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ABSTRACT

MICROWAVE SPECTRUM OF THE WATER MOLECULE

by

DESMOND WALTER POSENER

Submitted to the Department of Physics on May 4, 1953,
in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Centrifugal distortion theory applicable to the water
molecule and its isotopic modifications has been rederived,
apparently eliminating misprints and errors now present in
the literature. Using infrared data with this theory,
rotational constants and distortion parameters have been
calculated for the molecules H20, D 20 and HDO, and the

resulting theoretical transition frequencies compared with
those observed in the microwave region.

Theoretically calculated parameters have also been used
to obtain Q-branch frequencies in HDO; while the frequencies
computed directly are considerably different from those
observed, a simple method is available for relating the two
sets with very good accuracy. Analysis of the method leads to
the inference that the theoretical distortion corrections are
very nearly the true ones, and that reasonable agreement (by
which is meant the best available by convenient methods of
computation) with experiment can be obtained by a simple (and
small) variation of the effective moments alone. The resulting
parameters also account satisfactorily for the known IJI = 1
transitions in HDO, whose frequencies are still better
explained by a further small change in the theoretical
effective moments together with a rather large variation of
another distortion constant. The detailed discussion of the
procedure used indicates the consistency of the results is
good.

For this type of molecule centrifugal distortion effects
are so large that approximate methods of calculation have
only a limited usefulness; the validity of the Hillger-
Strandberg-Kivelson-Wilson approximation for the calculation
of Q-branch frequencies in HDO is discussed in detail.

__II I
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The results for HDO give the following effective
reciprocal moments of inertia: a = 7.0396t0.0005 x 10 5 Mc/sec, '.

b = 2.7360±0.0005 x 105 Mc/sec, c = 1.9186±0.0005 x 105 Me/sec,

with = -0.6841±0. 0002.

New transitions observed in the microwave spectra of D20

and HDO are: D 20 220--313, 10,919.39+0.05 M/see;

iDO 845 -844, 24,844.77+0.05 M/sec; HDO 1056-*1055,
8,836.95+0.1 Me/sec; HDO 1157-c-1156, 22,581.1+0.2 Me/sec,

A line previously reported, at 26,880.380.05 Me/sec, is

identified as the 624-*'717 transition of HDO.

Thesis Supervisor: M.W.P.Strandberg

Associate Professor of PhysicsTitle:
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I

INTRODUCTI ON

The rotational spectrum of water* has probably been

more thoroughly investigated than that of any other asymmetric

molecule; many examinations of the infrared spectrum have been

carried out, and some are still in progress.

One of the interesting effects observable in the water

spectrum arises from the fact that the molecule is so light

that vibration and rotation cause comparatively large distortion

to the equilibrium structure, and this has to be taken into

account in any detailed description of the spectrum.

The theory of centrifugal distortion in asymmetric

molecules has been discussed by a number of authors, but very

little comparison with experiment has been carried out because

of the fact (fortunate, or unfortunate, depending on the point

of view!) that most molecules are so heavy that the effects of

distortion in their spectra are almost entirely negligible.

With its high resolution, microwave spectroscopy offers

the possibility of making a detailed check on the theory.

Furthermore, the water molecule is a natural subject to

investigate because the distortion effects are so large. This

thesis is a contribution to study along these lines.

Microwave lines of water have been observed sporadically

ever since microwave spectroscopy became a practical

proposition in 1946. King, Hainer and Cross16 have tabulated

* We usually use the word "water" in the generic sense to
mean H20 and its isotopic modifications.

·----·-- ·-·· ·- ---·· ---·---·-----·----------- �`-�"� -"s--�- ��----



predicted positions of many microwave lines, mainly based on

rigid rotor calculations; their work is still valid as

indicating possible microwave transitions, though the

predictions are not always accurate in the microwave sense.

One line due to H 20 is known, with the possibility that

one more might be detected in the foreseeable future. No D 20

lines had been identified prior to this work. The isotope

HDO, with its low symmetry, affords a richer spectrum, with

which the interpretive part of this thesis will be mainly

concerned. Since a considerable number of lines is required

for analysis, one of the objects of the present work was to

increase our knowledge of the spectrum, preferably by

systematic methods, rather than by hit-or-miss searching;

this aim was achieved.

In our discussion we will make frequent references to

the theory, of which sufficient is given in Chapters II and

III. Although there is nothing basically new here, it is-

convenient for reference in a consistent notation, and, more

important, is apparently free of the numerous errors and

misprints to be found in the original literature.

So-called "theoretical parameters", obtained by putting

numbers (obtained from infrared analysis) into the

theoretical expressions, are given in Appendices B and C.

Many of the intermediate quantities computed are also shown,

for ease in checking or extending this work. Unless otherwise

stated, the numerical results are quoted to the number of

�__ I__
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significant figures actually used in computing, since

rounding-off errors are readily propagated; it is not meant

to imply that all these figures are meaningful!

The microwave spectra of H 20 and D20 are discussed

briefly in Chapters IV and V, respectively. We are still in

no position to relate these systematically to one another,

or to the spectrum of HDO.

Chapter VI, concerned with the microwave spectrum of HDO,

contains the major contribution of this work. New lines in

the spectrum are described, and correlation of the observed

frequencies with theoretical predictions is discussed in

detail. A critical study of methods of fitting molecular

parameters to experimental data is given.

The experimental part of the work, mainly concerned

with identification of various transitions, is discussed in

Appendix E.



GEOMETRY, NORMAL COORDINATES, AND POTENTIAL FUI\TCTIONS

OF

THE MOLECULES H20, D20, HDO*

1. Equilibrium Geometry

Throughout this work we assume that the equilibrium

structures and potential functions of the three molecules H20,

D20 and HDO are the same, to a sufficient degree of

approximation.

We consider the non-linear molecule XYZ, with the X and

Z atoms either identical (as in H20 and D20) or isotopic (as

in HDO), and make the following assignments-:

H20 HDO D20

X (3) H D D

Y (1) o o 0
z (2) H H D.

Since three points define a plane, the molecule remains

planar at all times, even when vibrating, so we need consider

only a two-dimensional geometry at this stage.

First let us choose the coordinate system x, y' such

that the equilibrium position
Y() y M i

of the molecule is as shown,

¢( / DE with the center of mass at the

origin. Let M be the mass of
F. 1

the oxygen atom (Y), mH and mD

* See references 5, 21, 25, 28, 29, 30.
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the masses of the hydrogen and deuterium atoms, respectively,

and m the mass of each of two identical atoms (as in H20 or

D2). Then we have:

ml1 = my = M

m2 = mZ (= mH for HDO; = m for H20, D 20) (II.1)

m3 = mX (= mD for HDO; = m for H 20, D20)

Now define

= mX+ mz

= x+ my+m = M+ a

my(mX+mz) Mr
m+my+mZ =

6 = mX- mz (>.0)

(= 2m for H20, D 20)
(= M+ 2m for H20, D20)

(= 2m+ for H20, D 20)

(= 0 for H20, D 20) .

In terms of the dimensions of the molecule (Fig. 1), we

have

x - x 3 = a = x 2 - xi

X 2 - x 3 = 2a

Y4' Y = b = y - y',l-Y2 Y l Y3'

(11.3)

a = re sin a

b = re cos a .
(II.4)

Since the center of mass lies at the origin, we have

f m i x = 0 = E miy i,

from which we readily find

(II.2)

with

�______1__��11____11141 1 I�--· --- -
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HDO H 20, D20

x I 0

(2mx+M)a
aX2 £

(2mz+M)a
3 a

(I.5)

I o'b 14b M

Mb R b
Y2 - £ - 2m

, Mb ' Mb
Y3 -2 2m

so the equilibrium moments of inertia are given by

HDO H20, D20

'Ix' jab2 Ab2 = pr2cos2a

Iy y, ( m+ Z)a2 2m = 2mr 2sin 2a (II.6)

Mbab 0
Ix' yt' 

Let x, y be principal axes (x', y' are, of course,

already principal axes for H 20 and D20); then the equilibrium

principal moments are given by the well-known transformation

IXX = Ix, CO 2e + Iy, y' n2 - 2IX y,sine cos 

IYY = Ix, xsin2 +I 2e + 2Ixy ,sinG cos e (II.7)

tan 2 = x' 
Ix,,- I, y

_ _
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In this coordinate system, which, for the molecules considered,

amounts to a IIIr representation*, the equilibrium positions of

the nuclei are given by

HDO H 20, D 20

xe E'.1 (6a cos + absinG ) 0x 1 2 -l ( a C 08 oee + bsine) a

xe - 1 [(2mx+M) a cos - bsin g a

X3 - - 1 [(2m+ M) a cos + Mbsin e] -a

ye - -1 (a sin e - bcos 8 ) b.81 M

ye - - 1 [ ( 2m X + M ) a sinG + Mbcos e] b
Y2 2m
ye £ 1 [(2mZ+M) a sin G - Mbcos ] A b
Y3 2m

and we also have, with

e e

xij = y -Xij J Xi I xJ (II.8a)

HDO H 20, D20

x12 - a cos + b sinG - a

X13 a cos + b sinG a

x23 2a cos 2a

Y12 a sin + bcos b
Y1 3 - a sin + bcos b

Y2 3 - 2a sing 0

2. The Normal Coordinate Problem

Let us assume the kinetic energy, T, and the harmonic

portion of the potential energy, V 0o, can be written in matrix

* See Appendix C; we will find that Ie e I e e
XX Yy zz



8

form* as

2T = , (II.10)

2V = xmU , (I1.11)

where, for the molecules under consideration, and K are

certain 3x 3 matrices which will be determined specifically

later, and u is a vector whose components are usually written

as

u = v . (II.12)

The normal coordinate problem consists in the

simultaneous diagonalization of p and x so as to express the

quadratic forms (10) and (11) as simple sums of squares. This

may be carried out by well-known methods**, and we find it

convenient to use the following one.

Let pi ( = p' p 2 9' P3) be the characteristic numbers of

p, and let A be the normalized modal matrix of p such that

Ap = , (11.13)

where

X = o 2 (11.14)

Now let
y = A-l , (11.15)

so that

2T = u= ApA = ky . (II.16)

* We use the tilde -to indicate the transposed matrix.

** See, for example, reference 9, Sections 1.17, 1.25, 2.12.

1
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Since 2T 0 always, is positive definite, and the i will

all be positive.

Now let

0

0

o~0 2

4]-1
3 J L

00

el
o2 o'

and define

Since 1 i-1= X , we now have

2T = -11-l _ 1-l = - -

Further,

2Vo = u = yDAKAy= siMXAAs = Bs ,

where

B = AKA] .

(II.17)

(II.18)

(II.19)

(II. 20)

(11.21)

Now let x 2 (= 2 2 2a)) be the characteristic numbers

of B, and let R be the (orthogonal) normalized modal matrix

of B, so that

]O O11 B 2
0 Ww0J

Q = R- .

(II.22)

(II.23)

Then

2Vo = Bs = RBR = ,
0

and let

_�_�_1__�._.11_1111 - Illlll�·---�-·---Y II�1I-1I1·--_---· 11

(II.24)

1 = 0 

L 
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and

2T = z = QRR =Q . (II.25)

Hence the transformation

q = - 1 a-%,-4 = Ra-- -= R 1 = R-, P (II. 26)

with

P- = R-N-1 A -l (II.27)

or,

= PQ , (11.28)

with

P = AR , (II.29)

simultaneously reduces the forms (10) and (11) to the forms

2T=2 Q =g+ + 2 (II.30)

2 22 2 2 (II-31)
2Vo = QQ 1Ql + '22 + 3 .31)

If the Lagrange equations of motion are now set up, using

(30) and (31) for the kinetic and potential energies, it

will be readily seen that they describe simple harmonic

motion:

d (aT) + a O 
dt 

or
.. · 2- + mi = ,

which describes simple harmonic motion of angular frequency

Wi. Thus the normal coordinate problem reduces to finding

the coordinates Q1 for which the motion of the system can be

described, in general, as a superposition of simple harmonic
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motions.

Here the Qi are the normal coordinates of the system, and

the i are the normal angular frequencies

ai = 2rvi . (11.32)

3. Coordinate Transformations and the Kinetic Energy Matrix

In the vibrating molecule, let the instantaneous

coordinates of the i-th particle be (xi, i ) , and let

bxi' bYi be the "displacement coordinates" defined by

xi = x + bxi = yi + 6Yi * (II3)

Since the molecule vibrates about the center of mass, which

remains fixed, we have

mixI = 0 = mii (II.34)
i i i mixi i

and, in first approximation, the internal angular momentum is

zero since there are no torques acting:

M(Xe l- xl) +mZ(x2Y2 Y6X2 ) + mX(x 6y3-y3 c 3) = 

(11.35)

If we now define a convenient set of "intermediate

coordinates" u, v, w by the relations

HDO H20, D 20

u ax 1 - 1(x 2+nxx 3) xl- (cx 2 + %3 )

v 6Y - 1(m Y2+-my 3) bY1 - (&y 2 +by 3 ) (II.36)

w 2 - f 3 bx2 - bx3
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then the conditions (34) and (35) enable us to solve for the

6xi etc. in terms of the u, v and w. In matrix notation, with

a defined as in (12), if we write

X =FUl ,

where
bx1

6x 2

6x3

6Yl
bY2

bY3

(11.37)

(11.38)

the transformation matrix F is given by

Ig=

where

and

0

e
-Y

I z x23

]

0r01

0 O

0 --
O (a

mz
O~~~a

0
M

_ x13

mzX23

mXx23

mXY 23

ox23

x 2 3

(II.39)

(II.40)

(II.41)

Now, the kinetic energy of the vibrating molecule is

given by

2T = ( mi(+ 2 ), (II. 42)
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and since

xi -= I (II.43)i bY1

we can use (37) to express the kinetic energy in terms of the

intermediate coordinates u. After some algebra, we find --

cf. (10) --

2T = 't* ,

Me(y )

e 23

a M2x El Yl

mxmz 3

2
x23

TM2 e Ye

mX mZ x2
f2

~2E I e

2

mx 3M 

2
23

e

MY1Y23
2
23

Mx1 Y23

2
x2 3

X2

(II.45)

The displacement coordinates x are related to the

normal coordinates Q through the transformations (37)

(28):

x = Fu = FPQ = UQ ,

and

(II.46)

where

F FX)P U 1
U =FP = Y)P = (II.47)

Now let us write*

6x = i L(X)Q

IYi = is 8 iss,
(II.48)

where

(II.44)

* The literature normally uses an italic " " where we have
"L"; for typing purposes we find it convenient to use the
present notation.

.
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or,

ox 1(x) =x)qz _ lLig =( X)Q

y = -zl(y)Q : (Y) (II. 49)

where

X 0 m2 0 = m0 , (II.50)

and

adx) = fix)

X) = jy4) (11. 51)

4. Potential Function

It is desirable to express the potential energy as a

function of the displacements of the nuclei from their

equilibrium positions, since in this form it should be

practically independent of isotopic modifications of the

molecule.

Of the two types of coordinate systems which are

suitable for this -- central-force and valence-force -- we

choose the central-force one, where the coordinates are the

changes in the distances between each pair of nuclei.

Let

ij = [(X iXj)2 + ( yji )2]i (11.52)

be the distance between the i-th and -th particles, with

= [ extx)2 + (y ie)2]i = ( yV , (II53)

which is the equilibrium distance. Also let

I
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ri = ij - e
ij (II. 54)

be the relative displacement from equilibrium; the rij are

thus the required coordinates. With

xi j = bx i - bxj ,

we have

s:j = (xi- x3 )2 (Yi )2

= ( t+Y ) +2(xi xIJ + (XJ i) 2 +Y

(SleJ2 + 2(xij xiJ+YiJ bYiJ)

so that

to first order,

2 e + 1 -(x 6 bx+yi ) b)
ij st sese 1j+j

ijand

e 1
rij =- sJ i e -(xij xij + yij byi ) (11.56)

We will denote the set of coordinates j

We will denote the set of coordinates rij by r:

r = r2 r13 1

L r3 L r23

(II. 57)

From (56), using the xij and bYiJ calculated by means

of (37), and the xij and Yij given by (9), together with the

obvious relations

e e
s12 re =13 ' se = 2a,

23 (II. 58)

we can calculate the components of r in terms of the

intermediate coordinates u; we write

(II. 55)
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(1I. 59)

with

1 ( MYl Y12
re X12 mZX 23

|z_ MXy3 3re (x3 x 2
re l3~ mXx23

... e(l+ X13 )
1re M mZ x23

Y3 (1 _ X12
re mX23

m Yl.+ _X23

-r (x13 + 2
e 23

Mc yY2
2mx n a x 23

m 1xl23
2mxmza X 2 3

Using (28), we can also write r in terms of the

coordinates:

r=Tu = TPQ = q , (II.61)

where

8= TP . (II. 62)

We can now get down to the business of handling the

potential function. In terms of the rij, the harmonic, or

quadratic, portion of the potential energy function may be

written in the central-force form

2Vo = t tKijkriJrki 

i=l k=l
j.i f)k

K 1213 = K1312

K1223 -K2312

K1323 = K2313

For the type of molecule under consideration, the

2a

x 2 3

(II. 60)

normal

with

(11.63)

(II. 64)
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potential is invariant to interchange of the nuclei 2 and 3

(i.e. invariant under the symmetry operation , which refers

to reflection in the x' ,y'-plane); this interchange results

in the exchange of rl 2 and r 3 , so we must have:

K12 1 2 = K1313

K1 223 = K1323
(II. 65)

Thus we can write:

2VK 2 2 r2 ) + Er13 + 2E13rl2 13 + 223 (r 12 r1 3) 2 3

(11.66)
or,

(I. 67)
2Vo Kl(r r2)+ K r3+ 2Kk 2 rlr 2 + 2K 3 (r 1 +r 2 ) r 3

i.e.

2V o = I'r ,

where

Kl;l
K' = 

K12
L 3

13 K1212
K3 = K1213

K33 K1223

K1213 X1223

K 1212 K122 3

K1223 K2323

In terms of the intermediate coordinates u, we have from

(59),

2V0 = r' = = i'Tu = ulX , (11.70)

where

K = Tr' . (II .71)

We now have the harmonic portion of the potential energy

in the required form (10).

K12
K'11

"13

(II.68)

(II.69)

)1111l1.l1l111 -�1-·- -
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The cubic portion of the potential may be written

V1= Ikvi=j Kij krirj r k

In this work we are interested in the analogous expression in

terms of the normal coordinates:

VL= z
s,~ 5':<58"

(II.73)ks Q QB , 

where the kis, ,, will be functions of the ijk and the

transformation coefficients Sij, since r = Q . For purposes

of computation, we find it convenient to express the

relations between the Kijk

way: let

K 1ll K112

K122 K22 2

K133 K233

0 0

113

K
K223

K333

K1 23 -

and the k' in the following
8S8' 8"

klll

k122

133

0

k'112

222

k233

0

113
kI223

k333

123 _

, (II.74)

S 2
12
2
22
2
32

S2
13
2
23
2
33

S12S22 S13S23

(II.72)

and

' =

2
11

S2
21

S2
31

llS21

(II.75)

�



2S11S12 211S13 2S12S13

2S21S22 2S21S23 2S22S23

2S31532 2S31S33 2S32533

llS2+12 1 1 2 3 + 1 3 2 1S1S2 23+S13S 22.

a = kB

= ' = kS

y= t-s= n

Then it may be verified that

1l

021+¥21

031+¥32

P12+ll

022

32+33

0

1l3+1l2

P23+23

833

rl3+22+3l -

From the symmetry of

as discussed on pp 16-17,

have

the molecules we are dealing with,

it is easily seen that we must

K1 1 = K22 2

E 1 1 2 = k122

K113 = K 223

K133 = K233

(II.79)

A discussion of the method of determining the potential

constants from observed infrared data will be postponed until

Section 6.

Bn =

19

Now let

. (.76)

(II.77)

(II.78)
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5. Specialization to H 20 Type Molecules

For this type of molecule (described by the point group

C2v, with orthorhombic symmetry), we have

baxl- -(x 2+x 3 ) 1
u,, = a -y(6y 2+ Y3 ) )

L 6x2 - 6x 3

(11.80)

2m

2m

We defline

0 0 0

0 I , jy) = [ m cot a

0- i J-2m cota

,' = (1 + eb 2 )
2

a 01.

2m

0
2m

(11.81)

I
yy

(II.82)

then

O Of

0o 2

(II.83)

and

- sin a

f = U sin a
Oiel

cos a * sin a

cos a - sin a ,

0 1 i

(1I. 84)

so from (71),

2 (K 1 - K 2 ) T 1

2 (K2+K2)T 2

2 (Kl1+K 2) T12T 13

+ 2K{3 T 12

2 (K{1 + K{2 ) T1 2 T 1 3

+ 2K13 T 1 2

2 (K; +K )T12

+ 4Ki3~l3 +K3

(I. 85)

0

0

0

0

� __ I

is

L 0
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or,

0 0O

k; k4

vk4 ki J

= , A= , y =,

where I is the identity matrix, and

= iV .

(j) w

Thus,

B = 11 = E
-1I

ik3

[k3
[O

If we choose

0
= I sin¥y

cos 

0
o lk'

o ci(U k4

0o 0
k2 k 4 .
k 4 k 1

Also,

(11.86)

(II.87)

(II.88)

0 0 1

I (II. 89)

0

cos y

- siny

then,

1
01
0 J (II.90)
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o = BBB -

klCo 2 + k2sin2 T

+ k 4sin cos r

(k2-k)sin y cos 

+-L(k 4cos
2 y-sin2)

O

(k2 -k 1)sin cos y

+1- (k4cos2y-sin2y)

k 1sin2y+ k2 cos 2

- k4 siny cos 

0

and

0 0o

c 2 432 iO az3 

provided

(k2 -kl)siny cosy + k 4(cos 2y- sin2y) = 0

i.e. if
k4

tan 2 =k

(see also equations 106 and 107). Then

2 = klCOS2y + k 2sin2y + ksin cos r
1 1 knin 22 = klsin2y + k2cos2 - k4siny cos y

2 = k3 .

Also,

P N =

and

P() jx)P =

[
[

0

p- sin y

- cos r

0

p-' cos y

- () sin y2

O

0

(II. 96)

0 RS '-i

_4
- g(M) Bin 2- =mp

() sin - 2m '

22

0

0

k 3.
(II. 91)

(II.92)

(II. 93)

(II.94)

(II. 95)

(II. 97)

-
CD1

a = 0 

0



Y)= j= Y)p =

M

_ }i
2m

2.
2m

Cos T

Cos y

cos T

'-ico t a

- 2' cot a2m

0

L(x)

T

T - 2 2 sin f

2 2-in T- 2'cos

'} ) sin 

_- (m) sin 

m() Cos 

m) os 

j(P*
m _ m

-, snT cos a

4(m)-cosy sin a

mi(2) CO- Til

(M) cos T

ipisin seca

* ~ cos sec a

cos Y

'-4 Siy cos a
-i(l2) siny ina

m CC y cos a

-'(m) siny sina

- () sin y

iisin seca

i-i cos y sec a

-- ' 4 cot a J
(II. 100)

- * sin a

sin a

0

(II. 101)

42 8snytana

+ ( ) Cos 

- ic) stan a

- () sin81122

* i cosec a
2

23

M

2m
m
2m

0

0

(II.98)

2-P
_2m l ' -
-2m--'-

= lla ) =

(II.99)

0

cosec a 0

(II.102)

=aU() 

I

siny

I

I

i

WT7
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6. Determination of Potential Constants from Observed Data

The constants in the harmonic portion of the potential

energy can be determined from the normal frequencies,

provided the latter are known for two isotopic species (e.g.

H 20 and D 20) since there are four independent constants

involved, and only three normal frequencies for each molecule.

The normal frequencies are, of course, determined by analysis

of the vibrational spectra, and we do not attempt to do this

here but merely use results given by other workers.

Thus, Darling and Dennison5 have given the normal

frequencies for H20 and D 20, and we base our calculations on

their work.

From the relations (95) it is readily shown that

[(+2)] (H) _ [( 2 (

[m()+co2)] (H) - [m( +o2)] (D)
2 (mi) (H) _(m/ ) (D)(M/,,) (II.103)

k = () k= 2

k A = + 2 (k 2 c ]

where the k's refer to equations (86) and (89), and the

superscripts (H), (D) mean the terms concerned are to have

the appropriate values for H 20 and D20, respectively. --

Knowing the k's, one can easily work back to the K's of

equations (66) through (69) by means of the relations

_ ___ __ _I_ I
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K1 2 1 2 = Kil = (ksec2 a + 1K'cosec 2 a)

K1 21 3 = K 2 = (ksec2 a- tcosec 2a)

K1223 K = k(k ' - ktana )sec a
(II. 104)

K232 = K3= - k4ta n + k2tan2 .

One may also calculate the transformation coefficients

of R (equation 90) by means of the relations

sin = +

C0S = +

co2 _ 15, 

1 1)

)2 k
1 2) 
2 2

U1 t2
which in turn can be derived from the alternative formulae

siny = + 2-2(1-xi)*

cosy = + 2 (1+x2) .0)

where

(kl-k 2 )2

k4; (k 1 -k 2 ) 2

k1 - k 2 2
2 2
1 2

The cubic potential constants appearing in (72)

(II. 107)

may be

calculated in the following manner. In the notation of

equation (II1.42) we write

(II.108)V 1 kss' s' qsqs qs ,
a s~'s

where the relations between the q and our normal coordinates

Q are given by

(II. 105)

��_I _I__ · 1____�1 � _CI_ _ __



26

q ( s8 , (II.109)

and those between the ks, s " and the k'i stt of (73) are
ss' 5"

ksss 3/2( k'

k s = ks sss s k' ss

(II.110)

ks = ks ss = kss ls

where 8 sB< s" and the second of thee equations holds

where s s' < s", and the second of these equations holds

also when s and s' are interchanged.

Quantities simply related to the ks, ts" are given for

H20 by Darling and Dennison, and from these the k, ,, can be

obtained as the coefficients in (73). By applying the

analysis (74) through (78) in reverse -- i.e. using the

inverse transformation matrix S- 1 throughout in place of --

the Kijk Of (72) may be calculated.

7. Nature of the Normal Vibrations

One can get a good picture of the normal vibrations by

examining the matrix S -1 , since Q = 5r shows the relation

between the central-force coordinates and the normal

coordinates.

For H 20 (D20 will be very similar), we see from Appendix

B, Section 2, that Q1 is formed primarily from equal

contributions from rl2 and r1 3 , so that 1 represents a

stretching vibration along the two 0-H bonds in which both
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hydrogen atoms are moving symmetrically in phase; l is thus

associated with a symmetrical stretching vibration. Likewise,

W3 corresponds to 0-H bond stretching in which the two

motions are exactly out of phase, so this is an

antisymmetrical stretching vibration. The frequency 2

corresponds to a bending of the molecule.

The corresponding matrix for HDO is (roughly)

0.0188 1.6597 0.0832

~S- 1.2863 1.2722 -1.6425 x 10-12 2

-1. 2087 0.1202 -0.0566 

so the main contribution to Q1 is from r 2 = rl3, and the

frequency l corresponds primarily to a stretching of the

O-D bond. Similarly, the frequency 3 arises almost entirely

from the O-H bond stretching. The frequency 2 is again due

to a bending vibration.

The displacement coordinates x (which are referred to

the principal axes coordinate system) may be expressed in

terms of the normal coordinates by means of the matrices U,

and the columns of U give the (relative) displacements of

each nucleus for a particular normal vibration. Using the

components of U one can then make geometrical diagrams

showing the relative amplitudes and directions of motion of

each nucleus. A set of such diagrams for HDO, based on the

calculations presented here, follows*. They are self-

* For H20, D20, see references 5, 7, 28.

----I--�
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explanatory, but note should be made of the 2 bending

vibration, which is clearly shown to consist mainly of motion

of the light atoms in a direction almost perpendicular to

their bonds with oxygen; accordingly, one might suppose that

a valence-force potential would be more appropriate than the

central-force type used here.

I
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III

VIBRATION - ROTATION ENERGY OF MOLECULES

ABRIDGED THEORY

The notation and methods of this Chapter are based on

those of Nielsen*, though we find it convenient to deviate

slightly from his work.

Our aim is to treat primarily the rotation problem,

including vibrational interaction, to the extent that the

theory may be applied to molecules considered in this thesis,

so we neglect certain aspects of the general theory.

1. The Classical Problem

Let

Si =i+bPi (III.1)=i = i + 6$i

be the instantaneous position vector of the i-th nucleus, of

mass mi, in the molecule; here denotes the equilibrium

position vector, and 6gi is the vector representing the

displacement from equilibrium.

We neglect all effects due to the finite masses of the

electrons in the molecule.

The components g of i are to be measured in a

coordinate system (g = x,y,z) fixed in the molecule, and thus

in general rotating with angular velocity s about a space-

fixed system whose origin coincides with the origin of the

molecule-fixed (gyrating) system. Accordingly, we are also

* References 24, 25.

I -
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neglecting effects due to translation of the molecule with

respect to the observer; such effects are not of interest

here.

In the gyrating system, the i-th particle has a velocity

gi; because of the rotation, however, an observer in the

fixed system sees a velocity k + (x i ), and the kinetic

energy T of the nuclei of the molecule is therefore given by

2T = Z mil[i+ (.x6i)12 . (III.2)

Since

gi(a x(gi) = (xgi)' g =. I (iX i)

expansion of (2) gives

2T = mi i2+ mi(xi).(xgi) + 2. mi(gixi )
(III.3)

The first term represents the vibrational energy, the second

the pure rotational energy, and the third the energy of

interaction between rotation and vibration.

It is convenient to place certain restrictions on the

gyrating coordinate system. Firstly, we choose the origin to

lie at the center of mass of the nuclei. Secondly, we let the

axes g coincide with the principal axes of the molecule when

all nuclei are in their equilibrium positions. Thirdly, we

observe that in the equilibrium condition there is no

internal angular momentum of the molecule. The first and last

of these restrictions are expressed in the relations

mi6i = 0 , (111.4)

zmi( x i) = O (III.5)
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and these are equivalent to (II.34) and (II.35) of the previous

Chapter. We also note that

(111. 6)

since = O.

The rotational energy term in (3)

mi (ex gi) (mx gi) = Z Igg 
gg' g,

may be written

(g,g' = x,y,z)

where

Igg = mi ( g , - gigi ) , (III.8)

and 6, is the Kronecker delta.

Using (5) and (6), the interaction energy term in (3)

becomes

2-E mi( ix6i ) = 2.- mi[( x i) + (1ixS bi)]

= 2.6 zmi(6Bizx bi) = 2aX

= 2Mgg ,6 9 9

with

(III.9)

(III. 10)

and

Mg = g ; ; miEi6'g" gi b;.' (III. 11)

Here

Egg gtt = (

+1 if gg'g" is an even permutation of x,y,z
-1 if gg'g' is an odd permutation of x,y,z
O otherwise . (III.12)

Finally, let us write the vibrational energy as

.2
i i QS I (III. 13)

where the Qs are the normal coordinates of the molecule, and

(III7)

� __�__ II

smi i(e s, 
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let the equation

= ,i m £ I ,si | ( III. 14)

define the transformation coefficients* Ls It follows fromis1

(13) that

E ig)s is' - s
i g is is' as 

(III.15)

In terms of the normal coordinates, we may now write

(11) in the form

Me= - A(1)s ,
1119 S S

(g) - £g, E Q-S

L()L(~
s' ig' ' is is' '

StSS SI9

(III. 16)

(III.17)

s(g) - '(g) = Ig £ i.
,B 8' i gt gI 9,2 is-is,

. (III. 18)

The kinetic energy (3) now becomes

2T = Z + Iggl ,cog + 2 Mgg .
s gg' g 

The momenta p s, P conjugate to Qs and lg, are given by

p = aT9 aT P
g ao

P = Qs - E A() g,

P = Z Iggc, co, + M = I o - Z A(g) .
SI g S SS, SI 8 8S

where

with

hence

(III. 19)

(III. 20)

(III. 21)

(III. 22)

* These are, of course, the same coefficients as discussed in
equations (II.48) through (II.51).

--- -- ---- �-~�II I--
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Thus (19) becomes

2T = 2 A(s)Q + Igg
S - EA )4g + ZZ1 

or, on rearranging,

2T = ( 4 - -A(g) + ( I at - A() .)ag
s ga

+~~((~g s

-= PsQs + Pg g 555 6 g
(II1.23)

If we use (21) to replace Q by ps + ,Ag )c g then (23)

becomes

2T = p 2 + pAg) + W
s s g g g g

2 ( P

2 Ps A(P s +)W6
S S g ES ES

Ps p2 + Ngmg ,g 

where, using (17),

(111. 25)
s S s s 't B s P s

and pg is the g-th

angular momentum.

Here,

Ng = P - pN P - p 9

= Igg, og,
5 1 8 5

= I Wa
gt' gg, g

component of internal (vibrational)

- AS)4$ + A(6)
B S s

S S 5' 

= I it Icost , (III.26)
gg a SS

(111. 24)

II

P =
9
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with

I6, = Igg, - z(, A( ) S S

Then,

Igg= M 2 , ) - , 96 i

= g' ' )s 8 S 

= I' (III.28)

where

III. 29)

(III 30)Ise 1) = E Z L).g) ) ,) I
or, from (15), gt s' is is'

or, from (15),

SSt = ss ' (III.31)is is 

In (28), I, is the equilibrium value of the moment

inertia about the gg'-axes; in (29), gi, se and g

of

are the

equilibrium coordinates of the i-th particle on the axes g,

g' and ", respectively.

From (26) we have

so we may write

Ng= ZI'g og,

for the inverse transformation. Then (24) can be written

(III. 7)

g) = p ,gg Ng,S 9 '1 '~
(III.32)
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2T = Z p2 + N 
ss + g 6 i

(III.33)_ P+2 gg g.= ps + EE NgN

Now let us expand the pgg, to terms of the second order

in Q; after some algebra, we find, to this approximation,

that

(III. 34)

( S I e '
gtl g"st

(III.35)

Substituting in (33), using the relation

N = - pg 

we have

2T = p2 + (P ) (P )
55 

and, expanding to the same order of approximation,

2T P + I
8 s Ie

g ge

- S P 2
Ie

g gg

_-g CS 4 I)T Q +
g5' S g g'

p2

Ie
S 55

2 ' 5 Ie Ie 1
gls g~ gg

P P
E as, QsQs

ggW Iat ; gte!

a8 

(III.37)

The potential energy may be written

11g * 1 ( 1e ,Ig -_~Z Ag'g - Sgg t l)o

gg g'g'
with

) - -A( g) r(V)
8s' 55' Ssit sste |

(III.36)

--- I __
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V = E cQ + E kSS EVQs ,QM, + 3 kS85'QBs,%1P-sQ

(III.38)(s *4 ' 4 8"1 s'") ,

where the k' ss'and k' are the cubic and quartic.

anharmonic potential constants, respectively, and

Co = 2 svs s
(III. 39)

where the vs are the normal frequencies (in c/sec).

Thus, to the order of approximation which we are

considering, the classical Hamiltonian becomes:

(III. 40)

where the summation over the last two terms is restricted by

the condition s s s"1 sSI". The pg are given by (25) in

terms of the normal coordinates Qs and their conjugate

momenta ps.

P2 
2 ½Ps e e es I e I e +

g g8 g gg g I

_ F , 'r as Q + E1 ag2 2)

55s I e I e S s s 2 5 s
gg ss' g ge'

+ k' s Q Q'Q + k' StstQqstQsQs"tSW 8 S BI~~~~~ S !

___ _· I _ I_� I �I�___ __ ^I _ I �I ___
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2. The Energy Matrix

The quantum-mechanical Hamiltonian can be obtained from

(40) if the quantities P P, pg' Qs are regarded as

operators. The interaction between vibration and rotation

may be considered small enough to allow us to neglect the

non-commutability of P with pg; products such as PgPg, have

to be symmetrized in order that the Hamiltonian be Hermitian,

but this is automatically achieved by the double summation

over g and g' appearing in (40). We need to symmetrize

explicitly only the product PgQ8, and replace it by

i(pQ + QsPg,) pg itself contains the factor Qs,,, which

does not need to be symmetrized since its coefficient sg,

vanishes when s' = s.

Accordingly, we may write*

H =H o + H'

Ho _E (p 2 +sQs ) +2 ES + B o8) + Ie
I egg

H' = 1) + 2)

(II.41)

41) = Z k' QQ ,Q P - - L a 
Zss e e Ie Ie S

g gg gg gg gg

+ e (E) (Pie Qs Qsp
gag,gg Beg, s

* One may proceed in a more sophisticated manner, and first
obtain a general Hamiltonian; Darling and Dennison5 give,
without derivation, the form
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Ie I e i8 ' e

g gg gg'ss' g 'g

The reasons for the separation of 41) and 42) will appear

shortly.

In (41) we have not taken into account the possibility

of degeneracies occurring between the normal frequencies s

because this complication does not arise in the ground states

of the molecules H20, HDO, D 20.

It is now convenient to replace Q and P by the

dimensionless coordinates

qs (T)" s , (111.42)

and their conjugate momenta*

p ( P ) (III.43)

then to redefine a dimensionless Ps by the relation

Psnew) '= a=&) P(dd) * (III.44)

We also introduce new potential constants k , s and

ks , , where the kss,, are discussed in Section II.6, and

the ks,,s,,, can be treated in a similar manner.

With these changes, the components of the Hamiltonian

B y = ip 4 (_+ i 1 -4 p ,/4 vH , - ,,) , , =-/ n Is iA 

where p-1 is the determinant of the Ig given in (28). It may

be verified, however, that to this order of approximation,
the resulting operator symmetrization is equivalent to (41).

* Nielsen2 5 , equation (II.44a) and thereafter, continues to
use ps, but with the meaning of our P'.

__ _ ~ ~ ~ ~ ~ ~ ~ I _-----(-- --· _--· 1 _ 1 _ _ I~~~~~~~~~~~~~~~~~~~------
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may be written

p2
H =i g I (p2+q 2 ) + I _0o 55S 2 e

g gg

ssbts=w g gg 

g s 8s )

.1I - - P
Pgqs+ qsPg, )

i e 2 e e o- qSqs
g gg gg' s gg g' 8

+ Z~Z Ek m, qsqlqgss'~" ssISI sq"

+I· t 8
+g 2 )

(III.45)

with

g E(X (.q8P8. * (111.46)
88'

The two terms of H o belong to the harmonic oscillator

and rigid rotor, respectively. Corrections for anharmonicity,

Coriolis interaction, and centrifugal distortion are included

in H', which we will regard as a small perturbation on H o0

In order to calculate matrix elements of H we will

choose the usual representation in which H o is diagonal in

the vibrational quantum numbers v and in the rotational

quantum numbers J and M. In this representation, the harmonic
&

a · I
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oscillator matrix elements of q and p are given by*

(vlq5 lvs+l) = i(vslpslIV+l ) = [(vs+l)] (III.47)

where i = /(-1), while the matrix elements of P are**

(III 48)

We note that qs and ps are diagonal in J,K,M and v, (for

a' as), while P is diagonal in J,M,v

3. Vibrational Diagonalization

First let us diagonalize the vibrational dependence by

conventional perturbation theorv***. We remove matrix

elements connecting different states v, v' (where v denotes

the set vl, v2, ... describing a particular vibrational

state) and bring them into each v submatrix. The resulting

matrix, though diagonal in v, will still be off-diagonal in

K. We thus have

(vlHv) = (vlHolv) + (vlH'lv) + 7W(v) - W(v'i (III.49)

where vt

W(v) = (v +,)AMs , (II1.50)
S 

* For brevity, we will not list conjugate matrix elements.

** We use the same phase factor as King, Hainer and Crossl5$
this paper is hereafter referred to as KHC I.

** The literature usually applies a contact transformation
to diagonalize the Hamiltonian, but for present purposes
it appears simpler to use the straightforward method.

(KIPy IK+l) = - (KIPxlK+l) -= - [J(J+) - K(K+1)

(KIP z 1K) =K Iz 

-- --- ------------------ ·-··--·--- ------- -�--- --�1111----~sll-"1-~~
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and we have neglected rotational corrections which are small

compared to the energy differences between vibrational states.

We may now investigate the Hamiltonian (45). The zeroth-

order part, H o, gives the usual harmonic oscillator energies,

though the rotational term is still not diagonal in K:

P 2

(vIH lv ) = (Vs+) + *E ig . (III.51)
g gg

In H(), all terms except the second are odd in qs, ps,

hence give no first order correction, but may contribute in

second order; the second term has no diagonal matrix elements

since s' s in (46).

The last of these terms in (1) is a correction to the

second (Coriolis) term, which is itself small (vanishing in

the limit of the rigid rotor or non-rotating oscillator). For

the ground vibrational state (v = O), with which we are

primarily concerned here, this term can be neglected, so we

will not carry it through in the calculations.

However, this Coriolis correction term, as well as the

cubic potential term in ks,s, , may connect higher

vibrational states by resonance; the second order perturbation

term gives some denominators W(v)-W(v') of the form ms-ms,

2as-ms, , etc., so that if s w ,, 2 s, Uw85 , etc.,

portions of the matrix must be diagonalized by solution of

the appropriate secular equations rather than by

conventional perturbation theory. Other similar resonances

may occur, and the matrix must be examined carefully for each

individual case. Types of such resonance do occur both in H20

___ __��
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and HDO. Fortunately, however, the ground state is not

affected by any of these interactions*, so we will not have

to consider the effect further here.

Inspection of I2) shows that the terms are even in q,

PS, so matrix elements diagonal in v can occur, giving first

order contributions to the energy. As before, resonances may

occur, but again they will not affect the ground state, so

will be neglected here. We will neglect the term in 2 and

the quartic anharmonic terms, since, being independent of the

angular momentum operators Pg, they will appear only as

vibrational corrections.

Thus, in the following, we will consider the perturbation

(III. 52)

We will start by computing the first order corrections,

i.e. the diagonal elements of the last term in (52).

The diagonal matrix elements of qqs, are

(V8sqg, IV s ) = (Vs+) 6ss, (III.53)

*Because resonance effects occur for denominators of the type
s,-cs, hence with matrix elements of the type

(v s, Ijv-1 v,+): for the ground state the matrix elements

(v s vy -l) etc. do not exist.

H" = z k Bt qSqR q ts s s 

- I 2 L -: - qe e
gg'L gg'g' s s

-6 e e 5 s s '

I~ ggg' ss s st

P -0
9 R

.
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so that

P E')'
(v " I v - gi RI (Vs+.i) Bs (III.54)

gg' gg Ig' s

For the second order terms, let us write

HI' = ss8 s; k ss" qsqsqs

1

i2 = e e ss' qsPs'
;gggg ss,'

e Ie W 8
gg gg gtg s s

The matrix elements of H are

(v HI |vs+1) = - . [-(vJ+l)] * (III.55)

For H2 we have

(v.v,%,iPsv, Iv+1v,+l) = - ji[(V8+1)(V85)] '

(v v 8 1i%Ps,I v+l V,-1) i[( 8+)V 83 ,

so the matrix elements of pg become

(vsv IP Iv +l1 v 1 ) = i (s-ost) (vs+1 l) 2

(v v 5 pIv+lv,-l) = s ( + )[i(v 2 (III.56)
9 Bs S CD~~~~SC St

hence,

_ _
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(VS V, IH 2Iv+1 V,+l) = e 2 S t s ]

(III.57)

(VsVsIHIvs+i Vs-1) = 2 i ss ( (V ) Vs

g gg

Finally, for H1, we may write

3 2
ZZk88kqq = Zkssq s + 3E,'k S

s s % s s St

+ ZZIV''ks:,,s qsqs8 qs , (III.58)

where Z' means a summation over values of different from
Sl

s, and V" means that in this summation s" is to take only
Sit

values different from s and from s'. Now,

(vsIq v,+3) [ = [ (vs+l) (v,+2)(vs+3)]

(v q3 v +l) = ~(vs+l) (v 8 + l)]

(Mv s,s$'~qv~,,ky=) = i(v,,cvs

(vs Vsv qsv.+1 vS+l) - (V+) +l(v,+l)(v,,+) (v 8 +l)

(v8 V, I q. 2, 1Ivs+l ,+l - ) = (Vs+)v

(V' 4r vs~cCIqS, l v18,+ VS+1) (B1) (VP. 1) = 1S

(V VV1q8 aqglV+1 VS,1 Vsn+ 1) [ (V+l) (v,(+1) 

(Vsv 5 v Iq %81v8+l -lv 5 3 -"+l) = I( 8 s vs ]

_ _ _ _ � _ _ _ __ _III1 PII_ I _ _I _ -----�11�1---· _ --��_------·-··-·�··�-······�·II�-)�
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The matrix elements of H are then obvious, except perhaps

for the (V8 Va+1) terms; for these we have

s 3 1 (Vs ks 8 q + 3 'k , qqs,1 V+l) 

k Rss(v +l) + Elk (v' +i ] [ (v+)]8,St B Sat 

Thus the off-diagonal matrix elements of (52) --

excluding the last term -- are

(vB v +3) k888 k [ (V'+ 2) (v (Vs+ 3)]

(vlvs+l) : (V+1)ksss + 3ks.8 (ssls

PP ~ggs) f

-
gg3 fgg glgl g

CaC8 Bt J

: i1/ i (s(+%D') %% ]

3 ks,,8 , [(vs+ 1) (v,+l) (,+2)]*

(V V, V+l 1 ,-2)
(III. 59)

: 3 ks St IE(vs+l v8(v, j 1)]

(Vs Vsivs1lV8+l Vs%+lv%+l) : k8s. [(v,+l) (vs,+l) (v.+l)]

v%,v lv+lv(-lvv+1) : k Fs(v.+ + (v+ .)

(Vs v5 v v g+ -v) Vs SIsI( + )vssSI ..

1

7(v + 1) (Vs,+ 1 ItI a I

----

;th:~ ~s~,(r-wP
- i ediC.-O

(V., I V E+1 v & 1)

(v., IV. V+1 var-l)

('% , I S+ Vs,+2)
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From (59) we get for the second order contributions

IC IvI)1 2 = ( gig~IXn a ) ~,,)
W(v-W(vI) Hv - L Ie g Ig e 2

P P a

2 e e 8 sss (3/2
gS' gg $g' ss' 81

+ Ie e Vs+W) s ' '

(III. 60)

where H" includes all the purely vibrational terms, whichV

have not been calculated explicitly here. If we now add in

(51) and (54), the vibrational diagonalization of the

Hamiltonian gives finally

P 2

(vIHjv) =Ev +_i --e - iL (s+)w '

I gg gg' {3g 6'g' S

L I e Ie Ie i eZ

gg ' gt gg g"' g" s s
SEv 9t , ,~g g,,

E v + HR , (III.61)

where E is purely vibrational energy, and



Ha = JEZ P + EZZ T PIP P
g g, ag , g g, 2j 991VII 99-g`1 1 9rP t9II

v, 1=(v b
g' V e 

9' gstg

a(gg') v")
1 1 as as

'gSglgl- 2 e Ie ie e 2
gg gt'g' g" g""' s

b( ) 1 1
I Ie cs
gg gg g'

g,, ,, gSsE' ~"g isss L e

- 4L ) 5's 5's' s' 2 2
S' C0DS-DSt

3 4 oC3 sL k s32 

(II I .65)

For the ground vibrational state, when v = , = O, the

double summation over the third term in (65) gives

1 _

Ie Ie Co
99 Ocg

[A - S S

g A ar"'e i" ,

s 2 -) Oa) ]8'

St St C st

(111.66)

If s C os, , a case which is applicable to H20, a

Coriolis resonance interaction may occur between vibrational

levels, and, apart from other changes, the third term in (65)

will require modification.

Equation (63) defines moments of inertia in the v-th

vibrational state*:

48

(III.62)

(III.63)

(III. 64)

8(o)

* These are usually called "effective moments of inertia",
but we will reserve this term for use in the next section.

�--�-��-�- -- ---- -- -- -- -------
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Iv = igg, _ I v,+j) ]9 

e [ + I z(v+)') ] , (III.67)

since the bg9) are small.

We can obtain a useful relation between the I of a

planar molecule; for this case, with the usual convention

(III. 68)IaaC Ibb Icc 

we have

Ie = Iaa + Icc aa bb ' (III.69)

the c-axis being necessarily normal to the plane of the

molecule. We now define the "inertia defect"*

I v= I v
v - IV
aa bb

It is readily verified from the definitions (18), (29), (30)

that, for this case,

A(C) A(aa) (bb)

(cc) a) (bb)

sac) = = (),

ts = 0 (b)

* Our definition follows that of Darling and Dennison5, who
were the first to introduce the quantity; a number of other
writers have used the negative of this.

(II.70)

I I I I II I I I
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so, from (67) and (69), it can be easily shown that

2(a(,) ) (a(s ) + (a(b)
(cc) 2 (a) 2 (a (a (a

(v+ -A [(aS a (a 8

nv 7 (usI) e le- .... e ......
s cc c Ibb

S 2_ 2J

S' 83'2 9 

(TII.71)

In particular, for the ground vibrational state,

I I

+ 2� (c) s +

(SIII72)

The great advantage of these last two expressions is

that they are independent of the anharmonic potential

constants. For the water molecule, our calculations (Appendix

C) show the approximation is good to a few percent for this

case.

4. Rotational Diagonalization

Diagonalization of the vibrational dependence leads to

the Hamiltonia (62) for the rotational energies. To this

order of approximation, there appear no terms cubic in the

angular momentum operators, and the calculation of matrix

elements from (48) is straightforward, though tedious; we

(aa) 2+ (ab) 2 (a(bb) 2 +(ab) 2

I e
II e ~ bb

) 



list some of these in Appendix A. Collecting terms, and

leads to the following matrix elements of

(KIHRIK)

(KI HRI K+1l)

II ~= IRK 4 l I Il I I I I 

= Ro + R2K2 DKK4

= (J, 1)] ! (2K+1) (B Z+ iBx )

+ (X)+iR(y))J(J+l) + (t)+it4gY)8 8 9 9 ) K2+ (K±+) ]

(KIHRI K2)

(KIHRIK+±3)

(KIHRI K+4)

= [gg( ,K )(J ,K+2)]1

- (R_+iR ) [K2+(K-2

= [g(J,K! (J,K K2)g(J ,K-3) (2K+3)()i))

= [g(J,K+l)g(J,K+2)g(J,K±3)(J,K+4)]2 (R 6 iR6)

(III.73)
where

R o = 2(Bxx+Byy)J(J+l)

R2 = BV - (Bx B )
zz xx yy

=4

- D 2 (J+l)2

- DJKJ(J+1)

+ 6jJ(J+l)

R = Bx + J (J+1)

Bgg = j 2 v(eff)B~~gl ~gg,

av(eff)

a 2

2 1 v(eff)

=ga'v

= J(J+1) - K(K±1)

51

(62):

(III.74)

(III.75)

and

(III.76)

s I rpl fy ing 

g (i , K±1



Dxx V (x-rcxx+ 2-r yy2 xy+4rx -12"ryzyz+ 8rzxzx)=Y xxxx Ayyyy xxyy Xyxy yZyZ zxzx
y = 4 x.xxxy-2dr +4'r y+8-r -12'r

YY XX y yzy ZXZX
DZ. = - (Dxx+D ) + (5zyz+5rzxx)

D = A 2 ryz zxzxzxxy 2 yzzx

Dyz = - 2 (yzxx yzyy 2xyzx)
Dz x = J2 (rzxxx- zxyy+ 2rxyyz)

DJ = +32 ( Drx+ 3ryyy+2rxxyy+4rxxyy 4~xyxy
A 4

E = J - ~(¢zzz- zzxx' yyzz-2yz -2xzx

DJK -- D - DK - -T zzzz

A4

5 = - ( xxxx-ryyyy)
4

J = -(rxxxfy+yyxy

5 ( xxxx f y Yzz-2zzxx+ 4ryyz- rzxzx

R -- xxxy yyxy zzy yzxzR5 - - (xxy+-ryyx2 rZzx 4 rzxz)
14

R6= - (x Y-yyx )y)

R - (rzxx- rxy- 2rxyzx )

L7Y) 1= _(rzyx-zyyy 2rxyzx)

R 8

RT)

9

R9)
9

7= E(zxx + 3ryzyy+2rxyzx)

= (3rzxxx+ x rzx+2'rxyyz)

-_ R(X) P6 1.8 yzzz

= R + T zxzz

52

(III .77)

III .78)



53

The quantities usually designated by R 1 do not appear in

this work, since they arise only in cases where degenerate

vibrational modes exist; the quantity DK is sometimes denoted

by -R 3.

What we call "effective moments of inertia" are defined

in (75); they include modifications arising from centrifugal

distortion terms (Dgg,).

In general, the matrix (73) must be diagonalized

numerically to obtain the rotational energy levels. Methods

of doing this in the rigid rotor limit have been discussed by

KHC I; the necessary extension of their work is given in our

Appendix D.

5. Specialization to H 20 Type Molecules

Using the matrices L L(X), IL) of (II.99) and (II.100), we

can write explicitly the rotation-vibration constants for the

non-linear XY2 type of molecule. We find, rather easily, that

4(Z) = f - (Iecos - Ie sin y ) 

(III.79)

(z) = I (Ixsi-n e os ) ,~ 23 zz xx yy

and, using "vector" forms for the a defined in (29), for

convenience of presentation,

2I e sin 2Ie cos y
(x) _ 2IelIo (Y)= 2 Iy l
a(x) 2I cos j a(Y ) -2i sin¥



,(zz) = (xx) + (YY) 
xx yy2(Ix~ siny + Ie cos r )

2(Iex C0o - I sin )

0

e~ 2 z)
2 Izz 23

zz 13
=-2 I O I

(xy ) a =

a
0

I e Ie 
- 2( xx Vy)

I e
zz

From (64)

xxxx

tyyy

rzzzz

rxyxy

~xxyy

~xxzz

we obtain for the 991 9119 I

= - 2(Ie )-3 2 
1 2

= - 2 (Ie )-3 (s2y +sin2
)

=- 2(I ) 3( 2 )
zz + 21 2

(2

= - 2 (Ie Ie Ie )-1 1xx yy zz 2
U)3

2 2
o2- CO2

= - 2(ie e )-3/2sin cos 21
xx y y a

os 2
'(Z)in2

=- 2(I e Ie )-3/2 (1 3COSY ¥
2 3 sin

xx zz 2 2
2 c1

) sin (z) 
yyzz = 2 (Ie e )-3/2 (13in (

2
s

yyzz yyzz D2 2
2 1

54

]

(111.80)

(III.81)
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From these, the various distortion coefficients in Section 4

can be readily calculated; it does not seem necessary to give

them explicitly here.

The inertia defect of (71) can now be written down; using

the relation

(Z) + (c(2) 1 (III. 82)

we find

2 2

2 2
, Fwz)2 1 W 2

(V3+2) 13 ) , 2) + ( 23) ( 2 ]] (III-83)

For the ground vibrational state, this reduces to

The quantities A defined in (30) are found
Ss'

A() = A(2Y) 2- sin2y11 22 

A() = A) C

A() - Ie /I e33 x zz

(zz) _ Azz) 111 22 33

(III. 84)

to be

(111.85)

Finally, the b of (65) may now be calculated:8

L0 =2

i -- I

I - I



F
F
F
[

sin2y

1

002

XX

°3 Izz

cos 2

C 1

sin2 y

o2

1 I e

3 Iz° 3 zz

+ 2 I [

+ 2I ei

+ 2 Ie[

+ 2I e[
yy 

YY:,[
YY[

+

kllsin y

(i1 ) 32

(wl )3/2+

1

klllc o s ¥

(AM.) 3/2

k 2 2 1 cos T

(YX1) /2

ei[ 331 os
2 100 )3/2(Awl37

kll2cos y ]

k222cos 1]

332 ]

(2) 3/2 

k112Bin r]
112 3/2

k A nk222 ny
2) 3/2

k332sin ]
(2) 3/2 

(1Z) 2
23

cD1

+ (Z)2
--313

2 2e

3w +W

2( 3 

-2 I [ez [

3a 2+CD2

3_ (az- 2)

L[ 1 23
L )\3/2 ' 2

I (L X C

1]
+ (((Z) 

3 23

k 3 ( z)

(Je) 3/2

(III.86)
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lxx)
1

2

bx)
3yy

2

yy )
"3

Ie2

- ie2

=_ iixx
Ie 2xxc

= ie2
Ie2

YY

Ie2
YY

(ZZ)
b 1 [Ie2

zz

zz)2

b(ZZ )
b3

i]
+

E 2

)2

[ 13

ie2
zz

= _ 3Z
Ie2

ZZ
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6. Specialization to HDO Type Molecules

In a vibrational state, an off-diagonal product of

inertia appears in HDO, because of the non-vanishing of the

corresponding b); in a Ir representation*, such as we use

here, the b( z c) are non-vanishing. As a result, the first term

in (62) is no longer a sum of squares, but can be easily made

so by a transformation of axes. Let us write

i ZtV P = Pr
g, 6 , ` g

(III .87)

and set

1 = fP (111.88)

where R is an orthogonal matrix, so that

P aP = Iri'P' (11189)

where or' is diagonal, and

0 = Rwr (III. 90)

It is readily verified that we may take

0 sin 

1 0

0 cos 

sin = 2(1-xi)l

cos = 24(1+ x i)

(v 7 v )2
(zz - xX)

4(¢zV)2 + (z-axx)

* See Appendix C.

cos 9

R= 0

- sin 

with

(111.91)

(111. 92)

(III. 93)

.
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so that, in the new coordinate system,

x = xcos + z sin 2 + 2v x sin cos e

TV = Cdv (III.94)

rv' = V 8sin2 + oVcos2 9 - 2xsin 9 cos 

which are the principal reciprocal moments of inertia.

The second term in (62) may also be expressed in the new

coordinate system by substitution of (88):

P =RP'

or,

P = ' -PPIx x z
P = P'
Y Y
Pz = P + aPz x z

(III.95)

where

a = Cos e f = sin (II.96)

The new 's are the coefficients of the new

are given by:

PIPIP' Pt$ '' "

a4r + 4r , + 2a2i2 (zxx + 2zxzx)
xrxxx xxxx z zxx x

+ 4m3zxxx + 4a3zxzz

yyyy _yyyy

zzzz = xxx + 4zzzz + 2 2 zxx+2 zxzx )

- 43&Z' - 4 i3r'-2 13Zxxx 4a zxzz

= 2 + +2~xxxy xxyy yyzz zxyy

= 2 . + 2 -2= a'
yyzz xxyy yyzz zxyy

, and

_ 1 ����__
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zzxx = 22(xxxx+zzzz) + (4+ 4)zz - 4Ca22ZXZ

- 2(X2D ) (rzxxx zxzz

1e' = C2+L- + ( 2 -_ 2 ) 2 r - 2 2 li2'r
zxzx (xxxx+rzzzz) z (22)2xzx- 222rx

- 2a. (a2 2) ( c_ ¢ )
ZXXx ZXZZ

t a3,= - 3 + a(:2_D2)(rzzxx+2xzx

+ 2 ( 2 -38 2 )rx +2 2(3a2-2)rzxzz

zxyy -= (xxy ryzz ) + (I2_2) zxyy

tI = _ a 3p + 3

+ 2 (3.2_ 2)zxx
ZXXX

Izz - a (a2_ 2) ('rzzxx+ 2rzxx)

+ 2 (a2-2) zxzz

(III. 97)

The primed or's and T's may now be substituted directly

into the equations of Section 4.
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IV

MICROWAVE SPECTRUM OF H 2

The K-band "radar water line" at 22,235 Mc/sec8'34, due

to the 523 _616 transition* of H20, has been examined by a

number of workers, and is the only microwave line known to

belong to this molecule.

Examination of the King, Hainer and Cross tables** shows

that no other H20 lines are likely to be found below about

180,000 Me/sec (220 - 313 transition); the difficulties of

working in the latter region, however, make it desirable that

a better prediction be available before searching is carried

out. The one known H20 line does not give us enough

information to improve our knowledge -- the KHC II tables

based on = -0.436426, predict it at the rigid rotor

frequency of 23,380 Me/sec, some 1,000 Me/sec too high, and

the term values of Randall, Dennison, Ginsburg and Weber***

show it at 20,400 Mc/sec, so it is apparent that better

parameters are needed. The present work gives much the same

agreement (or disagreement) with experiment; with the

effective H20 rotational constants of Table C.8 (Appendix C)

and the distortion constants of Table C.7, our calculations

(by the methods of Appendix D) give the results shown in

Table IV. 1.

* Our notation for the energy levels follows the JK 1 K1
scheme of KHC I.

** Reference 16; hereafter referred to as KHC II.

*** Reference 27; also see Appendix F.
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Transition

22--3 13

523f 616

TABLE IV. 1

H2 0 - Microwave Absorption Lines

Frequency
(Mc/sec 

Observed KHC II RDGW

---- 184,000 182,000

22,235.22+0.05 23,380 20,400

Theoretical
(This Work)

187,471

24,588

We will show in Chapter VI that we can expect the

theoretical parameters to give a good measure of the

distortion, so it is interesting to compare our calculated

energy levels* with those of RDGW, as in Table IV.2; here the

distortion correction is the energy shown minus the calculated

rigid rotor energy.

TABLE IV. 2

H 20 - Energy Levels

RDGW
Distortion

Energy Correction

(Mc/sec x 106)

4.080100 -0.004800

4.262100 -0.001500

13.386000 -0.026382

13.407000 -0.015000

This Work
Distortion

Energy Correction

(Mc/sec x 106)

4.066769 -0.008787

4.254240 0.001449

13.352540 -0.040304

13.377127 0.025789

There is little else we can say about H20 at present,

but it is hoped that eventually an accurate determination of

the HDO parameters will lead to better values for H20.

Level

220

313

523
616

* Throughout this work we measure energy in units Mc/sec, or
multiples thereof.

__.111__---------_11 i.



62

V

MICROWAVE SPECTRUM OF D 2 0

No lines of D20 were known prior to the start of this

work, although the KHC II tables* indicate a number of

transitions are to be expected in the microwave region.

In the course of this work the 220 3313 and 532-441

lines were found (Appendix E), though only the first was

identified by the writer2 6 . The two lines were subsequently

reported independently by Beard and Bianco1 . The frequencies,

together with those calculated theoretically from the

constants of Tables C.7 and C.8, are shown in Table V.1.

TABLE V. 1

D20 - Microwave Absorption Lines

Transition Frequency(Mc/sec)

Observed Theoretical
(This Work) FRD* (This Work)

220 - 313 10,919.39+0.05 7,500 10,670

532- 441 10,947.13+0.05 16,000 17,472

The agreement on the 2-x 3 line is comparatively good, while

for the 54 line we do get the correct relative positions

of the levels (as shown experimentally by the Stark effect).

However, the actual discrepancy between calculated and

* The KHC II tables give rigid rotor term values taken from
the Fuson, Randall and Dennison paper (FRD, reference 6 --
also see Appendix F); in Tables V.1 and V.2 we use FRD's
"corrected" levels.
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observed frequencies for the 5- 4 line shows the parameters

cannot be relied upon for accurate work; accordingly, we have

not calculated up any more D20 transitions.

It is expected that additional useful work can be done

on D 20. Jen et al.1 2 have observed two weak lines in the

water spectrum at 30,182.57±0.1 and 30,778.62±0.1 Mc/sec, and

these are as yet unidentified. In the next Chapter we

investigate probable HDO transitions, and find none in this

region, though these calculations are not conclusive. Thus

there is a good chance that these two lines may be due to

D20*

In the FRD work, distortion corrections were obtained

semi-classically; in Table V.2 we compare the distortion

corrections calculated here with those given by FRD.

TABLE V.2

D20 - Energy Levels

Level FRD This Work

Energy DiCostortion Energy Distortion
Correction Correction

(Mc/sec x 106) (Mc/sec x 106)

220 2.2193 0 2.2184 -0.003049

313 2.2268 -0.009000 2.2291 -0.000694

441 8.0641 -0.001200 8.0665 -0.049868

532 8.0481 -0.026400 8.0490 -0.016747

As in the case of H 20 the data is still too meager to

enable us to say much about this molecule.

* See also Chapter VII.
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VI

MICROWAVE SPECTRUM OF HDO

1. Introduction

There has been little infrared work carried out on HDO

because of the difficulties of untangling its lines from

those of H20 and D20. From such infrared analysis as has been

made, KHC II deduced X = -0.685, from which they constructed

their rigid rotor tables of expected HDO microwave transitions.

Previous to this publication, the only microwave line of

HDO known was the 53---532 transition3 3' 34 . On the basis of

32these tables, however, Strandberg32 located the 2214-22O,

322r321 and 414-321 lines, and estimated X = -0.696.

Three other lines were then found by workers in this

Laboratory; the 432431 line31 , the 744-743 line1 3 , and

an unidentified line at 26,880 Mc/sec. During the present

investigations the latter was found to have been originally

discovered by McAfee22 who assigned it to a D20 transition;

it is the conclusion of this work that it is the 624-'717

transition of HDO.

Concurrently with the present work, Weisbaum and Beers35

discovered a number of lines in the S-band region, and

identified the transitions 643 -4642, 955 ~954, 1267-~-1266,

and 422505; the author was advised of these investigations

by private communication, though the final identity of these

lines was not reasonably certain until a late stage in the

present work.

---- --
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In 1951 Lewis 21 calculated some theoretical distortion

constants for HDO, and attempted to determine and a-c from2

the then known spectrum; he deduced -0.67712 and 2.468x 105

Mc/sec, respectively, for these two values. Lewis also

calculated a theoretical inertia defect 0, but this was

based on an incorrect formula and was considerably in error.

The present author remeasured the 744_743 frequency,

resolved the Stark structure and remeasured the frequency of

the 26,880 Mc/sec line, and discovered the 845 844

transition by prediction from rough calculations. He

calculated the theoretical parameters, including rotation

constants, from infrared data (Appendices B and C), and

carried out detailed calculations of the theoretical

frequencies. This led to prediction of certain Q-branch

frequencies, and the subsequent observation of the 1056-1055

and 1157-1156 lines, and provided additional evidence for

the identification of the 26,880 Mc/sec line.

The 845 -844 line has been independently observed by

Jen et al. 12 who also concluded from the Stark effect that

the 26,880 Mc/sec line is to be assigned to the HDO 6247m717

transition.

The present state of experimental knowledge of the HDO

microwave spectrum is summarized in Table VI.1.

11�*---_-111_1·11� - 111 --- II -- -
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TABLE VI.1

HDO - Observed Microwave Absorption Lines

Transition Frequency Reference

Q-Branch Transitions

221 -220 10,278.99 32

322-4 321 50,236.90 32

432- 431 5,702.78 31

5335 2 22,309 +5 34
-' 32 *22,307.67+0.05 33

643 -642 2,394.6 35

74474 74 8,576.89 13
*8,577.7 +.1 This work

845 -4 844 *24,884.77+0.05 This work
24,884.85±0.1 12

955- 0 954 3,044.7 35

10 56 1055 8,836,95±0.1 This work

1157- 1156 22,581.1 0.2 This work

1267-~-1266 2,961 35

P- and R-Branch Transitions

414-321 20,460.40 32

422- 505 2,888 35

6247 26,880. 44 22
17 *26,880.38+0.05 This work

26,880.47±0.1 12

*Measurement indicated was used for computations.

In the sequel, we will usually use JK to denote the

Q-branch transition JK 1 -K K -1 with K standing for

K_1 , the index denoting the K value of the limiting prolate

symmetric top.

- �- -
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2. Theoretical Frequencies

In principal, transition frequencies may be calculated

by diagonalization of the rotational matrix (111.73) to find

the appropriate energy levels, then taking differences. We

call this "exact" calculation, although in practice it involves

finding characteristic values by numerical methods; in our

computations we have used sufficient significant figures to

get within the experimental error.

Methods of carrying out this numerical diagonalization

are described in Appendix D, where it is indicated that the

main problem is the determination of the "reduced energies";

unless otherwise stated, the following discussion will be in

terms of "reduced" parameters.

In the original belief that (KIK+±l) and (IK±3) matrix

elements in (III.73) could be safely neglected, we carried

out some exact calculations for Q-branch transitions, using

the HDO constants of Tables C.7 and C.8, which give the

parameters of Table VI.2:

TABLE VI. 2

HDO - Theoretical Parameters (I)

a-c
c = 2.52993085x 105 Mc/sec

= -0.68105413

DJK = 1.63925813 x 10 '4

DK 11.06549366 x 10 4

6j = 0.12833684x 10-4

R 5 = -0.35698618 x 10-4

R 6 = -0.02167643 x 10- 4
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With vJK and vJK the observed and calculated frequencies, the

results are shown in Table VI.3:

TABLE VI. 3

HDO - Q-Branch Theoretical Frequencies (I)

Trans ition

JK

Frequency (Mc/sec)

Observed Calculated

10,278.99

50,236.90

5,702.78

22,307.67

2,394.6

8,577.7

24,884.77

3,044.7
8,836.95
22,581.1

2,961

10,375.742
50,705.828

5,817.548

22,756.857

65,714.268

2,470. 073

8,849.329

25,673.369

3,174. 077

9,211.967

23,536.847

3,122.212

-96.752

-468.928

-114.768

-449.187

-75.473

-271.629

-788. 599

-129.377

-375 017

-955.747

-161.212

It is noticed that the magnitude of the difference (last

column) increases in an apparently fairly regular manner

within each K-family; a significant relationship is obtained

by simply taking the ratios rJK = VJK/ VK, which are given

in Table VI.4, and are seen to be substantially constant for

a given value of K:

22

32

43
53
63

64

74

84

95
105
115

126

VJK 3
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TABLE VI. 4

rJK JK / JK

1.00941

1.00933

1.02012

1.02014

1.03152

1.03167

1.03169

1.04249

1.04244

1.04233

1.05445

Mean rK

1.00937

1.02013

1.03163

1. 04242

1.05445

We note also that

r3 = 1.01066r

r4
- = 1.01127r3
r

- = 1.01046
r4

r 6
r = 1.01154
5

r 6

r 4

r 4

r 2

r3

1.02212

1.02205

1.02185

from which it appears that r/rK_2 is the more constant ratio,

so we can conclude
r

= 1.0220 ,
K-2

approximately.

22

32

43

53

64

74

84

95
105

115

126

_ 1__11 1 _·I� I__� __� __
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At the time of these calculations, only the identities

and frequencies of the lines 22, 32 43, 53, 74, 84 had been

definitely established. Assuming the ratio rK/ rK 2 = 1.0220

was significant, we predicted the 64, 95 and 126 lines at

2,394.2, 3,045.1, and 2,961.2 M/sec. The agreement with the

then tentatively reported frequencies of these lines appeared

so good that we extended the predictions to the 63, 105 , and

115 lines, thus:

63

105
115

64,417 Mc/sec

8,836 Mc/sec

22,577 Mc/sec.

A search for the latter two lines subsequently showed them at

8,837 and 22,581 Mc/sec, respectively.

We may also extrapolate to predict the 11 line at

80,743 Mc/sec, but the prediction is probably not quite so

accurate here because the dependence on the distortion

constants is much simpler.

This simple "extrapolation method" of predicting

Q-branch frequencies of HDO therefore seems to be quite

reliable. It appears to have the following significance.

Let v K be the calculated rigid rotor frequencies, and

let

(VI.1)jK = vR (1 + JK)

define the distortion correction JK. A similar relation

= Ro(+ AJK) (VI.2)
JK ~VJK JK

will be true for the observed frequency. Then
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RoK(1+ AJ)

vJK + tJK

We also write

Rk a-2 EJ () (VI3)
JK 2

~Ro~ (a-c (.) ,(VI.4)
VJK = 2 ) EJK ) (o ,

where E(n) is the reduced energy difference for the

transition, and the superscript o indicates values

corresponding to the observed frequencies. By direct

expansion of the appropriate secular determinants, or by use

of equation (26) of reference 12, one can show that, to first

order,

HK
EJK(X) CJK ) (F K-1 (.5)

where cJK is a function of J and K only, and F, G, H are

functions of (see Appendix D). It follows that, to first

order, a-
a2 (H K (G- Fo K-l (

rJKg ( a)O H0 G-F ( K - ·

Since we find rJK is effectively constant for a given K,

while the ratios rK/rK l, rK/rK 2, etc. are also fairly

constant, it appears that AJK- jK is small, and the major

contribution to v~-VJK comes from variations in a2- and .

This is reasonable since the transition frequencies are most

sensitive to small percentage variations in the effective

moments, and these in turn are sensitive to the anharmonic

potential constants (which are not known accurately).

The assumption JK AJ enables one to solve (6) for
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new a and (giving a value of about -0.6842 for the

latter), but the accuracy is not very great; later we will

use the same assumption, but a different method of obtaining

new values of a2- and .

Thus we conclude tentatively that the theoretical

distortion corrections, AJK' are good approximations to the

true corrections.

The above calculations have neglected the effects of

(KIK±l) and (KIK±3) matrix elements. We find the major

contribution from these arises from the off-diagonal moment

of inertia I0 ; this term can be readily removed by the

transformation to principal axes discussed in Section III.6,

and leads to slightly modified theoretical parameters, as

given in Table VI.5 (taken from Tables C.12 and C.13):

TABLE VI. 5
HDO - Theoretical Parameters (II)

a-c = 2.53006536 x 105 Mc/sec
= -0.68120013

DJ, = 1.45503015x 10 4 R 6 = -0.02261617 x 10-4

DK = 11.34711157 x 10- 4 R 7 = 0.12316025 x 10
bj = 0.13174042 x 10-4 R8 = -0.32408016 x 10-4

R 5 = -0.31134320 x10-4 Rg = 1.97296522 x10-4

Table VI.6 gives the reduced energies (characteristic

values of the reduced energy matrix) for a number of levels,

using the parameters of Table VI.5. In this Table, the rigid

_�I _ I __ ___
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TABLE VI. 6

HDO - Theoretical Reduced Energies

Incomplete Complete
At

2.31879987

2.35998264

-2.72480052

-2.52325230

-16.66290883

-8.90426858

-0.14909248

-0.12580581

-26.46981554
-8.44529066

-8.35391733

-25.99223526

-5.59451168

-5.58447995
-50.70728491

-50. 56026965
-29.98625576

-17.16764843

-17.13151619

-30.35534098

-30.24988415

-28.87747526

-28.86418874

-45.33982883

-45.30091534

-63.39290782
-63.29250614

-63. 31450718

-63.30079843

2.29720670

2.33819174

-2.74966865

-2.54939602

-16.65986243

-8.93777649

-0.26777082

-0.24479903

-26.46029883

-8. 57791858

-8. 48808776

-26.05662523

-5.98611102

-5.97636244

-50.66135059

-50.51386309

-30.15563960

-17.59538810

-17.56048659

-30.82612414
-30.72494449

-29.93289508

-29.92038955
-46.48112729
-46.44488905
-64.63302820

-64.54056370
-65.66631341
-65.65406337

2.29721126
2.33819602

-2.74974580

-2. 54947155

-16.65985287

-8.93788816

-0.26824000

-0.24526867
-26.46063663

-8.57887089

-8.48903331

-26.05665157

-5.98972977
-5.97998081

-50.66231671

-50.51384154

-30.15568508
-17. 60094304

-17. 56602192

-30.83180844

-30.73058122
-29.95229164

-29. 93977352

-46.50207359
-46.46577812
-64.65048256

-64. 55789050
-65.72748624

-65.71517686

Level
Rigid

AR( )

221

220

322

321
414
422

432
431

505
533
532
624

643

642

707
717

735
744

743
845

844

955
954

1056

1055
1157
1156
1267
1266

-- I
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value, R(), is the value in the rigid rotor limit, the

"incomplete" value is that obtained by neglecting 1- and

3-off matrix elements, while t, the "complete" value, takes

all matrix elements into account.

It will be noticed that the correction a-c( t-k) to the

energy levels, arising from the (KIK+l) and (KIK+3) elements,

is largest for high K valuest for the 126 levels it is

equivalent to some -15,000 Mc/sec (i.e. about -0.5 cm '1 ).

The major contribution to this correction comes from the

(KI K-l) elements.

Some of the corresponding Q-branch transition frequencies,

VJK (incomplete), and vtK (complete), are shown in Table VI.7,

together with their differences, the correction frequencies

VJK = Vt - VJK contributed by the 1- and 3-off matrix elements.

Relations similar to those of Table VI.4 no longer hold so

nicely, either for vJK/V K or JK/ JK we believe this may

be due to considerable error appearing in the 1- and 3-off

matrix elements, particularly in the original off-diagonal

moment I , which is most sensitive to changes in the

anharmonic potential constants.

The theoretical frequencies for the three P- and R-branch

transitions of Table VI.1 are shown in Table VI.8; we cannot

yet draw any conclusions of significance from the comparisons

shown here'
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TABLE VI. 7

HDO - Theoretical Q-Branch Frequencies (II)

Observed

VJK

Frequency
(Mc/sec)

Calculated
t

JK VJK

10,278.99

50,236.90

5,702.78

22,307.67

2,394.6

8,577.7

24,884.77

8,836.95

22,581.1

2,961

10,369.484

50,670.284

5,812.013

22,727.785

2,466.454

8,830.310

25,599.113

3,163.981

9,168.512

23,394.123

3,099.340

10,369.413

50,670.692

5,811.893

22,729.495

2,466.551

8,835.272

25,611.148

3,167.166

9,182.991

23,426.396

3,114.354

TABLE VI. 8

HDO - P- and R-Branch Theoretical Frequencies

Transition

Obs erved

414--321

422- 505

Frequency
(Me/see)

20,460.40

2,888

Calculated

-13,397.134

10,761.553

27,811.867

C
VJK

22

32

43

53

64

74
84

95
105

115

126

-0.071

0. 408

-0.116

1.710

0.097

4.962

12. 035

3.185

14.479

32.273

15.014

26,88038
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3. Approximate Calculations

A much simpler method of calculating Q-branch transitions

between K-doublet levels can be obtained by expanding the

matrices to first order in the distortion parameters. The

method was first described by Hillger and Strandberg 1 0 ' l l , who

applied it to the analysis of the HDS spectrum. A more general

derivation of the appropriate formulae, with some corrections,

has been given by Kivelson and Wilson1 7 . We refer to the

method as the HSKW formula, for short.

We write the HSE formula in the following manner: let

= 2KJ(J+l) + (K-1)J(J+l) J K 2 

3+- 3 H

Then, to first order, the transition frequency is given by

S1) R (1) (v+18)
JK = VJKI JK (VI.8)

in a notation similar to equation (1). This is, in effect,

the HSKW formula in terms of reduced distortion constants.

The HSKW formula is not claimed to be anything more than

a first order approximation; we will show its limitations for

the case of HDO, where the distortion effects are large, and

where the approximation cannot be expected to agree perfectly

with the exact calculation.

The HSKW formula neglects 1- and 3-off matrix elements,

so it is fair to compare )K' as calculated by (7) and (8),

with vJg of Table VI.7, using the same parameters, of course.

These quantities are shown in Table VI.9, together with the
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"exact" calculated distortion correction to the frequency,

vdK = VJK-vR , and the difference vJ -K with the

5r -Y,(1)

percentage difference p d V K 100:

JK

TABLE VI. 9

HDO - Theoretical Q-Branch Frequencies (III)

VJK

(Mc/sec)

10,369.484

50,670.284

5,812.013

22,727.785

2,466. 454

8,830.310

25,599.113

3,163.981

9,168.512

23,394.123

3,099.340

d

(Mc/sec)

-50. 026

-322.733

-79.667

-390.265

-71.639

-311.383

-1,082.154

-197.722

-676.855

-2,008.158

-369.063

(1)
JK

(Mc/sec)

10,369.603

50,671.812

5,812.112

22,727.744

2,466. 391

8,829.172

25,588.117

3,161.580

9,158.796

23,345. 677

3,091.899

We see that, for

the agreement between

good for low J and K,

the theoretical parameters, at least,

the exact and HSKW methods is quite

but cannot be pushed to far.

4. Methods of Analysis of the Spectrum

When attempting to determine the "true" molecular

parameters by analysis of the spectrum, we must bear in mind

that the distortion is large, and the complexity of the

22

32

43

53

64

74
84

9 5
105

115

126

V (1)
(Mc/sec)

-0.119

-1.529

-0.099

0.041

0.063

1.138

10.996

2,401

9.716

48.446

7.441

p

0.24

0.47

0.12

-0.011

-0.088

-0.37

-1.02

-1.21

-1.44

-2.41

-2.02

_ _ Il�--IICI -_I-II 1
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theory together with the approximations introduced (for

example, in Section III3) makes it not unreasonable that

some difficulty be experienced in obtaining agreement with

observation, at least to experimental accuracy.

To show orders of magnitude, the energies of the 115

doublet levels are of the order of 4x 107 M/sec, while we

measure their difference, of the order of 2 x 10 4 Mc/sec, with

an accuracy of better than 1 Mc/sec; the distortion correction

here is about 2x 103 Mc/sec, or ten percent of the measured

frequency; to account exactly for this "correction" involving

differences to 8-figure accuracy is indeed some task when we

have (at least) ten parameters involved.

It is apparent from Appendix D (see equations D.5, D.6)

that we must first analyze the Q-branch spectrum; only two

parameters, a+c and D are then needed to account for the

remainder of the spectrum.

An attempt to do this was first made by Lewis 21, using

the HSKW formula and the methods of Hillger and Strandberg10 '1 1

but no satisfactory solution was obtained due to the

inadequacy of the data then available.

With more absorption lines known, we extended this work,

and obtained a reasonable sort of fit, though one of the

distortion parameters (R6) so obtained was of the wrong sign

(as in the Hillger and Strandberg work). However, with a

value of near -0.687 we predicted the 84 line within 10

Mc/sec of its subsequently observed frequency. At this stage,

exact calculations were carried out to examine the validity
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of the HSrK approximation, and serious differences were

obtained, amounting to as much as 20 percent of the distortion

correction. Attempts to correct for the differences between

dJK and when the observed" parameters were used, turned

out to be quite unsuccessful.

A fresh start was made, recalculating first the

theoretical parameters. It is apparent from these (see Table

VI.9) that the HSKW formula should agree with exact

calculations to a few percent, provided &JK does not change

by much in magnitude. It is our experience that the

theoretical distortion parameters cannot be varied by more

than a few percent without giving rise to serious

discrepancies between the HSEW approximation and exact

calculations, even though AJK remain substantially constant.

We have tried several methods of obtaining a fit, always

using the exact calculations to check our results. In these,

we have assumed V0K, as given in Table VI.7, to be constant,

and made allowance for it, thus attempting to fit the seven

parameters xi = 2 a-c DJK DEN R5 95 6

(a) Variation of all parameters:

Assuming a fit can be obtained by making only small

changes in the parameters xi, we can write, in the notation

of Section 2,

K K JK JK(VI.9)
and
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SvJK
AJK axAxi * (VI.o10)

Here
av

a= , (vz.ii)
a(a2C)

and

av a-c a E(t) (l + j&)+ AE( )W jK (VI 12)
ax 2 ax ·

approximately, where v VjK, AE(x) AEJK(x), and Aj is the

distortion correction obtained by exact calculation, i.e.

from VJg, vRK, and equation (1); it is considered that

8A(JK/ is a good approximation to aAj/ a. We used the

HSKW formula to calculate the variations with respect to the

distortion parameters.

The resulting set of simultaneous equations may be

solved by standard methods A preliminary least squares

reduction leads to some striving for significant figures,

apparently because of close correlation between lines of the

same K-family, but a solution can be obtained; it would be

preferable to first average members of the same K-dependence,

but as yet there are not sufficient K-families known.

Starting from the numbers of Table VI.7, we get a

solution which changes the sign of R 5, resulting in a

positive distortion correction (), showing the solution to

be inadmissable.

This method was originally applied to the results of

* We find it very convenient to use the Crout method; see, for
example, the Appendix to reference 9.
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Table VI.3, when all 1- and 3-off matrix elements were

neglected. Reasonably small changes in the parameters were

obtained, but it led to large changes in the values of &JK

(contrary to the expectations of Section 2); the new

differences VJK-VJK were larger than expected, of the order

of the later determined VrK (Table VI.7). Repetition of the

process led to greater discrepancies, and it became apparent

that close agreement could not be obtained with seven

parameters.

(b) Variation of ac, x, only:2

Keeping the theoretical distortion parameters constant

(though modifying the reduced parameters with change of a-c)

we can simplify the method (a) by varying only a-- and x,

using a least squares reduction of the equations. This gives

frequency differences of the order of one percent of the

distortion corrections, and is the method finally used.

If we were to follow the Hillger and Strandberg method,

we would now use the HSKW formula to vary the distortion

parameters so as to improve the fit. As in method (a),

however, we find that any such attempts -- when checked by

exact calculations -- are doomed to failure.

The same difficulties were experienced when 1- and 3-off

matrix elements were completely neglected.

(c) Variation of a-c, x, keeping t constant:

This method involves small changes in the "fundamental"

distortion parameters, since ) is a function of and .

_.._1�
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It does not seem to be much more satisfactory than (b), though

it does give somewhat better agreement between vJK and vJK(

However, although the theoretical percentage differences p of

Table VI.9 are small, there does not appear to be any reason

why the true ones should be exactly the same magnitude, though

it would be nice if they were.

As a result of these investigations we conclude that it

is not possible to get a "perfect" fit with seven parameters.

The next approximation, inclusion of (KIK-l) and (KIK±3)

matrix elements, gives little better results; we believe this

is due to considerable error in the vK and/or the neglect of

other approximations, e.g. in the vibrational diagonalization

of Section III.3. Unfortunately, there seems to be no

convenient way of varying the K so as to be able to

consider them adjustable in the fitting process; in principal,

this can be done by making small changes in the three

additional parameters R 7, R 8 and R9 , and calculating the

effect on the v's; since we have been unable to find a simple

way of doing this, it is apparent that a considerable amount

of labor would be involved.

At this stage, then, we have to be satisfied with

agreement to a few percent of the distortion corrections.

Method (a) does not give this since the changes in the

magnitude of the parameters which ae required to force a fit

become too large for the method to be valid. Methods (b) and

(c) do give reasonable agreement, though there is little to

_ ��
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decide between the two. We arbitrarily choose method (b),

because it involves variation only of the effective moments,

whose theoretical accuracy is more liable to suspicion

because of their dependence on the anharmonic potential

constants.

5. Results of Analysis of the Spectrum

Starting from Table VI.7, but omitting the data on the

105 and 115 lines (which were not then known), a least squares

solution

A(a-C) = 2,538.219 Mc/sec ,

Aw = -0.00290891 ,

was obtained from the nine equations of the form

AvJK = (a) + a. K (VI.13)
a (2q) 2 ax

To check the fit, substitution of these values of (a-) and

Ax back into (13), iving Av'K, led to the results shown in

Table VI.lO0:

TABLE VI.10

HDO - Least Squares Fit

J CAVJK AvJK- vJK
K (Mc/sec) (Mc/sec)

22 -92.855 2.432

32 -433.373 -0.419

43 -110.273 1.159

53 -422. 401 0. 576

64 -72.098 0.147

74 -255.188 -2. 384

84 -725. 591 -0.787

95 -125.155 2.689

126 -156.029 2.675
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It is seen that the differences are only an order of magnitude

or so larger than the experimental inaccuracy; however, this

good agreement does not carry through when a detailed check

is made.

After adjusting the reduced distortion constants for the

new a-2 our "observed" parameters become as shown in Table

VI.11:

TABLE VI.11

HDO - "Observed" Parameters

a-c _o/e

a2 2.55544755 x 105 Mc/sec
= -0. 68410904

DjK = 1.44057795x 104

DK = 11.23440546x 10 4

6 -= O. 13043190 xl 0 4

R 5 -0.30825076 x 10-4
5 -4

R 6 = -0.02239153 x 10

The results of calculating Q-branch frequencies with

these constants together with the v K of Table VI.7, are

shown in Table VI.12; here p and vK have the same meaning as

D t R
in Table VI.9, while vJ = VJK-VJK is the total distortion

o t
VJKVJK

correction, and P = xD 100 is the percentage discrepancy,

JK

referred to the total distortion, between observed and

calculated frequencies:
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TABLE VI. 12

HDO - Comparison of Calculated and

t c

(Mc/sec)

10,275.660

50,232.692

5,701.757

22,307.350

2,395.019

8,582.081

24,865. 250

3,041.952

8,829.125

22,538.263

2,961.394

Observed

o t
J JK

(Mc/sec)

3.330
4.208

1.023

0.320

-0.419

-4.381

19.520

2.748
7.825

42.837

-0.394

Q-Branch Frequencies

d
JK

(Mc/sec)

-50.099

-322.636

-79.600

-388. 924

-71.277

-308.872
-1,096.841

-196.823

-666.128

-1,972.977

-360. 668

p

-2.2

-1.4

-3.3

-2.8

-4.2

-3.8

-1.5

-4.2

-4.8

-5.4

-5.9

vDK

(c/sec)

-50. 170

-322.228

-79.716

-387. 214

-71.180

-303.910

-1,084.806

-193.638

-651.649

-1,940.704

-345.654

P

-6.6

-1.3

-1.3

-0. 083

0.59

1.4

-1.8

-1.4

-1.2

-2.2

0.11

The worst (percentage) discrepancy occurs for the 22

line, which also has the least distortion. We believe this is

a result of the least squares analysis, which weights this

line the least.

Although P for the 115 line (which was not included in

the analysis) is of the same order of magnitude as for the

other lines, the actual frequency difference, 42 Mc/sec,

between calculated and observed frequencies is much larger

than we would expect from consideration of the extrapolation

method of Section 2; by keeping A(JK constant -- method (b) of

the preceeding Section -- the difference is reduced to only

about 3 M/sec, but the fit on the 84 line becomes worse

(about 25 Mc/sec), and the overall picture is about the same.

JK

22

32

43

53

64

74

84

95
105

115

126

II II I I I~~~~~~~~~~~~~~_~~~~~~~~~~~~~~~~~~~~~~~~ l 
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It is interesting to refer to Table VI.9 and note how

small changes in Ai) due to the variation of a- and ,

markedly affect p, even though vjd is almost the same in the

two cases.

We believe the general agreement shown in Table VI.12 is

as good as one can get using the present methods. Slight

improvement might be obtained by now feeding in the 10 5 and

115 data, but this will not lead to any significant change in

our final results.

With the Q-branch spectrum "solved", it is a simple

matter to analyze the P- and R-branch lines. Since we have

concluded the theoretical distortion constants are good

approximations to the true ones, we ought to get fairly

consistent values of a+c from the IJI = 1 transitions on the

assumption that D is also good. Using the value (from Table

C.12) D = 9.14172899 Mc/sec (DJ is not a "reduced" parameter

-- see equation D.5), we obtain from the three lines of

Table VI.8 (after making allowances for 1- and 3-off matrix

elements by taking the frequency correction, obtained from

Table VI.6, as constant):

( 4.48345524x 105 Me/sec (414-321)

a+2c 4.48285425 x 105 Me/sec (422-505

( 5( 4.48181198 x 10 Mc/sec (624-717)

with an average value of 4.48270716x 105 Me/sec which is

apparently good to about 4 significant figures (we take this

___
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to be a measure of just how reliable our major parameters are).

With this average value, the calculated frequencies become:

Transition Frequency
(Mc/sec)

Observed Calculated
V 0 V V0 -

414-321 20,460.40 21,O58.871 598.471

422 505 2,888 2,740.896 147.104
624-,717 26,880.38 28,133.594 1,253.214

Although the agreement cannot be described as excellent, it

is a great improvement on Table VI.8, and argues for some

consistency in our work, as well as providing support for

the identification of the 26,880 Mc/sec line (see Appendix E).

It shows again that the distortion constants are fairly good,

and that reasonable correlation with experiment can be

obtained by changes in the effective moments alone.

The P- and R-branch lines can be brought into closer

agreement if we allow D to vary. First we solve for a+ and2

DJ from the 4- 3 and 4-_5 lines; using these values to

calculate the 7-_6 line gives 26,095.865 Mc/sec, again

supporting its identification. A least squares solution on

the three lines 4-3, 4-l 5 and 6-_7 now gives:

aC = 4.48416164 x 105 Mc/sec

DJ = 11.56583333 Mc/sec ,

leading to the IJI = 1 frequencies of Table VI.13:
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TABLE VI. 13
HDO - Comparison of Observed and

Calculated P- and R-Branch Frequencies
_ .. , 

Transition

Observed
O v 0

414- 321

422 505
624-_717

20,460.40

2,888
26,880.38

Frequency
(Mc/sec)

Calculated
V

20,515.856

2,983. 326

26,843. 995

Since these results are obtained in a very straightforward

manner, the agreement must be regarded as quite good, even

though we have had to change D by some 25 percent.

Table VI.14 summarizes the results of the foregoing

analysis of the HDO microwave spectrum, the distortion

constants quoted being the "fundamental" values:

TABLE VI.14
HDO - "Observed" Rotation-Distortion Constants

a+c = 4.48416164 x 105 Me/see
2

a2c = 2.55544755 x 105 Me/sec2

= -0.68410904

Di = 11.56583333 Me/sec

Di = 36.81321390 Mc/sec

DK = 287.08933921 Mo/sec

R 5

R6

7

R(99

= 3.33311881 Mc/sec

= -7.87718656 Me/sec

= -0.57220390 Me/sec

= 3.11603472 M/sec

= -8.19943988 Mc/sec

= 49.91730954 Me/sec

V O _ V

-55.456

-95.326

36.385
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From a+c a- and x, the effective moments and reciprocal

moments of inertia are easily obtained, and are shown in

Table VI.15:

TABLE VI.15

HDO - Effective Moments and
Reciprocal Moments of Inertia

Theoretical

6. 97876766 x 105 Mc/sec

2.72522145 x 105 Mc/sec

1.91863695 x 105 Mc/sec

1.20206397 x 10'40 g cm2

3.07825449 x10- 4 0 g cm2

4.37233588 x 10- 40 g cm2

0.09201742 x 10-40 g cm2

Observed

7.03960919 x 10 5 Mc/sec

2.73595687 x 105 Mc/sec

1.91863695 x 105 Nc/sec

1.19167485 x 10 g cm2

3.06617597 x 10 g cm2

4.34949132x10 -40 g cm2

0.09164050x 10 g cm2

There is less than one percent difference between

theoretical and observed values, and this change in three

parameters, together with a comparatively large variation

in Dj, has been all we have introduced to get a reasonably

good fit to the spectrum.

Some rotational energy levels, calculated from the

constants of Table VI.14, are shown in Table VI.16. As

indicated, the effects of (KIK+1) and (KIK+3) matrix elements

have not been taken into account exactly here, though in some

cases the corresponding energy corrections, taken from Table

VI. 6, have been included.

a

b

c

I a

I b

I c

,-- __ 
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TABLE VI.16

HDO - Rotational Energies

Energy

(Mc/sec x 106)

Rigid

wR

3.282311

3.292637

4.681712

4.732267

4.707305
6.684485

8.925689

8.931471

6. 682430

8.848938

9.163016

11.285626

11.308320

9.225386

12.169757

14.186789

17. 392922

17.395389

12.145962

12.184437

14.288870

17. 429084

20.707197

20.716083

Non-Rigid
W N

3.276432*

3.286708*

4.673735*
4.723968*

4.703452*

6.671355*
8.890918*

8.896619*

6.674338*

8.834291

9.141062

11. 241421*

11.263728*

9.210664

12. 133066*

14.127912

17.272528*

17.274923*

12.120853*

12.159910*

14.245622

17.349701*

20.561306*

20.569888*

Dist ortion
W - wR

-0.005879

-0.005929

-0.007977

-O0.008299

-0.003853

-0.013130

-0.034771

-0.034852

-0.008092

-0.014648

-0.021954

-0.044205

-0.044592

-0.014722

-0.036691

-0.058877

-0.120394

-0.120466

-0.025109

-0.024527

-0.043248

-0.079383

-0.145891

-0.146195

Level

221

220

322

321

414

422

432

431

505

524

523

533

532

606
624

633

643

642

707

717
716

735

744

743
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TABLE VI.16

(Continued)

W N _ wR

24. 504725

24.530675

28.685244

28.786442

32.950146

32.953382

37.702535

37.712015

42.944157

42.968636

53.721091

53.724398

24.324235*

24.349100*

28.376901

28.560607

32.584549*

32.587591*

37.268638*

37.277468*

42.424541*

42.447079*

52.829222*

52.832183*

-0.180490

-0.181575

-0. 308343

-0.225835

-0.365597

-0.365791

-0.433897

-0.434547

-0.519616

-0. 521557

-0.891869

-0.892215

* Indicates that correction X t- from Table VI.6
has been taken into account.

Using Table VI.16, some of the I JI = 1 transitions

expected from KHC II have been calculated, and are shown

in Table VI.17:

Level wR

845

844

853

946

955

954

1056

1055

1157

1156

1267

1266
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TABLE VI. 17

HDO - Predicted P- and R-Branch Frequencies

Transition Frequency(Mc/sec)

707-624 12,198

524-431 62,447

523--606 69,602

6421735 74,778

633 ; 716 117,710

853--946 183,710

For some of these lines the effects of (KIKl) and (EKIK3)

matrix elements have been neglected. From Table VI.6, we see

that these effects will be comparatively small for the levels

of low K appearing here.

Only the 707 624 line lies in a readily available

region; unfortunately, it is quite weak, the absorption

coefficient being about 3 xlO - 8 cm - 1 , and we have not

succeeded in finding it. If our identification of the 26,880

Mc/sec line is correct, thus fixing the relative positions of

the 624 and 717 levels, with the 707 below these, this

prediction should be reliable to a few hundred Mc/sec (which

is the order of the inaccuracy of v c ).

6. Discussion of Results

Although the agreement in Table VI.13 is considered

good, the large change we had to make in DJ is inconsistent

with our assumption that the theoretical distortion constants

are very close to the true ones. But it is apparent that the
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parameters entering into the Q-branch frequencies must be

known more accurately before we can draw precise conclusions

about c and D.

We would like to have -branch parameters that are good

enough to exactly calculate frequencies to agree with

observation within something like 1 Mc/sec, if not better.

Any such agreement obtained by the use of approximation

methods (specifically, the HSKW method) must be checked by

exact calculations, otherwise the constants obtained cannot

be considered the true molecular parameters, but are merely

constants in a semi-empirical formula. The writer believes

that the results obtained by Weisbaum3 5 should be described

in this manner.

The present work has shown that such desirable Q-branch

parameters are impossible to attain if only the seven

quantities a2, X D, DK, 6J, R, R6 are considered.

Remaining discrepancies turn out to be of the order of

magnitude of the corrections introduced by taking R 7, R 8 and

Rg into account, but inclusion of these corrections still

leaves much to be desired. The ever-present assumption of the

essential correctness of the theoretical distortion parameters

leads one to expect that only small changes in R 7 , R 8, R9

should be tolerated, and it is unlikely that such small

changes would lead to significant differences in the

corrections VK. Thus it is probable that either our theories

and/or calculations involving R7, R8, R9 are incorrect, or

that we must look elsewhere to improve our results. The

--�.-�---11___141111Y ..... �-I·�_III�L1I�·IPIP-^�II�.� I�p---·IIIII --C-- -- - _ -- ·- --
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latter means examination of higher terms in the vibration-

rotation theory, e.g. terms in the Hamiltonian of the order

of p6, where P is an angular momentum operator. Rough

calculations, based on orders of magnitude, indicate that

such terms probably will be negligible for the present work,

but one cannot be conclusive about this without going into

considerable detail.

It is the writer's opinion that any improvement in the

present results will have to be obtained with the aid of a

high-speed digital computer to set up exactly and solve

equations of the type of (10). Notwithstanding the conclusions

of the previous paragraph, it may still be possible to get a

satisfactory solution by including variations of R 7 , R 8 and

Rg, the corresponding av/axi being obtained by computer

diagonalization of the complete matrices; this possibility

ought to be considered early in any extension of this work,

since even small changes in the v K could conceivably bring

about a neat fit -- the transition frequencies are much more

sensitive to changes in certain parameters (e.g. ) than in

others.Also, the discrepancies we have now result from a

least squares solution, which does not necessarily lead to

the most significant parameters though it seems to be all we

can do with the present methods.

The good agreement we get in Table VI.13 for IJI = 1

transitions gives some confidence in our final results.

However, it must be pointed out that the consistency vanishes

if the 26,880 Mc/sec line is not the 624_717 transition, or
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if the 2,888 Mc/sec line is actually the 505-422 transition.

Our information3 5 is that the latter is the 422-505 line,

though we do not know whether or not there is any evidence

(e.g. Stark data) to show the relative positions of the levels.

To conclude this Chapter, we give in Tables VI.18 and

VI.19 what we consider to be reasonable HDO parameters; these

are obtained by rounding off the constants of Tables VI.14

and VI.15; the accuracies indicated have been estimated by

the writer on the basis of his experience with the problem,

and are rather difficult to justify in detail.

TABLE VI.18

HDO - Rotation-Distortion Constants

a+c = 4.484+0.002 x 105 Mc/sec2

ac = 2.555+0.005x 10 5 Mc/sec

= -0.6841±0.0002

D - 9.1 ±1.5 Mc/sec

DJK = 36.8 +0.5 Mc/sec

DK = 287 ±5 Mc/sec

6j = 3.333±0.005 Mc/sec

R 5 -7.8770. O10 M/sec

R6 = -0. 572±0. 005 Mc/sec

F) = 3.12 0. 05 M/sec

R() = -8.20 0.05 M/sec

R(Y) = 50.0 i0.5 Mc/sec9
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TABLE VI.19

HDO - Effective Moments and
Reciprocal Moments of Inertia

a = 7.0396+0.0005 x 105 Mc/sec

b = 2.7360+0.0005 x 105 Mc/sec

c = 1.9186±0.0005 x 105 Mc/sec

I a = 1.1917+0.0005 x 1 -40 g cm2

I b = 3.0662+0.0005 x 10 g cm

Ic = 4.3495±0.0005x l0 -4 0 g cm2

- -----
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VII

CONCLUSION

By analysis of the microwave rotational spectrum of HDO

we have obtained approximate values of the molecular

parameters which are in fairly good agreement with the

theoretically calculated constants. The theoretical values,

derived from infrared data on H20 and D 20, enabled us to

calculate HDO Q-branch frequencies with rather unexpected

accuracy; it must be considered very gratifying that we can

do this in view of the rather tortuous calculations that have

had to be carried out in going from one isotopic molecule to

another.

Distortion effects in this type of molecule have been

found to be large, so large that to get detailed agreement

between theory and observation (in the microwave region) one

must go to higher approximations in the theory than had

previously been considered necessary. Our results are by no

means final, and possible methods of improving them have been

indi cated.

It is also desirable to increase our experimental

knowledge of the water spectrum; quite a number of lines are

still available and waiting to be found, but most lie in the

high-frequency region of the microwave spectrum, and the

experimental work will be fairly difficult because of the

general inaccuracy of the predictions.

Jen et al.1 2 have reported two unidentified lines at

�--�-��- I- P- --- -^ -- I -- -----�11�·11�1�···11�·�
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30,182.57 and 30,778.62 Mc/sec, we do not believe our HDO

parameters are far enough out for these to be any of the

lines listed in Table VI.17, and it seems probable that the

two lines are due to the only other likely alternative, D20

if further work (e.g. Zeeman investigations) shows that this

is the case, it may be possible to improve the D20 parameters

by simple adjustment of the effective moments, using the

assumption that the theoretical distortion corrections are

satisfactory, as appears to be the case for HD0.

It will be interesting to examine the spectra of other

isotopic modifications of water, e.g. H2018 (which may be no

more useful than H2016 itself) and HTO. The latter should

give plenty of information from its Q-branch spectrum, which

should be predictable fairly accurately by the methods we

have used here to handle HDO.

When a more accurate solution of the HDO problem is

obtained, it will be necessary to analyze the parameters thus

determined, and work back to improve the H20 and D20

constants. In this connection, the work of Kivelson and

Wilson18 on relating distortion constants to force constants

etc. will be of considerable assistance.

As a final project, calculation of the equilibrium

structures and force constants of the molecules should be

carried out. In principal, the data on HDO is already

sufficient to enable this to be done, but the results

obtained here are not sufficiently accurate to warrant the

very complex calculations which would be involved.

--- ---
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APPENDIX A

SOME MATRIX ELM-ENTS OF ANULAR MOMENTUMVI OPERATORS

We are interested in the matrix elements of certain sums

of angular momentum operators which are multiplied by

coefficients that are unchanged by permuting some of the

indices. Consequently, the results are conveniently expressed

in terms of the matrix elements of symmetrized operator

products.

Let us define

g(J,Kl+1) = J(J+l) - K(K+l)

F(J,K) =- (J,K+l)g(J,K-l)

As our basic matrix elements, we follow the phase choice

of KHC I and take the following non-vanishing matrix elements

of P:

(KIPx jKt+) = + iA (J,-+1) ]

(KIP IK+l) = X i [g(J,K+l)] ,

(KIPzIK) = AK

For the non-vanishing matrix elements of PgPg, we have:

(KIP2 IK+2) = - (KIP21 K2) = - 2 [F(J ,K+±1)]

(KIP2 K) = (KIP 2 IK) = jA2 [J(J+l)-K 2]

(KIPxPy+P P IK±2) _+ .i2[F(J,Kl1)]i
K P P K) x 

zy~~~~

- ---- ������
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The non-vanishing matrix elements of PPg,,, are:

(KIP4 K+4) (KP 4 I K±+4)= 1 K4 [F( F(J, K±)F(J,K±3)]x y , 1,

(KIP4IK±2) =_ (KIP 4IK2)
~1Ax y

= - i' [F(J ,K-+1)]2[2J(J+1)-K2 (K2)2J

KIP41K) = (KIP4IK) = 1A 4 [32(J+1)2 2(3K2+1)J(J+1)+K2(3K2+5)]X y

(KIP41K) =4 K4

(KIP 2P2+P2p22 IK±4) = - 4 [F(J,K±1)F(J,K+ 3 )] 

(KIpP 2 p 2p2 K) = a 4 [ 2(J+1) 2 -2(K2 .1)J(J+1)+K2(K2_5)]

(K 2P2p 2p2 I2 2) =) - (KIp2P 2Px2+P 2 1 K2)yz zy z X X z
= T4~ [F(J,K+1)]*[K2+ (K+2) 2

(KIp 2p 2 +P 2P 2 IK) = (KIP2P2 +P2 IK) = 4[J(J+1)-K23K2y z zyx z

(KI (PxP+PPx)2 IK+4) = - A4 rF(J,K 1)F(J,K+3)])

(KI (Pxy+Pyx)2 IK) = *AE[J2(j+1)2 2(K2+1)J(J+1)+K (K2+5)]

(KI (P P +P P )2 1K+2) =- (KI(PZPx+PxPz)2 1K+2)

_= 4 [F(J,K+1)]*(2K±1) (C2K±3)

(KI (PyPZ+PZPy) 2 IK) = (KI(Pzx+PxPz)2 IK)

_= A 4 [4X 2J(J+1)+J(J+1) -4K4 5EK2]

(KI P2 (PxP+PyPx) (P P +P )P21 K4)
X Xy yx x

; (KIP 2 (P +PyP )+(Pxp+ Px )P 2 IK±4)
=;Y Y X [F(J,-1)FJx 3)]

- i 14EF(J,K±l)F(J,K+3)]

__ �
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(K 2 (PxPy+ PyPx ) + (PxPy Py P ) 21K2 )P )+(P P +P P)P+PX)X xy yx

= (Klp2(PP +P P )+(P +PP )P 2IK+-2)

= iA [F (J,K+1)] 2 (2J (J+) - K2- (K+2) 2

(KIp2(PXPY+PYPX ) (pp+pp)P I K )z x y x + P P+ P P )P 2 K- 2)

= ±+ 4 I F(J, K+1)i EK2+ (K2)21

(K p2 (p P + P (py + Pz P ) P2 IK +3)
x y z y z y x

i (KI P2(PZPx+P )+(PZPx+ PX )P 2 IK±3)y y
_ 1 - 4 R(J,K±1)F(J,K±2)1(2K±+3)

(K I P 2 ( PPZ + PZP ) + ( Py PPZ+ P ) P2 K±I )

-= i (KIP2(PzPx+PxPZ)+(PzPxPxxPzp 21K±1)Y z x~pxpz zpxz y
= 4 r g(J,K+1)i 2KJ(J+1)+J(J+1) -2K3;3K2+ 3K-2]

(KI P2 (P+PZPy) + (Pyz+PPZPy )P I K+3)
(KIP 2(PP zx+P P )+( PzPx PxP)P2 K±3)

- ZA4 [g(J,K±1)F(J,K+2)VK(2K+ 3)

(KI 2 (P pz +P zp )+(p Pz+ pzp )p2 - l)y yz zy yz zy y

= 1A4 [g(J,K±1)Ji[6KJ(J+1)±3J(J+1)-6K39K2 -11K; 4

(KIP2 (p p z+ pzp )+(P P + P )p 2IK±1)

_- f# rg(J,K±+)I*(2K±1) [K2+ (K±1)2

_�__1___1 _1_________1_ 1( __ _ X___YY -- I--·�--·-- I(--- ^----
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(K 1 ( PxPy+PyPx ) ( P y P z + PzPy ) + (P YP Z+ PZPY ) ( PXPy +PyPX ) K+3 )

(KPI (P+Px )(P+PxPz) (P P y+PP )+(PP+pp)PZPx+PXPZ)K 3)

(KI(PxPy+PyP )(PyPz+PzPy)+(PyPz+ p zy)(PPy+yPx ) K+)xy yx y y yz zy xy yx
i(KI (PZP+PXPZ) (PxP+PPx )+(PPy+PP )y(Px)(zp+PPz) I[K1i)

= + ii4 [g(J,K±1)][2KJ(J+1)±+J(J+1)-2K33K2-7K;3]

( (i(P P y zP+PXPZ + P P )(PzPPP) +( P zPP )( PyPz +P Py ) I K -2)

= +± ii 4 F(J,K±1)J](2K±1)(2K±3)
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APPENDIX B

NUMERICAL CALCUIATI ONS

GEOLETRY, NORMAL COORDINATES, AND POTENTIAL FUNCTIONS

1. Basic Constants Used

We use the following constants in these and subsequent

calculations:

Equilibrium Geometry*

r = 0.9584x10-8 cm

2a = 104027t

sin a = 0.7905293

cos a = 0.6124243

Atomic Masses

mH = 1.67341233 x10- 2 4 g
mD = 3.34428232 x 10- 2 4

m0 = 26.55872000 x 10-24 g

Fundamental Constants **

c = 2.9979x1010 cm/sec

h = 6.62363x10-27 erg sec

Normal Frequencies***

H20 D20

v1 3825.32 cm 1 2758.06 cm- 1

72 1653.91 cm 1210.25 cm- 1

-1-1
v 3 3935.59 cm 2883.79 -1

* reference 7, p.489.

** reference 2.

*** reference 5.

-- I-I----- ��--�-�
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2. H0 and D 0 CalculationsC2O 2=--

The following quantities are readily calculated from the

above data:

TABLE B.1

Equilibrium Principal Moments of Inertia

(In units 10- 4 g cm2 )

H20 D 20

Ie 1.02396902 1.84069708xx

I e 1.92115546 3.83939220
yy
Ie 2.94512448 5.68008928zz

TABLE B.2

Normal Angular Frequencies

(In units 1014 sec -1)

H2 0 D 20

1 7.20551102 5.19518154
2 R 3.11536467 2.27967067

c3 7.41321962 5.43201107

The equations (II.103), (II.104) can now be applied to

obtain the k's; the sign of k is not determined, but

Darling and Dennison5 point out that, from physical

considerations, it should be positive. Taking for the final

values of ' and k the average of the corresponding

quantities for H20 and D 20 separately, we find:



= 3.13462138 x 105 dyne/cm

= 7.18132196

= 10.65581660

= 6.31795909

HO20

3.74638255 x1029 sec-2

2.41610617

5.49590854

4.00632463

D20

1.87461529 x 1029 sec-2

1.34406574

2.95049939

2.11372458

TABLE B. 3

Harmonic Potential Constants

(In units 105 dyne/cm)

K1212 =

K1 2 13 

1223 =

K2323 

Kl' =

K12 =
K' 13
K3 =33

9.04949641

0.52397791

-1. 20497839

2.04835571

Using (II.105), the transformation coefficients are:

H20

0.58518046

0.81090309

DO20

0.61504088

0.78849521

The following matrices are then easily calculated:

105

1

k'
2

}3 (Av)

k4(Av)

k1

k 2

k3
k 4

sin y

cos y

�---- ·I -I- ·_-I·_·_�- I I
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-1.21187860 0.6124243 0.39526465

T(H20) = 1.21187860 0.6124243 0.39526465

0 0 1 1

-1.16952808 0.6124243 0.39526465

T(D20) 1.16952808 0.6124243 0.39526465
,, 0 1

0 0

0.33942641 0.47035392

0.88650762 -0.63973974

0 0

0.26607988 0.34111995

0.60976514 -0.47562811

0

u(X) (H20)

U10 (D20) L.

0

0.44325381 -0.31986987

.0.44325381 0.31986987

0.03798629 0.05263880

-0.30144012 -0.41771512

-0.30144012 -0.41771512

0 0

0.30488257 -0.23781406

-0.30488257 0.23781406

0.06862524

-0.27249471

-0.27249471

Y) (D 20)
0.o5352896

-0.21255092

-0.21255092

0.46847372
0 x 1012

O0

0.35568186 1

0 x 1012

0.05242838 1
-0. 41604534 x 1012

-0.41604534 A
0

0.32231098 x 1012

-0.32231098

0. 07155475 1
-0.28412711 jx 1012
-0.28412711

01
0.22011372 x 112
-0. 22011372

0 0 0.27019046 

L(X) H20) = -0.57339508 -0.41378507 -0.53819808

-b0.57339508 0. 41378507 -0.53819808

0.19576293 0.27127486 0

L( y) (H20) = -0.38994427 -0.54035812 0.41694290

L -0.38994427 -0.54035812 -0.41694290

P(H20) =

P(D20) 
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0 0 0.36875850 

L(X) (D20) 0.55755031 -0.43489958 -0.51959401

-0.55855031 0.43489958 -0.51959401

f 0.27586231 0.35366122 0 1
L(Y) (D 2 0) = -0.38869992 -0.49832140 0.40253030

-0.38869992 -0.49832140 -0.40253030

0.55827811 0.03518967 -0.56773328 1

B(H20) = 0.55827811 0.03518967 0.56773328 x 102 g2

O. 88650762 -0.63973974 0 J

.082366686 0.82366686 0.09061360

3-l(H20) = 1.14138126 1.14138126 -1.43756952 x10 12

-0.88069525 088069525 0.88069525 0

F 0.40397239 0.02091117 -0.41597992 

(D 2 0) = 0.40397239 0.02091117 0.41597992 x 1 

O.60976514 -0.47562811 0 

From the Darling and Dennison data, we obtain for H 2
0:

TABLE B. 4

H20 - Cubic Potential Constants,

(In units 10 4 erg)

klll -6.39394768

kll2 = kl21 = k211 = -0.00661899

k122 = k212 = k221= 1.42970259

k222 = 0.93327808

k133 = k 31 3 = k 331 = -6.01666506

k233 = k32 3 = k332 = -1.05903895

All other coefficients vanish, since they refer to terms 
in

the potential which are odd in the coordinate q3, and 
this
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corresponds to the antisymmetrical vibration 3 -- this

coordinate changes sign on reflection of the molecule in the

a'-plane; this fact is equivalent to the relations (II.79).

From Table B.4 we find

-36.13199770 -0.07378331 0

10.47934063 1.49933996 0 -2 2

k'(H) = -104.94024293 -12.14563475 0 xlO dyne cm 

0 0 0
so that

-84.56753212 57.47345798 -35.92925361

57.47345798 -84.56753212 -35. 92925361 1O12
I(H20) = 24.61366648 24.61366648 -2.51799700 x dyne/cm2

0 0 -96.56701865

and the coefficients in (II.72) become:

TABLE B. 5

Cubic Potential Constants

(In units 1012 dyne/cm 2)

K1 11 = K22 2 = -84.56753212

K 112 = K1 2 2 = 57.47345798

K1 1 3 = K223 = -35.92925361

K133 = K 23 = 24.61366648

K333 = -2.51799700

K123 = -96. 56701865

The k
BS sI"

may now be calculated for D20, using the

above k and the appropriate matrix 8 for D20; we get

'(D20) =

-13. 50920236 0.96683576 0

4.13945419 0.53833778 0

-40.89726197 -4.28552185 dyne cm
0 0 0

and

I - s
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TABLE B. 6

D 20 - Cubic Potential Constants

(In units 10-14 erg)

kill = -3.90483690

kll 2 = k121 = k211 = 0.14062708

k122 = k212 = k221= 0.90891576

k222 = 0.53532925

k133 = k313 = k331 = -3.76865386

k233 = k323 = k332 = -0.59615616

3. HDO Calculations

For the transformation (II.7) to principal axes, we find

tan 2 = 0.90864666

sin = 0.36048318

cos 0 = 0.93276572

= 21.129870

TABLE B. 7

HDO - Equilibrium Principal Moments of Inertia

(In units 10 40 cm 2 )

Ie

I e

YY
e
zz

1.21241595

3.07104776

4.28346371

and the equilibrium positions of the nuclei are given by:

x _ 0.07101748 x10 8 cm

x 2 = 0.56613647

X = -0.84727087x3 -

l = 0.07254673 x 10 8 cm

e = -0.74805539

3 = -0.2018200733

____ ----- -- "- __·CI-�-CI·-I ___ ------
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The quantities xij, Yij are:

Xl2 = -0.49511899 x 10-8 cm

X13 = 0.91828835

x 23 = 1.41340734

Y12 = 0.82060212 x 10- 8 cm

Y13 = .27436680

Y23 = -0. 54623532

so the kinetic energy matrix is given by

5.88649894

= -1.63102653

-0. 52682949

-1.63102653

5.81699605

0.51572418

-o. 52682949 1
. 51562418 x 10 -2 4

1.28190702.

We also have

-1.21410401

T = 1.07483884

-O.44059643

so that

22.67630226

X = -13.88795405

-3.65632000

1.53901209

0.17204413

0.43130887

-13.88795405

20.58418839

6.88480331

. 56486426 1
0.28264683

1.07208056 _

-3.65632000
6.88480331 x 105 dyne/cm

3.94231275 _

The characteristic numbers of p are found* to be

P1 = 7.569586383 x 10-24 g

D2 = 4.220350792
b3 = 1.195464835

so that

O.7097363398 0.6995349700

A = -O.6947754320 O.7145983663

-O. 1164535406 0. 0000000018

O. 3634661118

= O

O

O

0. 4867721522

0

0.0832175085 1
-0.0814633260

0. 9931961406 1
0

0 x 1012 g

O. 9146008420.

* The characteristic numbers were determined by the matrix
iteration approximation method of reference 9, Section 1.23.

- --- --



111

4.8651723650 0.0831194912 -1.1878089061
B = AXIAN = 0.0831194912 1.8299805352 1.0833604151

-1.1878089061 1.0833604151 2.2186358018
x 102 9 sec - 2

The matrix B has the characteristic numbers

-2= 2.819180209 x 102 9 sec- 2

C2 = 0.744685129
2

32 = 5.3499233637

so that the normal frequencies are given by:

TABLE B.8

HDO - Normal Frequencies

_ lO14 -1
=1 = 5.309595285 x 1014 sec

"2 = 2.728891953
C3 = 7.3143170315

V1 = 2818.800904 cm

V2 = 1448.736239

v 3 = 3883.083804

Diagonalization of B is accomplished by the matrix

0.3322677882 -0.2111658172 0.9192426851 1
R = 0.7090694092 0.6985980947 -0.0958189690

0.6219474977 -0.6836444250 -0.38185286491
which leads to

0.3744985817 0.1313763923 0.1754416960
= AR = 0.1164015911 0.3472660034 -0.2370137048

0. 5508995705 -0.6120695752 -0.3857754595
x 101 2 g
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We also get

0.15890641

FX = -0.84109359

-0.84109359

O

jy) = 0.81461926

-0.40761927

5.15351531

= 0

Sx) = X)p =

vy) = Y) =

L(X) = m =

L(Y) = u() =

= TP=

0.05951022

0.05218498

-0.49871459

0.01849696

-0.02755541

-0.13310598

0.30668685

0.06750672

-0.91201827

0.09532436

-0 03564579

-0.24341595

0.03564670

0.57826185

0.47581102

0

0

0O
O

0.15890641

-1.63854103

-0.44206676

0

1.29360440

0

0.02087655

-0.51844285

0.09362672

0.05518279

-0.30433133

-0.28595449

0.10758762

-0.67065995

0.17121874

0.28438537

-0.39398435

-0 52293581

0.02920574

0.02795400

-0. 56429296

0
0.66649778

-0.33350222 

0]-0.25757941

0.12888761

0 x 10- 1 2 gi

1.82873790

0.02787881

-0.40468137 x 102 g

-0.01890591 A
-0.03766300 12

0.63064268 x 1012 g

-0.01645921

0.14367388 1
-0.52349761

-0.03457396

-0.19409683 1
0.81580213

-0.03009959 -

-0.79568219 1
0.03875653 x 102 g-

-0.59310747 1

The cubic potential coefficients are:

-19.16441347

4.48361231
k = -8.47066032

_ ~O

-1.99429641

0.97679970

-5.32837221

0

-2.23137620

-5.47161888

49.66670495

-7.76171927

x 1048

dyne cm-2

g3/2
and

__ _ __
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TABLE B. 9

HDO - Cubic Potential Constants

(In units 10- 14 erg)

kll =

kll 2 = k 121 = k211

k113 k131 k311

k122 = k212 = k221

k222

k223 k232 k322

k133 = k313 = k3 3 1

k233 = k323 k332

k333 -
k 12 3 = k 231 = k312

k 32 1- k21 3 k 132

-5.36139356
-0.25941086

-0.17728726
0.81351213
0.74165220

-0.84585445

-0.57341072

-0.50313049

8.59367572

-0. 43010075

�.�1_1_·111�- _1
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APPENDIX C

NUMERICAL CALCULATIONS

ROTATION-VIBRATION CONSTANTS

In accordance with the convention (III.68), we have

Iaa * Ibbl Ice '

so it is apparent from the results of Appendix B (Tables B.1

and B.?) that the axes x,y,z are there identified with a,b,c

respectively, for the three molecules considered; this is the

IIIr representation of KHC I.

For convergence of the continued-fraction expansion of

the secular determinant associated with the rotational matrix

(III.73), as discussed in Appendix D, it is desirable to now

relabel the original axes z,x,y to correspond to a,b,c

respectively; this is the Ir representation of KHC I.

Let us now write*

a Bzz c = B

v vb- Bx d = Bzx

If we now make use of

* In this work we will not be concerned with BY, Byz though
xy z'

it should be pointed out that, in a III r representation By
will appear in place of Bv (Ir), and this case is applicablewl zx
to HDO; however, B y appears in the factored submatrices of
KHC I, whereas Bv does not, and for certain purposes it is

zx
desirable that this product of inertia be left out and

treated as a small perturbation.
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2b-a-c
a-c

in the manner discussed by KHC I, the first three of the

equations (III.74) become, in this representation (Ir):

R o -aJ (J+l) + --c (x-l)J(J+l) - DJJ2(J+1)2
o 2 2

R2 = a-c (X-3) - DJKJ(J+l)2 2

a-c (X+l) + JJ(J+l) .

In the sequel, we will work in the Ir representation.

The results of Appendix B are readily put in this form by

the simple relabelling of axes; however, the final results of

the present Appendix are subject to modification when change

of representation is made, for, while the t's of (III.64) are

easily relabelled, the equations in Section III.4 are

unchanged, so the distortion coefficients have different

numerical values; the effective moments also change slightly

from representation to representation, because of their

dependence on the Dgg, of equation (III.77).
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In a I r representation, using the results of Appendix B

with the theory of Chapter III, we obtain:

TABLE C.1: esg~,

H2 0 D2 0 HDO

0

0.00551823

-0.99958477

0

-0.05679709

-0. 99838573

0.54508337

-0.01777540

-0.83819337

TABLE C.2: a(' )
s

In units

H2 0

10- 2 0 (g cm2)

D20

2.24791666

-1.62218756

0

3.43222073

0.01894007

0

1.18430406

1.64112764

o

3.09001292

-2.41026736

0

4.75889304

-0.27072831

0

1.66888012

2.13953905

O

3.14959494

-1.43415769

-0.55446728

3.46953887

-0.07357782

-2.25626687

0.31994393

1.36057987

-1.70179959

-0.77187968

-1.25204106

-1.63456738 -2.23087284

ey)12
r(y)

1

L)23

HDO

(xx)
a1
(ME)a2

(oc )(X)a3

a(Y)1

a)2

33

(zz)al
1
(zz)a 2

(zz)a3

(zx)
al
1

(zX)a 3a(I
3

O

O

O

O

_� �_ I

-1.14611615
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TABLE C 3: A g )
8B

D 2 0 HDO

0.65756382

O. 34243617

0. 65231724

0.62172470

0.37827528

0.67593871

0.93039131

. 49067572

0.29588729

(yy) =(YY) =y) = 
A11 = 22 33

0.34243617

0.65756382

0.34768276

0.37827528

0.62172470

0.32406129

0. 06960868

. 50932427

0. 70411268

-0.24882819

-0.20508826

0.45391645

HO202

A(xx)11

A(xx22

A3)33

A(ZZ)
11Al

A(ZZ)
22

33

0(zx)A(=11
A(= )Azx)
22

(zX)
A33

0

0

0

III_·�-�_LIIYIIIIIII·I-·�-�^ · ·I�-- I I

0 0
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TABLE C. 4: bg)

In units 10- 4 0 ( cm2 )-1

H20 D2 0 HD0

0.01073481

-0.00668562

0.00214426

0.00703036

0.00451081

0.00508392

0.02034015

-0.09592416

0.04595808

0

0

0

0. 00309673

0.00831254

-0.01481296

0

0.00443681

-0.00269696

0.00087791

0.00273430

0.00171093

0.00180278

0.00582782

-0.03802457

0.01902196

0o

0o

0o

0.00130888

0.00312401

-0.00658740

0

0.00678864

-0.00600179

0.00088137

0.00382831

0.00237112

0.00299900

0.00995508

-0.06013689

0.03624818

-0.00645617

0.01155260

0.00271927

0.00083411

0.00459921

-0.00696682

0.00390785

1(.XX)b)

(xx)
b3 

b )

1

4yy)2

1
b(2)

b(3)

b( )
(zx)b1
(Mc)

`3

i be )

i £ b(yy88 
i zz b( )88b~S 

S s
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TABLE C. 5: gg,,,,,

In units 1090 (g cm2) - 3 sec2

H20 D2 0 HDO*

-1.35241851

-0.15081584

-13.84950671

-0.22714952

-0.44803283

2.88152784

-0.62814987

-0.33862371

-0.04098252

-4.28635104

-0.07048001

-0.08361311

0.80211647

-0.16885299

-0.35627764

-0.07765828

-7.08894402

-0.12884885

-0.18112849

0.75249734

-0.92397640

,rzxxx 0 0 -0.23745113zxxx

orzxyy O o . 02509463

,rzsxzz 0 0 1.83673884

*Not transformed to principal axes: see Table C.10.

TABLE C.6: Dgg,

In units 1040 (g cm2 )- 1

H,0 D,O HDO*

-0. 00008438

0.00009014

-0. 00004795
0

-0.00002208 -0.00010530

0. 00002483 0.00015141

-0.00001379 -0.00009876
0 -0.00001824

*Not transformed to principal axes: see Table C.11.

YYYy

Ixxyy

lyyzz

rzzxx

rzxzx

4 e-
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TABLE C .7
Distortion Constants

In units Mc/sec

H20 D 20 HDO*

28.92348858

729.36580935

-112.71978845

14.00262952

31.16163450

-3.05588799

0

0

0

7.45681896

225.00743493

-32.66381366

3.46850038

8.12053047

-0.69525362

0

0

0

9.01676826

279.94933771

41.47209724

3.24683339

-9.03150455

-0.54839883

3.05952301

-8.00882857

50.81694501

*Not transformed to principal axes:

Dj

DK

DjK

R 5

R6

4y)

4y)
9

I

see Table C12.
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TABLE C. 8

Rotation Constants

In units 105 Me/sec
(X dimensionless)

Equilibrium

H 20

ae 8.1925576

be 4.3666040

ce 2.8484110

Ke -0.43182960

D20

4.5574718
2.1849618

1.4769002

-0.54030510

HDO

6.9191808

2.7316167

1.9584443

-0.68828325

Ground Vibrational

H20 D20

8.3168225

4.3406258

2.7786778
0

-0.43593095

4.6127330

2.1739817

1.4506931

0

-0.54251778

6.9776249

2.7246194

1.9198619

-0.0327827

-0.68177336

H20

a 8.3172247

b 4. 3413336

c 2.7779216

d 0

X -0.43552032

Effective

D20

4.6128487

2.1741669

1.4504848

O

-0. 54231577

HDO*

6.97845341

2.72550273

1.91859173

-0.03262965

-0.68105413

*Not transformed to principal axes: See Table C.13.

a o

o

Od°

X0

HDO*

-- --- - -- - --- - - ----- _11111-11�--__ _1 II- II I - �---
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In Table C.9 we give the inertia defect for the ground

state: (1) calculated approximately from equations (III.72)

or (III.84) (0o) (2) calculated exactly from the ground

state moments (t)i and (3) calculated exactly from the

effective moments (At'); the agreement is seen to be good to
0

a few percent.

TABLE C. 9

Inertia Defect

In units 10 - 4 0 g cm2

H 20 D20 HDO

tA O0.07609087 . 10381619 0.08676075
O

A t O0.07771198 0.10527228 0.08835060*

Att 0.07889770 0. 10647705 0. 09238402*

*Not transformed to principal axes: see Table C.14.

The non-vanishing of the dszx) for HDO introduces an off-

diagonal product of inertia which cannot be neglected;

removal of this (Section III.6) modifies the HDO constants,

whose new values are given in the following tables. The

transformation coefficients (III.91) are:

cos = 0.9999702970

sin = 0.0077074347

e 0027 '

so the axes are rotated through about half a degree.

I _ _ _ _ _ _
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TABLE C. 10

HDO - Effective t'

In units 1090 (g cm2 ) 3 sec 2

7',tx -0.36368202

'yyy -0.07765828
yyyy
rz' -7.14485265
ZZZZ

txxyy -0.12246549rxyy

r -0.18151185
Vyyzz

rztzxx' 0.78415385

ZI ' -0.89231989

C' -0.24275270
ZXxx

r' 0. 02464248
zxyy

1.78996036zxZZ

TABLE C.11

HDO - Effective Di'

In units (g cm2 )

Dxx -0.00010189 x 104 0

Day 0. 00014602 x 1040

Dzz -0. 00010610 x 10

Dz' -1.85723121x 1035
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TABLE C. 12

HDO - Effective Distortion Constants

In units Mc/sec

D'

JKD'K
D'

JK61
i

R'
5

Pt;R6

AXK) 
7

R4Y) 8

R(y)
9

9.14172899

287.08933921

36.81321390

3.33311881

-7.87718656

-0. 57220390

3.11603472

-8. 19943988

49.91730954

TABLE C. 13

HDO - Rotation Constants

In units 105 Mc/sec
(x dimensionless)

Ground State

6.97787760

2.72436671

1.91986190

0

Effective

a' 6.97876766

b' 2.72522145

c ' 1.91863695

d' 0.00015580

no' -0.68188916

aO'

cOf

do'

- -- --

x -0.68120013
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TABLE C.14

HDO - Effective Inertia Defect

In units 10-40 g cm2

Ao O0.08676075

At 0. 08810858

t, 
dt 0.09201742

_____ _I _I_ I_�__l�s� _II� �I_ II I_
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APPENDIX D

COMPUTATION OF ROTATIONAL ENERGIES

The theory of Chapter III results in the rotational

matrix, whose elements are given by (III.73) and which is

diagonal in the quantum number J. In the type of analysis

described in Chapter VI, one is interested in only a rather

restricted number of the 2J+l energies corresponding to a

particular value of J; complete diagonalization of each J

matrix is not necessary.

To obtain the desired characteristic values of the

rotational energy matrix, we have found it convenient to use

an extension of the continued-fraction approximation method

described by KHC I for the rigid rotor case. The appropriate

representation (i.e. identification of axes) must be chosen

to ensure convergence; it is not expected that the addition

of a small perturbing matrix to the original rigid rotor

matrix will affect the convergence properties, and no

difficulties of this type were encountered in the present

work.

Since in the present instance we wish to apply the

results to HDO (in a Ir representation), the following

discussion is to be considered as specialized for this case.

However, the methods are readily extended to other examples

where needed; for H20 and D20 they become much simpler.

When one carries out the transformation described in

Section III.6, the elements of the rotational matrix II773
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for HDO in a I r representation take the form

(KHRIK )

(KIHRIK+l)

(KI HRI K24)

(KIHRIK+3)

( K HRI K -#)

= R +R2 K 2- DKK4

= t i [g(J,K+1)] (2K+)

X [N +R 8 J(J+1) +R9[K2+ (K±l)23

= [Eg(J,Kl)(J,K±2)] [R 4 -R 5 [K2+ (K±2) ]

= + i [g(J,K-+l)g(J,K±2)g(J,K3)](2Kt3)R7

= [g(J,K±l) g (J,K±2) g(J ,K±3)g(J ,K±4)]R 6

where

N = - j 12Dzx = 5R7 ,

and R 7 , R8 and Rg stand for R , 8()8 and R( ) .

In the general notation of KHC I we may write

+ a-C FJ (J+l)
2

- DJ 2 (j+1)2

R = a-C(,GF)2 2

R 1- a-c H +

(D.3)- DJKJ(J+l)

, 6jJ(J+1),

where, for a Ir representation,

F =- (-1) G=1

H = - 1(X+l) G- F = - (x+3)

and a,b,c,n are defined in Appendix C.

We now re-write the rotational matrix, thus

= a+c J (J+1)HR 2 - DJJ2(J+1)2

where E is the reduced energy matrix, with elements

(D. 1)

(D.2)

R = a+c J(J+1)0 2

(D. 4)

a-2+2 E (D. 5)

�'�----
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EKK = (KIEIK) = FJ(J+l) + [(G-F)-DJJ(J+1)]K 2 - DKK4

1+ = (KlEIKtl) = (KIHRIK±l)

$E;2 = (KIEKll 2) = [(J,Ktl)g(J,K±+2)]

x [H + bJ(J+1) - R 5 EK2+ (K±2)2]

EK+3 = (KIEIK±3) = (KIHRIK±+3)
(D. 6)

fX_± = (KIEI±f4) = (KIHRIK+4)

In (6), DJK, DK, j, R 5, R 6, N, R7, R 8, R9 now stand for the

original ("fundamental-") distortion constants divided by

a-C and will have this meaning for the remainder of this

Appendix; they are the reduced distortion constants.

It is apparent that the whole complexity of the problem

lies in the reduced energy matrix (6), and the methods of

handling this will now be discussed.

First one transforms the matrix to a basis of Wang

functions, using the transformation X of KHC I in the usual

manner. In the presence of (KIK+1) and (KIK3) elements, the

resulting matrix can now be factored into two submatrices

only, corresponding to symmetric (+) and antisymmetric (-)

Wang functions. When the (KIK±l) and (KIK±3) elements are

pure imaginary, as in the case of the HDO molecule in a I r

representation, these submatrices take the forms:

I _



Ho0 H01 H02 H 03 H0 4 0 0

1 0 1 1 2 13 H 14 H15
+ +

H2 0 H21 H 22 H23 H 24 H25 26

H3 0 H;1 H 32 H3 3 H34 H 35 H3 6

H40 H41 H 42 H4 3 H44 H 45 H46

0 H51 52 H53 H54 H55 H56
0 0 H 62 H 6 3 H 64 H6 5 H 6 6

_ _. - - - - - - - - - - - - - - - - - - - - - -- -

_ _ _ - - - - - - - - - - - - - - - - - - - - - - - -

H 11 H1 2 H 13 H14 H15 0 

H21 H22 H23 H 24 H25 H 26

H31 H32 H33 H34 H35 H36

H4 1 H4 2 H43 H44 H 45 H 46

H51 H52 H53 H 54 H 55 H 56

O H 62 H 63 H6 4 H6 5 H6 6

_ _ _ - - - - - - - - - - - - - - - - - - - - -

_ - - - - - - - - - - - - - - 6 -

where,

HKK, = EKK, , (D.8)

except that

HOK = 2 EoK (K=1,2,3,4)
+ (D.9)

"il = K, E- K' -

The matrix elements obey the usual relations

-K--l= EKKlkEK _1- '~K K+1 ~(D.10)

E-K -K+1 = EK K-1

129

(+) =

(D.7)

(-) -

_�C_ Y____ �I��� I�C·l� I_ CI -I^T-l-.·l -I �
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but the (KIK+l) and (KIK±3) elements, being imaginary, are

also subject to the Hermitian condition

EK+lK = - EKK+l
(D. 11)

E+ 3 K - E K+3

For computational purposes, it is now convenient to

introduce the symbol HkK,, to denote the rigid rotor limit of

the value of the matrix element HKK, for K' = K, K±l, K±+2,

and to be identical with HKK, for K' = K3, K4, with

HKK = Hn, AK', for K' K. (D.12)

In terms of the EKK,, we have specifically

EK = FJ(J+l) + (G-F)K 2

EKK+1 = i[g(J,K+l)](2K+l)*N

EIK+2 [g(J,K+l)g(J,K+2)] (D.3)
(D.13)

EK+3 EK 3 = [g (J,+ )g(J, K+2) g (J,+3)] (2K+3)

E;K+4 = KK+4 = [(JK+l)g(J,K+2)g(J,K+3)g(J,K+4)] 2R 6

Note that N is a multiple of R 7 , through (2), though we find

it convenient to use the two different symbols.

Further,

EE EK = DJKJ(J+1)K 2 - D 4

EK+1 E E 1 A K+,

E KK+2 E= K+2 AHg+2 (D. 14)
EK K+ 3 EK+2 AKK+2

CK+4 = KK+4 AKK+4 9

_
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with

AK:+ =1+ 2J(J+1) + 2 K2+(K+1)2

AK+2 1 + 2J(J+1) J - 2[K2 + (K+2) 21 (D.15)

AKK+3 = AK+4 = 1 .

We also write

+ +

Hll - Ell = El + E1 J(J+l)DJK - DK

+ J2 (j+1) 2 j + 2J(J+1)R5

2 = E22 = E22 4 J(J+1)DJK - 1 6 DK +- J(J+1)[J(J+l)-2 2R 6

and

+ + +

12 = E12 = E12Ai2
+ I +
13 E13 =E3 Ai

12 A12 15 J(J+R)
+ + R 6

A13 A13 2J(J+)

To find a particular reduced energy, +XK, corresponding

to a given J and K, the appropriate submatrix (+) or (-) is

chosen (see KHO I); the leading term in the expansion of the

associated secular determinant is then HKK. The expansion is

carried out by reducing the order of the determinant by

successively removing rows of off-diagonal elements; an

analytical description of the process is readily obtained.

Suppose the matrix has elements of the form Mt. In the

determinants under consideration, the roots are non-degenerate

because the K-degeneracy has been separated out by the Wang

transformation, and each member of a pair of degenerate
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levels will appear in a different submatrix; thus it is

legitimate to divide by MrrX- when r K.

To remove the r-th row of the determinant, we multiply

each element of the r-th column by M and subtract from
rr

the t-th columns the elements of the latter column then take

the form

sr rt
Mst -Mr -

the r,t-th element being zero. Doing this for each value of

t, except t =r, removes all the off-diagonal elements in the

rth row. Since Mrr- is nonzero, and is the only element

remaining in the r-th row, it may now be factored out,

together with the rest of the r-th column.

The elements of the resulting determinant may be

relabelled Mr (r,s,t are not necessarily consecutive

numbers ), with

M t = Mst - rt (D.18)
St st M .4

and with diagonal elements

M9 - M - r rs (D.19)
rr

One can proceed by repeating this process, until there

finally remains the term

Mr. .x Mr... x
MK K .. xy 
MKK Mr..x 
YY

so that
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JK = ' ' x .2JK = M .XY .xy *(D. 20)

Here r...xy indicates the sequence in which the expansion was

carried out, in terms of the diagonal elements which appear

in the denominators at each stage; for the (+) matrix it will

contain the J numbers 012...J with K omitted, but will not

necessarily be in the normal order of integers. For a given

JK certain sequences will be more convenient for computational

purposes than others, but for large J it is not practical to

try and find the best one. Accordingly, we adopt a standard

order

(0)12.. .. K-1 :J J-l.... K+l , (D.21)

which we call the "primary sequence"; (21), incidentally, is

preferable to the more obvious sequence

(0)12.... K-1:K+1.. .. .J-1J ,

for large J, at least. Here we use (0) to indicate the 0 is

to be omitted for the (-) submatrix.

Thus we can write

J = 4(0)12... K-1:JJ-1....K+1

or, + HK+l
rJK = HEK , (D.22)

where, for simplicity in practice, only the last member of

the assumed standard sequence is written.

When (22) is developed as described below, it may be

used to obtain approximate values of X by the usual iteration

__________I_______1I1_1__1____ -I-^XI-llll--lll_ ��I_·��·_�--1-··II��---C-��---- ·11�-_- - -·--
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process.

If M and N are two consecutive numbers in the primary

sequence -- they may be K-1 and J -- then (18) gives the

recurrence relation

4 0)1..M H(O)1..M
,)1. MN = ;)1. M N NK"

NNnK'.- EOE1..M _

or, simply,

K" = _K" T (D.23)
HNN X

with the particular cases

HKKI N= - NK jhb

Hz =eH , EHOK. (+)
-1HVKt, - H00- X

=X ,lHlK (-) (D.24)'K"i HKt'E HI -x

Appropriate + or - signs should also be inserted where

necessary, as they appear in (7)s to simplify the discussion

we have left them off, but their presence is implied.

These results are quite general, for any determinant

with non-degenerate roots, but the question of convergence is,

of course, quite another matter.

From the above recurrence relations we can now write

_ __ __
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N 7 tHiAK' |2_ HB N, |H' K|2 (AnK,)2= JKI =I HKHjj K
H j Hii=0 i3 '; Xi

(D. 25)

N AUKS =Kl' K - i -X (D. 26)

J= i - k

where N is any number in the primary sequence, and i,J are

successive numbers in this sequence. For the (+) submatrix

the first terms (J=O) in the sums are

II~12 0
_IHo_ O' ad BK' 1K AKO AOK"EOK' and
HO0- x H0 0 - x

while for the (-) submatrix these terms vanish, and the

first terms are

I HK, i 2 11'and BNK' KAK'l A1Ktand
H- X Hl - A

The cases K = O and K = J are easily treated, and will not be

discussed in detail here.

In (26), the quantities AK, and Bi,, are defined by

the relations

" HKK' Ai'Kt,

iKn = uiHi, i (D.27)

AtqlKt = IHK,,

The Bi, E' may be calculated from Table D.1.
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TABLE D. 1: BiK"

In the quantities marked with an *, the superscript i may
take on the value O; when it does, the right hand side is
to be multiplied by 2.

* K31 - 2K g(J,K-) g(J,K-2)g(J K-3)R 6

* =-2 1 2K-1 g(JK-l)g(J,K-2)H
Bi+. - 5 2K+,

U BXK 1 2 2K+1

K+2 = 2 2K+3 g(J,K+2)H

BK+3 1 2K+3
3K+l 1 2K+3 g(J,K+2)g(JK+3)H

BK+1 2 5 2K+5K+4 = - 2K+l g(J+2)g(JK+)(J+4)R6

* K-2 g(J,K-1)g(J,K-2)R 6

N.K22* K-21- 5(2K-1) (2K+l)g (JK-l) 

NK+2BUK+2 = 5(2K+3)(2K+5)g(J,K+3) <

BKK+2 = g(J,K+3) e(JK+4)R6

* - 2K-1
BK+43 - 5 2K+3 g(J,K-4)R6

BK+3 2 2K+3 6
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The relations (25) and (26) may be used to set up

directly the expansion for numerical calculations. To explain

the rocedure, it is convenient to take K'< K", so that

N = K' -1 V K" when K'<K

N = K"+ 1 > K' when K'K.

Then, from (26), we see that A K +4 1 , and AK"K, = 0 if

K" >K¥4. As a result, for a given K' there need to be

calculated only the quantities

HK;l Kl~l K'- KKl
'K' -A ' K+K'2, K'Kt +3 ' K

(D.28)
xt +l K"+ 1 .K"+l it1 ' > K
"H T X A- L1Kl '* -2 K ' _-3K" K' K

and, finally, 2 JK = HK -K

From (25), (26) and (28), one can set down

systematically the terms that must be calculated for each

cycle of the iteration process. As an example, we list some

of these, in the correct order, for the 12 level:

E.OX

H 0 X A0 A A011- A12' 13' A 1 4

22 23' 24A 25H 12- , A2325

4 4 4 4H -, A56 A57 A5 855 - 56 57' 58

E1212-'

qH112 - A II , Ag I, A 11

_ _ C^III_ 1(___1___1 __11__··____1___1__1I�.�L_·IYI- ----I�IIIC·-YI��I�-·--X*·l -I·.yl-··.·- -----· ll�P111�··1�--·1111111�·1111�
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H0 .A 10 10 10

99 89, A79 A69
H98-X A 9 A 9
88_ A78' A68

H 7 -X, A8H47~ 67

66 =

This particular level requires some 500 desk calculator

operations per cycle, which can be carried out in about two

hours when working to 10-figure accuracy. Of course, one

should start with a reasonably good approximation, e.g. the

value obtained when (KIK+±l) and (KIK+3) elements are

neglected. From the latter calculation, too, one can obtain

a good correction factor to be applied to each cycle of the

iteration and thus increase the speed of convergence. In

practice, if no numerical errors are made, one can usually

obtain a 10-figure solution with three iterations.

This procedure is easily specialized to the case where

(KIK±l+) and (KIK+3) matrix elements are absent, as in H20

and D20, and reduces to the rigid rotor formulation of

KHC I when (KIK+4) elements also vanish. In these cases,

factoring into odd and even K submatrices is automatically

achieved because of the lack of matrix elements connecting

even and odd K's.

_ _I__ �_�
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APPENDIX E

EXPERIMENTAL RESULTS

The experimental work was carried out using a

conventional slow-sweep, 5 kc/sec square-wave Stark

modulation spectroscope, with re-modulation and visual

presentation. Frequency measurements were made with the

M.I.T. frequency standard, monitored by WWV.

A.E.C. 99.8 percent D20 was usually used as a specimen;

HDO lines observed seemed no weaker than those in a 50-50

mixture of this D20 with distilled water.

Difficulty is sometimes experienced in deciding whether

a line is due to HDO or D 20. Where possible, we have used

Stark and Zeeman effect measurements to provide additional

evidence for identification.

D20: 22O-*313: 10,919.39+0.05 Mc/sec

This line was found during the progress of a general

search for water lines in the X-band region2 6, and was

identified on the basis of its Stark effect. It has now also

been reported by Beard and Bianco l , who agree with our

assignment of the transition, and who give the frequency as

10,919.8±0.1 Mc/sec

The line is strong, and its Stark components (M= 0,1,2)

are readily resolved. We measured:

= (1.473 - 0.2088M 2)E 2 Mc/sec ,
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where Av is the frequency shift of the M-th component, and E

is the electric field in Kv/cm.

From the KHC II tables of the D20 term values (see

footnote, p.62) the theoretical Stark effect for the D 20

220-4313 transition is

AVth. = (0.4751 -o.o7264 2)p 2 E2 Mc/sec,

where is the dipole moment in Debye units; using32 = 1.84,

we obtain

AVth. = (1.608 -0.2459 M)E2 Mc/sec.

The ratios of M-independent and M-dependent coefficients are:

observed 7.05

theoretical 6.54 .

Although the agreement is not very good, the easy

resolution and large intensity of the Stark spectrum readily

enables identification of the line as a J = 24-3 transition;

the assigned transition is the only one in D20 or HDO that

approximates the observed measurements.

Burke3 has used the Zeeman effect to confirm our

identification of this line.

D20: 52--441: 10,947.13+0.05 Mc/sec

This line was found at the same time as the 220-0-313

line26 but was not identified by the writer up to the time it

was reported and identified by Beard and Biancol$ the latter

authors give the frequency as 10,947.4+0.1 Mc/sec.

__ __
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Our measurements of the Stark effect give

AVobs . = (0.957 O0.0402M 2)E 2 Mc/sec,

while we calculate the theoretical Stark effect for the given

transition to be

AVth = (0.275 -0.0117M2)1t 2 E 2 Mc/sec.

Observed and theoretical ratios of M-independent and

M-dependent terms are

observed 23.8

theoretical 23.5 ,

in very good agreement. With j = 1.84 Debye units, the

theoretical expression becomes

AVth. = (0.931 -0.0396M 2 )E2 Mc/sec,

which is close to that observed.

HDO: 744 -_743: 8,577.7±0.1 Mc/sec

This line was originally found by J.D.Kierstead1 3 of

this Laboratory; its frequency has been measured as

8,576.89 c/sec. We have remeasured the frequency, and find

the value 8,577.7±0.1 Mc/sec.

HDO: 845 844: 24,884.77±0.05 Mc/sec

-. We found this line by general searching in a region

predicted by rough calculations26; the line is quite strong,

and it is surprising it has not been observed earlier.

-- 11 IIIII�I�-·__ L
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12Jen et al. have independently reported the line at

24,880.85+0.1 Mc/sec, and have identified the transition.

We find the Stark splitting to be typical of a Q-branch

transition, being given by

AVobs . = . 0216M 2E 2 Mc/sec,

in good agreement with the theoretical value of

AVth = 0.0234M2 E2 Mc/sec

for the assigned transition with = 1.84 Debye units.

HDO: 1056-1055: 8,836.95+0.1 Mc/sec

HDO: 1157 l1156: 22,581.1+0.2 Mc/sec

As indicated in Section VI.2, these lines were predicted

at 8,836 and 22,577 Mc/sec, respectively.

Visual observation of the Stark splitting shows the

expected behaviour of Q-branch lines in the absence of strong

perturbations. No Stark measurements were made, since the

lines are weak, and it is considered the identification by

position is quite adequate.

HDO: 624--717: 26,880.38+0. 05 Me/sec

Some difficulty arises in accounting satisfactorily for

this line. It was first discovered by McAfee 22 who gave the

frequency as 26,880.44 Me/sec, and who believed it to be a

D 20 transition.

The observed Stark effect is most consistent2 6 with the
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624717 transition of HDO; Burke3 has shown from the Zeeman

effect that the line must arise from an HDO transition.

Jen et al.2 have independently examined the line,

placing it at 26,880.47±0.1 Mc/sec, and also concluded from

the Stark effect that it is the 624771 7 transition of HDO.

It is considered that the present analysis of the HDO

spectrum gives a better energy level picture than the KHC II

tables, upon which the original Stark effect calculations were

based. The final parameters of this thesis, together with

=p 1.84 Debye units, give for the theoretical Stark effect,

AVth' = (0.2574 - 0.008621M2 ) E 2 Mc/sec,

while we observe

AVobs. = (0.2890 -0.01037M 2 )E2 Mc/sec .

The ratios of M-independent and M-dependent terms are

theoretical 29.9

observed 27.87 ,

and the agreement is to be considered fairly good, considering

the lack of exact calculations for the line strengths

involved in the theoretical expression.

The molecular parameters obtained in this thesis support

this assignment (Section VI.5).
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APPENDIX F

COMMENTS ON RELATED WORK

Darling and Dennison

Reference 5: B.T.Darling and D.M.Dennison, Phys.Rev.,
128 (1940)$ "Water Vapor Molecule".

This paper represents the first successful attempt to

account for the observed vibrational spectrum of the water

molecule. The writers' results on H20 and D20 form the basis

of some of the computations carried out in the present work.

Some of the theory of vibration-rotation interaction is

presented, but only as far as the vibrational problem is

concerned; there is no treatment of rotation.

The inertia defect for a planar molecule is first

introduced in this paper.

Although the work has not been checked right through in

detail, it appears to be singularly free from misprints. The

notation, however, differs considerably from that used in the

present work -- we mention some of the main correlations

below.

The coordinates x,y,q are equivalent to our (/i)u,v,w

respectively; the normal coordinates ql,q2 q3 correspond to

our Q '-' 9' and the transformation coefficients ij are

related to our PiJ as follows:

11 = P31 61 2 P3 2 = P21

22 22 ' 33 13
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For the quadratic potential constants, we have

Darling and Dennison This Work

(In units 10 5 dyne/cm)

a = 10.672 k"' = 10.6558

b = 7.1810 k = 7.18132

c = 3.1344 kI = 3.13462

2d = 6.3176 k4 = 6.31796

Slightly different values of the basic constants are, of

course, used in the two cases.

Darling and Dennison use xi where we have the

dimensionless normal coordinates q; their coefficients a i

in the cubic part of the potential (in their paper, the

term in 6 should read ax 2 ) are related to our ks,,,

thus:

kll = hea k33 = k31 = k = hcakill 1 a 133 313 331 3 5

k112 = kl21 k211 = - 3½h°3 k233 k323 k332 3= - 3ha6

k 1 2 2 k 2 1 2 k 2 2 1= hc. 4 k 2 2 2 =- hc 22

the negative sign in the coefficients odd in the index 2

appearing since their q2 equals our -Q2. For H20 the

following values of the ai are given:

3a =-22 cm 1 a = 216 cm-1

a2 = 47 a 5 = - 909

a3 = 1 a6 = 160

from these, the ksss,, in Table B.4 were calculated.
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Some of the quartic potential coefficients are also

given, but these are not of interest to us here.

Expressions for the effective moments are calculated,

together with the inertia defect A. With the correlation

= _ K 2
13 2 23

it may be seen that our equation (III.84) for Ao is identical

with that for Darling and Dennison:

Darling and Dennison This Work

= 0. 0761xlO 10 g cm A = O. 76091 x 10 g cm2.

This paper should be consulted for any work involving

excited vibrational states, when resonance mixing of the

effective moments may occur.

The writers give theoretical expressions for the moments

of inertia, in the form of our (III.67), with the b(g) given

by (III.86); their equations are equivalent to ours. They use

the linear form (III.67) to fit the observed data, and

arrive at values which give, for the ground state:

Rotation Constants

In units 105 Mc/sec

Observed Calculated
(D andD) (This work)

a 8.32771 8.31682

b 4.34209 4.34063

c 2.78198 2.77868
X -0.437365 -0.43593

_ � ___ ___ I__ _I_� I



147

Fuson, Randall and Dennison

Reference 6: N.Fuson, H.M.Randall and D.M.Dennison,
Phys.Rev. 56, 982 (1939)i "The Far Infra-Red Absorption
Spectrum and the Rotational Structure of the Heavy
Water Vapor Molecule".

These writers find, from infrared investigations, the

following D20 rotational constants:

Rotational Constants

In units 105 Mc/sec
(N dimensionless)

FRD This Work

a 4.611 4.613

b 2.173 2.174

c 1.448 1.450

x -0.5412331 -0.54231577

They give rotational energy levels complete through

J = 12, and a few higher ones, together with distortion

corrections evaluated by a semi-classical method.

Values of the b( ) calculated semi-classically agree

fairly well with respect to sign and order of magnitude when

compared with the more rigorous results of the present work.

The rotational constants given by FRD have been revised

slightly by King9, from infrared work.

_ _I I� · _I I_ · _I ___ I -------C·ll�l -�II�I1I -C- sl -�--� --- �---·---
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Hillger and Strandberg

Reference 10: R.E.Hillger, Thesis, M.I.T. (1950)

Reference 11: R.E.Hillger and M.W.P.Strandberg, Phys.
Rev. 83, 575 (1951); " C entrifugal Distortion in
Asymmetric Molecules. II. HDS"

The possibility of using an approximation method to

calculate Q-branch frequencies, including distortion effects,

was first realized in this work. The HSKW formula was

obtained, though it is somewhat in error.

Although the distortion in this molecule is smaller

than in HDO, it appears to be still large enough for the

HBEW formula (in its correct form) to be subject to the

practical limits of accuracy discussed in the present work

(Section VI.3); accordingly, it is the present writer's

opinion that the whole analysis should be checked against

exact calculations, in a manner similar to the present work.

In his Thesis, Hillger derives a formula for A, similar

to our (III.71)) this, however, is in error.

Lewis

Reference 21: W.H.Lewis, Thesis, M.I.T. (1951)

Lewis has calculated theoretical distortion constants

for HDO; his results are similar to those presented here,

though his value for R 6 appears to be in error. A value of

A was obtained from the Hillger formula (see above), but

this is incorrect.

An attempt at analysis of the then known HDO spectrum

was not very successful owing to inadequacy of the data;
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the 84 line, for example, was predicted some 2,000 M/sec

away from its subsequently found position.

Nielsen

(a) Reference 23: H.H.INielsen, Phys.Rev. 59, 565 (1941);
"The Near Infra-Red Spectrum of Water Vapor. Part I. The
Perpendicular Bands v2 and 2v2."

This paper pertains to the present work in that,

theoretical and "observed" values of several H20 distortion

coefficients are presented; the theoretical coefficients are

calculated from the Shaffer and Nielson work 2 9 , and are in

substantial agreement with the present writer's calculations

from the same formulae; however, as pointed out in the

discussion of reference 29, the Shaffer and Nielsen

formulation apparently contains an error.

We give below some figures for comparison (these are

all in a IIIr representation, and in units 10-4 cm-1)

Nielsen This Work

Observed Theoretical Theoretical Theoretical
(Shaffer and (This work)
Nielsen
formulae)

DJ 473 150.3 104.723 82.321

DE 302.8 56.99 56.826 74.168

DJK -- -- -62.084 -154.143

6J 45 48.71 48.578 48.578

R 5 95 16.7 16.606 23.430

R6 -6.6 -6.75 -6.731 -17.932

-- -- ·----· -·-·--�-�- ._____ -·111111111111111111111111111111�111
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(b) Reference 25: H.H.Nielsen, Rev.Mod.Phys. 23, 90
(1951); "The Vibration-Rotation Energies of Molecules."

In our Chapter III we have followed closely the notation

of this review article, though a few changes have been made;

in particular, our choice of phase factor for the rotational

matrix elements differs from Nielsen's.

Although this article goes into considerable detail, and

is a good guide to the theoretical background of the present

problem, we find the typographical and other errors are so

numerous (and not always obvious by inspection ) that no

detailed reliance can be placed on the equations.

Randall, Dennison, Ginsburg and Weber

Reference 27: H.M.Randall, D.M.Dennison, N.Ginsburg and
L.R.Weber, Phys.Rev. 52, 160 (1937)

This paper contains an analysis of the rotational

spectrum of H20, and observed energy levels are listed.

A rigid rotor calculation, using the values

a = 8.335811x 105 Mc/sec

b = 4.346872

c = 2.781834

gives energies whose differences from those "observed" is

ascribed to distortion effects a semi-classical argument is

used to attempt to ustify this.

1 __



151

Shaffer and Newton

Reference 28: W.H.Shaffer and R.R.Newton, J.Chem.Phys.
10, 405 (1942); "Valence and Central Forces in Bent
Symmetrical XY2 Molecules".

These authors investigate the quadratic and cubic

portions of the potential function applicable to the H 20 type

molecule. Their method of determination of the central-force

constants from the data of Darling and Dennison is

essentially the same as that presented here, and they give

numerical values very close to ours, with the correlations:

Shaffer and Newton This Work

K1 K

K1K4 K12

K3 K'13
K KK2 33

Li gKl1 = K222
3 3 K112 = K122

3L6 K113 = K223

3L5 K133 = 233

L2 K333
6L4 K 12 3

A concise account of the normal coordinate problem for

H20 and D 20 is given; the only misprint detected occurs in

their sign for 33, which should read 23 33 = (p/2m)

A discussion of the valence-force formulation of the

potential function is also given, with the observation that

it leads to a better approximation to the true potential than

does the central-force function. However, the results of the

present work are not affected by the form of the function
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chosen.

No calculations based on the valence-force potential

were carried out by the present writer since the Shaffer and

Newton paper came to his attention too late for him to

investigate such an approach in detail.

The quantities K, Cl' 2' used by Shaffer and Newton,

correspond to our x*, cos and sin y, respectively, in the

discussion of H 20-D20 transformations. Their ql, q 2, q3

correspond to our QL, Q2' ' 3

Shaffer and Nielsen

Reference 29: W.H.Shaffer and H.H.Nielsen, Phys.Rev. 56,
188 (1939); "The Vibration-Rotation Eneries of the
Nonlinear Triatomic XY2 Type of Molecule'.

The theory of vibration-rotation interaction is carried

through in some detail along lines rather similar to that of

the present work.

Some misprints have been pointed out by Nielsen -- Phys.

Rev. 59, 565 (1941), footnote 11 -- and others remain.

The notation in the normal coordinate discussion is

readily correlated with that given in our Section II.5,

except that we choose a different matrix R (II.90).

The expressions for the rotational matrix elements given

in their equation (42) agree with ours, except that the sign

of their as defined in equation (39) is apparently in error:

it should read

2 i 2 sin c2)
66-0 A B 2 sin cos 

a0la~2

_ ____I_ ��_� �_1_1
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in the notation used in the rest of the paper. This appears to

be a definite error, rather than a misprint, since

calculations made with 6 = + .. give distortion coefficients

in substantial agreement with those quoted by Nielsen in

reference 23.

Weisbaum

Reference 35: S.Weisbaum, private communication;
S.Weisbaum, Y.Beers and G.Herrmann, Bull.Am.Phys.Soc.
28, 9 (1953)

I am greatly indebted to Mr.S.Weisbaum and Dr.Y.Beers

for permission to use some of the results of their work prior

to publication.

A significant improvement in the available data on the

HDO microwave spectrum has been made by the S-band

investigations of these workers, who discovered and identified

four new lines.

Weisbaum has succeeded in fitting the Q-branch spectrum

(except the 105 and 115 lines) to a set of parameters by means

of the HSKW formula. As discussed in Section VI.6, it is the

present writer's opinion that the resulting parameters should

be considered semi-empirical, and that they do not

necessarily bear any significant relationship to the "true"

molecular parameters.

Weisbaum's results are compared below with our values:

_I� �I� I_ ___1 1·-_III-III�---·- I�IIICIII�---·�l_- 1 _1�-�11� 1 · R
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This Work
(Table VI.18)

In units cm 1

(K dimensionless)

K -0.6830 -0.6841

8.4895 8. 5226

dj 1. 39042 x 10-4 1. 112 x 10-4

DJK 2. 29892 x 10 - 3 1.23 x 10 - 3

DK 20.90344 x 10-3 9.57 x 10-3

R 5 -3.38775 x 10-4 -2.628 x 10- 4

5 -5 ,5R 6 -5. 35005 -. 91 x 105

These parameters, used with the HSKW formula, give the

frequency of the 115 line at 22,552 Mc/sec, some 29 Mc/sec

below that observed. This agreement is quite good, and it

appears that Weisbaum's results show the HSKW formula is

adequate for Q-branch transitions, even if the parameters

are empirical. Exact calculation with these parameters,

however, gives the frequency 22,446 Mc/sec, some 135 Mc/sec

low, so it is doubtful that the results would be useful in

analysis of the P- and R-branch spectrum.

--I - _ _ -
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