

HD28
.M414

$2.

Center for Information Systems Research
Massachusetts Institute of Technology

Sloan School of Management
77 Massachusetts Avenue

Cambridge, Massachusetts, 02139

AN INTEGRATIVE APPROACH TO MODELING

THE SOFTWARE MANAGEMENT PROCESS:

A BASIS FOR IDENTIFYING PROBLEMS

AND

EVALUATING TOOLS AND TECHNIQUES

Tarek K. Abdel-Hamid

Stuart E. Madnick

October 1982

CISR WP #95

Sloan WP #1366-82

T. K. Abdel-Hamid, S. E. Madnick 1982

Center for Information Systems Research

Sloan School of Management

Massachusetts Institute of Technology

Submitted for publication in the Proceedings of the IEEE Workshop on

Software Engineering Technology Transfer , April 25-27, 1983

\ N*-
1

I tts

I. INTRODUCTION: THE PROBLEM

The past two decades have witnessed the development of a

large number of software engineering tools and techniques for

improving the production of software systems. As a result of

these developments, software project managers today have at their

disposal an abundance of sophisticated tools that are potentially

useful in helping them increase their ef f f ectiveness. And the

number of these techniques continues to increase each year.

Still, "most software projects fail" (McClure, 1981). Many

organizations are finding that their people are still developing

the same expensive, bug-ridden, unmaintainable software that they

were developing before the new software engineering tools (e.g.,

structured programming) were introduced (Yourdon, 1979).

A question that has frequently been raised (and appropriately

so) is: who is to blame? Does the fault lie in the tools

themselves, or are the tool-users, especially management , the real

culprit?

0745321

In the literature, there is an abundance of arguments on both

sides of the issue. For example, Thayer (1979) argued that the

problems we are facing in software production are, largely, due to

a lack of effective tools (especially) in the area of software

project management. On the other hand, Yourdon (1979) sees

management as the real "villain." It is his opinion that

"... management is to blame for the failure of the structured

revolution." He feels that, in most companies, management did a

poor job in selling the new techniques, in providing the necessary

training, and in general in providing the needed support and

follow-through. And as a result, some argue, most of the software

engineering tools, techniques, and methodologies that have been

available for practical use for a long time, languish on the shelf

like a good product which does not sell.

While there is certainly some validity in both arguments, we

feel that the "true" answer lies somewhat between the two.

What we feel is still missing and much needed is not

necessarily a set of new specific software engineering tools, nor

a new breed of "super-capable" software project managers (and

which is probably infeasible anyway), but rather a much needed

model, perspective if you will, of software development project

management, that can help both managers and researchers to better

decide when, where, and how to use (or not use) the ever

increasing number of software-engineering tools and techniques

that are already available. It is interesting that (even) more

3

I

than a decade ago Aaron (1970) commented that "We ran into

problems because we didn't know how to manage what we had, not

because we lacked the techniques themselves."

Today's software development project managers are faced with

a general situation that has been continuously becoming more

complex (Singer, 1982). Their software development organizations

develop new products, offer new services, incorporate additional

technologies, and have a more heterogeneous workforce. This

complexity often makes it less and less obvious how healthy or

sick their organizations actually are. It also makes it less

obvious how important various known problems are, and what the

second- and third-order consequences of some set of actions

such as the use of some software engineering tool will be.

The consequenses of this situation are predictable (Kotter,

1978):

Since they lack confidence in their assessment of the risks
and benefits of organizational improvement techniques,
managers quite often choose not to use them. As a result,
many potentially useful techniques are seriously
underutilized. Even when they are used, they are sometimes
used inappropriately. Managers select the wrong techniques,
or use them at the wrong time or in the wrong way. Then,
when their expectations are not fulfilled, they tend to
become even less willing to experiment with organizational
improvement tools.

Our objective in this research effort is provide both

software development managers and researchers (not with yet

another specific software engineering tool, but instead) with a

useful way of thinking about organizational improvement issues.

Our aim is to develop an integrative model of software project

management that can help them answer the difficult questions they

need to raise when assessing organizational health, selecting

improvement tools (from the many that are already available), and

implementing their choices.

II. AN INTEGRATIVE SYSTEM DYNAMICS COMPUTER MODEL
OF SOFTWARE PROJECT MANAGEMENT

In a special issue of the IEEE Transactions on Software

Engineering on Project Management, Merwin (1978) asserted that:

What is still needed is the overall management fabric which
allows the senior project manager to understand and lead
major data processing development efforts.

At MIT's Center for Information Systems Research (CISR), we

are currently engaged in a research project to develop such an

"overall management fabric." Specifically, our objective is to

develop an integrative system dynamics computer model of software

development project management. Such a model (we feel) would be

helpful to software development managers and researchers in

handling the ever increasing complexities of software production,

and thereby improve their abilities in identifying more accurately

both their more important problems, as well as the more effective

solutions to those problems.

Models which are usually simplified but formal

abstractions of real-world systems have been effectively used,

for many years now, by practitioners in fields like operations

research, management science, and systems analysis to handle

specific complex decision problems (Cleland and King, 1975). It

is important to realize, here, that we, on the other hand, are

attempting to develop a general -type of model. Can such a model,

one might ask, have any widespread applicability?

In an empirical investigation of the objectives and

constraints of EDP departments in various industries, Hallam

(1975) found high goal congruence and high constraint congruence

i.e., a high degree of agreement was found among all types of EDP

departments studied regarding goals and constraints. And based on

the findings of his study Hallam then concluded that:

The primary beneficiary of the description here of EDP goals
and constraints is the model builder interested in modeling
the EDP management process. The agreement found among all
types of EDP departments regarding goals and constraints
should encourage model builders, since it indicates that a
general EDP department model should have widespread
applicability. (underlining ours)

In the remainder of this section, we would like now to argue

for the three characteristic "features" of our model, which

together differentiate our modeling approach from that of many

others in the area of software engineering. The three

characteristic features being: (1) it is an integrative model;

(2) it is a computer model; and (3) it is a system dynamics

model

.

II.l. Why an Integrative Model:

Let us start off by first demonstrating that we are not

(completely) alone in believing that building an integrative model

of software development project management is not an infeasible

venture:

I believe that by combining the various functions, actions,
and interactions of software development management and
overlaying them on a framework of a standard management
model, a model of a generalized software engineering project
management system can be identified. (Thayer, 1979)

The integrative feature of our model should help software

project managers in two important ways. First, it should help

them diagnose more accurately what is causing and what has lead to

whatever problems they have identified. It would do that,

primarily, by "alerting" managers to all the relevant facets of

software production e.g., human as well as technological.

Because "interactions and interdependencies are common in all

social systems, and are major complicating factors which

necessitate an overall system concept" (Cleland and King, 1975),

one of the major difficulties facing both students of

organizations and managers trying to improve their functioning is

the lack of such overview models (Schein, 1980).

Many studies have indicated that managers often deal with the

problems they encounter in terms of mental models that do not

necessarily include all the elements or aspects of the problematic

situation. Technically trained managers, in particular, tend to

underestimate the influences of their internal social systems on

organizational performance (Kotter, 1978). Consider, for example,

the problem of achieving software reliability. By explicitly

incorporating the managerial functions of planning and staffing

together with the technical processes of software development

(e.g., desining, coding, ... etc.) in an integrative model, a

manager is "prompted" to investigate not only the technical issues

of software reliability, but also the implications of:

* Pressures to begin coding before the design is completed

because of tight schedules.

* Insufficient emphasis on programmer education and training.

* Poor matching of programmers' abilities with job

assignments.

(In a study reported by Myers (1976), the above three factors

contributed more to the generation of serious software errors than

did any weaknesses in the design, implementation, or testing

processes.)

The second way in which the integrative feature of our model

should be helpful is that it would provide managers with a

rational basis for identifying feasible "improvement

interventions," and for assessing their probable impact once

implemented.

Again, by providing a comprehensive world view, the model

should help managers assess the second- and third-order

consequences of some set of actions.

The chain of effects in going from a particular managerial

intervention (e.g., hiring more people) to immediate consequences

then to second- and third-order consequences and newly created

problems is one of the pervasive characteristics of modern social

systems. Quite literally, in such systems everything depends on

everything else (Cleland and King, 1975). That is why, many

researches assert that overview models can be major aids to

managers who are trying to improve their organizations'

effectiveness (Schein, 1980).

For example, the software project manager who is

contemplating hiring more people to speed up a late project, would

be "prompted" by our integrative model to investigate the dynamic

implications of such a decision on things such as:

* the human communication overhead, and the effect of that on

productivity, and

* the time and effort allocated by the experienced and

productive team members to train new personnel.

1 1. 2. Why a Computer Model

Using an integrative model merely to "alert" managers to all

the important aspects of a problem, while clearly useful and

essential, is definitely not enough. Because such a model will

undoubtedly contain a large number of components with a complex

10

network of interrelationships, we must in addition provide an

effective means to determine both accurately and efficiently the

dynamic behavior implied by such component interactions.

Since the ultimate aim is to explain and predict the behavior
of organizations, not of individual components, it is
necessary to have a method which allows us to construct and
manipulate a total organization. Computer simulation
techniques provide one such method. (Cohen and Cyert, 1963)

Computer models have been, of course, widely used to simulate

many of our complex technological systems. Our social systems are

far more complex and harder to understand than our technological

systems. Why, then, do we not use the same approach of making

computer models of social systems and conducting "laboratory

experiments" on these models before we try new policies and

procedures?

The answer is often stated that our knowledge of social
systems is insufficient for constructing useful models. But
what justification can there be for the apparent assumption
that we do not know enough to construct models but believe we
do know enough to directly design new social systems by
passing laws and starting new social programs? I am
suggesting that we now do know enough to make useful models
of social systems. Conversely, we do not know enough to
design the most effective social systems directly without
first going through a model-building experimental phase. But
I am confident, and substantial supporting evidence is

beginning to accumulate, that the proper use of models of
social systems can lead to far better systems, laws, and
programs. (Forrester, 1971)

Experience from working with managers in many environments

indicates that they are generally able to specify the detailed

relationships and interactions among managerial policies,

resources, and performance. However, managers are usually unable

to determine accurately the dynamic behavior implied by these

11

relationships. Human intuition, studies have shown, is illsuited

for calculating the consequences of a large number of interactions

over time (Richardson and Pugh, 1981).

Unlike a mental model, a system dynamics computer model can

reliably and effeciently trace through time the implications of a

messy maze of interactions. And it can do that without stumbling

over phraseology, emotional bias, or gaps in intuition (Richardson

and Pugh, 1981)

.

By utilizing computer simulation techniques in this research

effort we, thus, ' combine the strengths of the manager with the

strengths of the computer. The manager aids by specifying

relationships within the software project managent system, the

computer then calculates the dynamic consequences of these

relationships.

1 1. 3. Why a System Dynamics Model

System dynamics is the application of feedback control

systems principles and techniques to managerial and organizational

problems (Roberts, 1981).

Most succinctly, feedback is the transmission and return of

information. The emphasis, inherent in the word feedback itself,

is on the return. A feedback loop exists whenever an action taker

will later be influenced by the consequences of his or her

12

actions. Feedback loops divide naturely into two categories,

which are labeled deviation-amplifying feedback (DAF) or positive

loops, and deviation-counteracting feedback (DCF) or negative

loops.

It is pertinent that we think in terms of feedback loops

because (Weick, 1979):

The cause-effect relationships that exist in organizations
are dense and often circular. Sometimes these causal
circuits cancel the influences of one variable on another,
and sometimes they amplify the effects of one variable on
another. It is the network of causal relationships that
impose many of the controls in organizations and that
stabilize or disrupt the organization. It is the patterns of
these causal links that account for much of what happens in

organizations. Though not directly visible, these causal
patterns account for more of what happens in organizations
than do some of the more visible elements such as machinery,
timeclocks, . .

.

A point which is important in particular to the application

of deviation-amplifying feedback (DAF) to management, concerns the

distinction between (1) the initial event (from outside a loop)

which starts the deviation amplifying process in motion, and (2)

the dynamics of the feedback process which perpetuates it. While

the initial event is important in determining the direction of the

subsequent deviation amplification, the feedback process is more

important to an understanding of the system (Ashton, 1976). The

initial event sets in motion a cumulative process which can have

final effects quite out of proportion to the magnitude of the

original push. The push might even be withdrawn after a time, and

still a permanent change will remain or even the process of change

will continue without a new balance in sight. A further problem

13

is that, after some period of time has elapsed, it may be

difficult, if not impossible, to discover the initial event. An

interesting example of this has been provided by Wender (1968):

... a fat and pimply adolescent may withdraw in
embarrassement and fail to acquire social skills; in
adulthood, acne and obesity may have disappeared but low
self-esteem, withdrawal, and social ineptitude may remain.
Social withdrawal and low self esteem are apt to stay fixed
because the DAF chain now operates: social ineptitude leads
to rejection, which leads to lowered self-esteem, greater
withdrawal, less social experience, and greater ineptitude.
What has initiated the problem is no longer sustaining it. A
knowledge of the problem's origin would not be expected to
alter the currently operative loop unless such insight served
to motivate behavioral change ...
Finding the initial event (acne and obesity) may have less
usefulness than understanding the current sustaining feedback
mechanism. Furthermore, in some instances the initial event
may have left no traces of its existence and may be
undiscoverable.

It is no wonder, then, that "most mangers get into trouble

because they forget to think in circles. I mean this literally.

Managerial problems persist because managers continue to believe

that there are such things as unilateral causation, independent

and dependent variables, origins, and terminations" (Weick, 1979).

14

III. AN EXAMPLE APPLICATION OF THE MODEL

A first version of our integrative system dynamics computer

model of software development project management has already been

developed.' The model is presented and discussed in (Abdel-Hamid

and Madnick, 1982a). And in (Abdel-Hamid and Madnick, 1982b) the

model was used to investigate the dynamics of software project

scheduling.

It would be useful to conclude this report with a quick

discussion of the results of our second paper, as this would put

the concepts and ideas we've been discussing so far in the more

perceptible form of a specific example application.

As mentioned above the specific problem area studied was that

of software project scheduling. The software industry is young,

growing, and marked by rapid change in technology and application.

It is not surprising, then, that the ability to estimate project

resources (including the time resource) is still relatively

undeveloped. In the last few years there has been a surge in

15

activity to develop quantitative resource estimation methods e.g.,

TRW s COCOMO model (Boehm, 1981) and Putnam's SLIM model (Putnam,

1980). Because such currently available quantitative techniques

are first, usually tailored to a limited set of

project/organizational types, and second, are (still) imperfect,

the developers of such techniques emphasize the necessity to

continuously collect project data via the planning and control

activities, compare estimates to actuals, and use the results to

"tune" the estimating tools (Boehm, 1981).

Meanwhile research findings over the past few years have

clearly shown that the decisions that people make in

organizations, and the actions they choose to take are

significantly influenced by the pressures, perceptions, and

incentives produced by the organization's planning and control

system(s) (Weil, 1981). In particular, knowledge of project

schedules was found to affect the real progress rate that is

achieved, as well as the progress and problems that are reported

upward in the organization.

What this implies is the existence of a feedback loop (see

below), whereby an estimation technique produces project

schedules, which affect the decisions and actions of the technical

performers and their managers, this in turn affects work

performance, which eventually is fed into the organization's

projects' database to influence future estimations.

16

Estimation
Method

Performance
Schedules

Ac t ions

,

Decisions^
Control

Notice that the above feedback loop integrates many different

aspects of software development. It integrates technical as well

as human aspects, planning as well as control aspects, and

managerial as well as production aspects. Such an integrative

system dynamics perspective of the scheduling problem, it is

important to realize, is quite different from the more common and

more limited perspective which views the scheduling problem as

merely that of producing "better" estimates.

But what does the existence of such a feedback loop mean? Is

it good or bad?

To most of us, the answers to such questions will not be

intuitively obvious i.e., we can not answer them (with confidence)

merely on the basis of our private mental models. The human mind

is not adapted to correctly anticipate the dynamic consequences of

interactions between the parts of a complex social system

(Forrester, 1971), such as that of software project management.

Unlike a mental model, a computer model can reliably trace

through time the implications of a messy maze of interactions.

17

Our computer model was thus utilized to conduct a "laboratory

experiment" to investigate the implications of the above feedback

loop. The experiment involved a hypothetical situation in which a

company undertakes a sequence of ten software projects of

identical size. It is assumed that an estimation tool is used in

scheduling the projects. After each project is completed, its

statistics (e.g., size, total time, ... etc.) are fed into an

"experience database" and used to "tune" the estimation tool.

Once tuned, it is then used to estimate the next project, and so

on.

After the experiment was completed i.e., after running

through the ten projects, we were surprised to observe that in all

projects, the schedule was always overrun, as shown in the figure

below. Notice that management started each project (e.g.,

"PROJECTi") with a slightly longer scheduled duration than the

previous one (i.e., "PROJECTi-1") , and still "PROJECTi" would

always overrun its schedule, causing management to use an even

longer scheduled duration time for the next project (i.e.,

"PROJECTi +1") , and so on.

The (surprising) phenomenon we ecountered is one that has

been frequently observed in system dynamics studies of social

systems. It has been termed "The Policy Resistence of Social

Systems," "Shifting the Burden to the Intervener," and "Addiction"

among other things. While a full explanation is presented in

(Abdel-Hamid and Madnick, 1982b) it suffices here to draw a simple

18

80

70

60

50

40

30

Months
4
" Actual
Pro j ec t Dura t io

Est ima ted
Project Duration

PROJECT!
j 1 i »123456789]0

analogy to what was going on. And that is the (familiar) problem

of caffeine addiction, whereby an addict has to consume a certain

amount of caffeine per day to maintain a certain level of

alertness. As time goes on, the burden of maintaining alertness

will keep shifting from the normal physiological body processes to

the externally supplied caffeine dose. The result, of course, is

that higher and higher doses will be required to maintain the same

level of alertness.

19

IV. CONCLUSION

This paper is a report on an ongoing research project at

MIT's Center for Information Systems Research (CISR) to develop an

integrative system dynamics computer model of software development

project management. We feel that such a model can help software

development managers and researchers answer the difficult

questions they need to raise when assessing organizational health,

selecting software engineering "improvement tools" (from the many

that are already available), and in implementing their choices.

Our modeling approach is different from that of many others.

In section (II) we argue for the attractiveness of the three

characterisic "features" of our model, namely, that it is an (1)

integrative , (2) computer , and (3) system dynamics model.

A first version of our model has already been developed and

used. In section (III) we discuss some of the results of its

first application, to the problem of software project scheduling.

20

Currently we are conducting field studies at a number of

organizations that are involved in the production of software

systems. The data gathered will be used to develop a second more

detailed model. Two planned applications of the model will then

follow. In the first, we will use the model to uncover any

"people-management" problems, which the management of one

organization "feel" are causing cost and schedule overruns. The

second application of the model will be to evaluate the impact of

a comprehensive (and expensive) project planning and control

system that has been recently installed in another organization.

21

BIBLIOGRAPHY

1. Aaron, J. D. "The Super-Programmer Project." Software
Engineering Techniques; Report on the 1969 Rome
Conference . Editted by J. N. Buxton and B. Randell.
Brussels, Belgium: NATO Science Committee, 1970.

2. Abdel-Hamid, T. K. and Madnick, S. E. "A Model of Software
Project Management Dynamics." The Sixth Int'l Computer
Software and Applications Conference (COMPSAC) , November
8-12, 1982a.

3. Abdel-Hamid, T. K. and Madnick, S. E. "The Dynamics of
Software Project Scheduling: A System Dynamis
Perspective." The Third International Conference on
Information Systems , December 13-15, 1982b. Also to
appear in an early 1983 issue of the Communications of
the ACM .

4. Ashton, R. H. "Deviation-Amplifying Feedback and Unintended
Consequences of Management Accounting Systems."
Accounting, Organization and Society , Vol. 1, No. 4

(1976).

5. Bacon, G. "Software." Science , February, 1982.

6. Boehm, B. W. Software Engineering Economics . Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1981.

7. Cleland, D. I. and King, W. R. Systems Analysis and Project
Management . New York: McGraw Hill, 1975.

8. Cohen, K. J. and Cyert, R. M. "Computer Models in Dynamic
Economics." A Behavioral Theory of the Firm . By
R. M. Cyert and J. G. March. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1963.

9. Cooper, J.D. "Corporate Level Software Management." IEEE Tr.
on Software Management , SE-4. No. 4, (July, 1978).

10. Cooper, K. G. "Naval Ship Production: A Claim Settled and a

Framework Built." Interfaces, Vol. 10, No. 6,

22

(Dec. 1980).

11. Forrester, J. W. "Counterintuitive Behavior of Social
Systems." Technology Review , January, 1971.

12. Gehring, P. F. and Pooch, U. W. "Software

13. Hallam, S. F. "An Empirical Investigation of the Objectives
and Constraints of Electronic Data Processing
Departments." Academy of Management Journal , Vol. 18,
No. 1, (March, 1875).

14. Kotter, J. P. Organizational Dynamics: Diagnosis and
Intervention . Reading, Massachusetts: Addison-Wesley
Publishing Company, 1978.

15. Lave, C. A. and March, J. G. An Introduction to models in
the Social Sciences . New York: Harper & Row, 1975.

16. McClure, C. L. Managing Software Development and Maintenance .

New York: Van Nostrand Reinhold Company, 1981.

17. Merwin, R. E. "Guest Editorial Software Management." IEEE
TR. on Software Engineering , SE-4, No. 4 (July, 1978).

18. Myers, G. J. Software Reliability . New York: John Wiley &

Sons, 1976.

19. Powers, R. F. and Dickson, G. W. "Misproject Management:
Myths, Opinions, and Reality." California Management
Review , Spring, 1973.

20. Putnam, L. H. "Software Cost Estimation and Life-Cycle
Control: Getting the Software Numbers," IEEE Computer
Society, IEEE Catalog No. EHO 165-1, 1980.

21. Richardson, G. P. and Pugh III, A. L. Introduction to System
Dynamics Modeling with Dynamo . Cambridge,
Massachusetts: The MIT Press, 1981.

22. Roberts, E. D. The Dynamics of Research and Development . New
York: Harper & Row Publishers, 1964.

23. Roberts, E. B., ed. Managerial Applications of System
Dynamics . Cambridge, Massachusetts: The MIT Press,
1981.

24. Schein, E. H. Organizational Psychology . 3rd edition.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1980.

25. Scott, R. F. and Simmons, D. B. "Predicting Programmers
Group Productivity: A Communication Model." IEEE Tr.
on Software Engineering , SE-1, No. 4, (Dec, 1975).

23

26. Singer, L. M. The Data Processing Manager's Survival Manual .

New York: John Wiley & Sons, 1982.

27. Thayer, R. H. "Modeling a Software Engineering Project
Management System." Unpublished Ph.D. dissertation,
University of California, Santa Barbara, 1979.

28. Weick, K. E. The Social Psychology of Organizing . 2nd
edition. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1979.

29. Weil, H. B. "Industrial Dynamics and Management Information
Systems." Managerial Applications of System Dynamics .

Edited by E. B. Roberts. Cambridge, Massachusetts: The
MIT Press, 1981.

30. Wender, P. H. "Vicious and Virtuous Circles: The Role of
Deviation-Amplifying Feedback in the origin and
Perpetuation of Behavior." Psychiatry , Nov., 1968.

31. Yourdon, E. "The Second Structured Revolution." Software
World , Vol. 12, No. 3, (1979).

O^ Date Due

i

Lib-26-67

HD28.M414 no.1366- 82
Abdel-Hamid, T/An integrative approach
745324 0*BKS 00 1505

3 TOflO DDE E30 Mbl

