8

2 2 2 2 2
T e (do0)y (dealy, (fap)yT  (J{wp)y, (fav))
Av - (Vg*%)a; -

)

(r1I.71)

In particular, for the ground vibrational state,

2 2 2 2 2
deoly (dselyy (o) )Y, (R

e - LA
o~ 2wg 1° 1° 18

8 cc ag bb

2
+ 2 (CQQ) —Jﬂﬂ-] .

8
m8+ws.

gt

(111.72)
The great advantage of these last twe expressions is
that they are independent of the anharmonic potential
constants. For the water molecule, our calculations (Appendix
C) show the approximation is good to a few percent for this

case.

4, Rotational Diagonalization

Diagonalization of the vibrational dependence leads to
the Hamiltonilan (62) for the rotational energies. To this
order of approximatlion, there appear no terms cubic in the
angular momentum operators, and the calculation of matrix

elements from (48) 1s straightforward, though tedious; we
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1ist some of these in Appendix A. Collecting terms, and

simplifying, leads to the following matrix elements of (62):

(xlaglK) =R+ RKZ - DKK‘*
(KlHglk#1) = [g(J,Ktl)]%'(an)[%;(B;z:m;’x)
+ (f%)tiR(g))J(J-t-l) + (fi(’g‘)tiég))[xa+(xtl)2]:}
(KlHR|Ki‘2) = [g(J,Ki’l)g(J,Ki‘Q]%[(RAi'iR;})
- (Rgt1RY) [K2+(Kt2)2]]
(KIHRIKiB) = [g(J,Kil)g(J,KtZ)g(J,Ki})]%(2Kt3)(Bg)tiﬁ(;d)
(Kluglxes) = [2(3,K0) (7, KE2) 8 (3, K23) 8 (3, KE4)]® (RGEARY)
(T11.73)
where
R, = 3(B),+By )I(3+1) - D,32(5+1)2
= vV o _ 1(wY v -
R, Szzv ginx+Byy) DJKJ(J+1) (T11.74)
R, = E(Byy-Bxx) + 6JJ(J+1)
R} = %B;’y + 813(3+1)
v _ 2 _vieff) _ 42
ng' - %A e = gIvIefﬂ
(o2 ge' (I1I.75)
vieff) _ v _
e %Gt~ Dggr
g(J,K$1) = J(J+1) - K(x*1) (I11.76)

and
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AQ
T -2t T -

E;( xxx® Gyyy™ 2 Xxyy+4 yxy 12'ryzyz+81'zxzx)
( -2T,__ _+4T __ +8¢ __ -lor )

T
B xxxxt Tyyyy 2 hxyyt Y oyxy yzyz ZX2X

%(D +Dy.) + 5 (5t yzyz"'sfzxzx)

552 (I1I.77)
- g/ﬁg -t ~2%¢ )

Tyzxx Y2yy < xyzx

%/{P +2% )

Toxxx zxyy XYy2

(BZXXXX Ty vy 2 Seyyt  Cxyxy

ali g L Cezxx” Syyzz" 2%yayz 2T gy

}54

=Dy = Dx =T Tugs
iz4

A ( Xxxx yyyy)

K3 (zxxxy+ Tyyxy )

)
- 32 (fxxxx Yyyyt 2 Syzz” 2 axxt Z”-yzyz" 4T gax )

(r. xxxy" Tyyxy Et-zzxy 4tyzxz)

P
T
A4
32;( xxxx yyyy =2T xxyy-4t;:yxy) (111.78)

- _5( XXXy yyxy)

- —z( ZXXX t'zxyy"m':'q,ryz)

'413(fzyxx Gyyy* 21;tyzx)

? (z, yzxx’ yzyy"'a f;cyzx )

i

7‘(3 zxyy"'zfxyyz)
)

- R(:Bc + -8_ yzz2
)

- Rg Toxzz

o
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The quantitles usually designated by R1 do not appear in
this work, since they arise only in cases where degenerate
vibrational modes exist; the quantity DK is sometimes denoted
by —R3'

What we call "effective moments of inertia® are defined
in (75); they include modifications arising from centrifugal

In general, the matrix (73) must be dlagonalized

distortion terms (D

numerically to obtain the rotational energy levels. Methods
of dolng this in the rigid rotor limit have been discussed by
KHC I; the necessary extension of their work is given in our

Appendix D.

5. Speclalization to HgO Type Molecules

Using the matrices L(X), I.(y) of (I1.99) and (II.100), we
can write explicitly the rotation-vibration constants for the

non-linear XY2 type of molecule. We find, rather easily, that

C(i% = lez':g(Ii;%cos'f - I?r?sin'r) ,

@ 3 ed N (111.79)
z) _ _ qe e e
C23 =- 1 *(I Zsiny +Iy§ cosY) ,

and, using "vector" forms for the a%g’) defined in (29), for

convenience of presentation,

21;% sin 216% cos ¥y
(xx) _ et (yy) _ e
a = EIXX cos ¥y a = -2Iyysin~(

0 0
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. ok e} -
2(Ixx siny + Iyy cos ¥y )
a(ZZ) = .gxx) + ’Syy) = 2(1;% cos Yy - I;;% siny )
X 0 i
- e} »(z)
21, 6(23
_ e% y(z)
- 2 Izz 2:13
L 0
o -
0
a(xy) = 1€ 1° %
XX
- 2(———me )
I
- 22 - (111.80)
From (64) we obtaln for the Tegrgngm
2 2
- _ e y~3(8in"y  cos’y
fxxxx - 2(Ixx) ( 2 vt 3 )
2 2
- - e y=3,c08"y  sin®y
Tyyyy = 2(Iyy) ( . + 3 )
1o, 25
- ( e )-3((t(§%) (C(f%))
Tazz = =~ 2, 2 + 02
1 2
_ e re re \=11
Teyxy =~ Q(IxnyyIzz) 5 (111.81)
o3
y 2og?
— e e \=3/2 2 71
Texyy = = 2(Ixnyy) siny cos ¥ —5—3
©1 %5
z) (z)
iny
- o o \-3/2 §13°08 Y {38
Texzz = 2(Ix:rchz) ( 2 2 )
(z) (z)
c - )_3/2 (Z1391n7+ ZQBcos'f)
yyzz ~ ¥y 22 02 P

2 ©
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From these, the various distortion coefficients in Section 4
can be readily calculated; it does not seem necessary to give
them explicitly here.

The inertia defect of (71) can now be written down; using

the relation

2
lf( ) + ((,Z)) =1, (II1I.82)
we find
2
a, = 4 [(vl-f-%)(CZ)) -———21-—- + (v +%) (C(z)) ——-23—"-'
4 (o 0Z= ) we(w3 w5 2)
2
- (g [€2)) —-—él—-g— day 2 ]] (111.83)
3( 3 1) 3(a)

For the ground vibrational state, this reduces to

A = zé{(dz}) (w ) C(Z)) (w )} (III.84)
© le(wl-wB) ®, 3(0)2 3)

The quantities A%%), defined in (30) are found to be

éfiz = %%%; = sinaf
Axx = A = 2
(ff() 11 cos Y (III.85)
A(BB) /I
7)) _
= E’ ) i
2z) _ (zz zz) _
A " = A = AT =1

Finally, the b%s') of (65) may now be calculated:
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2
(oo )3;2

[ .2
- 182 _:cst)n + 2 xey 1‘111‘3“‘Y ky 15008 ¥
Lo LTS ECARTSLCE
) jﬁ cosz'r r k si -
4 . 2Ie% 21810Y  ky,5c08 ¥
= b oop - o)) 72 )2
a4 [ 2 I, K-51in :
Ie2 x . 2 Ie%_ 1 2008 Y
2 Lo, 15, L (k)2 )2
_ 34 | cos? [ fa° ]
4 . opod[ F111°08Y Kypp8in ]
Lo L (ho)32 T (he )2
h 2y -
S 3h | sinfy | opped " Kpp1 08 ¥ Kpyo8inyT|
°2 | o yyL 3/2 ~
°2 . (b, () >/ 2 -
4 [L Y 2L _21_7_2 _
) 1 I e% ~ Kk jco8 k si ]
Ie2 e ¥ 21 - 2 s |
vy = ©3 Iz T uhﬁ)a ¢ (bme)B ahd
(z)
sh [ €55 )2 Soptes
182 ® + ( 13) °
zz 1 30, (o] 2-al)
[_;;45;2 K10 1)
, )3 2 (im)2)3 ]
4 [ @2 2 303
. 2h . (2 2*“’3
I 23)
44 ©2 30’ (m 2)
(z)
215

d

2 2 2
-3 [a:‘f%) e (@f
o 3(.03 (wB-ml) 23 30)3(&‘3? g)

) C(Z)
2 Izgg‘[

k
1-2
()2

k 2512)

&)

(111.86)
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In a2 vibrational state, an off-dlagonal product of

inertia appears in HDQO, because of the non-vanishing of the

corresponding bggo; in a I¥ representation®, such as we use

here, the éEX) are non-vanishing. As a result, the first term

in (62) is no longer a sum of squares, but can be easily made

80 by a transformatlon of axes. Let us write

S oY PP =3PoP ,

3T
8 &

®
R
®
®

and set

where R 1s an orthogonal matrix, so that
PoP=Po'P

where o' 18 diagonal, and

o' =Ro¥ .
It 1s readily verified that we may take

cos 6 O éin e
R = 0 1l 0
-~ 8in © 0 cos €
wlth
sin @ = 2-%(1-x%)%
cos @ = 2'%(1+x%)%

v v y2
X = (cég Fx)

4(og)? + (ng"0§g)2

(IT1.87)

(111.88)

(111.89)

(111.90)

(111.91)

(111.92)

(I11.93)

* See Appendix C.
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so that, in the new coordinate system,

V' = oV 2 V ains
dxx cxxcos e + Gzzsin e + 20‘£7xsin9 cos ©

V' - .V

yy yy 5 5 ( 94)
v = 4V v - v
LA o-xxsin e + o,,Cos e 2o‘zxsinecos e ,

which are the principal reciprocal moments of inertia.
The second term in (62) may also be expressed in the new

coordinate system by substitution of (88):

P =RP'
or,
- L I t
Px = an 5Pz
P = P! III,
¥ ¥ ( 95)
— t 1
PZ = BPx + aPz s
where
G = cos @ B=sine . (IT11.96)

The new T's are the coefficients of the new Pg' Pé'lg"Pé'" , and

are given by:

4 4 2,2
] —-—
fxxxx =a fxxxx + B TZZZZ + 20 B (rzzn+2fzxzx)
3 3
+ 4 Brzxxx + %B rzxzz
t -
Tyyyy = Tyyyy
4 4 2.2
1] -~
tZZZZ - B fxxxx + G fzzzz + 2a B (T-zzxx‘.‘gfzxzx)
- 3 - 3
%B rzxxx 4a B‘l'zxzz
T! = a°r + 62‘( + 20B<T
XXyY XXyy yyzz ZXyy
1 _ a2 2 _
Tyyzz = P Caxyy * @ Tyyaz T 2PTpyyy
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v — o242 4 4 -
TZZXX = 0o (thXX+TéZZZ) + (G +6 )1;ZXX 4o B 1;XZX

- 2QB(°'2’52) (rzxxx' fzxzz)
v 202 2 22y2 522
Toxzx = ¢ B (rxxxx"'rzzzz) + (a%-5%) Txzx = 2% P Toxx
- 2ap(al-8) (T ___~-T_ )

ZXXX ZXZZ

— 3 3 2 .2
f;xxx = = 0BT ex * BT g t ap(a®=p )(fzzxx"'arzxzx)
+ a®(aP38®)T, o+ BB(3eP-pR)T,
' - - 2_j2
Toxyy = = %P gy Tyyag) + (@580 Ty
— 3 3 2 ,2
f'zxzz = = OB x ¥ BT, ap(a®-p )(fzzxx"'zrzxzx)
+ 82302807, + a?(aP3pDT,
(111.97)

The primed ¢ 's and T's may now be substituted directly

into the equations of Section 4.
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IV
MICRQWAVE SPECTRUM OF Hgg
The K-band "radar water line' at 22,235 Mc/se08’34, due

to the 523—'616 transition* of H.0, has been examlned by a

2
number of workers, and is the only microwave line known to
belong to this molecule.

Examination of the King, Hainer and Cross tables*%* shows
that no other H20 lines are likely to be found below about
180,000 Mc/sec (220—t-313 transition); the difficulties of
working in the latter region, however, make it desirable that
a better prediction be available before searching 1s carried

out. The one known H.O line does not give us enough

2
information to Improve our knowledge -~ the KHC II tables
based on ¥ = =-0.436426, predict it at the rigid rotor
frequency of 23,380 Mc/sec, some 1,000 Mc/sec too high, and
the term values of Randall, Dennison, Ginsburg and Weber®**#
show it at 20,400 Mc/sec, so it is apparent that better
parameters are needed. The present work gives much the same
agreement (or disagreement) with experiments; with the

effective H,O rotational constants of Table C.8 (Appendix c)

2
and the distortion constants of Table C.7, our calculatlons
(by the methods of Appendix D) give the results shown in

Table IV.1l.

* Our notation for the energy levels follows the Jyx _ x

scheme of KHC I. 1’
## Reference 163 hereafter referred to as KHC II.
##% Roference 273 also see Appendix F.

1

i
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TABLE IV.1
H20 - Microwave Absorption Lines
Frequenc
Transition (Mc/sec
Observed KHC II RDGW r‘f%ﬁ‘;zeﬁﬁ%
220—'-313 ———— 184,000 182,000 187,471
523_*-616 22,23%5,22%0.05 23,380 20,400 24,588

We will show in Chapter VI that we can expect the
theoretical parameters to give a good measure of the
distortion, so it is interesting to compare our calculated
energy levels™ with those of RDGW, as in Table IV.2; here the
distortion correction 1s the energy shown minus the calculated

rigid rotor energy.

TABILE 1IV.2
HQO - Energy Levels
RDGW This Work
Distortion Distortion
Level Energy Correction Energy Correction
(Me/sec x 105) (Me/sec x 10°)

220 4,080100 -0.004800 4,066769 -0. 008787
313 4,262100 -0.001500 4, 254240 0.001449
523 13,386000 -0.026382 13.352540 -0, 040304
616 13.407000 -0.015000 13.377127 0.025789

There is little else we can say about H,O at present,

2
but 1t 1is hoped that eventually an accurate determination of

the HDO parameters will lead to better values for H20.

* Throughout this work we measure energy in units Mc/sec, or
multiples thereof.
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v

MICROWAVE SPECTRUM OF D.O

2

No lines of D20 were known prior to the start of this
work, although the KHC II tables® indicate a number of
transitions are to be expected in the microwave region.

In the course of this work the 220—-’313 and 532——441

lines were found (Appendix E), though only the first was

26

identified by the writer® . The two lines were subsequently

reported independently by Beard and Bianco1

. The frequencles,
together with those calculated theoretically from the

constants of Tables C.7 and C.,8, are shown in Table V.1l.

TABLE V.1
D20 - Microwave Absorption Llnes

Trensition Fazgaiﬁﬁy
Observed Theoretical
(This Work) FRD* (This Work)
220—$-313 10,919.3910.05 7,500 10,670

The agreement on the 2—#3 line 1s comparatively good, while
for the 5—%4 line we do get the correct relative positions
of the levels (as shown experimentally by the Stark effect).

However, the actual discrepancy between calculated and

* The KHC II tables give rigid rotor term values taken from
the Fuson, Randall and Dennison paper (FRD, reference 6 =-
also see Appendix F)3 in Tables V.1l and V.2 we use FRD's
"corrected' levels.
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observed frequencies for the 5—w=4 line shows the parameters
cannot be relied upon for accurate works; accordingly, we have
not calculated up any more D20 transitions.

It 1s expected that additional useful work can be done

12 1 ave observed two weak lines in the

on DQO. Jen et al.
water spectrum at 30,182.57%0.1 and 30,778.62%¥0.1 Mc/sec, and
these are as yet unidentified. In the next Chapter we
investigate probable HDO transitions, and find none in this
region, though these calculations are not conclusive. Thus
there 1s a good chance that these two lines may be due to
DEO?

In the FRD work, distortion corrections were obtained
semi-clagsically; in Table V.2 we compare the distortion

corrections calculated here with those given by FRD.

TABLE V.2
D20 - Energy Levels

Level FRD This Work
ERersy  gorreotion  EUOTEY  Gorvegtion
(Mc/sec x 10°) (Me/sec x 10°)
220 2.2193 0 2.2184 ~-0.003049
313 2.2268 =0. 0038000 2.2291 -0.000694
441 8.0641 -0.001200 8.0665 -0, 049868

8.0481 -0.026400 8.0490 -0.016747

As in the case of H,O the data is still too meager to

2
enable us to say much about this molecule.

* See also Chapter VII.
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VI
MICROWAVE SPECTRUM OF HDO

1. Introduction

There has been 1little infrared work carried out on HDO
because of the difficulties of untangling 1ts lines from
those of H20 and D20. From such infrared snalysis as has been
made, KHC II deduced % = -0.685, from which they constructed
thelr rigid rotor tables of expected HDC microwave transitions.

Previous to this publication, the only microwave line of
HDO known was the 533—i-532 transition33’34. On the basis of
these tables, however, Strandber532 located the 221—t-220,
3,5 %35 and 414—0-321 lines, and estimated w = -0.696.

Three other lines were then found by workers in this

Laboratory; the 4 2——4

3 3
an unidentified line at 26,880 Mc/sec. During the present

L 1ine>Y, the (e AP 1inet?, and

investigations the latter was found to have been originally

22

discovered by McAfee who assigned 1t to a D20 transition;

it 1s the conclusion of this werk that it is the 62450-717
transition of HDO.

Concurrently with the present work, Weisbaum and Beers35
discovered a number of lines in the S-~band region, and

identifled the transitions 643—-642, 9 —.954, 1267-9- 1266’

55
and 422*505; the author was advised of these investigations
by private communication, though the final identity of these
lines was not reasonably certain until a late stage in the

present work.

e
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1 calculated some theoretlcal distortion

constants for HDO, and attempted to determine n and 5%9 from

In 1951 Lew132

the then known spectrum; he deduced -0.67712 and 2.468x:105
Mc/sec, respectively, for these two values. Lewis also
calculated a theoretical inertia defect Ao, but this was
based on an incorrect formula and was considerably in error.
The present author remeasured the 744—--743 frequency,
resolved the Stark structure and remeasured the frequency of
the 26,880 Mc/sec line, and discovered the 845—h-844
transition by prediction from rough calculations. He
calculated the theoretical parameters, including rotation
constants, from infrared data (Appendices B and C), and
carried out detalled calculations of the theoretical
frequencles. This led to prediction of certain Q-branch
frequencles, and the subsequent observation of the 1056—'-1055

and 11 ‘—-1156 lines, and provided additional evidence for

57
the identification of the 26,880 Mc/sec line.
The 845—-»844 line has been independently observed by

12 who also concluded from the Stark effect that

Jen et al.
the 26,880 Mc/sec line 1s to be assigned to the HDO 624f!-717
transition.

The present state of experimental knowledge of the HDO

microwave spectrum is summarized in Table VI.1.




TABLE VI.1

HDO - Observed Microwave Absorption Lines

Transition ﬂﬁﬁg&;ﬁgy Reference
Q=-Branch Transitions
221—a-220 10,278.99 32
322—- 321 50,236.90 32
by ) 5,702.78+ 31
533—"532 22,309 35 34
#2022 ,307.67%0.05 33
643—-«-6‘“2 2,392.2 35
Tupn=—™7 »576.89 13
44 T T43 *8.577.7 %0.1 This work
84 —0-844 #24 . 884,77%0.05 This work
5 ok ,884.85+0. 1 12
1056—— 1055 8,83%6,95%0.1 This work
1157—J-1156 22,581.1 0.2 This work
1267—"1266 2,961 35
P- and R-Branch Transitions
41435, 20,460.40 32
422—- 505 2,888 35
624—a-717 26,880. 44 22
#26,880,38%0.05 This work
26,880.47+0.1 12
¥Measurement indicated was used for computations.

In the sequel, we will usually use JK to denote the

Q=branch transition J

K_q5

symmetric top.

- J

K.1:%

K X

-1? -1’71

K.~1° with K standing for
the index denoting the K value of the limiting prolate
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2. Theoretlical Freguencles

In principal, transition frequencies may be calculated
by diagonalization of the rotational matrix (III.73) to find
the appropriate energy levels, then taking differences. We
call this "exact" caleculation, although in practice it involves
finding characteristlc values by numerical methods; in our
computations we have used sufficlent significant figures to
get within the experimental error.

Methods of carrying out this numerical dlagonalization
are described in Appendix D, where it is indlicated that the
main problem is the determination of the "reduced energies”;
unless otherwise stated, the following discussion will be in

terms of "reduced" parameters.

In the original belief that (K|X*1) and K|X*3) matrix
elements in (III.73) could be safely neglected, we carried
out some exact calculations for Q-branch transitlons, using
the HDO constants of Tables C.7 and C.8, which give the

parameters of Table VI.2:

TABLE VI,.2
HDO - Theoretical Parameters (I)

éég = 2.52993085:(105 Mc/sec
® = -0.68105413
Dyjx = 1.63925813x 10‘:
Dr = 11.06549366x 10~
5, = 0.12833684x 107+
Ry = -0.35698618 x 10”%

Rs; = -0.02167643 x 1074
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With ng and vy, the observed and calculated frequencles, the

results are shown in Table VI.3:

TABLE VI.3
HDO - Q-Branch Theoretical Frequencies (I)

Frequency (Mc/sec)

Transition
J Observed Calculated
X o o
‘VJK VJK ‘V‘JK-‘VJK

22 10,278.99 10,375.742 -96.752
32 50,236,90 50,705.828 -468.928
43 5,702.78 5,817.548 -114.768
53 22,307.67 22,756.857 -449,187
63 -—— 65,714,268 -
64 2,394.6 2,470.073 ~75.473
74 8,577.7 8,849.329 -271.629
84 24,884,.77 25,673.369 -788.599
95 3,044.7 3,174.077 -129.377
105 8,836.95 9,211.967 -375.017
115 22,581.1 23,536.847 -955.7T47
126 2,961 3,122,212 -161.212

It is noticed that the magnitude of the difference (last
column) increases in an apparently fairly regular manner
within each K-famllys; a significant relationship 1s obtalned

= o 1
by simply taking the ratios ry. = vyi/ vy , which are glven
in Table VI.4, and are seen to be substantially constant for

a given value of K:
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TABLE VI.4
(@] »
Tg Tyg = VJK,/VJK Mean ry
2, 1.00941
3, 1.00933 1.00937
ke 1.02012
55 1.02014 1.020153
6, 1.03152
(N 1.03167 1.03163
84 1.03169
95 1.04249
105 1.04244 1.04242
11, 1.040%%
12, 1. 05445 1.05445
We note also that
r
;3 = 1.01066 -
2 ;§ = 1.02212
4 4
— = 1.01127 -
2 & = 1.02005
T
;5 = 1.01046 .
4 —2 = 1,0218
r r, °° 5
6 3
L = 1.01154
il

from which 1t appears that rK/rK__2 1s the more constant ratio,
so we can conclude ’
Tk

TK-2

= 1.0220 ,

approximately.
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At the time of these calculations, only the identities
and frequencies of the lines 25, 35, 43, 53, Tys 84 had been

definitely established. Assuming the ratio ry/r = 1,0220

K-2

was significant, we predicted the 64, 9. and 126 lines at

5
2,394.2, 3,045.1, and 2,961.2 Mc/sec. The agreement with the
then tentatively reported frequencles of these llnes appeared

so good that we extended the predictions to the 6 105, and

3,

115 lines, thus:

63 64,417 Mc/sec
105 8,836 Mec/sec

115 22,577 Mc/sec.

A search for the latter two lines subsequently showed them at
8,837 and 22,581 Mc/sec, respectively.

We may also extrapolate to predlct the l1 line at
80,743 Mc/sec, but the prediction is probably not quite so
accurate here because the dependence on the distortion
constants is much simpler.

This simple "extrapolation method" of predicting
Q-branch frequencies of HDO therefore seems to be quite
rellable., It appears to have the following significance.

Let V§K be the calculated rigid rotor frequencles, and
let

Vig = v?k(l-fAJK) (vr.1)
define the distortion correction AJK. A similar relation
vQ = vBo1449) (VI.2)
Jx T~ Jx JK :

wlll be true for the observed frequency. Then
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R

r =
IK v§§(14-A3K)
We also write
R _ a=-c
V5o = (a‘c) 23 (x°) (VI.4)

where AE(x) 1is the reduced energy difference for the
transition, and the superscript © indicates values
corresponding to the observed frequencles. By direct
expansion of the appropriate secular determinants, or by use
of equation (26) of reference 12, one can show that, to first

order,

HK

AEJK(u)Av eIk za—gyﬁji ’ (VI.s)

where CJK is a function of J and K only, and F, G, H are
functions of x (see Appendix D). It follows that, to first

order,
a-c
= oK-l

(H) (G =E) (L+85,-83) o+ (VI.6)

YIx (a-c)

Since we find L 1s effectively constant for a glven K,
while the ratios rK/rK-l’ rK/rK-Z’ etc., are also fairly
constant, it appears that AJK-ASK 1s small, and the major
contribution to VSKvaK comes from variations in 559 and «.
This is reasonable since the transition frequencies are most
sensitive to small percentage variations in the effective
moments, and these in turn are sensitive to the anharmonic

potential constants (which are not known accurately).

The assumptlon 4jp = AgK enables one to solve (6) for
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new 5%9 and x (giving a value of about -0,.6842 for the

latter), but the accuracy is not very great; later we will
use the same assumption, but & different method of obtaining
new values of 359 and x.

Thus we conclude tentatively that the theoretical
distortion corrections, AJK’ are good approximations to the

true corrections.

The above calculatlions have neglected the effects of
(K|K*1) and (K|K*3) matrix elements. We find the major
contribution from these arises from the off-diagonal moment
of inertia ng; this term can be readily removed by the
transformation to prinecipal axes discussed in Section III.6,
and leads to slightly modified theoretical parameters, as
given in Table VI.5 (taken from Tables .12 and C.13):

TABLE VI.5
HDO - Theoretical Parameters (II)

8-C - 5.53006536 x 10° Mc/sec

2
¥ = =0,68120013
Dyg = 1.45503015 x 1074 Rg = ~0.02261617 x 1074
Dy = 11.34711157 x 1074 R, = 0.12316025x 1074
5; = 0.13174042x 10"4 Rq = -0.32408016 xlo"‘*
Ry = -0.31134320::10‘4 Ry = 1.97296522 x10~%

Table VI.6 glves the reduced energles (characteristic
values of the reduced energy matrix) for a number of levels,

using the parameters of Table VI.5. In this Table, the rigid




Level

TABLE VI.6

HDO - Theoretical Reduced Energies

Riglad
AR (w)

2.31879987
2.35998264
-2.72480052
~2.52325230
-16.66290883
~8.90426858
-0.14909248
-0.12580581
-26.46981554
-8. 44529066
-8.35391733
-25.99223526
-5.59451168
~5.58447995
-50.70728491
-50.56026965
-29.98625576
-17.16764843
-17.13151619
-30. 35534098
-30.24988415
-28.87747526
-28.86418874
-45.33982883
-45.30091534
-63.39290782
-63.29250614
-63.31450718
-63.30079843

Incomplete
A

2.29720670
2.33819174
-2. 74966865
-2.54939602
-16.65986243
-8. 93777649
-0.26777082
-0.24479903
-26.46029883
-8.57791858
-8.48808776
-26.05662523
-5.98611102
-5.97636244
-50.66135059
-50.51386309
-30.15563960
-17.59538810
-17.56048659
-30.82612414
-30.72494449
-29. 93289508
-29. 92038955
-46.48112729
-46. 44488905
-64.63302820
-64.54056370
-65.66631341
-65.65406337

Complete

AF

2.29721126
2.33819602
-2.74974580
-2.54947155
-16.65985287
-8.93788816
-0.26824000
=-0.24526867
-26.46063663
-8.57887089
-8.48903331
-26.05665157
-5.98972977
-5.97998081
-50.66231671
-50.51384154
-%0.15568508
-17.60094304
-17.56602192
-30.83180844
-30,73058122
-29.95229164
-29.93977352
-46,50207359
-46,46577812
-64.65048256
-64.55789050
-65.72748624
-65.71517686




T4

value, A%(x), 1s the value in the rigid rotor 1limit, the
"incomplete' value A is that obtained by neglecting l- and
3-off matrix elements, while At, the "complete® value, takes
all matrix elements into account.

It will be noticed that the correction %‘3()\'“-}\) to the
energy levels, arising from the (K|K*1) and (K|X*3) elements,
1s largest for high K valuess for the 125 levels 1t 1s
equivalent to some -15,000 Mc/sec (i.e. about -0.5 em™t1).

The major contribution to this correction comes from the
(K|k*1) elements.

Some of the corresponding Q-branch transition frequenclies,
VIg (incomplete), and v}K (complete), are shown in Table VI.7,
together with their differences, the correction frequencies
ng = VEK"VJK contributed by the 1- and 3-off matrix elements.
Relations similar to those of Table VI.4 no longer hold so
nicely, elther for vJK/’ng or v}K/’ng; we believe this may
be due to considerable error appearing in the 1- and 3-off
matrix elements, particularly in the original off-diagonal
moment ng, which 1s most sensitive to changes in the
anharmonlic potentlal constants.

The theoretical frequencles for the three P- and R-branch
transitions of Table VI.1l are shown in Table VI.8; we cannot

yet draw any conclusions of significance from the comparisons

shown here!

jou
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TABLE VI.7

HDO - Theoretical Q-Branch Frequencies (II)

Observed
o
VJK
10,278.99
50,236.90

5,702.78
22,307.67

2,394.6

8,577.7
24,884,777

3,044, 7
8,836.95
22,581.1

2,961

HDO - P= and R-Branch Theoretical Frequencles

Transition

Ay 35
422-a-505

624—i-717

Frequency
(Me/sec)
Calculated
t c
VIK VJK vig
10,369. 484 10,3%69.413 -0.071
50,670.284 50,670,692 0.408
5,812.013 5,811.823 -0.116
22,727.785 22,729.495 1.710
2,466,454 2,466.551 0.097
8,830.310 8,835.272 4,962
25,599.113 25,611.148 12.035
3,163.981 3,167.166 3.185
9,168.512 9,182.991 14,479
23,394,123 23,426,396 32.273
3,099.340 3,114,354 15.014
TABLE VI.8
Frequency
(Me/sec)
Observed Calculated
20,460.40 -13,397.134
2,888 10,761.553
26,880,38 27,811.867

75
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3. Approximate Calculations

A much simpler method of calculating Q-branch transitions
between K-doublet levels can be obtained by expanding the
matrices to first order in the distortion parameters. The

method was first described by Hillger and Strandberglo’ll

, Who
applied it to the analysis of the HD3 spectrum. A more general
derivation of the appropriate formulae, with some corrections,
has been given by Kivelson and Wllsonl7. We refer to the
method as the HSKW formula, for short.

We write the HSKW formula in the following manner: let

1) _ 53 DIK _ 4 (e, oy
A(JK = 2KJ(J+1) 5 + (E-1)3(J+1) gt - K(K +2)—H5

D
2 K 8 2_4yG=F
+ SK(k-1)(2k-1) g% + KX 1)——-H2 Rg . (VI.7)
Then, to first order, the transition frequency is given by
o= B a4l (v1.8)

in a notation similar to equation (1). This is, in effect,
the HSKW formula in terms of reduced distortion constants.

The HSKW formula is not claimed to be anything more than
a first order approximation; we will show its limitations for
the case of HDO, where the dlistortion effects are large, and
where the approximation cannot be expected to agree perfectly
with the exact calculation.

The HSKW formule neglects 1l- and 3-off matrix elements,
so it is fair to compare v%%, as calculated by (7) and (8),

with VJK of Table VI.T7, using the same parameters, of course.

These quantities are shown in Table VI.9, together with the
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"exact" calculated distortion correction to the frequency,

v§g = Vyg - Vag, and the difference vy, - g% with the
v o=
JK 'JK
percentage dlfference p = '——7;——-x100:
TABLE VI,.O

HDO - Theoretical Q-Branch Frequencies (III)
d ey (1)

Iy Vg VIg Vg
(Mc/sec) (Mc/sec) (Mc/sec) (Mc/sels
22 10,369.484 -50.026 10,3%69.603 -0.119
3, 50,670.284  -322,733 50,671.812 -1.529
by 5,812.013  =79.667 5,812,112 =0.099
53 22,727.785 -390.265 22,727.744 0.041
6, 2,466,454  -71.639 2,466.391  0.063
74 8,830.310 -311.383 8,829.172 1.138
84 25,599.113 -1,082.154 25,588,117 10.996
95 3,163,981 -197.722 3,161.580 2,401
105 9,168.512 -676.855 9,158.796 9.716
115 23,394,123 -2,008,158 23,345,677 48, 446
126 3,099.340 -369.063 3,091.899 T.441

P

0.24
0.47

0.12
-0.011

-0.088

-C.37
-1.02

-1.21
-1.44
-2.41

-2.02

We see that, for the theoretical parameters, at least,

the agreement between the exact and HSKW methods is quite

good for low J and K, but cannot be puéhed tco far.

4, Methods of Analysis of the Spectrum

When attempting to determine the "true' molecular

perameters by analyslis of the spectrum, we must bear in mind

that the distortion is large, and the complexity of the




78

theory together with the approximations introduced (for
example, in Section III.3) makes it not unreasonable that
some difficulty be experienced in obtaining agreement with
observation, at least to experimental accuracy.

To show orders of magnitude, the energles of the 115
doublet levels are of the order of 4x:107 Me/sec, while we
measure their difference, of the order of 2x104 Mc/sec, with
an accuracy of better than 1 Mc/secs the distortion correction
here 1s about 2){103 Mc/sec, or ten percent of the measured
frequency; to account exactly for this "correction" involving
differences to 8-figure accuracy is indeed some task when ve
have (at least) ten parameters involved.

It is apparent from Appendix D (see equations D.5, D.6)
that we must first analyze the Q-branch spectrum; only two
Q%E and DJ are then needed to account for the
remainder of the spectrum.

parameters,

An attempt to do this was flrst made by Lewiszl, using

the HSKW formula and the methods of Hillger and Strandberglo’ll,
but no satisfactory solution was obtalned due to the
inadequacy of the data then awvallable.

With more absorption lines known, we extended this work,
and obtained a reasonable sort of fit, though one of the
distortion parameters (R6) so obtained was of the wrong sign
(as in the Hillger and Strandberg work). However, with a
value of x near -0.687 we predicted the 84 line within 10
Mc/sec of its subsequently observed frequency. At this stage,

exact calculations were carried out to examine the validity
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of the HSKW approximation, and serious differences were
obtained, amounting to as much as 20 percent of the distortion
correction. Attempts to correct for the differences between
vik and vgi, when the "observed" parameters were used, turned
out to be guite unsuccessful.

A fresh start was made, recalculating first the
theoretical parameters. It 1s apparent from these (see Table
VI.9) that the HSKW formula should agree with exact
calculations to a few percent, provided AJK does not change
by much in magnitude. It 18 our experience that the
theoretical distortion parameters cannot be varied by more
than a few percent without giving rise to serious

discrepancies between the HSKW approximation and exact

calculations, even though AJK remain substantially constant.

We have tried several methods of obtaining a fit, always
using the exact calculations to check our results. In these,
we have assumed ng, as given in Table VI.7, to be constant,
and made allowance for it, thus attempting to fit the seven

_ a-¢
rarameters Xy =5 W, DJK’ DK’ GJ, R5, R6.

(a) Variation of all parameters:
Assuming a fit can be obtalned by making only small
changes in the parameters X4, We can write, in the notation

of Section 2,

v§ - vC =
Ik Ig = Vo * AVJK , (v1.9)
and
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aVJ
K
Av =Z Ax, . VI.10)
JK axi 1 (
Here
av
UTYTY = AE(x) , (vi.11)
8("5—)
and

+

(1)
a4
%:%{M(MAJK) AE(x) JK:], (vi.12)

approximately, where v % vgg, AE(n) = AEJK(u), and 47, 1s the
distortion correction obtalned by exact calculation, i.e.
from vyg, V§K, and equation (1); it is considered that

BA(}I){/ 3k 1s a good approximation to aAJK/ d%. We used the
HSKW formula to calculate the variations with respect to the
distortion parameters.

The resulting set of simultaneous equations may be
solved by standard methods® A preliminary least squares
reduction leads to some striving for significant figures,
apparently because of close correlation between lines of the
same K-family, but & solution can be obtained; it would be
preferable to first average members of the same K-dependence,
but as yet there are not sufficient K-families known.

Starting from the numbers of Table VI.7, we get &
solution which changes the sign of RS’ resulting in a
positive distortion correction Ag%, showing the solution to
be inadmissable.

This method was originally applied to the results of

* We find it very convenient to use the Crout method; see, for
example, the Appendix to reference 9.

-
.
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Table VI.3, when all 1l- and 3-~off matrix elements were
neglected. Reasonably small changes in the parameters were
obtained, but it led to large changes in the values of 47,
(contrary to the expectations of Section 2); the new
differences VSK-VJK were larger than expected, of the order
of the later determined vj, (Table VI.7). Repetition of the
process led to greater discrepancles, and 1t became apparent
that close agreement could not be obtained with seven

parameters.

(b) Variation of 5%9, %, only:

Keeping the theoretical distortion parameters constant
(though modifying the reduced parameters with change of 23%)
we can simplify the method (a) by varying only 2%9 and «,
using a least squares reduction of the equations. This gives
frequency differences of the order of one percent of the
distortion corrections, and 1s the method finally used.

If we were to follow the Hillger and Strandberg method,
we would now use the HSKW formula to vary the distortion
parameters so as to improve the fit. As in method (a),
however, we find that any such attempts -- when checked by
exact calculations -- are doomed to failure.

The same difficulties were experienced when l- and 3=-off

matrix elements were completely neglected.

(e¢) Vvariation of 5%9, %, keeping é%% constant:

This method involves small changes in the " fundamental™

(1)

distortion parameters, since AJK is a function of 559 and «.
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It does not seem to be much more satisfactory than (b), though
(0}

it does give somewhat better agreement between VJK and VJK‘
However, although the theoretical percentage differences p of
Table VI.9 are small, there does not appear to be any reason
why the true ones should be exactly the same magnitude, though
1t would be nice if they were.

As a result of these investigations we conclude that it
is not possible to get a "perfect" fit with seven parameters.
The next approximation, inclusion of (K|K*1l) and (K|k+3)
matrix elements, glves llittle better results; we bellieve this
1s due 'to considerable error in the ng and/or the neglect of
other approximations, e.g. in the vibrational diagonalization
of Section III.3. Unfortunately, there seems to be no
convenient way of varying the ng so as to be able to
consider them adjustable in the fitting process; in principal,
this can be done by making small changes in the three

additional parameters R RS and Rg, and calculating the

7
effect on the v's; since we have been unabdble to find a simple
way of doing this, it is apparent that a considerable amount
of labor would be involved.

At this stage, then, we have to be satisfled with
agreement to a few percent of the distortion corrections.
Method (a) does not give this since the changes in the
magnitude of the parameters which are required to force a fit

become too large for the method to be valid. Methods (b) and

(¢c) do glve reasonable agreement, though there is little to

.
l"
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decide between the two. We arbitrarily choose method (b)),
because it involves variation only of the effective moments,
whose theoretical accuracy 1s more liable to suspiclon
because of thelr dependence on the anharmonlc potential

constants.

5. Results of Analysls of the Spectrum

Starting from Table VI.7, but omitting the data on the
105 and 115 lines (which were not then known), a least squares
solution
A(33%) = 2,538.219 Mc/sec ,

Avw = -0.00290891 ,

was obtalned from the nine equations of the form

aVJK
a-=Cc
5 (258

a‘VJ
a-¢ K
A 5 ) + el (vi.13)

To check the fit, substitution of these values of A(ﬁég) and
Av back into (13), giving &vliy, led to the results shown in
Table VI.1lO:

TABLE VI.10
HDO - Least Squares Fit

JK AVJK AVJK~AV&K
(Mc/sec) (Mc/sec)
22 -92.855 2.432
3,  -433.373  -0.419
43 -110.273 1.159
53 -422,401 0.576
64 -72.098 0.147
7,  -255.188  -2.384
84 ~-725.591 ~-0.787
95 -125.155 2.689

12¢ -156.029 2.675
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It i1s seen that the differences are only an order of magnitude
or s8o0 larger than the experimental inaccuracy; however, this
" good agreement does not carry through when a detalled check

is made,

After adjusting the reduced distortion constants for the

a-
new -53, our "observed" parameters become as shown in Table

VI.1l1:

TABLE VI.1ll
HDO - "Observed" Parameters

828 = 2.55544755 x 10° Me/sec
¥ = -0.68410904

Dy = 1.44057795x 10‘:
D = 11, 23440546 x 10‘4
6; = 0.13043190 x :Lo:4
RS' = -0.30825076 x 10

Rg = -0.02239153 x 1074

The results of calculating Q-branch frequencies with
these constants together with the ng of Table VI,7, are
shown in Table VI.1l23 here p and ng have the same meaning as

in Table VI.9, while ng = v}K-vgx is the total distortion

Cict

(s}
VI~V
correction, and P = ——55——§5c100 is the percentage discrepancy,

VJK
referred to the total distortion, between observed and

calculated frequencles:
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TABLE VI.1l2

HDO - Comparison of Calculated and
Observed Q-Branch Frequencles

t T a D
3 VJK=VJK%V3K VngVJK YIk VIx
K (Mc/sec) (Mc/sec) (Mc/sec) P (Mc/sec)
2, 10,275.660 3.330 -50.099 -2.2 -50.170 -6.6
3, 50,232,692 4,208 -322,636 -1.4 -322,228 -1.3
43 5,701,757 1.02% -79.600 =3.3 ~79.716 -1.3

53 22,307.350 0.320 -388,924 -2.8 -387.214 -0,083

64 2,395.019 -0.419 -71.277 -4.2 -71.180 0.59
Ty 8,582.081  -4,.381 -308.872 -3.8 -303,910 1l.4
84 24,865,250 19.520 ~1,096.841 -1.5 -1,084.806 -1.8

10 8,829.125 7.825 -666.128 -4,.8 -651.649 -1.2
11 22,538,263 42.837 -1,972.977 -5.4 =-1,940.704 -2.2

126 2,961.394 -0.394 -360.668 -5.9 ~345,654 0.11

The worst (percentage) dlscrepancy occurs for the 22
line, which also has the least distortlion. We belleve this 1is
a result of the least squares analysis, which weights this
line the least.

Although P for the 11_. line (which was not included in

5
the analysis) 1s of the same order of magnitude as for the
other lines, the actual freguency difference, 42 Mc/sec,
between calculated and observed frequencies is much larger
than we would expect from consideration of the extrapolation
method of Section 23 by keeping Ag% constant -- method (b) of
the preceeding Section -~ the difference is reduced to only
about 3 Mc/sec, but the fit on the 84 line becomes worse

(about 25 Mc/sec), and the overall picture is about the same.
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It is interesting to refer to Table VI.9 and note how

small changes in A}%, due to the variation of 5%9 and »,

markedly affect p, even though ng is almost the same in the
two cases.

We believe the general agreement shown in Table VI.12 1is
as good as one can get using the present methods. Slight
improvement might be obtained by now feeding in the 105 and

11_ data, but this will not lead to any significant change in

5

our final results.

With the Q-branch spectrum "solved”, it is a simple
matter to analyze the P- and R-~branch lines. Since we have
concluded the theoretical distortion constants are good
approximations to the true ones, we ought to get falrly
consistent values of 2X& from the |AJ| = 1 transitions on the

2
assumption that D. is also good. Using the value (from Table

J
c.12) Dy = 9.14172899 Mc/sec (DJ is not a "reduced" parameter
-- see equation D.5), we obtain from the three lines of
Table VI.8 (after making allowances for 1l- and 3-off matrix
elements by taking the frequency correction, obtained from

Table VI.6, as constant):

4,48345524 x 10° Mc/sec (414—— 321)

(
(

ede - g 4. 48285425 x 10° Me/sec (4,0
( 4.48181198 x 10° Mc/sec (6,4~%=T14)

with an average value of 4,48270716 x 102 Mc/sec which is

apparently good to about 4 significant figures (we take this
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to be a measure of just how reliable our major parameters are).

With this average value, the calculated frequencles become:

Transition Frequency
(Mc/sec)
Observed Calculated
+° v vo - v
414—1-321 20,460.40 21,058.871 598.471
422—-505 2,888 2,740.896 147.104
624—---717 26,880.38 28,133.59% 1,253.214

Although the agreement cannot be described as excellent, it
is a great improvement on Table V1.8, and argues for some
consistency in our work, as well as providing support for
the identification of the 26,880 Me/sec line (see Appendix E).
It shows again that the distortion constants are fairly good,
and that reasonable correlation with experiment can be
obtained by changes in the effective moments alone.

The P- and R-branch lines can be brought into closer

a+c

agreement 1f we allow DJ to vary. First we solve for = and

D, from the 43 and 4-»5 lines; using these values to

J
calculate the 7-#»6 line gives 26,095.865 Mc/sec, again
supporting its identification. A least squares solution on

the three lines 4—e=3, 4—w=»5 and 6—e=7 now glves:

9—%—‘5 4.48416164 x 10° Mc/sec

D 11.56583333 Mc/sec ,

leading to the |AJ] = 1 frequencies of Table VI.13:



TABLE VI.13

HDO - Comparison of Observed and
Calculated P- and R-Branch Frequencles

Transition %ﬁ;ﬁ&iﬁﬁy

Observed Calculated

0 +° v vo v
414—-321 20,460.40 20,515.856 -55.456
45500 2,888 2,983.326 -95.326
624—i-717 26,880.38 26,843,995 36.385

Since these results are obtailned in a very stralghtforward

manner, the agreement must be regarded as quite good, even

though we have had to change DJ by some 25 percent.

Table VI.1l4 summarizes the results of the foregolng

analysis of the HDO miecrowave spectrum, the distortion

constants quoted being the " fundamental' values:

TABLE VI.1l4

HDO - "Observed" Rotation-Distortion Constants

2%3 = 4.48416164 x 10° Mc/sec o, =
E%E = 2.55544755 x 10° Mc/sec Ry =
x = =0.68410904 R, =

Dy = 11.56583333 Mc/sec ng =
D;g = 36.81321390 Mc/sec ggo -
D = 287.08933921 Mc/sec R(gy) -

3.33311881 Mc/sec
-7.87718656 Mc/sec
-0.57220390 Me/sec

3.11603472 Mc/sec
-8.19943988 Mc/sec
49,91730954 Mc/sec

88
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a+c a-¢
From 50 5

moments of inertia are easily obtained, and are shown in

and %, the effective moments and recivrocal

Table VI.15:

TABLE VI.15

HDO - Effective Moments and
Reciprocal Moments of Inertia

Theoretical Observed
a  6.97876766 x 10° Mc/sec 7.03960919 x 10° Mc/sec
b 2.72522145x 10° Mc/sec 2.73595687 x 10° Mc/sec
¢ 1.91863695x 10° Mc/sec 1.91863695 x 10° Mc/sec
I, 1.20206397 x 1o'f‘° g cm? 1.19167485x 10749 ¢ onm?
I, 3.07825449x107 0 g cn® 3.06617597 x 10~%° ¢ om?
I, 4.37233588x107°C g on® 4.34949132 x 10720 ¢ cm?
A 0.09201742 %1040 g cm? 0.09164050 x 10~4° ¢ cm?

There is less than one percent dlfference between
theoretical and observed values, and this change in three
parameters, together with a comparatively large variation
in DJ, has been all we have introduced to get a reasonably

good fit to the spectrum.

Some rotational energy levels, calculated from the
constants of Table VI.l4, are shown in Table VI.1l6. As
indlcated, the effects of (K|K*1) and (X|K%*3) matrix elements
have not been taken into account exactly here, though in some
cases the corresponding energy corrections, taken from Table

VIi.6, have been included.




Level

TABLE VI.16

HDO - Rotational Energies

Rigid
WR
3,282311
3.292637

4,681712
4.732267

4.707305
6.684485
8.925689
8.931471

6.682430
8.848938
9.163016
11,285626
11.308320

9.225386
12.169757
14.186789
17.392922
17.395389

12.145962
12.184437
14, 288870
17.429084
20.707197
20.716083

Energy

(Me/sec x 106)
Non-Rigid

wN

3, 276430%
3.,286T08%

4.673735%
4.723968%

4, T703452%
6.671355%
8.890918%
8.896619%

6.67T4338%

8.834291

9.141062
11.241421%
11.263728%

9.210664
12.133066*
14.127912
17.272528%
17.274923%

12.120853*
12.159910%
14,.245622

17.349701%*
20.561306*
20.569888%

Distortion

wh - wR

-0.005879
-0.005929

-0.008299

-0.003853
-0.013130
-0.034771
-0.034852

-0.008092
-0.014648
-0.021954
-0. 044205
-0.044592

-0.014722
-0.036691
-0.058877
-0.120394
-0,120466

-0.025109
-0.024527
-0.043248
-0.079383
-0.145891
-0.146195
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1267

TABLE VI.16
(Continued)

W wN
24,504725 24, 324035%
24, 530675 24,349100%
28. 685244 28, 376901
28.786442 28.560607
32.950146 32,584540%
32.953382 32.587591%
37.702535 37.268638%
37.712015 27, 2TT4E8 %
42,944157 40, 40454] ¥
42,968636 42, 447079%
5%.721091 52.829220%
53,724398 52.83%2183%

wN - R

-0.180490
-0,181575
-0.308343

-0.225835
-0.365597
-0.365791

-0. 433897
-0. 434547

-0.519616
-0.521557

-0.891869
-0.892215

# Indicates that correction At-A from Table VI.6
has been taken into account.

Using Table VI.16, some of the |aJ| = 1 transitions

expected from KHC II have been calculated, and are shown

in Table VI.17:

91
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TABLE VI.17
HDO - Predicted P- and R-Branch Frequencles
Transition ﬂgﬁg&iisy
Tor™™624 12,198
523606 69,602
64735 74,778
655716 117,710
83946 183,710

For some of these lines the effects of (K|X*1) and (K|k*3)
matrix elements have been neglected. From Table VI.6, we see
that these effects wlll be comparatively small for the levels
of low K appearing here.

Only the 707—l-624 line lies in a readlily avallable
regiony unfortunately, it is quite weak, the absorption
coefficient being about 31:10-8 em™t, and we have not
succeeded in finding it. If our identification of the 26,880
Mc/sec line is correct, thus fixing the relative positions of
the 624 and 717 levels, with the 707 below these, this
prediction should be reliable to a few hundred Mc/sec (which

is the order of the inaccuracy of v°).

6. Discussion of Results

Although the agreement in Table VI.1l3 is considered
good, the large change we had to make in Dy 1s inconsistent
with our assumption that the theoretical distortion constants

are very close to the true ones. But it is apparent that the
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parameters entering into the Q-branch frequencies must be
known more accurately before we can draw precise conclusions

about a+c and D..

2 J
We would like to have Q-branch parameters that are good .
enough to exactly calculate frequencles to agree with
observation within something like 1 Mc/sec, if not better.
Any such agreement obtained by the use of approximation
methods (specifically, the HSKW method) must be checked by
exact calculations, otherwise the constants obtained cannot
be considered the true molecular parameters, but are merely
constants in a semi-empirical formula, The writer believes
that the results obtained by Weisbaum35 should be described
in thls manner.

The present work has shown that such desirable Q-branch
parameters are lmpossible to attain if only the seven
quantltles 2%2, ", DJK’ DK’ 6J, R5, R6 are considered.
Remaining discrepancies turn out to be of the order of
magnitude of the corrections introduced by taking R7, R8 and
R9 into account, but incluslon of these corrections still
leaves much to be desired. The ever-present assumption of the
essential correctness of the theoretical distortion parameters
leads one to expect that only small changes 4in R7, R8’ R9
should be tolerated, and it is unlikely that such small
changes would lead to significant differences in the
corrections ng. Thus it is probable that elther our theories
and/or calculations involving R7, R8, R9 are incorrect, or

that we must look elsewhere to improve our results. The
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latter means examination of higher terms in the vibration-
rotation theory, e.g. terms in the Hamlltonlan of the order
of P6, where P is an angular momentum operator. Rough
calculations, based on orders of magnitude, indicate that
such terms probably will be negliglble for the present work,
but one cannot be conclusive about this without going into
considerable detail.

It is the writer's opinion that any improvement in the
present results will have to be obtained with the 2id of a
high-speed digltal computer to set up exactly and solve
equations of the type of (10). Notwithstanding the conclusions
of the previous paragraph, it may still be possible to get a
satlisfactory solution by including variations of R7, R8 and
R9, the corresponding av/axi being obtained by computer
diegonalization of the complete matrices; this possibility
ought to be considered early in any extension of this work,
since even small changes in the VSK could concelvably bring
about a neat fit -~ the transition frequencles are much more
sensitive to changes in certain parameters (e.g. %) than in
others.Also, the discrepancies we have now result from a
least squares solution, which does not necessarily lead to
the most significant parameters though 1t seems to be all we

can do with the present methods.

The good agreement we get in Table VI.13 for lag] =1
transitions gives some confidence in our final results.
However, 1t must be pointed out that the consistency vanishes

if the 26,880 Mc/sec line 1is not the 624—-717 transition, or
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if the 2,888 Me¢/sec line is actually the 505—-422 transition.
Our information35 is that the latter is the 4224D-505 line,
though we do not know whether or not there is any evidence

(e.g. Stark data) to show the relative positions of the levels.

To conclude this Chapter, we give in Tables VI,18 and
VI.19 what we consider to be reasonable HDO parameterss; these
are obtained by rounding off the constants of Tables VI.1l4
and VI.153 the accuracies indicated have been estimated by
the writer on the basls of his experlience with the problem,

and are rather difficult to justify in detall.

TABLE VI.18
HDO - Rotation~-Distortion Constants

9%9 = 4.484i0.002:c105 Me/sec
2z o 2.555+0.005 x 10° Mc/sec
® = =0.6841%0.0002
Dy = 9.1 #1.5 Mc/éec
DJK = 36.8 *0.5 Mc/sec
D = 287 15 Mc/sec
6J = 3,3%33+0,005 Mc/sec
R5 = =7.877%0.010 Mc/sec
R6 = =0.572%0.005 Mc¢/sec
Rg) = 3.12 ¥0.05 Me/sec
Rg” = -8.20 ¥0.05 Mc¢/sec
R%? = 50.0 0.5 Mc/sec




TABLE VI.19

HDO - Effective Moments and
Recliprocal Moments of Inertia

a = 7.0396%0.0005 x 10° Mc/sec
2.7360+0. 0005 x 10° Me/sec
1.91860.0005 x 10° Mc/sec

(]
L

1.1917%0.0005x 10~ ¢ cm?

3.,0662%0.0005 x 10~ g om®
4.3495%0.0005 x 10~*0 g om?




VII
CONCLUSION

By analysis of the microwave rotational spectrum of HDO
we have obtained approximate values of the molecular
parameters which are in fairly good agreement with the
theoretically calculated constants. The theoretlcal values,

derived from infrared data on H20 and D.0O, enabled us to

2
calculate HDO Q-branch freguencies with rather unexpected
accuracys 1t must be considered very gratifying that we can
do this In view of the rather tortuous calculations that have
had to be carried ouvut in going from one isotopic molecule to
another,

Distortion effects in this type of molecule have been
found to be large, so large that to get detailled agreement
between theory and observation (in the microwave region) one
must go to higher approximations in the theory than had
previcusly been considered necessary. Our results are by no
means final, and possible methods of improving them have been
indicated.

It is also desirable to increase our experimental
knowledge of the water spectrum; quite a number of lines are
still avallable and waiting to be found, but most lie in the
high-frequency region of the microwave spectrum, and the
experimental work will be fairly difficult because of the
general 1naccuracy of the predictions.

12

Jen et al. have reported two unidentified lines at
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30,182.57 and 30,778.62 Mc/secy we do not believe our HDO
parameters are far enough out for these to be any of the
lines listed in Table VI.1l7, and 1t seems probable that the
two lines are due to the only other likely alternative, D20;
if further work (e.g. Zeeman investigations) shows that this

is the case, it may be possible to improve the D,0 parameters

2
by simple adjustment of the effective moments, using the
assumption that the theoretical distortion corrections are
satisfactory, as appears to be the case for HDO.

It will be interesting to examine the spectra of other
isotopic modifications of water, e.g. H2018 (which may be no

16

more useful than H.O i1tself) and HTO. The latter should

2
give plenty of information from 1lts Q~branch spectrum, which
should be predictable fairly accurately by the methods we
have used here to handle HDO.

When a more accurate solution of the HDO problem 1is
obtained, it will be necessary to analyze the parameters thus
determined, and work back to improve the H20 and D20
constants. In this connection, the work of Kivelson and
Wilson18 on relating distortion constants to force constants
etc. will be of consliderable assistance.

As a final project, calculation of the equllibrium
structures and force constants of the molecules should be
carried out. In principal, the data on HDO 1s already
sufficient to enable this to be done, but the results

obtalined here are not sufficliently accurate to warrant the

very complex calculations which would be involved.
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APPENDIX A
SOME MATRIX ELEMENTS OF ANGULAR MOMENTUM OPERATORS

We are interested in the matrix elements of certain sums
of angular momentum operators which are multiplied by
coefficients that are unchanged by permuting some of the
indices. Consequently, the results are conveniently expressed
in terms of the matrix elements of symmetrized operator
products.

Iet us define

g(J,k*1) = J(J+1) - K(x*1) ,
F(J,K) = g(J,k+1)g(J,k-1) .

As our basic matrix elements, we follow the phase choice

of KHC I and take the following non-vanishing matrix elements

of P :
g

(k1P |K£1) = £ $14 [g(J,Ki'l)]% ,
(KlelKi‘l) = %ﬁ[g(J,Ki‘l)]% ,
(xlp,|K) = AK .

For the non-vanishling matrlix elements of PSPS' we have:

(x|p2|x22) = - (K|P§|Ki2) = - 142 [r(s,k*1)]2
(xI21%) = (kl¥21%) = 342 [3(341)-57]
(x|P2|K) = A®K®
(K|P.P +P P |Kt2) = + 3 142[r(s,k21)]%

X'y Tyx
i
(kIR B +B, P |K21) = 3 1(KIR, B+ PP, |K41) = 3#2[2(5, k1)) % (2k21) .
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The non-vanishing matrix elements of Png;Pg"Pg,,, are:

(Klpi*lxm) = (KIP;*IKM) = %A‘* [F(J,Ki‘l)F(J,Ki'B)J%

(kIB}[k22) = - (x| 2} xt2)
= - #4* [r(3,x201)] % [25 (341)-K%- (x£2) 7]

(kl2?|x) (K[P;;[K) = 4% [352(5+1)2-2(38% 1) 3 (3+1) +k2 (3K 5)]
(kl2¥lK) = A% x*

(KIP§P§+P§P§IK14) = - 4% [F(3,x21) R(g,k23)]#

(KlP§P§+P§P§!K) = $24% [52(342) % 2(k1) 3 (341) +k2 (x2-5)]

(K|P§P§+P§P§|Kt2) = - (KIP§P§+P§P§IK:2)
= 34 [F(a,x21)] ¥ K2 (x£2) 2]

(KIP2P24P2P?|K) = (k|P2P24P2P2|K) = A*[7(741)-k2] K2
yztz'y

2 X X 2z
2 _ 14
(K“PxPy*Pny) |k*4) = - $A% [F(3,K21)F(,k23)]%
2 _ 1242 2 2 22
(Kl (2,2 +B B )? 1K) = 3A7[5%(541) %2k 1) 3 (342) +k2 (24 5) ]

2+
- (xl(p,P +P P, )°|Kt2)

= $4% [F(5,x21)1% (2k41) (2x¢3)

2x+
(k| (B P +P P )% |Kt2)

(k| (Psz+PZPy)2 IK) = (x| (Psz-a-PxPz)g |K)
= 3 A% [4K25(341) +3 (341) -4k 552]

2 2
(x| Pr (PxPy-;-Pny Y+ (Px Py+PyPX )Px [x*4)
(

=3z P2(P. P +P P PP +P P )P2|Kkt4 -
7 (x| y(xy+yx)+(xy+yx) yl ) -
¥

1 346 [F(7, K41 P,k ]




2 21wy
(KlPx(PxPy-l-Pny)+(PxPy+Pny)leK_2)

= (KIP‘?(PXPy+PyPX)+(PxPy+PyPX)P§lKi'Z)

= 516 [F(3,5£2)]% [(25(341) -K2- (x£2) ]

2 2
(K!Pz (PxPy+Pny)+(PxPy+Pny)PZ [xkt2)

= + 3 4% [F(a,x21)] ¥ [K3 (k22) 2]

2 -
(x|Pe(P P +PZPy)+(PyPZ+PZPy)Px|K-3)

X"y z
- 2 2
=1 (KlPy(PzPX+PxPz)+(PZPX+PXPZ)PylKi‘3)

= - %A‘* [g(J,K‘-‘-'l)F(J,KiQ)]%(zKi'B)

2 2| o+
(K|Px(PyPZ+PzPy)+(PyPZ+PZPy)PxlK-l)

_ 2 21t
=31 (Kle(PZPX+PxPZ)+(PZPX+PXPZ)PyIK_1)

= 34 [&(a JE+1)] 2 [2K (541) 27 (3+1) -2K353K24 3KE2]

(X|P2(P P +PzPy)+(Psz+P P_)P2|Kt3)

y vy a 2y v

- + 2 2 ¢+
= +1 (K[Px(Psz-c-PxPz)+(PZPX+PXPZ)PXlK..B)

= 144 [g(J,Ktl)F(J,Ktz)]%(QKtB)

2 2
P=(P_P +P P PP P°|xt
(x| y( Ezt Py y)+( y Z+PzPy) le 1)

- 2 2
= 11 (KIPZ(P, P +P P )+(P, P +P P )P-|Ki1)

= 34 [s( K1) T3 [6K0 (341) %35 (341) -6K379K?- 11K74]

2 21wt
(KlPz(Psz+PZPy)+(Psz+PzPy)Pz|K..1)
_ 2 21 ws
= F1 (KIPZ(PZPX-;-PXPZ)+(PZPX+PXPZ)PZIK.].)

= A% [g(3,k21) 1% (2re1) [K34 (x21)2]
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o+
(x| (PxPy+PyPX) (Psz+PzPy)+(PyPZ+PZPy) (PxPy+Pny) [x3)

=3 h
71 (x| (P,2+P P, ) (PxPy+Pny)+(PxPy+Pny) (PP +P P, ) |K%3)

=+ 1/164[g(J,Ktl)F(J,Kte)]%(QKB)

e
(xl (PP +PyP X) (Psz+PzPy)+(Psz+PzPy) (PxPy+PyP x) [k*1)

+
1 (k] (PP, +P P ) (PxPy+Pny)+(PxP y+Pny) (P,P_+P P ) [x+1)

% L4 [g(7,k+1)] % [2K3 (T+1) 23 (J41) -2K3:=3K2-7K:3]

)
e

+ W

—
-

+
(x|l (P P +PzPy) (Psz+PxPz)+(PZPX+PXPz) (Psz-n-PzPy) |Kt2)

3 1A r(7,581) ] F (2re1) (2Kkt3)

o~
+ N
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APPENDIX B

NUMERICAL CALCUIATIONS
GECMETRY, NORMAL COORDINATES, AND POTENTIAL FUNCTIONS

l. Baslc Constants Used

We use the following constants in these and subsequent
calculations:

Equilibrium Geometry*

r = 0.9584x 1075 cm

e (o}

20 = 10427
sin a = 0,7905293%
cos o = 0.6124243

Atomle Masses
0-24

My 1.67341233 x 1 g
my = 3.34428232::10-24 g
Mo

= 26.55872000 x 10™2* ¢

Fundamental Constants**

e = 2.99793:1010 cm/sec
h = 6.62363x 10 21 erg sec

Normal Freguencieg##

H,0 D,0
v 3825.32 cm -1
1 . cn 2758.06 cm
v, 1653.91 em™t  1210.25 cm~t

1 -1

<1

3 3935.59 em 2883.79

* reference 7, p.489.
##* peference 2.
#%% peference 5.
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2. 320 and D.O Calculations
The followling quantlties are readily calculated from the

above data:

TABLE B.1l
Equilibrium Principal Moments of Inertia
(In units 10~*° g cm®)

H20 DQO
I:x 1.02396902 1.84069708
I§y 1.92115546 3.83939220
I:z 2.94512448 5. 68008928
TABLE B.2
Normal Angular Frequenciles
(In units 101* gec™1)
H20 D20
ml 7.20551102 5.19518154
w2 3,11536467 2.27967067
w3 7.41321962 5.43201107

The equations (II.103), (II.104) can now be applied to
obtain the k'sy the sign of ka is not determined, but
Darling and Dennison5 point out that, from physical
conslderations, it should be positive. Taking for the final
values of K% and kA the average of the corresponding

3

quantities for H20 and D.O separately, we find:

2




k] = 3.13462138 x 10° dyne/cm
ké = 7.18132196
k%(Av) = 10.65581660

kL(Av) = 6.31795909

H,0 D,0
k, 3.74638255 x 1022 gec™2  1.87461529 x 1022 sec”2
k, 2.41610617 1. 34406574
k,  5.49590854 2.950499%9
kK, 4.00632463 2.11372458
TABLE B.3

Harmonle Potential Constants

(In units 10° dyne/cm)

Kinyp = Kil =  9,04949641
Kl213 = Ki2 = 0.52397791
K1223 = Ki3 = -1,20497839
K2323 = Ké3 = 2.04835571

Using (II1.105), the transformation coefficients are:

H,0 D0
sin vy 0.58518046 0.61504088
cos ¥ 0.81090309 0.78849521

The followlng matrices are then easlly calculated:
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!‘(H20)

!(DQO)

P (11,0)

P(D20)

U(X) (Heo)

¥ (8,0)
U"‘) (D20)

v (p,0)

1) (H,0)

Ly (H,0)

106

[ -1.21187860 0.6124243 0.39526465 |
= 1.21187860 0.6124243 0.39526465
i 0 0 1 )

-1.16952808 0.6124243 0.39526465 ]

= | 1.16952808 0.6124243 0.39526465
i 0 0 1 _

0 0 0.46847372 ]
0.33942641 0.47035392 0 x10%2 g%
0.88650762 -0.63973974 0 ,

0 ) 0.35568186
0.26607988 0.34111995 0 x 10%2 g%
0.60976514 -0.47562811 0 i

0 0 0.05242838 ] "
0.44325381 -0.31986987 -0.41604534 |x 1012 g72

-0.44325381 0.31986987 -0.41604534 |
0.03798629 0.05263880 0 ]
-0.30144012 -0.41771512 0.32231098 | x 1012 g%
-0.30144012 ~-0.41771512 -0.32231098 _

0 0 0.07155475 |

0.30488257 -0.23781406 -0.28412711 | x 1072 g%
-0.30488257 0.23781406 -0.28412711 |
0.05352896 0.06862524 0 ]
-0.21255092 -0.27249471 0.22011372 | x 1072 g%
-0.21255092 -0.27249471 -0.22011372 |

i 0 0 0.27019046 |

0.19576293 0.27127486
-0.38994427 -0.54035812 0.41694290
| ~0.38994427 -0,54035812 -0.41694290 |

0.57339508 -0.41378507 -0.53819808

o




IPQ(DQO)

v (D,0)

puse

S(HQO)

871 (1,0)

-

S(DQO)

L

0

0.55827811
0.55827811
0.88650762

0.82366686
1.14138126

| -0.88069525

0.40397239
0.40397239
0.60976514

0

0.27586231 0.35366122
-0.38869992 -0.49832140 0.40253030
| -0.38869992 -0.49832140 -0.40253030

0.0%518967 -0.56773328 |
0.03518967 0.56773328

-0.63973974

0.82366686 0.09061360 |
1.14138126 -1.43756952

0.88069525

0.02091117 -0.41597992 |
0.02091117 0.41597992

-0, 47562811

0.36875850 |
0.55755031 -0.43489958 -0.51959401
| -0.55855031 0.43489958 -0.51959401 |

0

0

0

0

-

x 10
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12

gt

12

From the Darling and Demnison date, we obtain for H20:

TABLE B.4

HQO - Cubic Potential Constants
- (In units 10”14 erg)

Kiqq = | -6.39394768
K10 = Kioq = Kpyp = -0.00661899
k122 = k212 = k221 = 1.42970259
Kynp = 0.93327808
k133 = k313 = k331 = =6.01666506
k233 = k323 = k332 = -1,05903895

All other coefficients vanish, since they refer to terms in

the potential which are odd in the coordinate q3, and thils
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corresponds to the antisymmetrical vibration w3 -- thils

coordinate changes sign on reflection of the molecule in the

o;—plane; this fact is equlvalent to the relations (11.79).

From Table B.4 we find

-36,13199770 =0.07378331 O
10.47934063  1.49933996 0 48 2 3/
X'(HP) = | 104 onoo4203 -12.14563475 o | X 10 dynecm &
5 0 0 0
so that
[ -84,56753212 57.47345798 =35.92925361
57. 47345798 -84,56753%212 -35,92925361 1
k(H,0) = o4, 61366648 24.61366648 -2.51799700 | ¥ 10 2
-013 -6153 -5 dyne/cm
! 0 0 -96.56701865

and the coefficients in (II.72) become:

TABLE B.5

Cubic Potential Constants

(In units 102 ayne/cm?)
Ky = KEpppy = -84,56753212
K112 = K122 = 5T7.47345798
K113 = K223 = =35.92925361
K133 = K233 = 24.61366648
K333 = -2.51799700
K123 = -96.56701865

The k_ 4y D2y now be calculated for D,0, using the

above k and the appropriate matrix B8 for D20; we get

-13.50920236 0.,96683576 O

4,13945419 0.53833778 O
-40.89726197 -4.28552185 O

kWDQO) =

o)
and

0

x 1048 dyne em™2 53/ C

0

-
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TABLE B.6
D20 - Cublc Potential Constants
(In units 10”14 erg)
klll = -3%.,90483690
k112 = k121 = k211 = 0,14062708
kypop = Kpyp = Kppy = 0.90891576
k222 = 0.53532925
k133 = k313 = k331 = -3,76865386
k233 = k323 = k332 = -0.59615616

3. HDO Calculations

For the transformation (II.7) to principal axes, we find

tan 20 = 0.90864666

sin © 0.36048318

cos O = 0.93276572
e = 21.12987°

TABLE B.T
HDO - Equilibrium Principal Moments of Inertia

n units 10" '~ g em
(In units 100 2)

e
Ixx 1.21241595

-]
Iyy 3.07104776

€
123, 4.28346371

and the equilibrium positions of the nuclel are given by:

x] = 0.07101748 x10~8 em v = 0.0725467% x 10~ om
xg = 0.56613647 yg = -0.74805539
xg = -0.84727087 yg = -0.20182007
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The quantities xij’ ;gri‘1 are:

8 8

Xy, = -0.49511899 x 107~ cm Yio = 0.82060212x 10~ ecm
xy5 = 0.91828835 Vi3 = ©0.27436680
x23 = 1.41340734 y23 = =-0,54623532

8o the kinetic energy matrix is given by

5.88649894 -1.63102653% =-0,.52682949
B = | -1.63102653 5.81699605 0.51562418 | x 1072% ¢
~0.52682949  0.51572418  1.28190702

We also have

-1.21410401 1.53901209  0.56486426 ]
T = 1.07483884  0.17204413  0.28264683
-0.44059643  0.43130887 1.07208056 _

so that

22,67630226 -1%.88795405 =3.65632000 |
K = | -13.88795405 20.58418839 6.88480331 |x 10° dyne/cm
| -3.65632000 6.88480331  3.94231275

The characteristic numbers of p are found* to be

= 7.569586383 x 10”24 g

By =
By = 4,220350792
By = 1.195464835

8o that

L

0.7097363398 0.6995349700 0.0832175085 |
A = | -0.6947754320 0.7145983663 -0,0814633260
| -0.1164535406 0.0000000018 0.9931961406 J

—

0. 3634661118 0 0
X = 0 0.4867721522 0 x 1042 g7
i 0 0 0.9146008420 |

* The characteristic numbers were determined by the matrix
iteration approximation method of reference 9, Section 1.23.
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4,8651723650 0.0831194912 -1.1878089061
B=MNAKAM = 0.0831194912 1.8299805352 1,0833604151
-1.1878089061 1.0833604151 2.2186358018

x 1027 gec™2

The matrix B has the characteristic numbers

w% = 2.819180209 x 102> sec™2
mg = 0.744685129
m§ = 5.3499233637

so that the normal frequencies are given by:

TABLE B.S8
HDO - Normal Frequencies

14

®; = 5.309595285 x 10 sec ™t

w0, = 2.728891953
®3 7.3143170315

2818,.800904 em”
1448.736239
3883, 083804

1

<1
L}

1

<]
[T}

2
3

<l
]

Diagonalization of B is accomplished by the matrix

0.3322677882 -0.2111658172 0.9192426851 ]
R = 0.7090694092 0.6985980947 ~0.0958189690
L 0.6219474977 -0.6836444250 -0.3818528649 |
which leads to

0.3744985817 0.1313763923 0.1754416960 ]
P = ANR = 0.1164015911 0.3472660034 ~0,2370137048
. 0.5508995705 -0.6120695752 =0.3857754595 |
X 10]‘2 g

-3



We also get
ey

30

n

v = Fp
o < £
£ < g
17 = ap®
8 =1P

0.15890641
~-0.84109359
-0.84109359

0
0.81461926

| -0.40761927

5.15351531
0

L 0

0.05951022
0.05218498
-0.49871459

0.01849696
-0.02755541
-0.13310598

0.30668685
0.06750672

[ -0.91201827

0.09532436
-0.03564579

| -0.24341595

0.03564670
0.57826185

L 0.47581102

o
o
0.15890641

-0. 44206676

¢
1.29360440
0

0.02087655
-0.51844285
0.09362672

0.05518279
-0.30433133
-0.28595449

0.10758762
0.17121874

0.28438537
-0.39398435
-0.52293581

0.02920574
0.02795400
-0. 56429296

)
0.66649778
-0.33350222

o
-0.25757941

0.12888761 |

0
0

1.82873790 J

0.02787881
-0. 40468137
-0.01890591

-0.03766300
0.63064268
-0,01645921

0.14367388

-0.03457396

-0.19409683
0.81580213

-0.03009959 _
-0.79568219 |

0.03875653

-0.59310747 _

The cublic potential coefficlents are:

and

~19.16441347

4,48361231
-8.47066032
0

-1.99429641

0.97679970

-5.32837221
0

-2,.23137620
-5.47161888
49.66670495
-7.76171927

112

x 10712 ¥

x 1012 g

o

X 1012 s'%

x 1012 g%

X 1048

dyne cm

s3/2
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TABLE B.9
HDO - Cuble Potential Constants
(In units 1071* erg)
k111 = ~5.36139356
K110 = Eypp = Epyp = -0.25941086
k)13 = K3y = kg9 = -0.17728726
Kypp = Epyp = Eppy = 0.81351213
Kopp = 0.74165220
Kooz = Kpzp = kypy = -0.84585445
k)33 = Kg33 = Ky35y = -0. 57341072
Kozy = Eypp = kygp = -0.50313049
k333 = 8.59367572
ko3 = kozy = K315
= Kg5) = Kpy5 = Kjzo = =0.43010075
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APPENDIX C

NUMERICAL CALCULATIONS
ROTATION=-VIBRATION CONSTANTS

In accordance wlth the convention (III1.68), we have

Iaa < Ibbs Icc ’

so it is apparent from the results of Appendix B (Tables B.l
and B.T7) that the axes x,y,z are there identified with a,b,c
respectively, for the three molecules considered; this 1is the
111’ representation of KHC I.

For convergence of the continued-fraction expansion of
the secular determinant assoclated with the rotational matrix
(III.73), as discussed in Appendix D, it is desirable to now
relabel the original axes z,x,y to correspond to a,b,c
respectivelys this is the ¥ representation of KHC I.

Let us now write*

- nV -V
a = Bzz c = Byy
-— RV — Y
b = Bxx d = Bzx .

If we now make use of

* In this work we will not be concerned with B;y, B;z, though
1t should be pointed out that, in a 111’ representation B;
will appear in place of BZ# (Ir), and this case is applicable
to HDO3 however, B;y appears in the factored submatrices of
KHC I, whereas BZ# does not, and for certain purposes 1t 1s
desirable that this product of inertia be left out and

treated as a smaell perturbation.

-
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= 2b=a.=¢

* a-c¢ ’

in the manner dlscussed by KHC I, the first three of the

equations (III.74) become, in this representation (IT):

J2(J+1)%

R = 2*C7 (J41) + 9—5—‘—’-%(n-1)J(J+1) -D

o] 2 J

23]
]
L}

5 %2% (%=3) - D7 J(J+1)

R, = - % 822 (nal) + 8;3(341) .

In the sequel, we wlll work in the i’ representation.
The results of Appendix B are readily put in this form by
the simple relabelling of axess however, the final results of
the present Appeﬂdix are subject to modification when change
of representation is made, for, while the ®'s of (III.64) are
easily relabelled, the equations in Section III.4 are
unchanged, so the distortion coefficients have different
numerical valuess the effective moments also change slightly
from representation to representation, because of their

dependence on the D of equation (III.77).

gg!
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In a IF representation, using the results of Appendix B

with the theory of Chapter III, we obtaln:

n
~

N

u%im%ik%g‘ uﬁf

®
N
N
~

TABIE C.1: (8

H20

0
0.00551823
-0.9995847T

ss!

D20

0
-0.99838573

TABLE C.2: égy)

In units 10°°° (g cmg)%

H20

2.24791666
-1.62218756
o)

3.43222073
0.01894007
0

1.18430406
1.64112764
o)

0
0
-1.63456738

D20

3.,09001292
-2.41026736
0

4,75889304
-0,27072831
0

1.66888012

2.13953905
0o

o
o
-2.23087284

HDO

0.54508337
-0.01777540
-0.83819337

HDO

3.14959494
-1.43415769
-0.55446728

3. 46953887
-0.07357782
-2.25626687

0.31994393
1.36057987
-1.70179959

-0.77187968
-1.25204106
-1.14611615
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TABLE C.3: A(gg')

H20 D20 HDO

0.65756382 0.62172470  0.93039131
0.34243617 0.37827528  0.49067572
0.65231724 0.67593871  0.29588729

() o 7)o g5 -
MY =4 =4 =2

0.34243617 0.37827528  0.06960868
0.65756382 0.62172470  0.50932427
0.34768276 0.32406129  0.70411268

0 0 ~-0.24882819
o 0 -0.20508826
o 0 0.45391645




TABLE C.4: éSgO

In units 10°%° (g cm

H20

0.01073481
~0.00668562
0.00214426

0.00703036
0.00451081
0.00508392

0.02034015
-0.09592416
0.04595808

0.00309673

0.00831254

-0.01481296
o

2)-1
D,0 HDO

0.00443681  0.00678864
-0.00269696 =-0.00600179
0.00087791  0.00088137
0.00273430  0.00382831
0.0017109%  0.00237112
0.00180278  0.00299900
0.00582782  0.00995508
-0.03802457 -0.06013689
0.01902196  0.03624818
0 -0.00645617

0 0.01155260

0 0.00271927
0.00130888  0.00083411
0.00312401  0.00459921
-0.00658740 =-0.00696682
0 0.00390785
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ZXZZ

*Not transformed to principal axes: see Table C.1O.

ﬁU

Yy
z2

o o o

X

#Not transformed to principal axes: see Table C.11l.

TABLE C.5: T

gg! gllg!l

In units 10°° (g em®) ™2

H20

-1.35241851
-0.15081584
-13.84950671
-0.22714952
-0.44803283
2.88152784
~-0.62814987

0

0

c

D20

-0.33862371
-0.04098252
-4,28635104
-0.07048001
-0.08361311
0.80211647
-0.16885299

0

0

0

8602

HDO*

~0.35627764
-0.07765828
-7.08894402
-0.12884885
-0.18112849
0.75249734
-0,.92397640
-0.23745113
0. 02509463
1.83673884

TABLE C.6: D,
Tn units 1070 (g om2)!
*

H,0 D,0 HDO
-0.00008438  -0.00002208 -0.00010530
0.00009014  0.00002483  0.00015141
~0.00004795  =0.00001379 =-0.00009876
0 0 ~0. 00001824
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TABLE C.7T
Distortion Constants

In units Mc/sec

*
H20 D20 HDO

28.92348858 7.45681896  9.01676826
Dy 729.36580935 225.00743493 279.94933771
-112,71978845 <=32,66381366 41.47209724

K
aj 14.00262952  3.46850038  3.24683339
Ry 31.16163450  8.12053047 =-9.03150455
R -3.05588799 -0.69525362 -0,54839883
i) 0 0 3.05952301
ég° o) 0 -8.00882857
ég) 0 0 50.81694501

#Not transformed to principal axes: see Table C.l2.




[ T o]

o o o
(o]

o

(o]

& 0 U @

#Not transformed to prinecipal axes: See Table C.13.

TABLE C.8
Rotation Constants

In units 10° Mc/sec
(x dimensionless)

Equilibrium
H20 D20
8.1925576 4,5574718
4,3666040 2.1849618
2.8484110 1.4769002
-0.43182960 -0, 54030510
Ground Vibretlonal
H20 D20
8.3168225 4,6127330
4, 3406258 2.1739817
2.7786778 1.4506931
0 0
~-0.43593095 -0.54251778
Effective
H2O D20
8.3172247 4,6128487
4,3413336 2.1741669
2.7779216 1.4504848
0 0
-0. 43552032 -0.54231577

HDO

6.9191808
2.7316167
1.9584443

-0.68828325

HDO*

6.9776249
2.7246194
1.9198619
-0.0327827

HDO*

6.97845341
2.72550273
1.91859173
-0.03262965

-0,68105413
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In Table C.9 we gilve the inertila defect A for the ground
states (1) calculated approximately from equations (III.72)
or (III.84) (Ao); (2) calculated exactly from the ground
state moments (Ag)s and (3) calculated exactly from the
effective moments (Ag'); the agreement 1s seen to be good to

a few percent.

TABLE C.9
Inertia Defect
Tn units 1010 g em®
H,,0 D,0 HDO
a, 0.07609087  0.10381619  0.08676075
at 0.07771198  0.10527228  0.08835060%
AY'  0.07889770  0.10647705  0.09238402%

*Not transformed to principal axes: see Table C.l4,

The non-vanishing of the éﬁx) for HDO introduces an off-
diagonal product of inertia which cannot be neglecteds
removal of this (Section III.6) modifies the HDO constants,
whose new values are given in the following tables. The

transformation coefficients (III.91) are:

0.9999702970
sin © = 0.00770T7T4347

cos ©

e 0%

so the axes are rotated through about half a degree.
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TABLE C,10

Effective Tég*g"gm

In units

T
Txxxx

1}
rYYYY

]
TZZZZ

1
Txxyy

?
Tyyz 2

HDO - Effective D!

107° (g em?) ™0 sec?

-0.36368202
-0.07765828
-7.14485265
-0.12246549
-0.18151185

0.78415385
-0.89231989
-0.24275270

0.02464248

1.78996036

TABLE C.11

gg'

In units (g cm

2)-1

40
40
40

~0.00010189 x 10

0.00014602 x 10
~0.00010610 x 10
-1.85723121 x 10°°




TABLE C,12
HDO - Effective Distortion Constants

In units Mc/sec

D! 9.14172899
D} 287.08933921
D! 36.81321390
3l 3.33311881
R% -7.87718656
Ré -0,57220390
éﬁ)' 3.11603472
Ry ~8.19943988
Ry 49. 91730954
TABLE C.13

HDO - Rotation Constants

In units

10° Mc/sec

(v dimensionless)

Ground State

6.97787760

2.72436671

1.91986190
0

-0.68188916

L.

Effective

6.97876766
2.72522145
1.91863695
0.00015580

-0.68120013
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TABLE C.1l4
HDO -~ Effective Inertia Defect

In units 10°° g cm®

a, 0.08676075
t 0.08810858

At ,
b 0.09201742

o
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APPENDIX D
COMPUTATION OF ROTATIONAL ENERGIES

The theory of Chapter III results in the rotatlonzal
matrix, whose elements are given by (III.73) and which is
diagonal in the quantum number J. In the type of analysls
described in Chapter VI, one is interested in only a rather
restricted number of the 2J+1 energles corresponding to a
particular value of J3 complete dlagonalization of each J
matrix is not necessary.

To obtain the desired characteristic values of the
rotational energy matrix, we have found it convenlent to use
an extension of the continued-fraction approximation method
described by KHC I for the rigid rotor case. The appropriate
representation (i.e. identification of axes) must be chosen
to ensure convergence; it is not expected that the addition
of a small perturbing matrix to the original rigid rotor
matrix will affect the convergence properties, and no
difficulties of this type were encountered in the present
work,

Since in the present instance we wish to apply the
results to HDO (in a I' representation), the following
discussion 1s to be considered as specialized for this case.
However, the methods are readily extended to other examples
where needed; for H20 and D20 they become much simpler.

When one carries out the transformation described in

Section III.6, the elements of the rotational matrix IIT.73




for HDO in a I¥ representation take the form

(xlglK) =Ry +.R2K2 - DKK4
(KlHg |k$1) = tj.[g(J,Kil)]%(thl)
x [39+RgI(341) + Ry [K3 (x21) 7] ]
(klHg|xt2) = [g(J,K‘l'l)g(J,Ki’E)]%[R4-RSEK2+(K1'2)2]]
(KlHg [K23) = 1 [g(J,Ki‘l)g(J,Kt2)g(J,Ki'3)]%(2Ki‘3)R7
(klHg|K24) = {g(J,Ktl)g(J,Ktz)g(J,Ki3)g(J,Ki4)]%R6
where

=-%AQ = 7’

and R7, R8 and R, stand for (X), ég) and ﬁg’.

9
In the general notation of KHC I we may write
a

R, = 222 7(341) + 258 F(541) - DI 2(5+41)°

a=Cra_m) -
5 (G-F) DJKJ(J+1)

Ry
Ry = % 559 H+ 0;5(3+1) ,

r
vwhere, for a I° representation,

1

F = 3(u-1) G
H= - 2(x+l) G=-F = - 3(u+3) ,

and a,b,c,n are defined in Appendix C.

We now re-write the rotational matrix, thus

_ a+¢ - 2 2 , a-c
) Hg = =5~ J(J+1) - D3°(3+1)° + =5~ E ,

where E 1s the reduced energy matrix, with elements
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(D.1)

(D.2)

(p.3)

(D.4)

(D.5)
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Eg = (KIEIK) = F3(341) + [(6-F)-D 3 (5+1)]K2 - Dpk*
Bty = (KIEIKL) = (K|Hp|Kt1)
B pto = (KIEIRE2) = [6(5,xt1)e(a,k22)]2
x [%H+ 853 (3+1) - RS[K2+(K.":2)2]]
Beges = (EIEIKE3) = (K|Hp|X¥3)
(D.6)
B gty = (KIEIR#4) = (K|Hp|K24)

In (6}, Dygs Dy, O3, Rgs Rgy N, Ry, Rg, Rg now stand for the
original (" fundamental®™) distortion constants divided by
E%Q, and willl have this meaning for the remainder of this

Appendixs they are the reduced distortlon constants.

It is apparent that the whole complexity of the problem
lies in the reduced energy matrix (6), and the methods of
handling this will now be discussed.

First one transforms the matrix to a baslis of Wang
| functions, using the transformation X of KHC I in the usual
manner. In the presence of (K|K*1) and (K|K*3) elements, the
resulting matrix can now be factored into two submatrices
only, corresponding to symmetric (+) and antisymmetric (=)
Wang functions. When the (K|Ktl) and (K|Kt3) elements are
pure imaginary, as in the case of the HDO molecule in a ol

representation, these submatrlices take the forms:
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o

- en

n o m

(#) = | Hyq Hyp Hyp Hys Hyy Hyg Hyg === ===

(D.7)

D e

where,

Hege = Bggr s (D.8)

except that

(K=1,2,3,4)
e oK (D.9)

r
Hegr = Bggr T Egg,

The matrix elements obey the usual relations

Py
H 2°E

Ex x1= Bxra (D.10)

Ex k41 Xka
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but the (K|Kt1l) and (K|Kt3) elements, being imeginary, are

also subject to the Hermitlian condition

Ee1k T~ B
Eresx = © Beges

For computational purposes, it 1s now convenient to

(D.11)

introduce the symbol 3&K" to denote the rigid rotor limit of
the value of the matrix element Hypr for K' = K, K1, K2,

and to be identiecal with H for K' = K3, K4 with

KK!

= H!

HKI{g KK! AKI{; for X! # K. (D.12)

In terms of the EKK" we have specifically

Eyy = FI(3+1) + (G-F)K°
Bfgel = 1[5('3:K+1)]%(2K+1)%N
B ko = [8(J,K+1)5(J,K+2)]%%H

(D.13)
Br ke = Bges = 1[g(J,K+l)g(J,K+2)g(J,K+3)]%(2K+3)P‘7

B s = Eegas = [g(J,K+1)g(J,K+2)g(J,K+3)8(JsK+4)]%R6 .

Note that N 1s a multiple of R7, through (2), though we find
it convenient to use the two different symbols.

Further,

Exg = Egg - JKJ(J+1)K2 - DKK”’

Krel = el Axr

gKK}2 = Eﬁ3}2 AKK+2 (D.14)
EKK}B = E&K}B AKKZ+3

B = Bxges ARmes o
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with R
R
8 2 21 9
Apgea =1+ 23 (J3+1) = + 2[3 +(K+1) ] TF
) R
Ao = 1+ 23(3+1) -ﬁ‘l -2(K2+(K+2)2] -;? (D.15)

Arges = Pggey =1 -

We also write

+

+
- e ™ e 1 + 1 - -
Hy; = E{q = Bj; ¥ EYy,; = J(J+1)Dyy - Dy
+ J2(J+1)26J % 23(3+1)Rg
(D.16)
- . S _ + -
Hy, = Epy = Eby = 43(J+1)Dgp - 16D * J(J+1) [J(3+1)-2]Rg
and

+r %
Hip = Eyp = Ejohy5
+ + +

s = Eyz = E3hy5

T + 2
Ajp, = A, ¢t G J(J%)

T 23(J+1) T? .

(D.17)

A

L
1
]

13

To find a particular reduced energy, L§K, corresponding
to a given J and K, the aporopriate submetrix (+) or (=) is
chosen (see KHC I); the leading term in the expansion of the
assoclated secular determinant 1s then HKK' The expansion is
carried out by reducing the order of the determinant by
successlvely removing rows of off-diagonal elementss an
analytical description of the process 1s readily obtalned.

Suppose the matrix has elements of the form Mst' In the
determinants under consideration, the roots are non-degenerate
because the K-degeneracy has been separated out by the Wang

transformation, and each member of a pair of degenerate
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levels willl appear 1n a different submatrix¢ thus it 1s
legitimate to divide by M, ~A when r # K.
To remove the r-th row of the determinant, we multiply
M

each element of the r-th column by E—EEX and subtract from

rr
the t-th columns the elements of the latter column then take

the form

M Merrt

-

st Mrr-A ’

the r,t-th element being zero. Doing this for each value of
t, except t=r, removes all the off-dlagonal elements in the
rth row. Since Mrr-A is nonzero, and is the only element
remaining in the r-th row, 1t may now be factored out,
together with the rest of the r-th column.

The elements of the resulting determinant may be
relabelled Mgt (r,s,t are not necessarily consecutive

numbers), with

M __M
M, =M, --SEIt (D.18)
t - ¢
8 st Mrr A
and with diagonal elements
M M :
- - _ _srrs

One can proceed by repeating this process, until there

finally remains the term

MI‘. . .XMI‘. eeX

- % - Ky YK o yTes Xy _
Mgg = 2 T...X = Mgk A

M - A
Yy

so that




133

— yle e XY
Agg =1 . (D.20)

Here r...xy indicates the sequence in which the expansion was
carried out, in terms of the diagonal elements which appear
in the denominators at each stages for the (+) matrix it will
contaln the J numbers 012...J with K omitted, but will not
necessarily be in the normal order of integers. For a gilven
JK certain sequences will be more convenlent for computational
purposes than others, but for large J it is not practical to
try and find the best one. Accordingly, we adopt a standard
order

(0)12....K-1:33-1....K+1 , (D.21)

which we call the "primary sequence"; (21), incidentally, is

preferable to the more obvious sequence
(0)12....%1:K+l....J0-1J ,

for large J, at least. Here we use (0) to indicate the O is
to be omitted for the (-) submatrix.

Thus we can write

t _ (012...K-1:JJ=1....K+1
A, = H9

?

or, s K+1
AJ =HKK s

X (D.22)

where, for simplicity in practice, only the last member of
the assumed standard sequence is written.
When (22) 1s developed as described below, it may be

used to obtain approximate values of A by the usual iteration
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Process,
If M and N are two consecutive numbers in the primary
sequence -- they may be K-1 and J -- then (18) gives the

recurrence relation

H(}é))l..M H(O)l..M

0)1l..MN _ 0')1:'.M 'N NK "

YK" = X = 01..M ’
HOToH )

or, simply,

H!lchn =!‘%K" ‘%ﬁ ’ (D.23)

HNN - A

with the particular cases

2
HE'K' =H;{{'K'- Lﬁﬂ

NN
Hg H "
Hptq Hypn
H'I]i'K" = HKIKﬂ" FK—:'L:]"EX' (=) (D. 24)

11
Appropriate + or - signs should also be inserted where
necessary, as they appear in (7)y to simplify the discussion

we have left them off, but their presence is impliled.

These results are quite general, for any determinant
with non-degenerate roots, but the question of convergence 1is,

of course, quite another matter.

From the above recurrence relations we can now write
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(D.25)

i

j!lA!
J=0 JJ

where N 1s any number in the primary sequence, and 1,] are
successive numbers in this sequence. For the (+) submatrix

the first terms (3=0) in the sums are

0
Bgige Agig Aok

- v
oo =~ *

2
| Hogel
Hoo

Y and "

while for the (=) submatrix these terms vanish, and the

first terms are

2 1
|H:LKII and BKIK" AKtl AlKﬂ
- 2 oy -

The cases K = 0 and K = J are easily treated, and will not be
discussed in detail hers.
i
In (26), the quantities Aty and By are defined by

the relations

HIj(.!K" = HI’('K' AKithl

'l H' n
N i L W (D.27)
I{I{IK"
1 1
AK'K"= AKHKI .

The B%'K" may be calculated from Table D.1l.
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TABLE D.1: Blif'K"

In the quantities marked with an ¥, the superscript 1 may
take on the value 03 when it does, the right hand side 1s
to be multiplied by 2.

# pk=3
K+l

K-2
* Brgel

K-1
* Brge1

K+2

Brx+1
K+3
BKK+1

K+4

B+l

K-2

* Bygo
K-1

* Brgen
K+3
Br k+2

K+4
BKK}2

i
1821 o

i

K-1 _
* BKK}B -

K+4

Br K43

% g%g% g(7,k-1)g(J,K-2)g(J ,K-3)R;
P

K-1
2K+1

g(J,k-1)g(J,K-2)H

1l 2K-1
2 2K+1
1
2

%%f% g(J,K+2)H

g(J,K-1)H

%%f% g(J,K+2)g(J,K+3)H

i

- % §§:1 g(J,K+2)g(J,K+3)g(J,K+4)Rg

g(J,K-l)g(J,K-z)R6

5{2K-1) (2K+1)g(J,K-1)

LR =R

5(2K+3) (2K+5)g(J ,K+3)

8(J 1K+3)8(J ,K+4)R6
2K-1
2K+3

2
2

g(J,K-l)R6
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The relations (25) and (26) may be used to set up

directly the expansion for numerical calculations. To explain

the procedure, it

N

i

N =

Then, from (26), we see that A.;‘g,

is convenient to take K'< K", so that
K' -1 < k" when K'<K
K"+1> K when K'>2K.

K4 = l, and A%;I'K" = 0 1if

K" >K%4, As a result, for a gilven K' there need to be

calculated only the quantities

L

K'-1

K1 K1 1
kg ~™ Bprgyge Apguos Apignzs KK
: . . ] - (D.28)
+1 K'+1 K'%1 +1 >K
leg"m'}" Apiyge 0 Bgnogn s % g K'> K
K+1

and, finally, Agye

= Hgg ™.

From (25), (26) and (28), one can set down

systematically the terms that must be calculated for each

cycle of the iteration process. As an example, we list some

of these, in the correct order, for the 122 level:

A

Eggm

0 o ,0 .0

Hyq=2s Aoy Ayzs Aqy

1 11 A

Hop=ds Anzs Anys Bog

4 5 4 4

Hog=d, Aggy Agys Agg

2127 12 1 1
2 > 2

mEa-d 45, A1 A8
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d3s, 35, 418, 412
Hgg™ds A7gs Agg
Fop=ds Agy

HLe = A

This particular level requires some 500 desk calculator
operations per cycle, which can be carried out 1in about two
hours when working to 1lO-figure accuracy. Of course, one
should start with a reasonably good approximation, e.g. the
value obtained when (K|Ktl) and (K|K*3) elements are
neglected. From the latter calculation, too, one can obtain
~ & good correction factor to be applled to each cycle of the
iteration and thus increase the speed of convergence. In
practice, if no numerical errors are made, one can usually

obtain a 10-figure solution with three iterations.

This procedure 1ls easily speclalized to the case where
(k|X$1) and (K|K*3) matrix elements are absent, as in H,0
and D20, and reduces to the rigid rotor formulation of
KHC I when (XK|Kt4) elements also vanish. In these cases,
factoring into odd and even K submatrices is automatically

achleved because of the lack of matrix elements connecting

even and odd K's.
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APPENDIX E
EXPERIMENTAL RESULTS

The experimental work was carried out using sa
conventional slow-sweep, 5 ke¢/sec square-wave Stark
modulation spectroscope, with re-modulatlon and visual
presentation. Frequency measurements were made with the
M.I.T. frequency standard, monitored by WWV.

A.E.C. 99.8 percent D,0 was usually used as a specimen;

2
HDO lines observed seemed no weaker than those in a 50-50

mixture of this D20 with distilled water.
Difflculty 1is sometimes experienced in decilding whether

a line is due to HDO or D.0. Where possible, we have used

2
Stark and Zeeman effect measurements to provide additional

evidence for ildentification.

Ego: 250" 31 3° 10,919.39%0.05 Mc/sec

This line was found during the progress of a general
search for water lines in the X-band regionzs, and was
identified on the basis of its Stark effect. It has now also
been reported by Beard and Biancol, who agree with our
assignment of the transition, and who give the frequency as
10,919.8%0.1 Mc/sec

The line 1s strong, and its Stark components (M=0,1,2)

are readlly resolved. We measured:

Av = (1.473 = 0.2088M3)E® Mc/sec ,

obs
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where Av 1s the frequency shift of the M-th component, and E
is the electric fleld in Kv/cm.

From the KHC II tables of the D0 term values (see

2

footnote, p.62) the theoretical Stark effect for the D20

220-—---313 transition is

bvy, = (0.4751-0.07264M2)u2E2 Mc/sec,

where p 1s the dipole moment in Debye unitss usin332 B = 1.84,
we obtain

av,, = (1.608 - 0.2459M°)E® Mc/sec.

th.

The ratios of M-independent and M-dependent coefficients are:

observed 7.05
theoretical 6.54 .

Although the agreement is not very good, the easy
resolution and large intensity of the Stark spectrum readily
enables identification of the line as a J = 2«3 transitlons
the assigned transition 1s the only one in D20 or HDO that
approximates the observed measurements,

Burke3 has used the Zeeman effect to confirm our

identiflication of this line.

~

D,0: 532———-441: 10,947.13+0.05 Mc/sec

This line was found at the same time as the 220—'-313

1ine26

but was not identified by the writer up to the time it
was reported and identified by Beard and Biancols the latter

authors give the fregquency as 10,947.4%0.1 Mc/sec.
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Our measurements of the Stark effect give

bv = (0.957 -o. 0402M°)E2 Mc/sec,

while we calculate the theoretical Stark effect for the given

transition to be

Av = (0.275 - C.0117M2)n°E® Mc/sec.

th.
Observed and theoretical ratios of M-independent and

M-devendent terms are

observed 23.8
theoretical 23.5 ,

in very good agreement. With ¢ = 1.84 Debye units, the

theoretical expression becomes

Av = (0.931 - 0.0396M°)E° Mc/sec,

th.

which 1s close to that observed.

HDO: 744—-743: 8,577.7+0.1 Mc/sec

This line was originally found by J.D.Kiersteadl3 of
this Iaboratorys its frequency has been measured as
8,576.89 Mc/sec. We have remeasured the frequency, and find
the value 8,577.7%0.1 Mc/sec.

HDO: 84 ——844: 24,884,77+0.05 Mc/sec

5

We found this line by general searching in a region

predicted by rough calculationsaé; the line is quite strong,

and 1t 1s surprising it has not been observed earlier.
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Jen et 21}2

have independently reported the line at
24,880.85%0.1 Mc/sec, and have identified the transition.
We find the Stark splitting to be typical of a Q-branch

transition, being given by

A = 0.0216M°E° Me/sec,

v
obs.

in good agreement with the theoretical value of

Av = 0.0234M°E° Mc/sec

for the assigned transition with p = 1.84 Debye units.

HDO: 1056“"10 : 8,836.95%0.1 Mc/sec

55

5711560 22,581.1%0.2 Mc/sec

As Indicated 1n Section VI.2, these lines were predicted

HDO: 11

at 8,836 and 22,577 Mc/sec, respectively.

Visual observation of the Stark splitting shows the
expected behaviour of Q-branch lines in the absence of strong
perturbations. No Stark measurements were made, since the
lines are weak, and it 1s considered the identification by

position is quite adequate.

HDO: 6245"717’ 26,880.38%0.05 Mc/sec

Some difficulty arises in accounting satisfactorily for

22

this 1llne. It was first discovered by McAfee™ who gave the

frequency as 26,880,44 Mc/sec, and who believed it to be a

D2° transition.

26

The observed Stark effect is most consistent with the
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62
effect that the line must arise from an HDO transition.

Jen et all?

4—i-717 transition of HDOS Burke3 has shown from the Zeeman

have independently examined the line,

placing it at 26,880,47%0.1 Mc/sec, and also concluded from

the Stark effect that it 1s the 624—-717 transition of HDO.
It is considered that the present analysis of the HDC

spectrum gives a better energy level picture than the KHC II

tables, upon which the original Stark effect calculations were

based. The final parameters of this thesis, together with

P = 1.84 Debye units, give for the theoretical Stark effect,

by, = (0.2574 - 0.00862M°)E® Mc/sec,

whlle we observe

Av = (0.2890 = 0.01037M2)E® Mc/sec .

obs.

The ratios of M~independent and M=dependent terms are

theoretical 29.9
observed 27.87 ,

and the agreement is to be considered fairly good, considering
the lack of exact calculations for the line strengths
involved in the theoretical expression.

The molecular parameters obtained in this thesis support

this assignment (Section VI.5).
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APPENDIX F
COMMENTS ON RELATED WORK

Darling and Dennison

Reference 5: B.T.Darling and D.M.Dennison, Phys.Rev.57,
128 (1940)3 "Water Vapor Molecule'.

This paper represents the first successful attempt to
account for the observed vibrational spectrum of the water
molecule. The writers' results on HQO and D20 form the basis
of some of the computations carrled out in the present work.

Some of the theory of vibratlon-rotation interactlon is
presented, but only as far as the vibrational problem 1s
concerneds there 1is no treatment of rotation.

The inertla defect A for a planar molecule is first
introduced in this paper.

Although the work has not been checked right through in
detaill, 1t appears to be singularly free from misprints. The
notatlion, howevér, differs considerably from that used in the
present work -- we mention some of the main correlations
below.

The coordinates x,y,q are equivalent to our (th)u,v,w

respectively; the normal coordinates ql,q2,q3 correspond to

our Ql,-Q2,Q3, and the transformation coefflcients 61j are
related to our Pij as follows:
517 = Pxy = 05 = P35, 51 = Py
- - H -
822 = oo w %33 = P13
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For the quadratic potential constants, we have

Darling and Dennison This Work
(In units 10° dyne/cm)
a = 10.672 kg = 10.6558
b= 7.1810 ké = T7.18132
c = 3.1344 ki = 3.13462
24 = 6.3176 ki = 6.31796

Slightly different values of the baslc constants are, of
course, used in the two cases.

Darling and Dennison use Xy where we have the
dimensionless normal coordinates qgs their coefficients &y
in the cubic part of the potential (in their paper, the

term in ag should read a6x2x§) are related to our k

ssls"
thus:
- - - - X
k131 = hedy . K133 = ¥313 = K1 = 3h:°‘5
Ki1p = Kypy = Kppq = - Fhedy Koy = Kyoy = kg3, = - Sheag
- - - X = -
Kypp = Kpyp = kppp = Fhooy Kopp = = hedy ,

the negative sign in the coefficlents odd in the lindex 2
appearing since thelr P equals our -QQ. For H20 the

following values of the a, are glven:

- -1 - -1
e, == 322 cm a, = 216 cm
03 = 1 Gg = 160
from these, the k in Table B.4 were calculated.

ggign
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Some of the quartic potential coefficients are also
given, but these are not of interest to us here.
Expressions for the effective moments are calculated,

together with the lnertla defect A, With the correlation
. (Y) = (Y)
K) =-435 Ky, 20355

it may be seen that our equation (III.84) for 4, 1s 1dentical
with that for Darling and Dennison:

Darling and Dennison This Work
A, = 0.0761x 10~40 g em? 4, = 0.076091x 10740 g em?.

This paper should be consulted for any work involving
exclted vibratlonal states, when resonance mixing of the
effective moments may occur.

The writers glve theoretical expressions for the moments
of inertia, in the form of our (III.67), with the b(ga) glven
by (III.86); thelr equations are equivalent to ours. They use
the linear form (III.67) to fit the observed data, and

arrive at values which give, for the ground state:

Rotation Constants
In units 10° Mc/sec

Observed Calculated

(Dand D) (This work)
a 8.32771 8.31682
b 4,.34209 4,34063
e 2.78198 2.77868
% -0.437365 -0.43593
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Fuson, Randall and Dennison

Reference 6: N.Fuson, H.M.Randall and D.M.Dennison,
Phys.Rev. 56, 982 (1939)3 "The Far Infra-Red Absorption
Spectrum and the Rotational Structure of the Heavy
Water Vapor Molecule.

These writers find, from infrared investigatlions, the

following DQO rotational constants:
Rotational Constents
In units 10° Mc/sec
(v dimensionless)
FRD This Work
a 4,611 4,613
2.173 2.174
c 1.448 1.450
1 -0.5412331 -0.54231577

They give rotational energy levels complete through
J = 12, and a few higher ones, together with distortion
corrections evaluated by a seml-classical method.

Values of the ﬂfg) calculated semi-classically agree
fairly well with respect to sign and order of magnitude when
compared with the more rigorous results of the present work.

The rotational constants glven by FRD have been revised

slightly by Kingg, from infrared work.
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Hillger and Strandberg

Reference 10: R.E.Hillger, Thesis, M.I.T. (1950)

Reference 1ll: R.E.Hillger and M.W.P.Strandberg, Phys.

Rev. 83, 575 (1951); "Centrifugal Distortion in

Asymmetric Molecules. II, HDS"

The possibllity of using an approximation method to
calculate Q-branch freguencles, including distortlon effects,
was first realized in this work. The HSKW formula was
obtained, though it 1s somewhat 1n error.

Although the distortion in this molecule is smaller
than in HDO, it appears to be still large enough for the
HSKW formula (in its correct form) to be subject to the
practical limits of accuracy discussed in the present work
(Section VI.3); accordingly, it is the present writer's
opinion that the whole analysis should be checked agalnst
exact calculations, 1n a menner similar to the present work.

In his Thesis, Hillger derives a formula for 4, similar

to our (III.71)s this, however, is in error.

Levis

Reference 21: W.H.Lewis, Thesis, M.I.T. (1951)

Lewis has calculated theoretical distortion constants
for HDO; his results are similar to those presented here,
though his value for R6 aprears to be in error. A value of
4 was obtained from the Hillger formula (see above), but
this is 1ncorrect.

An attempt at analysis of the then known HDO spectrum

was not very successful owing to inadequacy of the dataj
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the 84 line, for example, was predicted some 2,000 Mc/sec

away from 1lts subsequently found position.

Nielsen
(a) Reference 23: H.H.Nielsen, Phys.Rev. 59, 565 (1941);

"The Near Infra-Red Spectrum of Water Vapor. Part I. The
Perpendicular Bands v, and 2v M

2
This paper pertains to the present work in that
theoretical and "observed" values of several HQO distortion
coefficients are presented; the theoretical coefficients are

calculated from the Shaffer and Nielson work29

, and are in
gubstantial agreement with the present writer's calculations
from the same formulae; however, as polnted out in the
discussion of reference 29, the Shaffer and Nlielsen

formulation apparently contains an error.

We glve below some figures for comparison (these are

all in a IIIY representation, and in units 1074 em™ 1)
Nielsen This Work
Observed Theoretical Theoretical Theoretical
(shaffer and (This work)
Nielsen
formulae)
DJ 473 150.3 104.723% 82.321
DK 302.8 56.99 56.826 T4.168
DJK - - -62.084 -154,.143
GJ 45 48.71 48.578 48.578
R5 95 16.7 16.606 23.430
R6 -6.6 -6.75 -6.731 -17.932
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(b) Reference 25: H.H.Nielsen, Rev.Mod.Phys. 23, 90

(1951) 3 "The Vibration-Rotation Energles of Molecules."

In our Chapter III we have followed closely the notatlon
of this review article, though a few changes have been made;
in particular, our cholce of phase factor for the rotational
matrix elements differs from Nielsen's.

Although this article goes into considerable detall, and
1s a good gulde to the theoretical background of the present
problem, we find the typographical and other errors are so
numerous (and not always obvious by inspection!) that no

detalled reliance can be placed on the equations.

Randall, Dennison, Ginsburg and Weber

Reference 27: H.M.Randall, D.M.Dennison, N.Ginsburg and
L.R.Weber, Phys.Rev. 52, 160 (1937)

This paper contains an analysis of the rotational
spectrum of Hzo, and observed energy levels are listed.

A rigid rotor calculation, using the values

= 8.335811 x 10° Mc/sec

a =
b = 4,346872
c = 2.781834

glves energies whose differences from those "observed™ is
ascribed to distortion effectsy a semi-classical argument is

used to attempt to justify this.
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Shaffer and Newton

Reference 28: W.H.Shaffer and R.R.Newton, J.Chem.FPhys.

10, 405 (1942); "Valence and Central Forces in Bent

Symmetrical XY, Molecules".

These authors investigate the quadratic and cubilc
portions of the potential function appllicable to the H20 type
molecule. Their method of determination of the central-force
constants from the data of Darling and Dennison is

essentially the same as that presented here, and they sive

numerical values very close to ours, with the correlations:

Shaffer and Newton This Work

51 X1

Ky 12

%5 K13

5 K33

Ly K111 = ¥opp
3Ls K112 = K10
3Lg K113 = ¥oo3
3Lg K33 = Koz
Lo X333

6Ly, K103

A conelse account of the normal coordinate problem for

H20 and D2

_ - (- -%
their sign for [33, which should read [;3 e [33 = ( p/zm)ul .

0 is given; the only misprint detected occurs in

A discussion of the valence-force formulation of the
potential function is also given, with the observation that
1t leads to a better approximation to the true potential than
does the central-force function. However, the results of the

present work are not affected by the form of the function
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chosen.

No celculations based on the valence-force potential
were carrled out by the present writer since the Shaffer and
Newton paper came to his attention too late for him to
investigate such an approach in detail.

The gquantities K, 0y Ops used by Shaffer and Newton,
correspond to our x%, cos ¥ and s8in ¥, respectively, in the

discussion of H20-D20 transformations. Theilr dys Qo q3

correspond to our Ql, Q2, Q3°

Shaffer and Nielsen

Reference 29: W.H.Shaffer and H.H.Nielsen, Fhys.Rev. 56,

188 (1939)3 "The Vibration-Rotation Ener%ies of the

Nonlinear Triatomic XY2 Type of Molecule”.

The theory of vibration-rotation interaction is carried
through 1n some detall along lines rather similar to that of
the present work.,

Some misprints have been pointed out by Nielsen -- Phys.
Rev. 59, 565 (1941), footnote 11 =-- and others remain.

The notatlon 1n the normal coordinate discussion is
readily correlated with that given in our Section II.5,
except that we choose a different matrix R (II.90).

The expressions for the rotational matrix elements given
in their equation (42) agree with ours, except that the sign
of their 5 as defined in equation (39) is apparently in error:

1t should read
Cainl
(cn2 wl)

= - 172 —2 1
b = -gﬁ AoBo w2m2 siny cosy ,
172
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in the notation used in the rest of the paper. This appears to
be a definite error, rather than a2 misprint, since
calculations made with 8 = + .. give distortion coefficients
in substantial agreement with those quoted by Nielsen in

reference 23,

Welsbaum
Reference 35: S.Welsbaum, private communication;
S.Welsbaum, Y.Beers and G.Herrmann, Bull.Am.Phys.Soc.

28, 9 (1953)
I am greatly indebted to Mr.S.Welsbaum and Dr.Y.Beers

for permission to use some of the results of theilr work prior

to publlcation.

A significant improvement in the avalilable data on the

HDO microwave spectrum has been made by the S-band

investigations of these workers, who discovered and identified

four new lines.
Welsbaum has succeeded in fitting the Q-branch spectrum

and 11

(except the 10 lines) to a set of parameters by means

5 5
of the HSKW formula. As discussed in Section VI.6, it is the
present writer's opinion that the resulting parameters should
be considered semi-empirical, and that they do not
necessarily bear any significant relationship to the "true"

molecular parameters.

Welsbaum's results are compared below with our wvalues:
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This Work
(Table VI.18)

In units em~1
(x dimensionless)

Welsbaum

% -0.6830 -0.6841
552 8.4895 8.5226
85 1.39042x 1074 1.112x 1074
Dk 2.29892 x 10™2 1.23 x 1077
Dy 20. 90344 x 10”2 9.57 x 107
R5 -3.38775x 1074 -2.628 x 10”4
Ry -5.35005 x 10™2 -1.91 x10°°

These parameters, used with the HSKW formula, give the
frequency of the 115 line at 22,552 Mc/sec, some 29 Mc/sec
below that observed. This agreement 1s quite good, and it
appears that Weisbaum's results show the HSKW formula 1is
adequate for Q-branch transitlions, even if the parameters
are empirical. Exact calculation with these parameters,
however, gives the frequency 22,446 Mc/sec, some 135 Mc/sec
low, 80 1t is doubtful that the results would be useful in

analysis of the P- and R-branch spectrum.
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