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Abstract

Chapter 1: Task-oriented groups are discussed generally and definitions are intro-
duced to isolate variables which were experimentally manipulated.

Chapter 2: A general description of the experimental techniques is given.

Chapter 3: The statistical behavior of individual message destination choice is
coupled with communication network properties to account for the observed statistics of
group performance. Emphasis is placed upon the learning which occurs during trials.

Chapter 4: Individual decision latency is shown to be approximately exponential.
A simple theory relates group latency to individual, and these results are used to expli-
cate other experiments for which less complete data are available.

Chapter 5: Attention is turned to noise in the coding-decoding of messages. Group
errors are simply explicable in terms of a measure of noise. A mechanism, redun-
dancy, is demonstrated to account for a decrease in noise. In turn, redundancy is
related, imperfectly, to several network properties.

Chapter 6: Questionnaire attitudinal data are presented and for some questions a
high correlation with network properties is demonstrated. A factor analysis yields four
orthogonal factors for the questionnaire used.

Appendix 1: Detailed descriptions of specific experiments are presented.

Appendix 2: An electrical device which controls and records a class of communica-
tion experiments is described.

Appendix 3: A human group interpretation of the classical electrical network equa-
tions is shown to have very limited applicability.

- Appendix 4: Some mathematical results on network topology and their experimental

implications are recounted.
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COMMUNICATION AND LEARNING IN TASK-ORIENTED GROUPS

PREFACE

1. Introduction

This study reports the principal theoretical and experimental developments of the
"Group Networks Laboratory" of the Research Laboratory of Electronics, M.I.T.,
during the two and one-half years from August 1949 to April 1952. To provide a frame
of reference for this work, a brief account of the background and development of the the-
oretical concepts and experimental techniques will be given in this preface. As in all
research in a relatively new field, the development of ideas owes much to the influence
of a large number of related papers and publications, and to conversations and inter-
changes of ideas with many workers. We can give explicit credit to only a few of them
here; however, specific references are made throughout the text, and a fairly complete

bibliography of related publications is included.

2. History of Research

The initial developments in this work can perhaps be traced most directly to Kurt
Lewin, whose pioneer contributions to the study of group dynamics were extended
over many years and ended only with his death in 1947. Lewin was responsible for the
introduction of a particular concept of psychological space and its applications in the
study of groups. He strongly emphasized the role of motivational concepts in group
studies. At present, this emphasis is more characteristic of the work of the Research
Center for Group Dynamics at the University of Michigan, the extension of the group
Lewin started, than of the Group Networks Laboratory at M.I.T.

Our work, initiated by Alex Bavelas, one of Lewin's students, has taken a route
more influenced by new developments of a mathematical nature and has been less
concerned with the dynamics of the psychological situation than the Michigan group.
Bavelas, in a dissertation done under Lewin in 1947, examined an aspect of the internal
structure of groups (the part we now term the communication network), and he suggested
some mathematical measures that might be pertinent to the study of group behavior. In
the spring of 1948, Bavelas presented a graduate seminar at M.I. T. on both his and
Lewin's ideas on group behavior. The members of this seminar, largely students of
engineering and physics, became interested in extending both the mathematical notions
and developing experiments that would test their relevance. Before the term was con-
cluded, an apparatus was built and pilot experiments were conducted. Interest in the
research remained high, and Bavelas was granted a small budget to continue the experi-
mental work. One member of the seminar, H. J. Leavitt, did his dissertation in this
field in the summer of 1948, and his experiments were repeated with female subjects by
S. L. Smith, who had been engaged by Bavelas as an experimental assistant early in the
summer of 1948. In the fall of 1948, R. D. Luce and A. D. Perry, graduate students



in the Department of Mathematics, were engaged as consultants for one term.

Bavelas' seminar, including many members of the original group, met again during
the winter of 1948-49. Theoretical discussion continued and several exploratory exper-
iments were carried out. In the fall of 1949, Bavelas obtained a contract from the
RAND Corporation for partial support of his work, and early in 1950 he augmented his
staff by employing two graduate students of mathematics, R. Abelson and A. Simmel.
During this period the work attracted wide interest, and men from diverse fields
contributed to the seminars. In particular, in the spring of 1950, O. H. Straus and
W. H. Huggins, of the M.I. T. Research Laboratory of Electronics and the Air Force
Cambridge Research Laboratory, respectively, attended these seminars, and from their
knowledge of systems analysis contributed appreciably to the theoretical notions being
developed.

During the summer of 1950, the research group, which then consisted of Bavelas,
Straus, Luce, F. Barrett, J. Macy, Jr., and S. L. Smith, became an integral part of
the Research Laboratory of Electronics and moved to new quarters in that laboratory.
The move permitted the group to make use of the extensive service and shop facilities
of R.L.E., and resulted in greatly improved conditions for experimental work. In the
fall of 1950, Bavelas and Straus left the group to undertake specialized work connected
with the defense program, and Smith left to resume graduate studies. At this point Luce
and Macy were named to head the project jointly.. In the summer of 1951, Simmel again
joined the group, and in the fall of the same year L. S. Christie joined the staff. At the
end of 1951, Barrett and Simmel left the laboratory to assume other positions.

3. Development of the Field

Initially, the research in the seminars was exploratory. Bavelas had developed
some mathematical parameters for the communication linkage (the network) between
members of a group of people. It was conjectured that networks having different values
of these parameters would have noticeably different effects on groups. On the basis of
the idea that the network is an important determinant of group behavior, the first exper-
iments were designed to demonstrate the existence of such an effect. This general prop-
osition was shown to be true, but not always with the expected relation of performance
to the network parameters. This led to additional mathematical investigation to ascer-
tain parameters which did have a relation to the experimental results. As the work pro-
gressed, a need was felt for mechanisms which would account for the discovered
relationships in more basic terms — in, say, the characteristic behavior of the people
composing the group.

At this time considerable attention had been attracted by Norbert Wiener's book
Cybernetics which emphasized the parallel of feedback concepts in electromechanical
systems and social systems, and which discussed the new ideas of information theory.
Gradually, it became quite evident that these concepts might be fruitfully applied
to obtain a better understanding of group behavior. Wiener participated in several




conferences, and there is no doubt that his ideas have affected the theoretical develop-
ment of our work. The first actual application of these ideas occurred in the winter of
1949-50 through the participation of several men familiar with the methods and termi-
nology of modern electrical communication theory. Their work included the restate-
ment of the mathematics of electrical network theory in terms of group behavior (see
Appendix 3), an emphasis that the group and its environment must be treated as a
system, and a discussion of the Shannon-Wiener theory of information. These latter
notions allowed, for example, an understanding and analysis of a specific experiment
in which noise had occurred in the coding of messages (see Chap. V).

The task of applying the existing techniques of electrical systems analysis was found
to be not trivial, for many conditions satisfied in the electrical case are not generally
found in human groups. Thus, during this period of development much time was spent
considering the extent to which such an application is possible. In particular, the extent
to which the psychological make-up of the individuals comprising the group may be neg-
lected in theory and in experiment was studied. These discussions led to the feeling that
the results which were of primary importance at this stage of the research were those
which are independent of the variation in psychological character of the individuals con-
stituting the group. We felt justified in considering that, in many situations, the effect
of the sets of stimuli encountered in groups was roughly the same over a large range of
personalities, and that for purposes of our research we could replace the individual with
a fictional "normal" man whose responses were statistically distributed. This point is
discussed at length in section I. 3. 3.

The most recent phase of the research has been a continued emphasis on the systems
approach, with, however, the recognition that direct application of the existing electri-
cal techniques is not likely to be possible. The experimental program has passed from
the exploratory stage to more comprehensive examination of specific phenomena.
Attempts have been made to obtain data which are statistically significant and these data
have been subjected to much more detailed and searching analysis. These new data,
coupled with the systems viewpoint, have allowed us to construct some simple probabil-
ity models for the behavior of the groups which account, at least in part, for some of
the relationships first discovered two to three years ago. This recent work has been
primarily concerned with the objective phenomenon of message flow and has only inci-
dentally been concerned with such psychological phenomena as the evolution of leader-
ship, the morale of subjects, and the like. Thus, some of the correlations Leavitt
obtained between subjects' attitudes and parameters of the network are no better
understood today than they were when they were first discovered. The latest work indi-
cates that the notions of systems analysis are a desirable way to describe the operations
of the experimental groups, provided one does not try to carry over without change the
particular mathematical forms that have been used in other applications, e.g. electrical
engineering.

Thus, at the present time, some, but not most, of the problems have been solved.



This report is simply a slice out of a continuing program and not a final rounded

summary.

4. Prerequisites

The work we are reporting is most cogently described as psychological, but much
of it has been done by people not trained as psychologists. The nonpsychological
members of the group have brought ideas and methods to bear on our problems which
are often not well known to workers in the behavioral sciences. On the other hand, our
psychologists use techniques, e.g. statistics, with which people trained in electrical
engineering or pure mathematics are not always familiar. As a result, the methodology
of this study is a coat of many colors. We have used at every point that technique which
appeared likely to be most fruitful. Whenever the theoretical basis of a technique could
not be given without undue lengthening of the study and undue duplication of readily avail-
able literature, we have given references.

The first chapter, which defines the area of study, assumes a familiarity with some
of the elementary concepts and terminology used in mathematics when speaking of
functions. More important, the basic notions of scientific analysis in terms of a "black
box'" are explained and used. This chapter is thus more readily understood if the
reader is familiar with this technique, but such familiarity is not believed to be essen-
tial. In Chapters III through VI, many of the standard statistical techniques are freely
employed in the analysis of the data, and notions of probability theory which lead to
mathematics of varying complexity are occasionally employed. In Chapter V the con-
cepts and some of the measures of communication theory as developed by Shannon and
Wiener are used without elaboration.

The appendixes, with the exception of the first, require more specialized knowledge
than the body of the report. The second describes an electrical device of some com-
plexity; its technical details will be clear only to one with some electrical training. The
third appendix rephrases the mathematics of linear electrical network analysis in terms
of the group situation; this requires some knowledge of mathematical analysis and
matrix theory. The last appendix is clearer if the reader has some sophistication in
abstract mathematics, though this is not essential, since no proofs are given.

5. Acknowledgements

We would like to acknowledge the aid and assistance given us by the staff of the
Research Laboratory of Electronics, who have been of great assistance in the design
and construction of our apparatus, and have participated in stimulating discussions on
our research. In addition to those staff members mentioned in the previous sections,
we are indebted to J. C. R. Licklider, Robert Fano, and Samuel N. Mason for helpful
theoretical discussion.

Within the project itself, much credit must go to F. D. Barrett and A. S. Simmel.
Barrett aided in the design of Experiment 4, ran Experiment 5, and assisted in the




preparation of Chapter I and Appendix I. Simmel also assisted on Chapter I and pre-
pared the code for the problem solved on the computer Whirlwind (see Chap. III). In
addition, invaluable assistance has been rendered by Deborah Senft, Patricia Thorlakson,
and Eleanor Palmer, who performed most of the recent experiments and spent many
painful hours reducing the mass of data to the numbers reported in this study; by John

B. Flannery, who constructed most of the apparatus; and by Adassa Balaban, who spent
long hours preparing type script of this study.

Outside the project, we are indebted to the Joint Computation Laboratory for Nuclear
Science and R. L. E. for computation aid, in particular to Hannah Wasserman; and to
Projeét Whirlwind, with special credit to John W. Carr III, and Manuel Rotenberg.

The critical aid of Jerome B. Wiesner, Alex Bavelas, and Joyce Harman, who have
read portions of the manuscript, is greatly appreciated.

Finally, we are grateful to the Research Laboratory of Electronics and the RAND
Corporation for the financial support which has made this work possible.




CHAPTER I — TASK-ORIENTED GROUPS
1. Introduction

There are found in society human groups whose function is to effect assigned changes
in some part of their external environment. Our research is concerned with this class
of groups, which have been termed task-oriented (15).* The following sections of this
chapter make precise what we mean by the term, task-oriented group, but in this intro-
duction we shall first discuss these groups informally.

The notion that effecting changes is the function of the task-oriented group imi)lies
that the members of the group attempt to cooperate with one another; thus any group
which is subject to an analysis by the theory of games is not a task-oriented group, and
conversely (105). It is true that a competitive group can, according to the game theory,
effect changes on its environment, but this is not the primary function of the group; each
member of the competitive group has as his goal the maximization of some utility for
himself. Although in general a task-oriented group does not have subparts which are
competitive, many competitive groups do have subparts which are primarily task-
oriented. For example, in a purely competitive economy composed of units at the
factory level the workers of a factory form a task-oriented group. The assigned goals
of the factory derive from competitive considerations, but the process of attempting to
achieve these goals often is not competitive. More technically, coalitions of players
of a game are, at least temporarily, task-oriented. It is further often true that a large
task-oriented group fractures naturally into several smaller ones which may, to a first
approximation, be studied independently. Thus a study of a small group may well
provide information about larger systems.

Basic to any notion of a task-oriented group is the concept of communication. A
group can only be said to exist if each member is capable, at least indirectly, of a per-
tinent influence on each other member. Basic to the notion of a task-oriented group is,
in addition, communication outside the group, for, as we mentioned, a group will be
termed task-oriented only if it has a pertinent influence on the external environment,
which in turn has an influence upon the group. We are thus led to make use of the recent
developments in the fields of communication engineering, and in particular of the theory
of information enunciated by Shannon and Wiener and elaborated by Fano (51,52, 59, 60,
62, 65). This theory, while a great aid, is not sufficient for our purposes, since it is
concerned far more with problems of coding of information and channel capacity than
it is with the intuitive notions of information. Often, for the lack of a more sophisti-
cated theory, we shall have to work with primitive concepts of information.

In addition, we shall draw heavily on the treatment of control systems as developed

in recent decades by communication engineering. The theory of an automatic control

* e
References to the bibliography will be indicated by numbers in parentheses.




system is concerned with a "master" component which governs the behavior, to some
extent, of its "slave" component by means of signals which control the release of
energy. The manner in which the master does this is dependent on its fixed structure,
on that of the slave, and on signals fed back from the slave. This two-way flow of com-
munication is the essential characteristic of the interactive or feedback system, and as
we remarked above, must be an essential property of the task-oriented group; the
group being the master and some portion of its environment being the slave. The
function of the group is to exercise control over this portion of the environment in order
to make it assume some desired state. Effecting this desired state is the "task" of the
group.*

The problem of control in a feedback system is comparatively simple if the slave is
subject, essentially, to inputs only from the master, and if the effect of these inputs is
predictable to a certain degree of accuracy. In electromechanical systems this is gen-
erally the case to a good approximation, both by design and application. When the slave
is subject to important influences from other sources, the problem then becomes at best
one of statistical optimization. Any complete study of task-oriented groups must take
into account the existence of unpredictable and uncontrollable influences on the environ-
ment of the group.

The organizational structure of many task-oriented groups is specified; certain
people are placed in roles of leadership, others éarry out more perfunctory, but no less
essential, jobs. In some groups restrictions are made as to who may communicate to
whom and about what they may talk. Such specifications or limitations are usually
imposed to organize the group's behavior so that it attacks its task effectively, and
although these imposed restrictions may sometimes achieve this aim, often they do not.
Thus one aspect of a study such as ours must be to determine the effects of such struc-
tural limitations.

To study such an area it has been necessary for us to select a method of obtaining
empirical data and to develop a conceptual framework in which to place such data.
There are two methods of obtaining data: controlled laboratory experiments and field
studies.** Our choice is the former, and consequently, we have, for practical reasons,
restiricted ourselves to comparatively small groups. We shall discuss below both the
faults and advantages of this choice. The details of the experimental technique employed
are the subject, in fairly general terms, of Chapter II and, in more detail, of Appen-
dix 1. The results of the experimentation are given in Chapters III through VI.

The conceptual scheme must have at least the property of including the type of
group discussed above and of providing a useful vocabulary with which to discuss our

*
A more general study of the similarities between electromechanical control
systems and organic and social systems is given by N. Wiener, Cybernetics (10).

Perhaps the most systematic field research on the behavior of organizations has
been undertaken by H. A. Simon. See, for example, his A Study of Decision-Making
Processes in Administrative Organization (44).




experiments. The most satisfactory form we have devised is comparatively abstract,
being based on a few undefined notions in terms of which all other definitions are

formulated. The remainder of this chapter presents this scheme.

2. The Relation of the Group to its Environment ™’ **

2.1. Node and Transfer Function

As the foundation of our treatment, we consider the concept of a "black box." This
is considered to be any entity which is unanalyzable by choice or necessity, and which
will be studied by investigating the relationships between the effect of the environment
of the box on the box itself and the corresponding effect of the box on the environment.
Any influence exerted on the black box by its external environment is termed an "input"
to it. Any influence exerted by the black box on its external environment is termed an
"output" from it. The basic element in this treatment is the assumption that the inputs
to and outputs from the black box are related; that is, any set of inputs is operated upon
in some manner by the black box to determine a corresponding set of outputs. The
function describing the relation between possible inputs and outputs is called the
"transfer function" of the black box. No assumption is made that these functions are
single-valued, linear, or have any other specific mathematical properties. In many
cases of engineering practice, it is possible to express the transfer function of the box
in relatively simple mathematical terms, but this is not an inherent assumption. In
most of the cases considered in this study, the transfer function will be at best of a
statistical nature; in other words, it will relate the probability distribution of a set of
outputs to a given input or statistical distribution of inputs.

In this type of analysis, no attempt is made to "open the box;" that is, no effort is
made to determine its contents, or to explain why it performs as it does. True, in some
cases in engineering analysis the concept of an equivalent circuit is used; this corre-
sponds to the statement, "If the box contained this sort of material, it would act in the
way we have observed." This concept is only an aid to calculation or heuristic descrip-
tion, and makes no pretense that the suggested "equivalent circuit" is really inside the
box. Its sole purpose is to enable us to obtain and use the transfer function which is,
of course, an empirical function. In addition, it is important to remember that this law
need not be mathematical in the sense of calculus or analysis; it is indeed pleasant when
it is an analytic function relating two variables which are complex numbers, as is often
the case in physics; but the transfer function may equally well relate inputs which are
sets of conditions on age and education, and lists of people with certain of these

* . .
Psychologists may note that the treatment in the following sections is in many ways
similar to behavioristic theory, although not identical.

ko .
It is interesting to compare the following formulation with the more general

iand) detailed study by Oskar Morgenstern, Prolegomena to a Theory of Organization
41).




properties, to an output which is a list of people fulfilling the given conditions. This
type of transfer function occurs, for example, in many uses of IBM machines.

In accordance with electrical-engineering terminology, we call any such black box a
"node," and with each node N a transfer function FN, which will relate any input Iy to

the output ON which results from it, is associated. In symbols,
Fn(Iy) = Oy

where it is understood that the ON so determined may be a unique output or set of
outputs, or a probability distribution over a set of possible outputs. The transfer
function of a node is thus operationally defined; that is, it is determined purely in terms
of observable effects discovered experimentally and makes no assumptions about the

"fundamental" internal nature of the node.

2.2. Task-Oriented Groups

Consider now a system composed of two such nodes, denoted C and E, and assume
that the system is so constructed that some of the outputs from C are inputs to E,
some of the outputs from E are inputs to C, and the

remainder are to and from the rest of the environ-
CE

Ic O ment. This is represented in Fig. I.1. the inputs
009 and outputs being denoted by symbols as indicated.

This class of system is quite general; any inter-
Fig. 1.1 active two-element situation may be represented in
these terms.

We then add some further specifications. If some
part of the input IC is of such a nature that it imposes a requirement to which the output
FB from E should conform, we call that part of IC a "task'." We do not define a task as
an input to C which states requirements on the output of C, but rather we define it as an
"instruction" to C concerning the desired "behavior"of E. Of course, the input IC may
have many other functions as well; we merely define as a task that part of Ie which
establishes such a requirement.

' If the transfer

If part of the input Ic is a task, we call the node C a "control node.'
function FE of the node E is such that any change in the input CE to E results ina
change in the output FB to C, we call the node E a "functional environment" to C. If
the nodes C and E in such a system are a control node and a functional environment,
we call the system a "feedback system." Of course, the functions of C and E are
determined relative to a given system and situation, so that a given node may be consid-
ered a control node in one case, a functional environment in another, or neither in a
third case, depending on the point of view and the particular system under consideration.

Using these terms, we may then define the area of our study: A group of human
beings, or of human beings and machines, is a task-oriented group if it is the control

node of a feedback system. As we remarked above, a given group may or may not be



considered a task-oriented group, depending on the point of view under which it is
examined. Examples of such task-oriented groups are many: research teams, a city
council, a committee with a given objective, or a group of experimental subjects given
a group task. A collection of people formed for purely social purposes is not a task-
oriented group. Such a collection has no task in the sense we have defined, and so they
are not part of a feedback system.
We may now assign descriptive terms to the various inputs and outputs of a feedback

system, as follows:

IC = external input to control

OC = external output from control

CE = control of functional environment

IE = external input to functional environment
OE = external output from functional environment
FB = feedback (from functional environment to control).

2.3. Communication and Information

The process of transferring an output of one node to make that output an input to
another node is called "communication." This transfer process must be effected by
some physical means. Various methods are possible such as -light or sound signals,
electrical signals, or the transfer of material objects. The physical form which the
communication takes may correspondingly be electromagnetic or sound waves, electrical
impulses, marks on paper, and so forth. These physical units of the communicative
process which carry semantic content can be described both by their content and by their
identifying physical features. When we wish to refer to the former, we shall speak of
"symbol contents," and when we wish to refer to the latter, "symbol designs." A set of
such symbol designs used in communication from a given node to a given destination
within a definite time interval is called a "message." Two such sets of symbol designs,
with the same source and destination, are considered as two separate messages, if they
are separated in time by an interval during which no communication takes place between
that particular source and destination.

Any analysis of the interaction processes in a feedback system must examine the
content of a message in addition to its physical form and its time and place of trans-
mission. This examination of the content of a message involves a study of the quality
usually referred to as information. It would obviously be desirable at this point to give
a clear and inclusive definition of information, but unfortunately this does not seem
possible at the current state of scientific knowledge. Let us examine this problem more
fully.

Some aspects of the problem of information have been treated precisely in the math-
ematical theory of information. (See, for example, refs. 51, 52, and 59.) An examina-
tion of the elements of this theory will make clear those aspects of the information
problem which it does not encompass. A finite set S of symbol designs, from which

-10-




all messages to be considered are formed, is assumed given. A message is a finite
ordered sequence formed from the symbols of S by selection with replacement, or what
we shall simply call selection. The probability that any symbol X, of S will be selected,
and the probability of selecting X, if the previous n selections of the message are
Xps Xy, .., X, are assumed given. Consider the set M of all possible messages m,
formed from the symbols of S. For each message m, there is a probability of occur-
rence deducible from the probabilities coordinated to the elements of S, and for each m,
of n symbol designs there is also deducible a conditional probability that the next selec-
tion will yield a given message of n + 1 symbol designs. All other conditional probabil-
ities in the set M are zero. Thus M forms a Markov chain of finite sequences of
symbols; this chain we shall call the "message space.” To any message space is
assigned a single real number H which is called the "average amount of information per
symbol" or "entropy" of the underlying set S. Without going into mathematical details,
H is found as follows: Encode each message having n symbols by a well-defined binary
number which is dependent on the probabilities in the message space. Divide the number
of binary digits in this number by n. Form the sum of all such numbers resulting from
messages having n symbols, each one weighted by its probability of occurrence. Call
the resulting number Hn: then H = ;1:120 Hn‘

We observe the important point that the amount of information is determined by a
mapping from the message space to the real numbers; this measure does not, therefore,
say anything about any particular message, but indicates only certain characteristics
which are true for all messages on the average. Looked at another way, information
theory describes a technique of mapping any given coding system S into a binary code
in which each binary digit is equiprobable and such that, on the average, a minimum
number of binary digits is used to code the messages of M. Thus, there is a mapping
of the code S into one of a class of normal forms, the members of this class being
equivalent in the sense that they require a minimum number of binary digits on the
average. Two different codes are compared, in information theory, by considering the
average number of binary digits required per symbol in the normal form, that is, by
comparing the respective H values.

In real communication systems there is, in general, noise in the transmission of
any message. Noise is defined as "any phenomenon which during the transmission
transforms the message in an unpredictable manner" (R. M. Fano, ref. 70, p. 693).
One would expect any measure of information in the noisy case to have the following
properties: (a) When the noise is zero, the value of H characterized above is obtained.
(b) An increase in noise results in a decrease in amount of information effectively
transmitted. If the statistics of the noise are given, such a modification of the definition
of amount of information is possible. It is a single number associated with what may
now be called the noisy-message space.

This technique is ideal when we are dealing with a situatio‘n in which we are con-

cerned with the statistics of the message space, and are not concerned with any specific
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message that might be formed. We may term this a measure of information at the syn-
tactic level. It is a method which is suitable for problems of channel capacity, effi-
ciency of coding, and the like, for which the theory was designed.

Two principal characteristics of this theory are: (a) It is concerned solely with the
originator or effector of a message (only to the extent of assuming that the statistics of
the appearance of certain combinations of symbols are known), and some interval during
which neither the effector nor the receiver is involved but during which noise may be
introduced. (b) It is not directly concerned with specific messages, but only with the
ensemble of all possible messages. These two facts demonstrate that information theory
does not treat several properties which are characteristic of information and communi-
cation in a human group. The particular messages that are sent, and more important,
the specific facts communicated, and the relation of these facts to the behavior of the
receiver are the aspects which are of greatest concern to psychology.

Before probing this further, it is appropriate to point out that information theory
may be applied in principle to the semantic content of messages. We mention this in
order to show clearly that a problem still remains for which mathematical information
theory is not adequate, even when its base is shifted from symbol designs to symbol
contents. We assumed above that the set S consisted of symbol designs, and therefore,
for the most part, semantic content will be conveyed in some combinations of symbol
designs only and not in others. Nonetheless, we may form a new set S' of symbols such
that each one represents exactly one fact that the effector may send. The elements of
S' are in one-to-one correspondence with classes of equisignificant messages formed
from the elements of S. In principle, it will be possible to determine the statistics of
S'; hence, there will be a semantic message space and assigned to it a semantic amount
of information. Of course, this space may be noisy. Such a technique, though some-
times useful, does not solve our problem, since the theory is concerned, not with the
specific messages or facts, but only with the set of all possible facts expressible by
sequences of elements from S.

We can say, therefore, that there is an area which needs theoretical formulation
which, when formulated, might well be called psychological information theory. Such a
theory is not known to us, and we have not constructed one; however, we may make a
few remarks about the problems it must encompass. Let us make two assumptions (the
first is not basic, and the other will be discussed later): (a) The messages have been
reduced to a semantic code. (b) Messages identical in design are identical in meaning
for both the effector and the receiver. Then, at least three aspects of the message are
important as determinants of the receiver's behavior: (a) Does the message convey any

new information; that is, does the receiver not already have the content of the message?*

&

The elements of a theory of information which will cope with problems such as this
one, and some, though not all, of the others we are discussing has been presented by
Y. Bar-Hillel (50).
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(b) What truth value does he assign to the message? For example, if he already has the
symbol, then the second receipt of it (from another source) may augment, in his mind,
the probability of its truth. He must assign a truth value which is based on auxiliary
evidence from contextual material he already has, on his evaluation of the effector, and
on his estimation of the noise in the transmission. (c) Is the message relevant to his
interests and activities at the time? We may briefly summarize these points by saying
that the theory must evaluate the message in relation to the state of the receiver.

In actual practice, the situation is more complicated than we have indicated; it is
often very incorrect to assume that a given message (sentence) has the same factual
content for both the receiver and the sender. This disparity can be considered to be
noise in the encoding-decoding process which must be considered to be distinct from the
noise in the transmission. It is important to note that we have termed this noise in the
joint process of encoding-decoding. Operationally it is impossible to speak of noise in
the encoding process alone, or in the decoding process alone, since no operations which
do not consist of both an encoding and a decoding can be designed to determine it. The
statistics of noise can be defined only in terms of the intended selection from a set as
compared with the actual selection; thus both a sending and a receiving instrumentality
are required, the former coding and the latter decoding the message.

Without assumptions which seem likely to prove unwarranted, there appears to be a
very serious difficulty in trying to treat this noise by information theory techniques.
Let us suppose that the effector wishes to send a message expressing a fact which we
may assume he has labeled Ie. Suppose he encodes this into the semantic symbol x
which is transmitted without distortion, and this is decoded into a fact labeled by the
receiver Ir' We should like to say that the encoding-decoding process is noise-free if
Ie = Ir' There are two problems here, the definition of equality and the determination
that equality as defined actually obtains. Assume, for the moment, equality is defined.
Then the method used to determine whether equality exists is to have both the effector
and the receiver send Ie and Ir’ respectively, to an observer. Such a communication
may be an ordinary message, but more often it is an observation of behavior which, for
our purposes, can be treated as a message to the observer O. Let us, for simplicity,
assume that both the effector and the receiver use the same symbol x in this process,
and this is decoded by the observer into the idea he labels Io. If we know Ie = I0
and Ir = Io’ then Ie = Ir. This necessitates knowing that two other encoding-decoding
processes are noise-free. This is not known. The problem is complicated in notation,
but not in principle, if the effector and the receiver do not use the same symbol x. A
more serious difficulty is the assumption that equality is defined. In general, such
equality is defined through an outside person such as the observer and by the same tech-
nique as we just described. Thus, the detection of the noise and the definition of
equality are not independent. In practice this is dealt with by requiring highly redundant
messages (that is, possibly several referring to the same fact) from the receiver and
the effector to the observer; this should reduce the amount of noise, and equality is
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defined by the observer. It is difficult to make this definition of equality more general
and less restricted to the specific observer, and also to be certain that the noise has in
fact been reduced to a very small amount.

In our work we shall make use of mathematical information theory where it is more
readily applicable; that is, at the syntactical level. In particular we report one experi-
ment in which noise was present (see Chap. V), and this data will be analyzed in the -
terms of information theory. However, since the noise was in the encoding-decoding
process, the analysis contains the logical weakness mentioned above. When we must deal .
with the relation of the semantic content of a message and its receiver, we shall employ

techniques developed ad hoc for the specific circumstance.

2.4. Boundary and Initial Conditions

Parts of the input IC to the control node in a feedback system may consist of restric-
tions on the possible outputs of the control node. The parts of the input IC which contain
such restrictions are called the "boundary conditions" on the control node. We include
under boundary conditions only restrictions on the output of the control node which are
directly imposed; for instance, the task may indirectly have the effect of restricting the
output of the control node, but since these restrictions are imposed indirectly, the task
is not considered part of the boundary conditions. Boundary conditions are usually
imposed to make the outputs of the control node conform to the characteristics of a par-
" ticular functional environment, or to limit the actual functional environment of the
control node. For example, if the functional environment contains an amplifier, through
which the output CE of the control node is to pass, then part of the boundary conditions
would restrict the output of the control node to electrical signals of a prescribed type,
sent along a particular wire to this amplifier.

All portions of the input IC to the control node, except for the boundary conditions,
are called the "initial conditions. The task, for instance, is part of the initial condi-
tions, which may also include a priori information about the functional environment and
its transfer function, and other information. In general, information about the functional
environment is given the group prior to its attempt to effect changes in the environment,
but this need not always be true. The group may be continually receiving more informa-
tion about the functional environment during the course of its interaction with the envi-
ronment. Furthermore, there are many examples of groups whose task is continually
changing. The use of the words "initial conditions" for these categories of information
given the group cannot always be taken to imply that this information is received before
the group commences its activities.

We shall say that a functional environment of a control node is "determinate" if it is
completely predictable relative to the possible outputs of the group on the basis of the
initial conditions. In general, the functional environment is not determinate. For
example, if a man is cleaning a dirty room and an unexpected breeze blows through a
broken window, he will not have complete control, if any, of where the dust will be.
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If, on the other hand, the environment is an amplifier, barring power or component
failure, the output is for all practical purposes determinate. Indeterminancy of the
functional environment may not be a permanent situation in that, by trial and error or
by systematic experimentation, the task-oriented group may learn enough about it to
make it, thereafter, predictable. The indeterminancy of the functional environment may
be a result of incomplete information or the functional environment may be intrinsically
indeterminate. Indeterminancy due to incomplete information about the behavior of the
functional environment should not be confused with the incomplete information about the
current state of the functional environment resulting from noise in the feedback. This, of
course, may hinder the completion of the task as much as an indeterminate environ-
ment, but it is inherently different.

If the task completely specifies the required feedback, we shall say the task is
"determinate," otherwise indeterminate. It seems clear that, in general, the task will
not, or cannot, completely specify the desired feedback. For example, the task of a
scientific research team is not determinate; nor is a situation in which the feedback
may be divided into several classes, only one of which is specified. Specifically, an
electrical device which requires that the average power output be a certain amount, but
which does not prescribe the particular waveform, is an example of a case where only
part of the feedback is specified.

2.5. The Functional Problem of a Task-Oriented Group

In the most general case of a task-oriented group, the functional environment is
neither static nor determinate, and the communication is noisy. The control node has a
certain set of possible transfer functions available to it, and must select a transfer
function from this set which at any instant will best fulfill the imposed boundary and
initial conditions. This selection process will usually result in a time sequence of such
choices, with the result that the control node should come closer and closer to fulfilling
the task as the sequence of choices proceeds in time. In some cases the task itself will
also be changing with time, and this further increases the complexity of the problem.

One feature of this process, which task-oriented groups have in common with all
feedback systems, is the dependence of the process on the time delays within the
system, and the time constants of the nodes. In any interactive two-element system,
the time delays may be represented as in Fig. 1.2. The actual sources of such time

delays T may be internal to the nodes C and

E, but they may still be represented as part
CE

TIVE of the communication process. Each node
z e < . N will also have a time constant TN which is
™ 5 e “ T the time between the occurrence of the inputs
Df:: and the occurrence of the corresponding out-
puts. If the functional environment in a feed-
Fig. 1.2 back system is responding to other inputs in
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addition to CE, the various time constants cannot be independently chosen and still
permit the control node to comply with the task. For example, if TR is small, and TCE
and TFB large enough, no value of TC will permit the control node to control FB effec-
tively. This phenomenon is discussed at length in standard works on servomechanism
theory (120, 122), and leads to the establishment of various stability criteria for feed-
back systems. These considerations cannot be overlooked in dealing with sequences in
time of such choices of the transfer functions by the control node as are mentioned
above.

We return now to the specific problems of the task-oriented group. If an element of
indeterminancy remains in the task and in the knowledge of the functional environment,
or if there is noise in the feedback, then no single solution can be the optimum behavior
of the control group. Rather, a probability distribution of solutions will describe opti-
mum behavior.

The important notions are: (a) The problem of the control group is the repeated
selection, from the class of all transfer functions available to the group, of a set of
transfer functions which will most nearly fulfill the task, and the organization of action

"most nearly

to obtain the corresponding performance. (b) In general, the words
fulfill" mean an optimization which yields a statistical distribution over all possible

activities rather than a unique selection.

2. 6, Experimental Limitations

For our experimental studies of task-oriented groups, we have generally restricted
‘ourselves to a very simple set of conditions: a determinate functional environment, a
determinate and static task, simple and rigid boundary conditions, and initial conditions
which completely specify the transfer function of the functional environment. The tasks
used have usually been sufficiently simple to permit successful completion in a few
minutes, and the information used in the solution of the task has often been coded in
some simple fashion to facilitate subsequent data analysis.

We have in almost all cases tried to produce the simplest possible set of conditions
in the laboratory which would permit a task-oriented group to be studied; our emphasis
has been on the investigation, under these simple conditions, of the methods used by the
task-oriented group to select a suitable transfer function. Variations in experimental
conditions have been undertaken to shed light on various facets of this central problem,
and the investigation of more complex situations has been deferred to a later date.

This experimental procedure was adopted for two reasons. The first and most
obvious was purely practical: we felt that under these simple conditions we could, by
using the facilities at hand, successfully set up and complete numbers of experiments
and produce data which were statistically coherent and readily analyzable. Second, it
is feasible to attack more complex and realistic situations on the experimental level only
after initial experiments are carried out under very simple conditions. An understanding
of the results obtained from these simple situations will enable us both to attack the
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theoretical problems of more complex situations and to design experiments which will

successfully investigate them.

3. The Internal Structure of the Group

3. 1. Introduction

In the previous section the task-oriented group was treated as a black box, and
various concepts were defined. It is possible to continue to theorize and to experiment
on this level, without attempting to "open the box" and investigate its inner structure.
Unfortunately, although this technique seems the most direct, we have been unable to
arrive at a set of general rules or laws which will govern the performance of task-
oriented groups on this basis. Perhaps such a solution will be possible in the future. It
took many years of development before electrical engineering was able to operate on this
level of analysis.” At present, however, it appears that any study of task-oriented
groups made on this level would require an exhaustive series of experiments dealing
with each possible type of group. For practical reasons, this is beyond us. Conse-
quently, we have found it desirable to attempt to penetrate the inner structure of the
group.

The second level of analysis, using the systems-analysis approach, is to treat the
object of study as consisting of several interrelated black boxes or components. The
concept of interrelation is essential except when a trivial reduction of the original
object of study into several independent and simpler objects exists. For a system
having more than one component, the theory has a new aspect: as before, it must
include the transfer function of the black boxes with which we are working, but it must
also formulate the relations existing among these components. It is the emphasis on the
interrelationships between black boxes that distinguishes the systems approach from
strict behaviorism.

The choice of components to study is arbitrary, although it is always motivated by
some undefined but generally acceptable requirement of "naturalness," and by the prag-
matic condition that it must answer more readily the questions asked of the theory. A
further breakdown of the original object of study is often helpful because the possible
transfer functions for the components are more restricted than those of the whole

system and they have more peaked statistical distributions.

3.2 Components of a Task-Oriented Group

When an attempt is made to study the inner structure of a task-oriented group, the
choice of the components into which the group is to be decomposed is not trivial. Since
by definition a task-oriented group is a set of people and machines, the most obvious
decomposition is to treat these people and machines, respectively, as the new black
boxes. In some cases, smaller groups of people or machines could also be taken as

single components. The choice of this breakdown of a task-oriented group can be
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supported by the fundamental nature of such a group.

A task-oriented group is formed for one reason only: to create by appropriate inter-
action a transfer function which is appreciably different from that of any single person.
The important feature from a social point of view is that the organization is able to cope
with problems which the individual, or a set of independent individuals, is unable to
handle. Consider, for example, the air-defense problem. Air defense, quite obviously,
cannot be carried out by any single individual, or a set of independent ones, for the pos-
sibilities in their transfer functions are too limited. In fact a group of people is not
sufficient, for there is noise (clouds) in visual transmissions from the target to the
individual. So equipment (radar, and the like) is employed along with communicating
people to obtain a less noisy feedback and an appropriate transfer function having an out-
put which will ultimately destroy their targets. The use of a group, rather than an indi-
vidual, is inherent in this problem. It would seem, from an abstract point of view, that
an organization pieces together several transfer functions to obtain a resulting transfer
function appreciably different from any of the individual ones. If this is true, a logical
way in which to attempt a penetration of the structure of the group is to consider the
group as composed of a collection of smaller black boxes, or nodes, whose individual
transfer functions add or combine in some way to make the over-all transfer function of
the task-oriented group. In general, these nodes will be the individuals comprising the
group, but, as mentioned above, some of these nodes may be machines or smaller
groups of people if this seems appropriate to the analysis at hand.

If this breakdown is to be useful, it must result in theoretical and practical problems
which are easier to handle than the original ones. Is it easier to determine the transfer
functions of individuals than the transfer functions of groups? We cannot answer this
affirmatively at present, but we observed above that the primary reason for using a
group is to make possible a transfer function not available to an individual. This
suggests that the transfer function of the individual does not have as great a range as
that of the group, and may therefore be easier to determine. Nevertheless, an extremely
complex problem remains, which probably can be attacked only by using a number of
drastic simplifying assumptions in both experimental and theoretical work. The basic
theoretical effort of such research must be the development of such assumptions and the
conclusions that follow from them.

3.3. Psychological Factors

In the development of further analysis of the task-oriented group, and in thé theo-
retical and experimental treatment of such groups, we have generally made the assump-
tion that the individuals in the group are statistically alike. That is, we regard them as
having the same probability distribution for any given type of behavior, thus effectively
ignoring the differences which exist between individuals, except as they contribute to the
calculated probability distribution for the "average" man. This assumption has been
criticized by those who say that the psychological differences between individuals are
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too fundamental to be treated in this manner, even for the purposes developed in this
study. The critics have emphasized that people have idiosyncrasies; they strive towards
the most varied goals propelled by drives whose definition is a subject of constant
dispute among psychologists; they differ in altogether too many respects. Can we
propose to study groups of people without taking these factors into account?

The ultimate answer to such criticism is whether work in the direction we are out-
lining leads to a body of theory which explains the observed data and predicts new
results. It is clearly impossible to state what the most profitable research emphasis is
until one knows the relative importance of differences among group members and of
group structure. We know only that both factors affect group behavior.

Our decision has been to examine the effects of group structure. Specifically, we
have sought to study experimental problems in which the structural factors seem to be
dominant and which do not tend to stress individual differences such as intelligence and
emotional reaction. Since it would be quite impossible to expect complete success in
the reduction of individual differences, the residue of variance has been considered

simply as a statistical distribution.

Several experimental techniques have been used to insure that individual variability
is not a major factor in the work done. Consequently, our results cannot be expected to
yield much light on problems in which the effects of individual variability are dominant.
Although these techniques will be examined more fully in Chapter II, it is appropriate to
mention them briefly here. First, the tasks were sufficiently simple so that anyone of
average intelligence had no difficulty in understanding them. Second, ‘the tasks required
only a modicum of dexterity and ingenuity. Third, the situations created in the task
situations have been of such a nature that they would not evoke strong emotional
responses from the subjects. Fourth, the motivation given the group was designed to
produce similar responses from all members of the group, and to remain at a fairly
constant level throughout the series of trials; at the same time the motivation was not

sufficient to cause strong emotional involvement on the part of the subjects.

It is to be hoped that psychologists interested in the area of explaining and developing
theories to account for the variability of human behavior will probe more deeply the
problems of an individual in a group situation. Such theories, were they formulated in
terms of the dependence of the transfer function of an individual on various psychological
variables, would be of inestimable value to a systems analysis of group behavior. Until
this state of sophistication is reached, it may not be inappropriate to divide the study
into two stages: one concerns itself with the effects of group structure when the indi-
vidual variance is small, and the other concerns itself with an explication of the
individual variance. Assuming this so, we have restricted our efforts to the former

problem at present.
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3.4. Communication Network and Structure

One large category of restrictions imposed on task-oriented groups has been
mentioned previously, that is, those on the outputs of the control group, the boundary
conditions. One important way to effect these restrictions, in practice, is to impose
boundary conditions on the transfer functions of the individuals composing the group,
since it is often easier to specify such restrictions than to restrict the whole group. In
addition, the group itself, in the course of completing one or more tasks, may induce
restrictions on its own members. This effect is not part of the boundary conditions of
the group, but it is very similar in its results to a boundary condition which restricts
the individual transfer functions.

Of this class of restrictions we have isolated those that deal with the source and des-
tination of communication. There are two classes of such restrictions: (a) those
imposed as part of the boundary conditions, and (b) those evolving within the group. In

the first case, that part of the boundary
conditions which determines who may
not communicate to whom is termed

]

the "communication network," while the

"communication structure" of the group
is the actual set of such restrictions
Fig. 1.3 that are effective during a particular
One-way links are drawn as in 1. Two- phase of the group's activity; that is,
way links are simplified as in 2. who does not communciate to whom.

To give a more positive definition, the

communication structure is that part

of the communication network which is
actually employed.
Communication networks and struc-
CIRCLE (0) CIRCLE (X) CHAN (0) CHAIN (X)

tures will be represented in this paper

by diagrams of the form shown in

Fig. I.3. A line with an arrowhead
from node a to node b indicates, in the
case of a communication network, that

PINWHEEL BARRED CIRCLE WHEEL STAR communication may occur from a to b.
In the case of a communication struc-
ture it indicates that communication
has occurred. The lack of such an
arrow indicates that no message may
occur and no message has occurred,
Y ALPHA TOTALLY CONNECTED . .

respectively. In Fig. 1.4 we present

Fig. 1.4 diagrams and names of all networks
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studied experimentally.

For some purposes it is convenient not to use such a restrictive definition but to
treat the case of no channel present as if it were a channel so noisy that a message
cannot pass, and to treat the case of a channel in which every message can pass
unchanged as noise-free. Obviously, there may be channels which have varying amounts
of noise and hence have varying effects on the percentage of a message which will be
correctly passed. The usual measures of information theory (59) are adequate to char-
acterize such communication links. Since all communication links have been noise-free
in our experiments, it will be necessary to consider communication network and
structure only in the sense that we have first defined them.

3.5. Constraints and Differentiation

Besides the communication network, there are other boundary conditions that
restrict the class of transfer functions that some or all of the individuals employ. Any
such restrictions, except for those imposing the communication network, are called

"constraints."

For example, a man not in a command position in a military situation
may not employ the transfer functions which will result in an order. If all the indi-
viduals in the group have the same restrictions externally imposed on them, or if a
group has no constraints imposed, the group will be considered "homogeneously con-
strained." For the most part the groups we have studied have been homogeneously con-
strained. Imposed constraints are aimed at, and do result in, simplifying the group's
problem of selecting the proper transfer functions for the task. In many actual situ-
ations the existent constraints do not properly serve their purpose, since the task has
changed while the imposed restrictions have not.

The set of limitations on the individual transfer functions which naturally arise in
the solution of the problem, but which are not imposed by boundary conditions, are
called "differentiation." Differentiation will arise under a wide variety of circumstances;
for example, as a function of the intelligence and ability of the people in the group, the
location or distribution of information about the functional environment within the group,
the task, the functional environment, the initial information, and the like. This important

problem has been only briefly explored in our experimental work.

3. 6. Group Size

The size of the group makes a difference not only in the class of problems it may
handle, but also the way in which it handles them. Our discussion has made no mention
of this, although it is apparently true that the nature of an individual's transfer function
is dependent upon the size of the group he is in. Obviously a given set of transfer
functions may be combined in many more ways in a large group than in a small one.
The relationship between these two factors, and the nature of the change in transfer
functions as the size of the group increases is not known. The work of this laboratory
sheds light on this only in a restricted and incidental way (see sec. III. 10), for we have
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restricted our studies almost entirely to groups of five people (see sec. II. 1. 3).

4. Problems of Analysis

When the individuals of a group are treated as the nodes, there are three aspects to
the problem of analysis: first, the statistical determination of the transfer function of
the node; second, the statistical determination of the group transfer function; and third,
a method for combining the transfer functions of the nodes to obtain the transfer function
of the group.

These aspects of the analysis are certainly not independent in fact, but to some
extent they may be considered as if they were. The first two problems are essentially
psychological and are primarily empirical. The third problem is essentially mathemati-
cal. They are interrelated since the mathematical formulation, which is based on
experience and intuition, includes parameters which must be measured. These meas-
urements being made, a prediction of the group transfer function should follow from the
mathematics which, if it does not accord with observation, will necessitate a reformula-
tion of the mathematical problem.

In their full generality these problems must be of enormous complexity since the
nodal transfer function will vary with individual psychological variables which them-
selves will be dependent on the on-going group process. However, as we mentioned
in section I. 3. 3, we are treating the nodes as statistically average individuals and so
some of the complexity is eliminated. We should then look for statements of transfer
functions which are dependent on inputs to the nodes and on time, but not explicitly
dependent on the individuals. In addition, we should expect to find results about the
group transfer function, and we should attempt to relate the individual statistical results
to the group statistical results.

The results reported in Chapters III through VI fulfill these expectations to varying
degrees. Transfer functions for both the individual and the group are presented. The
very methods of distilling these functions from the raw data embody the assumption that
individuals are statistically identical. Interwoven in this empirical data are both mathe-
matical formulations which attempt to relate the individual to the group result, and
deductions which relate certain aspects of the individual transfer functions to more
basic considerations. At the present time many mathematical difficulties have not been
overcome, making it impossible to answer definitely the question of whether the approx-
imations to the individual transfer functions are sufficiently good to predict the group
results. However, the direction of effort to be made is more than clear.

Other mathematical programs related to the problem of building the group from its
nodes, but which do not have direct application to our experiments, are presented as
appendixes. The one more intimately concerned with the above problem is Appendix 3
which presents a model for group behavior which is formally identical to linear electri-
cal network theory. It has the serious drawback that it does not have a close relation-

ship to most actual situations, including our experimental ones. Essentially, two
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assumptions are made which invalidate it for group applications, but which are essential
for a mathematical solution in the conventional manner. They are discussed in detail
in that appendix, and it will suffice to say here that we assume there is but one particle
of information, replicated many times, moving in the system, and the response of the
node is linear. The model is valuable in that it indicates how such a model may be
built, points up the role of the transfer function, and suggests the type of question that
may be asked of such a model.

More distantly related to the dynamic group problem is the study sketched in
Appendix 4 which is concerned with the abstract properties of the network system itself.
This, depending on how one looks at it, is a study of the topological or algebraic aspects
of a dynamic problem. Its importance lies in the notion that the psychological reaction
of people in a network may be as much influenced by variables best described in topo-
logical terms as by the dynamics of the communication process. This, however,
remains only a pious hope for there cannot be said to be any really substantial work
supporting this view.

In addition to the type of analysis problems we have discussed, there is a class of
synthesis problems which is among the most important of the applied problems. No
attempt will be made to formulate any of these problems precisely, for we have done no
work in this area; however, two loosely phrased examples may give an idea of the type
of problem we have in mind. Given a communication network for a group, a desired
group transfer function, and a set of available individual transfer functions, determine
the location of the individuals in the network to give the desired transfer function, if
possible. This problem is made markedly more difficult in reality, for the individuals
are liable to pass through a transient learning period which changes their transfer
functions (see Chaps. III and IV). A second example is to fix the individual transfer
functions and find the communication network to achieve the desired group transfer

function. This is subject to the same discussion of learning as the first example.

5. Summary

The purpose of this chapter has been to introduce to the reader the concept of a task-
oriented group. The discussion began with the "undefined" notion of a node having inputs
and outputs, the relation between them being called the transfer function. From two
such nodes we formed the most general interactive two-element system, which is called
a feedback system if one of the nodes has an input which imposes a requirement on the
feedback from the other node. In the feedback system, one node is differentiated from
the other by the introduction of the task; the node into which the task is introduced is
called the control node, and the other the functional environment. When a group of
people is the control node of a feedback system, it is called a task-oriented group. The
input to the control node is classified into the exclusive categories of boundary condi-
tions and initial conditions. Initial conditions which provide both a determinate environ-

ment and a determinate task are the only kind used in the work reported here.
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The second major section of the chapter was devoted to a discussion of the task-
oriented group and its internal structure. It was pointed out that the boundary condi-
tions are often imposed in the form of boundary conditions on the individuals within the
group. One set of restrictions is the communication network and another, which includes
the hierarchical structure of the group, consists of the constraints on the individual
transfer functions. In addition, certain modes of behavior arising from within the group

were classed as the communication structure and as the differentiation of the nodes.

-24-




CHAPTER II — EXPERIMENTAL TECHNIQUES

1. Introduction

1.1. A Typical Experiment

Our experimental program is to investigate the concepts set forth in the previous
chapter and their interrelations. Because complex group situations are so enormously
difficult to analyze, we have conducted our experiments subject to the restrictions of
section I.2.6 which were designed to so simplify the situation as to make it amenable
to analysis. It is our conviction that the study of restricted situations will provide us
with the opportunity to develop techniques which can be appropriately applied to more
complex situations. We shall, in this chapter, discuss the technical means by which
the desired restrictions were imposed. Since these means were quite similar in all the
experiments to be reported, our discussion will apply to the whole program rather
than to each experiment individually. The detailed conditions of each experiment are
described in Appendix 1.

Let us first describe briefly and informally the conduct of a typical experimental
session. The subjects came to the experiment with little or no knowledge of what they
were to do except that they knew approximately the time it would take. They were given
the necessary instructions by the experimenter. This briefing included explanations of
the aspects of the apparatus which had bearing on the behaviors permitted the subjects,
the task to be performed, the means for communicating within the group, the initial
information they would be given on each trial, the way they were to signal the task so-
lution when reached, and the rules for handling the materials which would constitute the
record of the experiment. The description of the task included telling the subjects what
would constitute a successful performance so that, insofar as they were cooperative,
they would be motivated to reach the intended goal and, consequently, be rewarded
whenever they reached that goal.

The experiments consisted of a fixed number of trials (between fifteen and thirty),
and each trial consisted of the solution of a simple problem. In a typical trial problem
each member had a box containing five colored marbles, with only one color common to
all the boxes. The task was to identify the common color by sending and receiving
written messages, and to report this color to the experimenter. The subjects sat at a
round table which was designed to enforce the various restrictions of the experiment:
a communication network, visual separation of the subjects, and the like. Under the
surveillance of the experimenter, who enforced the rules stated during the briefing
period, the subjects began the experiment.

Three kinds of data were collected: (a) the written messages which, besides their
content, provided identification of author and receiver, and the sequence in which they
were sent; (b) errors in the solution recorded by the experimenter; (c) recorded times
of group response.

-25-



At the end of the sequence of trials each subject was given a questionnaire designed
to determine his motivation during the experiment, his concept of the communication

network, and whom he believed to be the leader in the group.

1.2. Subjects

We have drawn our subjects from the following groups of people: M.I.T. under-
graduates, both volunteer and paid; Harvard and Radcliffe undergraduates, volunteer;
enlisted Naval personnel, Receiving Station, First Naval District, Boston; and enlisted
Army personnel, Fort Devens, Ayer, Massachusetts. Table II.1 indicates which cate-
gories of subjects were used in specific experiments.

There is a question whether results from samples drawn from one of these popu-
lations are comparable to results from a different population. In fact, it is generally
accepted that intelligence level and cultural background of subjects can have a marked
influence on the observed behavior. Thus, for example, in a task demanding a certain
type of ingenuity, the M.I.T. subjects could be expected to make a better showing than
the military subjects. In the experiments reported very little ingenuity was required,
and it appears that the military subjects are just as satisfactory as M.I.T. subjects
and, since they are more representative of the U.S. population, more appropriate
subjects than are college students.

It has been found in two similar experiments, ! and 4, that the times necessary to
finish an experimental trial differed. In part this was due to somewhat different experi-
mental situations, and it was possibly due in part to the different categories of subjects
used: M.I.T. in the former and military in the latter. However, the rank ordering of
these times as a function of the different communication networks were the same in
the two experiments. It seems reasonable that when the populations from which the
subjects are drawn are not very different, the magnitudes of structurally determined
measures vary, but their order does not.

Equally well, it is not unreasonable to assume that there are categories of subjects
so different that differences in kind as well as in degree will result. There are probably
subjects from radically different cultures who would reject the entire experimental
situation, and possibly subjects who would accept the situation, but who would yield
orderings in certain measures different from those given by the groups we have studied.
It remains a question whether such reversal effects can be found between two subject
populations, both included in the class of ""Citizens of the United States," who are above
some minimum educational level. Until more is known about the dependence of individ-
ual transfer functions on various psychological variables in the individual, it will be

difficult to specify with assurance the population for which our results are valid.

1.3. Experimental Conditions

Our experiments have all been run in several rooms set aside for this purpose in the

laboratory. These rooms are fitted with the necessary equipment for the experiments,
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and the subjects are in them only for the duration of the actual experiment. We nor-
mally asked subjects to perform a series of trials under set experimental conditions.
Such a series usually lasted about one and one-half hours, and was run continuously.

In all cases reported, we used a different set of subjects for each experimental run.
This was necessary since one of the primary problems we have been investigating is the
learning that occurs from the time a subject is first introduced into a network until the
end of a certain number of trials. It is clear, then, that if the subject is run through the
experiment again in a different network, he will carry to this experiment information
and ideas that the naive subject would not. (It may be interesting to study the effects of
such conditioning, but we have not been pursuing this problem.) On the other hand, since
it is usually easier to obtain one set of subjects for a long period of time than it is
numerous sets, each for a short duration, it would be desirable to have a method which
would permit their use in a number of different experiments. As yet no such method has
been devised.

All the experiments to date have been designed for groups of two to six subjects; the
work reported is based on five-man groups. This number was picked for purely practi-
cal reasons. For any larger number the possible actions within a given network are so
great as to require an inordinately large number of experiments. At the other extreme,
the possible networks on two- and three-man groups and the possible experimental
actions within these networks are so few as to result in experimental distributions on
only, say, two values of a variable. It is quite likely that in the future we may use
four-man groups, and even three-man groups, to check hypotheses we have obtained
from the larger groups, for as the Heise-Miller experiment (29) shows, certain types
of design allow results from even the simple three-man groups. Ultimately, work will
have to be carried out on a wider range of group'size to see which results are independ-
ent of size and which are not.

2. Initial Conditions

2.1. Task

Throughout these studies the task has been determinate, and has been chosen to
obtain a simple well-gpecified feedback from the determinate environment. In Experi-
ment 4 the required feedback was a bell ring; in Experiments 1, 2, 3, 5, and 6, a
response from the experimenter that the required conditions have been met.

The actions required by the task have been extremely simple and straightforward:
Each member of the group was given an item of information, and the task of the group
was to collect all these items in one or more places and perform some simple operation
on them. In several experiments each member of the group was given a small number
of different types of objects, only one type being given to all; the operation required was
merely to determine which type was held in common. In general, tasks were chosen
to be as simple as possible in their demands on intellectual powers, and at the same
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time to require as much interaction within the group as possible or as was thought to be
analyzable. Our aim in every case was to devise the task so that the intelligence or
speed of reasoning of any individual in the group would not be a limiting factor in the
performance of the group. A general feature of all the experimental tasks has been
that an individual, substituted for the group, would have found the task trivial.

2.2. Functional Environment

The functional environment of all the experimental groups was determinate. It
consisted of a simple electrical or mechanical apparatus whose properties were
explained to the subjects by the experimenter, and sometimes included the experimenter
himself. In the latter case he completely described what his pertinent behavior would
be with respect to outputs from the group so that the functional environment was still
completely determinate. One of the primary roles of the pre-experimental briefings was
to make clear to the subjects the determinacy of the functional environment and the
nature of this determinacy.

The communication between the group and its functional environment depended on
the nature of the task and the details of the apparatus, but in general it has taken the
form of signals from the individuals of the group to some memory or data-recording
device which gave a feedback to the group either that the task had been completed, or
stated the deviation from correct task completion. Communication from the group to the
functional environment entailed the use of switch boxes in each of the sections of the
table at which the subjects were seated (see sec. II.3.3), or mechanical devices, such
as marbles and tubes through which the marbles could be passed.

In addition to the determinate mechanical aspects of the environment, during the
course of the experiment the subjects were given some informational inputs for each
trial of the experiment; these, too, are part of the environment. These inputs were the
source of the problem which the group was to solve; for example, sets of marbles
similar to those mentioned in section II. 1.1 were used in Experiments 3, 5, and 6; in
Experiments 1, 2, and 4, the inputs were a set of symbols, such as numbers.

These simple and determinate functional environments are certainly open to criti-
cism; principally since few real task-oriented groups have a determinate functional
environment. Again the defense is based on the hope that insights derived from simple
situations may be applicable to more complex situations which at present are too subtle
and complicated to unravel. Certainly, a possible next stage of development in this
direction is the introduction of simple indeterminate functional environments. The
results on the development of group leadership from one pilot experiment in which
this was done indicate that this is a fascinating and fertile area.

An important problem in the realm of initial conditions is the difference, if any,
of the groups' methods of solution when the task and the functional environment have
the same logical structure but different material implementation.
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3. Boundary Conditions

3. 1. Constraints

The experimental groups reported on in this study were homogeneously constrained
but were far from free of restrictions. That is to say, the transfer functions of the indi-
viduals were all externally restricted in exactly the same way. In none of the experi-
ments were the individual transfer functions completely free of all restrictions; in fact,
it is unlikely that one can ever find a task-oriented group in which no imposed restric-
tions occur. For the experimental work, however, these restrictions have been more

stringent than they would be in most real situations.

3.2. Methods of Communication

In all of the experiments reported in this study, communication within the group
has been restricted to written messages, and communication between the members of
the group and the functional environment has been by means of simple electrical or
mechanical signals. There are several reasons for this selection of restrictions on
communication. The recording of experimental data in such a fashion that the process
of communication in the group can be reconstructed is greatly facilitated when the
messages are written. The enforcement of the various experimental restrictions, which
are discussed below, is very simple in the case of written messages. Further, it was
felt that the introduction of uncontrolled psychological variables would be at a minimum
in the case of written messages. For example, if we had allowed oral communication
over telephone circuits, vocal characteristics and intonations might have had a serious
and unknown influence on the results. Granted that in real situations such character-
istics are of great importance, it was felt that such an uncontrolled factor should be
eliminated for the present.

In some of the experiments, particularly the earlier ones, the written communi-
cation of the group members was not further restricted. They were allowed to discuss
the problem at hand, the method of solution, the differentiation (organization) of the
group, or anything else they wished to. The data thus obtained is fascinating and is
discussed at some length in Chapters V and VI, but it is exceedingly difficult to analyze.
This difficulty may be inherent in data of this type, or it may be that we do not know
what to look for. In the hope that the latter is the case, we then ran an experiment
(No. 4) in which the allowable written messages were restricted to input information.
The results of this restricted experiment give some insight into the more complex data,
but by no means complete clarification, since all messages about group differentiation
were eliminated.

The use of written messages has serious drawbacks, and because of these we cannot
know whether our results generalize to groups with different types of communication.
Written messages often make the time for the completion of the simplest task inordi-
nately long, so that any reasonable sequence of runs on an experimental group tends to
approach the interest and/or fatigue limit for the members of the group. Also, it is
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doubtful if the same type of emotional reactions are elicited by written communication
as by oral. In addition, the use of written messages tends to give a very artificial
aspect to the situation which probably tends to reduce the motivation of the group (moti-
vation is discussed more fully in sec. II. 4. 2).

Experiments using other methods of communication, such as banks of switches and
telephone lines, are projected and the apparatus nearly completed (see App. 2 and sec.
I1.3.3). These new methods should shed considerable light on the influence of the

method of communication on group performance.

3.3. Communication Network

In all the experiments, strong and inflexible restrictions were placed on who
could communicate with whom; that is, there were imposed networks. This has been
considered to be one of the primary variables of our studies; for it was noted early in
the work that slight changes in the communication network made appreciable differences
in the way in which the group coped with a task, and it is well known that in many
business and military organizations such networks do in fact exist. In the earlier
studies, in which the group was generally treated as a black box, these effects were
noted, and in the later studies we have attempted some explanations of the differences.
The value of such explanations is the possibility of their conceptual, if not quantitative,
generalization to situations quite removed from the specific ones -studied.

The apparatus to impose the network was based on a large round table around which
five subjects were seated. Five radial wooden partitions effectively separated the
subjects, and they were prevented from circumventing the imposed restrictions by the
presence of the experimenter. At the center of the table a block of wood appropriately
slotted for the transmission of message cards allowed experimental control over the
communication network. The photograph of the table (see frontispiece) will give a
clearer understanding than many words.

This apparatus is crude but reasonably flexible. An attempt to replace it by a more
sophisticated electrical apparatus has been one of the major operations of the laboratory
in the past year. This new device, nicknamed "Octopus," consists of five stations, each
having two banks of switches all connected to a central control station and recording
apparatus. At the stations, messages of the form 'from man A to man B that man C
has a 1" may be sent by the subject, and their receipt acknowledged. Each message
contains information regarding the sender, the destination, the person referred to, and
the item this person possesses, which is either a 0 or a 1. In any given experimental
situation we may interpret 0 and 1 as we will. The control section of Octopus allows
any of the twenty possible links between ordered pairs of people to be open or closed,
and may be readily so modified as to permit a link to be open with probability p. It also
controls the input of "initial information' to each station, either a 0 or a 1. For a more
complete discussion of this apparatus and its recording device, see Appendix 2.

The advantages of Octopus are that it permits much more rapid communication
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than can occur with written messages but preserves the simplicity of coded written
messages, that it provides a simple and complete record of the data, that it permits
simple and flexible control of the communication network, and that it permits the intro-
duction of a measurable amount of noise into any communication link, For ease and
speed of experimentation, it sacrifices the flexibility of possible problems, inputs, and
messages. It remains to be seen if the gain offsets the loss. We envisage the possi-
bility that Octopus may be used to greatest advantage in conjunction with other means
of communication.

3.4. Action Quantization

In Experiments 4 and 5 the subjects were required to act simultaneously in the fol-
lowing sense: After the trial began, each subject prepared his first message, decided
where he would send it, and then pressed a button to signal that he was ready to send.
Each button activated one of five relays wired in series; hence, when all five subjects
had signaled that they were ready, the circuit was closed. This in turn activated a two-
second delay relay which, when it closed, activated a buzzer. Each subject sent his
message at the sound of the buzzer. The second set of messages was prepared and
sent following the same routine, and so on, until the trial was completed. From
the beginning of the trial through the first sending of messages is called the "first act,”
from then to the second sending of messages is called the "second act," and so forth.
This set of boundary conditions on the group is called "action quantization."

The purpose of such action quantization is to cause the times for decision and the
actual decisions as to where to send a message to be independent, although generally
they are not. It causes a marked reduction in complexity of the entire communication
process, which results in an experiment amenable to both mathematical analysis and to
obtaining adequate data in a relatively short time. It is clear that this is an artificial
situation rarely, if ever, encountered outside the laboratory; nonetheless, we feel that
it has more than served its purpose in allowing us to obtain approximations to certain
transfer functions which would be much more difficult to obtain in the unquantized case
and, in addition, it has suggested methods of analysis that are to varying degrees suit-
able to the more general case. Whether we are justified in this belief is best evaluated
after reading Chapters III and IV.

Thus, the experiments we have run fall in two categories: (a) the experiments with
a continuous time scale, that is, with message sending times completely unconstrained;
and (b) the experiments with the group action quantized in the time dimension. These
two schemes do not exhaust the possibilities, and since the jump from the group action-
quantized case to the continuous case is so great, it seems wise to consider the pos-
sibility of a case which will fall between these two cases. We propose in future
experimentation to quantize the individual action times but drop the requirement that
every member of the group send on signal. If the signals for ''permission to send' are

spaced appropriately, we will have the condition which was so desirable in the former
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quantized case: the experimenter can know what information the subject had before him
when he was preparing a given message. However, the subjects will not be required to
send messages at times when it is obvious there is nothing to be sent that will help the
group to reach its goal. Situations of this sort do arise and are particularly annoying

to the end men in the star, for example. It is for just this reason that in Experiment 4
no action-quantized experiments were run with the star pattern. This scheme might be
thought of as a speeded-up analog of communication by mail. The postman comes at
regular intervals and hence sending and receiving occur on a time-quantized scale, but
letters are only sent at those of the possible times when there is reason to send a
letter. We believe that this scheme is an important step in the direction of face validity

which retains, so far as analysis goes, most of the features of action quantization.

4. Relationship of Subjects and Experimenter

4.1. Role of the Experimenter

Several times in the above discussion we have mentioned the roles that the experi-
menter plays during an experimental run. Sometimes he is part of the functional environ-
ronment, but at all times he is a source of initial information and instructions about the
experimental situation. We have always attempted to standardize these instructions and
roles, but this has not been completely successful. For example, each group will ask
questions about the apparatus and procedure, which must be answered to be certain that
the functional environment is in fact determinate to all the members of the group. These
answers, of course, will put the experimenter in a slightly different relation to that
group than to one which asked different questions. Furthermore, the experimenter
serves as a policeman, imposing any rules of the game which are not built into the
equipment; when the policeman is forced to act, his emotional relation to the person
acted upon is probably changed. The control over this variable has been only partial,
since these actions on the part of the experimenter were necessary to complete the
experiment smoothly and successfully.

We have hoped that the nature of the design would, to a large extent, eliminate the
effects of this variable. However, we cannot overemphasize the importance of the
relationship between experimenter and group, for we have watched various experi-
menters at work with groups, and the difference in success and cooperation is marked.

It may be desirable to develop experimental procedures which further reduce the role

of an experimenter, e.g. by developing equipment which is its own policeman.

4.2. Motivation

Another important way in which the experimenter influences the subjects is the intro-
duction of motivation to carry out the task as well as possible. The tasks are simple
and artificial; they do not relate very closely to the subject's daily existence or to his
more important goals. On the other hand, the subject is ego-involved to some extent;
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he is in a group and under the surveillance of the experimenter and so has some incen-
tive to do well. Further, during the instruction period the experimenter attempts to
induce motivation as he explains the functional environment and the task. Several
appeals have been used for this purpose: competition with the various other experi-
mental groups who have performed the same task, the importance of science, the rela-
tion of these problems to the very important problems confronting industry and the
military, and personal challenge. For the most part one concludes that the motivation
has been successful or not, only by intuition and observation. We observed that the
subjects are reasonably attentive to the problems, they evince great interest in the work
and its meaning following the completion of the experiment, and almost no complaints
have been received. In addition, questionnaires designed to obtain rough measures of
motivation during the experiment were filled out at its completion by the subjects and
an examination indicated reasonable motivation.

Nonetheless, we do not feel that we have been completely successful in this direc-
tion. One continually has the feeling that experiments having a less artificial aspect
would introduce new degrees of motivation which might possibly affect the results.
Unfortunately, it is difficult to reconcile appreciable restrictions and high face-validity.
This suggests that an appropriate experimental program might include both experiments
having high face-validity which will be used to suggest new ideas and directions of study
and, on the other hand, very restricted experiments which will attempt to bring forth

explanations of the more complex phenomena.

5. Data Measurement

The primary source of data was the cards on which the subjects wrote their
messages. These were identified as to source by their color and as to receiver by
labeling after the experiment. The subjects were required, at the end of each trial, to
group all the cards received and label the package with the trial number. In Experi-
ments 4 and 5 serial numbers on the cards indicated on which act of the trial that card
had been sent.

In Experiments 1, 2, 3, 5, and 6 the subjects signalled an answer to the experi-
menter who recorded it on paper. In addition, in the first three experiments the experi-
menter recorded the time for the trial. In Experiment 4 the answer was signalled
electrically and recorded on an Esterline-Angus pen recorder. The times per act were
recorded in both Experiments 4 and 5; however, we failed to record the times at which
the subjects signalled they were ready to send a message, and this, as we shall see in
Chapter IV, was a mistake.

Following the completion of the trials the subjects were given questionnaires to fill
out; samples of these are contained in Appendix 1. The purpose of these questionnaires
was to discover what the subjects knew about the network they were working in, to
determine what, if any, organizational structure had developed, i.e. what differentia-

tion had occurred, and to ascertain the morale of the subjects. The design of this
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questionnaire is only partially satisfactory. The most glaring flaw is the difficulty of
scaling the results. A new questionnaire is now in service which, it is hoped, will give
more satisfactory results.
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CHAPTER III — LEARNING

1. Introduction

In all of the experiments listed in Table II.1 learning has occurred, but in three
experiments (1, 2, and 4) it has been of primary importance and has been examined in
some detail. The first two experiments were of the same structure; the subjects were
free to send messages at any time and with any content. Two measures of efficiency
were used: the number-of-messages-taken-to-solution in a trial and the group time
required to complete a trial. Both of these measures are group measures, and do not
relate the group results to the individual performances in the group. In fact, in these
experimental situations, it is impossible to do so, since the wide freedom in message
content and sending times makes it impossible to know what information man A had when
he sent message x. Compounded into the first measure were messages about the
way to solve the problem (organizational messages), messages directly related to
the problem (problem messages), messages about the influence of the network and mes-
sages about the effect of feedback of previous results to the members of the group. As
may be seen in Leavitt's paper (34), which reports Experiments 1 and 2, it is possible
to show statistically significant differences between networks by using this measure,
but impossible to account for these differences, and hence impossible to predict new
results. The second measure, time to solution, did notlead to significantly different
results. Even if it had, as it does in Experiment 4, it would be difficult to separate the
various effects entering into the time: if the group increases its efficiency by reducing
the number of messages but keeps the time per message constant, then the total time
will be reduced; however, reducing the number of messages requires some thought,
which in turn increases the time per message. Finally, some time-saving individual
learning occurs: the subjects become used to the apparatus, they are more sure of
what they wish to write and so write more rapidly, and they learn to abbreviate their
messages. Such learning cannot be considered in the same category as group learning.

As we have mentioned, these results have already been published; hence, we shall
not repeat them here except insofar as we have carried out new analyses. Experi-
ment 3 does contain some results on learning, but these are more appropriately dis-
cussed in Chapter V. Experiment 5 is similar to 4, but because only the time aspect
of learning has been analyzed at present, these results will be discussed in Chapter IV.

This leaves Experiment 4 as the subject of discussion for this chapter and much of
the next. The purpose of this experiment was to separate some of the effects that were
mentioned in connection with Experiments 1 and 2, either by elimination or by a true
separation. In Appendix 1 a detailed description will be found; here we shall state only
the principal properties of this experiment and the reasons for certain selections. First
of all, all organizational messages were eliminated, and the problem messages were
restricted to the form "man A has the number x," the subject having only to fill in x.
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A

CHAIN (X} CIRCLE (X) PINWHEEL
BARRED CIRCLE WHEEL TOTALLY CONNECTED ALPHA CHAIN (0} CIRCLE (0)
Fig. III. 1 Fig. III.2

This, of course, had the effect of reducing appreciably the number of different situa-
tions that might arise within the experiment, hence allowing the possibility of reason-
able frequencies of occurrence of the different situations. Second, the subjects were no
longer allowed to send messages at will. Each subject closed a relay when ready to
send, and when all five relays were closed, a bell rang as the signal to send. At each
such signal each subject sent one and only one message in which he was required to
include all the problem information he knew at that time. The time between successive
sendings of messages we call an act; the experiment thus consists of a series of trials
and each trial of a series of acts. A trial was completed when each person knew what
input information the others had. The subjects were told the minimum number of acts
to solution (with one exception discussed below). The achievement of this minimum
was their task.

The experimental program called for the examination of as many different networks
as seemed feasible, subject to the condition that enough groups be run in each network
so that there was some hope of obtaining the desired probability estimates. We elected
to run 10 groups in each network for 25 trials, and to study the networks shown in
Fig. III. 1.

Two minor side programs were added to this major program. First, it is apparent
that many of the networks have several geometrical representations while preserving
the same topology. Does this matter? It was decided that 5 cases each should be run
on different geometrical versions of the circle and the chain (see Fig. III.2). Second,
each of the networks in Figs. III.1 and III.2 has a minimum solution of three acts,
except the chain which has a five-act minimum solution. We decided to run 20 groups
in the chain (x) network, and to tell 10 of the groups that the minimum would be 5, and
the other 10 that it would be 3. These cases will be distinguished by writing chain (x-3)
and chain (x-5).

These boundary conditions led to data from which it is possible to determine the

- information each man has when he sends a given message; thus we can relate his
performance to what he knows and, to some extent, relate group performance as
- measured in acts per trial to individual performance. Separate from the decision

problem is the data on time required for decision. Since in this experiment these two
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factors are independent, at least to a first approximation, we discuss them separately.
At the end of the next chapter, which is devoted to time, we present some first mathe-

matical steps toward re-introducing the dependence of one on the other.

2. Measurement of Learning

The performance of groups of subjects in our experiments can be called "group" per-
formance because the groups have been intentionally made task-oriented and the tasks
have been so designed that they require group effort for their solution. By the very
means that group effort has been elicited, each member of the group has been required
to perform. There is no group performance, in the sense we use this phrase, unless
each member of the group performs in some one of the ways possible within the restric-
tions laid down by the group task, the initial conditions, and the boundary conditions.

The quality of the group performance can be specified in terms of the degree of ful-
fillment of the group task subject to the boundary conditions within which the group must
work; the more efficiently the task problem is solved, the better the quality of the group
performance. As a result of the experience of the group with the task, the efficiency
of the group may increase. This improvement in the quality of group performance
comes about because each member of the group has knowledge of the quality of the group
performance at the end of each trial and this knowledge has an effect upon his behavior
on subsequent trials. In other words, the group learns the problem because, and only
because, the feedback of group results causes the members of the group to learn.

To express many of our experimental results we shall need terms descriptive of the
group efficiency. Since no such measure is known which fits the general case, we have
found it necessary to develop a measure for each experimental variant.

The number of acts actually observed on any particular trial is a sample of the
group behavior possible at that time, rather than the only possible behavior. Therefore,
our experimental data in Experiment 4 are in the form of act-per-trial distributions; that
is, in the form of observed frequencies for each possible number of acts. The group
acts-per-trial distribution is determined by a set of behavioral probabilities which char-
acterize the individual performances at each node. The relation between the sets of
individual probabilities and the group distribution function is many-one; that is, a set
of individual node probabilities uniquely determines an act distribution, but a given act
distribution may be the outcome of many different sets of individual probabilities.

It is easy to show that changes in individual behavioral probabilities may be produced
by means we should not like to call learning. For example, the probability of a
person's belching is higher after eating than prior to eating — we do not call such a
change learning. In general, motivational and emotional states have as profound an
influence on the probabilities of behavior as the state of relevant knowledge has. We
can distinguish one effect from another, at least in principle, in terms of the operations
which produce each. In practice, it is sometimes quite difficult to be sure that an oper-

ation such as the experiencing of a trial in our experiments does not have effects in

-38-




more than one of these areas. Thus, although the running of the trials with the feedback
provided is certainly a necessary and usually a sufficient operation to produce learning,
it may also generate boredom and hence affect probabilities of response by an operation
on the motivational state of the subject. However, having fixed probability as our indi-
cator, we are still faced with the problem of finding an effective way to make compari-
sons between different values.

In principle there are at least four distinct ways to cope with the problem of

measuring only the desired properties of a system:

a. Using a measure which is independent of any operation except those operations
which affect the property being measured; namely, learning. The science of psychol-
ogy has yet to provide such a measure for learning, and in particular, change in

response probability is not such a measure.

b. Using a theory of behavior which includes a rich enough theory of measurement
so that the influences of unwanted factors can be determined and corrected for. Again,

this is not now possible because of the relatively poorly developed state of psychology.

c. Devising experiments to provide for statistical control of unwanted factors and
employing the techniques of analysis of variance, particularly the covariance method,
to get an approximation to the true picture of the independent influence of the variable
being studied.

d. Attempting to make the groups comparable by the experimental control of vari-
ables other than those we wish to study.

The fourth method, one of the two open to us, is the one we have chosen. It is not
wholly satisfactory since we have not completely controlled motivational conditions.
However, the present state of knowledge in psychology makes possible our confidence
that our efforts have been reasonably successful. Thus, although we cannot claim to
have measured learning in the Strictest sense, we can claim that any statistically sig-
nificant differences in our learning indicator from group to group arise from real dif-
ferences in learning.

Our data comes in the form of sets of frequencies or of frequency distributions, and
it would be very convenient if these distributions could be reduced to single numbers.
Miller and Frick (37) have recently proposed such a measure on the basis of information
theory. This measure is obtained by treating the possible response choices of a subject
as a set of symbols from which messages are formed, where the probability of a symbol
being chosen is defined as the probability of the response to which it is associated. The
selection of symbols is assumed independent. The average amount of information per
symbol is then defined, for messages formed by random selections of symbols from the
given ensemble of symbols, by the average number of binary decisions per symbol which
are necessary to code the message. Where there are n choices to be made and P; is the
probability of choice of the i-th possibility, the amount of information is given by
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n
H = -z Py log2 Py
i=1

As the set of probabilities diverges more and more from uniformity, the information-
measure value becomes smaller and smaller. The summary number H has its maximum
value, logzn, when the probability is equi-partitioned among all possibilities, and

it has a zero value when one possibility has the probability 1 and all others have
the probability 0. Neglecting the information theory interpretation of the meaning of
H and considering that a maximum of H corresponds to the zero of learning where-
as the zero value of H corresponds to perfect learning, it is natural to propose the
function

L=log2n-H

n
= logZ n+ Z p; log‘2 p;
i=1

as a measure of learning. The measure L has the very desirable property that it
measures the degree to which available choices are not chosen with equal frequency, and
thus measures learning in a uniform way whether there is only one or more than one
way of behaving upon which responses are concentrated. Moreover, it expresses what
it measures as a single number.

There is one serious drawback to the use of the measure L.. It measures the jag-
gedness of a distribution of probabilities but says nothing about where the peaks occur.
Learning is always in terms of some problem, natural or imposed, and the relation of
the problem to the distribution of response probabilities is that the problem specifies
where the peaks must occur for perfect learning. With . we measure the degree of
stereotypy of behavior but not its degree of conformity to the conditions of the problem.
For example, suppose two rais are run in the same experimental situation in which
there are only two terminal responses possible. Their behavior can be character-
ized by two probabilities: P, for one response, and P, for the other response. Let
us suppose response 1 is rewarded with food and response 2 is not so rewarded.
Thus a solution of the problem has been achieved to the degree to which response 1 is
made in preference to response 2. Let us further suppose that rat A comes to make
only response 1 and rat B comes to make only response 2. In this case (actually
approximated in some experiments) p, = 1 and p, = 0 for rat A, and p, = 0 and p, = 1 for
rat B. The measure L will have the same value for each rat, and in a sense, both have
learned the same amount, but rat A has learned what the problem required whereas rat B
has learned exactly the opposite. It may well be argued that for the situation of our
example to arise there must have been some other combination of motivation and reward
influencing the rat's behavior than that of hunger and food; for example, anxiety at, and
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escape from, the starting point. If we grant this, then it may be said that the sifuation
was one involving two superimposed problems and all that is needed is to so arrange the
conditions of the experiment that only the desired problem can have an influence on
behavior. This is indeed a desiratum, but some problems are intrinsically of such a
‘sort that one can not accomplish such a separation.

Any measure based solely on probabilities of response, whether a distribution or
some statistic derived from a distribution, is bound to fail to describe learning com-
pletely. We may prove this by an example: consider two animals equal in every respect
except for two responses. Suppose one animal has learned each response to the same
high degree and the other has learned each to the same low degree. Now, since the two
responses have been learned to the same degree, when either animal is put in a situa-
tion where it must choose one of the two, its choices will be equally distributed between
the two; that is, the probability of response, for each response and for each animal,
will be 1/2. Thus any measure based solely on these probabilities must describe the
animals as having learned the same amount. This result is a source of difficulty only
if the logical distinction we have made also makes an empirical difference; i.e. there
must be some way to show that two organisms have learned responses to different
degrees even where there are no differences in probability of response. This has been
shown to be the case by testing the difference in response strength of the two animals
by placing each in a situation where only one of the two responses they have learned can
be made. There will be a difference in their behavior; to wit, the animal which has
learned to the greater degree will respond with a shorter latency. Moreover, there
would be a corresponding difference in the response times of the animals even if they
were tested with both possibilities of behavior open. These facts show that there are
at least two measures relevant to learning: probability of response and latency of
response. Our realization of the importance of time measurements for our experiments
came too late for us to have collected all the data of this sort we now wish we had. For-
tunately, we have recorded some time measures and the results we can derive from them
are presented and discussed in the next chapter.

The above argument shows that it is reasonable to hypothesize a construct which
might be termed "response strength." It could be defined as a property of an entity
which might be either an organism or an organized group. In either case, it would have
the following characteristic: from a statement of the set of response strengths which
characterize an entity at a given time and of the inputs to that entity at the same time,
probabilities and latencies of these outputs can be derived. As s0 defined, response
strength is not the ultimate parameter upon which learning has its effects, because it is
also influenced by such factors as motivational level. However, if these other factors
are held constant experimentally, changes in response strength will be monotonically
related to learning effects.

There is one final problem to be mentioned which applies to whatever measures we

use. We have written of probabilities and latencies as if their values were strictly
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determinable. Of course, all that can be measured are statistical estimates of these
hypothesized values. Our procedure has been to take some small sample and treat the
statistical value obtained from that sample as not too different from the parametric
value of the variable being measured. This is a perfectly defensible procedure if the
population from which the sample is drawn remains unchanged statistically as the
sampling is going on. The problem that confronts us, as it does all behavioral sciences,
is that the process of drawing one sample destroys the population from which the sample
was drawn. The problem does not arise in the physical sciences, in general, for each
electron is like every other, and hence an experimenter can sample ad libitum until he
is satisfied with the stability of his measurement. Thus we are plagued by either
changing population or the unreliability of small samplies. Specifically, in studying
learning one cannot take repeated samples of behavior in a situation that has not been
previously experienced, since taking the sample unavoidably generates the experience.
In practice we take a random sample from an ensemble of individuals and form several
groups and then assume that these ensemble statistics are the same as the ideal time
statistics we should like. It is not clear that this assumption is justified.

Our procedure differs not a whit from common practice in the behavioral sciences;
it is neither better nor worse. What we have done is to compromise on both counts,
as little as possible on each, and at the same time to get reasonably stable measures.
That is, we have taken our statistics over both time and the ensemble. As a specific
example we have run ten groups in an experiment for twenty-five trials, then divided the
trials into five sets and taken statistics over each set of trials lumping all ten groups
together. As will be seen, we have statistical justification that the time breakdown is
sufficiently fine so that serious errors do not result. However, the grounds for the

over-all procedure are heuristic.

3. Acts to Completion

The primary group data obtained in Experiment 4 were the number of acts to
complete a trial. For each network configuration these have been broken down into
four nonoverlapping blocks of trials and the percentages presented in Table III. 1.
In addition, we have plotted in Fig. III. 3 through Fig. I1II. 12 blocks 1-6 and 11-25 and
the equiprobable random distribution which is discussed below.

There is in each case an added distribution which is called the equiprobable random
distribution for that network. This is essentially a mathematical property of the
network which is obtained by assuming the group action is quantized and that each
node is a random sender which treats each of the available outgoing links as equi-
probable. Furthermore, the node is assumed to send all the problem information
he has at the time. It is as if we gave each person in the experiment a balanced
n-sided die, where n is the number of outgoing links, and caused him to decide on
his sendings by throwing the die. We are then interested in the number of cases
that will be completed in minimum acts, minimum + 1 acts, and so forth, i.e. the
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Table III. la

Proportion of Cases Completed in
Minimum + i Acts

Network Trial Block Minimum +1 + 2 +3 + 4 +5

Chain (x-5) Equiprobable Random 0.078 0.149 0.197 0.180 0.118 0.103

1-6 0.383 0.250 0.183 0.050 0.033 -----

7-12 0.467 0.317 0.133 0.033 0.017 -----

13 - 18 0.717 0.217 0.017 0.033 ~--=v -w---

19 - 25 0.686 0.243 0.043 ----- =----- --e-a

Chain (x-3) Equiprobable Random 0.078 0.149 0.197 0.180 0.118 0.103
1-6 0.383 0.333 0.183 0.033 0.033 -----

7-12 0.533 0.300 0.100 0.017 =--=--= =—=-=--

13 - 18 0.633 0.200 0.050 ----- -=--- 0.017

19 - 25 0.686 0.143 0.014 0.029 0.014 -----

Chain (0) Equiprobable Random 0.078 0.149 0.197 0.180 0.118 0.103
1-6 0.367 0.300 0.200 0.100 ----- 0.033

7T-12 0.700 0.167 0.033 -=--eo  cmc-n oo

13 - 18 0.767 0.200 -=-=-  mmeme e oo

19 - 25 0.857 0.086 0.029 0.029 ----- -----

Circle (x) Equiprobable Random 0.002 0.168 0.377 0.268 0.113 0.042
1-6 0.100 0.267 0.483 0.133 0.017 -----

7-12 0.283 0.417 0.267 0.033 ----- -----

13 - 18 0.483 0.367 0.133 0.017 ----- ~-a--

19 - 25 0.457 0.414 0,071 0,043 ----- -----

Circle (0) Equiprobable Random 0.002 0.168 0.377 0.268 0.113 0.042
1-6 0.233 0.467 0.267 0.017 ----- -----

7-12 0.367 0.467 0.167 ----- =—conc —eo--

13 - 18 0.300 0.633 0.017 0.017 ----- --cw-

19 - 25 0.314 0.629 0.057 ----- =—ceec aeo-.
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Table III. 1b

Proportion of Cases Completed in
Minimum + i Acts

Network Trial Block Minimum +1 + 2 + 3 + 4 + 5

Barred Circle Equiprobable Random 0.008 0.209 0.312 0.235 0.111 0.069

1-6 0.067 0.433 0.333 0.117 0.050 -----

7-12 0.183 0.467 0.317 0.033 ----- =-----

13 - 18 0.217 0.533 0.233 ----- -=--- 0.017

19 - 25 0. 343 0.443 0.171 0.014 ----- 0.029

Alpha Equiprobable Random 0.011 0.273 0.306 0.208 0.100 0.059
1 -6 0.167 0.383 0.333 0.100 0.017 -----

7-12 0.200 0.483 0.217 0.083 ----- 0.017

13 -18 0.233 0.483 0.217 0.067 ----- -~-=-

19 - 25 0.371 0.357 0.229 0.043 ----- -=---

Wheel Equiprobable Random 0.026 0.312 0.357 0.174 0.084 0.036
1-6 0.117 0.433 0.333 0.117 =-=---= -==--

7-12 0.167 0.617 0.167 0.050 =----- =~----

13 - 18 0.267 0.483 0.233 --=-- =--me e----

19 - 25 0.271 0.614 0.100 ----- ----- -----

Totally Equiprobable Random 0.041 0.397 0.326 0.159 0.053 0.019
Connected 1-6 0.117  0.633 0.200 0.050 =----- -----
7-12 0.167 0.583 0.167 0.067 ----- 0.017

13 - 18 0.217 0.567 0.217 ----- ----n —----

19 - 25 0.143 0.686 0.157 0.014 ---~- -----

Pinwheel Equiprobable Random 0.038 0.530 0.299 0.101 0.025 0.007
1 -6 0.050 0.667 0,266 --~--- ----- ~----

7-12 0.083 0.650 0.250 0.017 ----- -----

13 - 18 0.050 0.683 0.250 0.017 ~---- -----

19 - 25 0.057 0.743 0.186 0.014 -~----- -----
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distribution of acts to completion. (Mathematically, we may state the problem as'
follows: Let N be a matrix associated to the network;

N..
1

"

1 if, and only if, there exists a link from i to j

0 otherwise.

Let {Na}be the set of all possible distinct matrices having the following properties:
For any i there exists one and only one j # i, selected from the set such that Ni' =1
such that

£

(N =1, %]
otherwise
(Nu)ik =0, j#k
and
(Na)ii =1
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If an equiprobable distribution is assigned to {Na}, what is the distribution of n such
that

n-1

H Na(k) = 0 for at least one pair i, j
k=1 -

L ij

and
Na( >0 for all i, j).
1

k)
ij

lﬁ.:lsl

It is believed that there is no known general solution to this problem, except in the
case where the network is symmetric and has no closed loops of symmetric links, i.e.
a tree in graph theory. As a consequence, we have resorted to Monte Carlo techniques
using the high-speed digital computer Whirlwind I at M.I.T. to obtain statistical esti-
mates of these distributions. We shall not go into the details of the coding problem here
except to say that the source of random numbers were Kendall and Babington Smith's
"Tables of Random Sampling Numbers" (86), a block of which were converted to I. B. M.
punch cards by the RAND Corporation. From these cards the numbers were transferred
to teletype tape. Finally, these decimal numbers were converted in Whirlwind I to
binary digits by using the binary equivalents of 0 through 7 and discarding 8 and 9.
Three thousand trials were carried out for each network, with a read-out at 1000 and
2000 as a stability check.

Looking only at the experimental results, we see first that with the exception of the
pinwheel and totally connected networks, learning over trials occurs in all cases in the
sense that initially there is a lower weight on solutions in minimum acts and a higher
weight on minimum + 1 or + 2 than in the last trial block. Observe that if we were to
apply the information theory measure without any reference to the reinforcement, we
would not always detect this learning. For example, there is about the same peaking
in the initial distribution for alpha, Fig. III.9, as for the final trial block distribution:
it is just differently ordered. The H values are 1.9219 and 1. 7434, respectively.

Without a well-defined measure of learning it is somewhat difficult to evaluate these
results. It appears, for example, that circle (x), barred circle, and chain (x) form a
sequence of decreasing learning, and that barred circle, alpha, wheel, and totally
connected form another sequence of decreasing learning. A satisfactory measure would
have to indicate these intuitive orderings.

We must sidestep this problem, but there are others of equal importance. Can we
in any way predict these distributions? Looking at the latter sequence of decreasing
learning suggests that increasing network complexity, in some yet to be defined sense,
is correlated with a decrease of learning. This may indeed be true, but it cannot be the

entire story for the pinwheel network shows the least learning of all. In many ways it
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is less complex than the barred circle; rather it is of the same order of complexity as
the circle. It is our belief that it is fruitless to attempt to correlate such a complex
resultant of individual learning as group learning with any single combinatorial or topo-
logical parameter of the network. An understanding of group learning in this type of
situation will arise only through an understanding of the individual learning and the com-
binatorial properties of the network which compose this into a final group result.

Before turning to such an analysis of some of these networks, we shall discuss in a
gross way the equiprobable distribution in relation to the experimental results. The
most notable feature is the difference between the random case and the observed group
results, even for the first trial block where one might suspect a large number of
random decisions. It is interesting that there is a decreasing difference between the
random and trial block 1-6 with decreasing learning in the network, with both pinwheel
and totally connected having the least. difference and circle and chain the most.

We may draw two principal conclusions: (a) Learning does in fact occur with
increasing trials, the amount varying from network to network; (b) It is not correct to

assume that the individuals begin to operate initially as equiprobable random senders.

4. The Quasi-Discontinuous Nature of Group Learning

The task set our subjects was to solve each of their series of problems in as few
acts as possible. Each group (with one exception) was told the correct minimum number
of acts for its network, and this knowledge gave them a goal and a standard for evalua-
tion of their performance. While it is true that a performance not as efficient as a min-
imum performance may represent an improvement over performance on preceding trials
and thus indicate to the group that progress toward the goal seems to be occurring, yet
the achievement of minimum solutions is strongly called for by the instructions to the
subjects. It therefore seems reasonable to dichotomize the efficiency of performance
dimension into "success"” for minimum solutions and "failure" for nonminimum solu-
tions. Having done so we arrive immediately at proportion of successes as an indi-
cator of degree of learning. The learning performance of the various experimental
groups on this basis is shown in Figs. III.13 and III.14. Reference to Table III. 4 in
section III. 6 will provide an example of the data from which these curves were drawn.

A careful comparison of the table with the corresponding entries on the graphs will be
sufficient to suggest that the form of the graph obscures important features of the
learning process in these groups. Let it be noted that the points in trials where the sev-
eral groups give evidence of having mastered the problem, that is, where they begin

to get minimum solutions consistently, are widely dispersed. On the other hand, the
number of trials it seems to take to make the sharp change in behavior from very few
minimum solutions to almost all minimum solutions is small.

Since we have dichotomized the performance variable, the occurrence of a success
or a failure can be looked on as the drawing of a sample of one from a pool of responses
in which the proportion of successes is p, the value of p being a characteristic of the
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group at a particular stage in its process of learning. Over short blocks of trials the
value of p for a particular group will be nearly constant, except possibly once in the
life history of each group when it makes its major jump to problem mastery. We can,
therefore, use the series of trials in such a short block to generate a sample from a
binomial population of parameter p and use statistics on this sample to estimate p. It
is reasonable further to assume that before learning for any group the p's are nearly
equal. Now, if some one or more of the groups effectively masters the problem over a
few trials and the balance of the groups does not, the mean value of p taken over the
whole set of groups will be a compromise between the high p for the mastery groups
and the low p for the nonmastery groups and will be representative of no actual group.
If this hypothetical situation of quasi jumpwise learning does occur, then the variance
of p will be (except for sampling fluctuation) nearly zero before any group learns and
after all groups have learned, but it will be considerably different from zero when some
of the groups have learned and others not. If, on the contrary, the learning were a
smooth process similar in each group, the variance of p would remain near zero
throughout the learning process.

Let n be the number of groups and let each be characterized by its P; and q; = 1 - P;:
If we then make up samples drawing once from each group, we shall have frequencies
arrayed in the form

n

H (p; + q;)-

i=1

If all the pi's are equal, this reduces to the binomial, and, of course, equality of the
pi's is equivalent to a zero variance for p. It is readily shown that the second moment
of this distribution is given by the expression (ref. 85, vol. I, p. 122):

By = npq - n var p.
Solving for var p, we find

—— M2

varp =Pq - .=
If we show the hypothesis var p = 0 to be rejected when the data suggest that one of a
set of groups has learned and not otherwise, we shall have the evidence we need. The
variance for each group is plotted against trials in Figs. III.15 and III.16. Table III.2
gives the random sampling probabilities of the observed values of var p by networks and
trial blocks. These results are in agreement with the belief in a point of discontinuity
in the learning except in the case of chain (x). In this case there may also be some
degree of quasi discontinuity, but the data do not suffice to demonstrate it. That the
pinwheel shows values of var p which do not differ significantly from zero in any trial
block accords perfectly with the complete failure of this network to learn a minimum
solution. Similarly for totally connected, the variance stays very close to zero except
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Table III. 2

Sampling Probabilities for var p

Network Trial
1 -5 6 -10 11 - 15 16 - 20 21 - 25
8 8

Alpha <0.01 <0.01 <0.00001 <0.0°1 <0.071
Circle (x) 0. 45 0.05 <0.00001 <0.0°1 <0.0"1
Barred circle 0.03 <0.01 <0.001 0.07 <0. 081
Wheel 0.43 0.68 0.79 0.75 <0.0%1
Totally
connected 0.98 1.00 0.99 0.96 <0.01
Pinwheel 0.99 0.30 0.26 0.98 0.94
Chain (X) 0.10 0. 38 0.08 0. 38 0.52

for the final trial block in which one group appears to be mastering the problem.

The features we have just demonstrated in the experimental data, that individu-
al groups do not follow the same course as the mean of a set of groups, must be
taken into account in any reasonable theory constructed to cover the type of group behav-
ior our experiments have dealt with. Such a theory must allow for slow changes in
behavioral tendencies except that under certain conditions (which the theory must spec-
ify) the occurrence of at least one and probably two or more successive minimum solu-

tions gives rise to a very rapid alteration of behavioral tendencies.

5. Discussion of Learning in Circle and Pinwheel

If we agree that we have established the existence of group learning to varying
degrees, the amount being some function of the network, then the next question to be
asked is how the group learning is related to the learning of individuals. In principle
this is straightforward for the type of communication occurring in Experiment 4, but in
actual practice there is considerable difficulty. If we first discuss the type of model
we have in mind, the difficulties will be clear.

Essentially, we are looking for nodal statistics which, by combinatorial techniques,
will lead to the group statistics. Evidently, the nodal statistics will have to be in the
form of conditional probabilities which state that if certain conditions have been met in
the past, then the probability that node i will send his message to node j is p. By the
very meaning of these statistics, it follows that if sufficient conditions are included,
the group results will be given, the trivial case being when each of the groups examined
is treated as unique, and prediction is given only for those situations. Such an approach
will be important only if the number of conditions that have to be considered is rela-
tively small, so that situations which have not actually arisen in our experiments can be

predicted. This is to say, we must so select the conditions that (a) when computations
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are carried out combining the nodal statistics for a given network, the result differs
from the observed group results by an amount that can be confidently attributed to
chance fluctuations in the data, and (b) the conditions are sufficiently simple that stable
nodal statistics are obtained from a reasonable amount of experimental data.

It seems to be in the nature of the situation that we assume a learning model having
a structure similar to that given by Bush and Mosteller (16,17). Such models take the
form of an operator which operates on the i-1, i-2, ..., i-k stages of the process to
give the i-th stage. This, mathematically, leads to recursion expressions which, when
appreciably simplified, can be solved in terms of some initial conditions raised to the
i-th power. A model of this type, coupled with the first condition we mentioned, requires
a strengthening of the second condition, for if there are small errors in our esti-
mates of parameters these errors will be so seriously magnified when i is, say, 20
that it is very unlikely that the model wiil numerically fit the data even though it does
conceptually. This type of cumulative error seems characteristic of learning models,
and it suggests that there is an area of work on the stability of such models.

A second major difficulty is a mathematical one. Supposing that we have sets of
conditional probabilities and a particular network, can one obtain the group results
mathematically? As we pointed out earlier, the simpler problem of determining the
group act statistics, when equiprobable random node distributions were assumed,
required the use of a Monte Carlo technique on a digital computer. It therefore follows
that for any more complex conditional probabilities we shall again have to use this tech-
nique, unless there are some particularly simple questions for particularly simple
cases that are subject to analytic treatment. We shall be able to do some work with
the circle. The remainder of the networks have not been analyzed in such detail, and
probably can only be by means of a high-speed computer. However, because of the
cumulative-error difficulty, it remains to be decided whether such a program is worth-
while at this time.

Let us consider what factors we wish to include. A primary condition for the pro-
babilities in an analysis of learning must be the reward which conditions the learning.

In our experiments each trial had associated with it a set of bell rings. This acted
as a reward if it was the minimum possible set for the network. So, we shall dis-
tinquish whether the previous trial was completed in minimum acts or not. Of course,
if we have an experiment in which the minimum occurred so infrequently that it can
be neglected, the occurrence of minimum solution is not a condition. As was shown in
sections III.3 and III. 4, this is true for pinwheel in which the minimum was obtained
about 5 percent of the time.

It also seems clear that the state of information at a node, in relation to what that
node knows or believes to exist at nodes to which he communicates, is important. Deter-
mination of this, of course, is very complex. First of all, without a much more complex
design we can have no information as to what a person believes another person to know

about the initial data given the group. In principle, we can determine what is the most
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he could logically know. This is extremely difficult, and in most cases there simply is
not a sufficient amount of data to give decent frequencies for all the different possibili-
ties. The next, simpler, step is to consider whether the node under consideration could
or could not know if his message would add any new information to the receiver. If we
do this, we ignore situations where node i knows that if he sends his information to j

he will add one new piece and if he sends it to k he will add 3 new pieces. This is prob-
ably not a serious error for more often than not the subject could not have this much
detailed information. We shall give this type of analysis for the chain, but it is compu-
tationally still too difficult for any other network.

The next, and final, step in simplification is to consider only the source and desti-
nation of past messages as the condition of future messages. In this we completely
ignore what the content of the message was. We shall further restrict our consideration
to the messages at one node on the previous act. So our probabilities will depend on:

(a) whether the previous trial was completed in minimum acts, (b) to whom the node
under consideration sent his message in the previous act, ‘and (¢) from whom the node
under consideration received messages in the previous act.

These three types of conditions result in, for the totally connected network, 32 dif-
ferent probabilities to be computed and, of course, fewer for less complex nodal
arraﬁgements. This is still too many for most networks considering the amount of data
we have, so we have found it necessary to restrict our attention to some of the simpler
networks. We shall present in detail an examination of the circle, chain, and pinwheel.
The circle and pinwheel have the advantage that each node is like each other node in its
linkage relations; so, assuming statistically identical people, we may lump the data for
all the nodes in each of the networks. In the chain the end nodes are topologically iden-
tical, as are the adjoining ones, called the middle nodes, but the center node is unique
in being related to the end nodes in a manner different from the way the middle nodes
are. Of course, the end nodes will be ignored, for their behavior is completely stereo-
typed by the conditions of the experiment. It may well be possible to carry out the analy-
sis for the barred circle, but this has not yet been done.

We first examine the pinwheel. As we mentioned, we do not have to make the prob-
abilities conditional on the previous trial since trials in minimum acts occurred so
infrequently as to make them negligible. The topologically distinct input-output condi-
tions that are possible on the previous act are given in Fig. III. 17 where the solid
arrows indicate the sending of a message, and the dotted ones an open channel. The
cases are numbered and distinguished according to the number of inputs. In Fig. III.18
are plotted, for acts II and III combined, the conditional probabilities that a person will
send to the person he did not send to in the previous act—the probabilities of alternation.

These results make sense from a "locally rational" point of view if we assume
(a) that a person can remember only for the previous act, and (b) that a person does
distinguish between giving one person more information than another. For if this
is the case and if p(A,X) is the probability of alternation under the condition X, then
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what we may term locally rational behavior would dictate
p(A,0) =1
p(A,1) = p(A,2) = 1/2

If we weaken the second assumption and say that he will send to the person to whom he
can give the most information, but with his decision based only on the input-output rela-

tions of the immediately proceeding act, then we should expect
p(A,X)=1, X =0,1,2.
If we admit the person has a better memory, then all we can say is
pP(A,0) = 1
p(A,1)> 1/2
p(A,2) > 1/2

The data closely approximate 1/2 for conditions 1 and 2, and there is a definite trend
toward 1 for condition 0.

For the circle, the possible topologically different nodal configurations are given
in Fig. III.19. These cases have been called, respectively, none, same, both, and
opposite, and denoted by N, S, B, and O. However, in the case of the circle we must

Fig. III. 19
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take into account the feedback to the group as to their performance on the previous trial.
We may consider the following exhaustive categories:

A. The previous trial was completed in minimum acts, and the present trial has
been locally the same in the sense that the node under consideration has received mes-
sages from and sent messages to the same nodes as in the previous trial up to the point
under consideration.

B. The previous trial was completed in minimum acts, but the present trial has not
been locally the same.

C. The previous trial was not completed in minimum acts.

As in the pinwheel we have combined the statistics for acts II and III and have
ignored any remaining acts. The reason for this is that we expect the statistics to be
dependent on the act number, with greater aberrations occurring for a large act
number. Having separated act II from act III we found that the differences seemed to
be well within the variability of the data, and so for the final plots they have been lumped
together. The results are plotted in Figs. III.20, 21, and 22. Observe that there is
no plot of the "opposite" category in case A; this is due to the fact that no such case can
occur. The number of cases in the B category was much smaller than in the other two,
so much so that the data are highly variable. Later, we shall show why this is the case.

It is interesting to note that most of these curves seem to be to some extent inde-
pendent of the trial block. Since learning is a function of experience in the experiment,
we might expect all the curves to change monotonically with trials. There seem to be
two reasons why a statistic may be independent of trials: (a) It may simply be independ-
ent of experience in the experiment. (b) It may be that the breakdown of the conditions
includes the relevant experience, leaving the residue essentially independent of trials.

The latter means a change in the sampling population because of our categorization.
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For example, we see in the plot for the C condition that in the last trial blocks there
is a drop in the "same" and "none" categories when, naively, we should expect an
increase, or at least no change. This may be explained as follows: as the trials
progress, more and more groups achieve a minimum solution and stick to it; this, it
turns out, most often occurs in groups for which the alternation probability for the
"same" and "none" categories is high. But having achieved a minimum solution they
are removed from the C category and placed in the A and B categories, leaving on the
average people in the C category who do not have as high a tendency to alternate.
Thus, the sample from which the curves are obtained is changing.

If by PN’ PB, PS’ PO we mean the probability of a node alternating when in the
state N, B, S or O, then looking at the circle from a "locally rational” view, as we did
the pinwheel, we should expect

Py =1
Py =1
Pg =1
P0=1/2

Thus, comparing the individual statistics for both the pinwheel and the circle when
the previous trial was not completed in minimum to the "locally rational behavior, we
see there are some differences in the degree of rationality, but they are not great.
Equally well, the equiprobable random statistics for the frequency of minimum solu-
tions indicate but little difference between these two networks. However, the observed
group statistics yield markedly different results:

Table III. 3

Percentage of Trials Completed in Minimum Number of Acts

Trials Pinwheel Circle (x)
1-6 0.050 0.100
7-12 0.083 0.283

13 - 18 0.050 0.483

19 - 25 0.057 0. 457

We cannot yet say that the individual statistics coupled with the network topology will
account for these differences; this awaits the computer solution. However, a further
examination of the results does give support to the belief that they may.

Consider first the circle. By exhaustively writing all 32 possible ways in which
each node may select one and only one outgoing link over which to send a message,
i.e. all possible communication structures, it may be shown that there are exactly
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four topologically different cases (see Fig. III.23), For a given labeling of the nodes
there are 10 each of the first three and two of the last type.

It can be shown that a minimum solution of the task, which requires that each
person receive a message (possibly indirect) from each of the other nodes, can be
achieved if and only if the act I communication structure is of type a. And, in fact,
for a given type a structure there are 8 minimum solutions (see Fig. III.24). The
proofs of these results are simple, but because they are lengthy, they will not be
presented here. It thus follows that the probability of a minimum solution in the
circle when the nodes have equiprobable random distributions is 0.24 percent, which
compares with the value of 0.17 percent obtained from the digital computer.

Ifby P

in each of the conditions N, B, O, and S, and if we suppose that a particular trial is

N’ PB’ PO, and PS we mean the probability of a node alternating when it is

begun with a type a communication structure, it is not difficult to show that the prob-
ability of a minimum solution is

2 55
PN PS.

As can be seen in the curves of Figs. III.20, III.21, and III.22, these numbers are
fairly large in all cases; to all intents and the purposes, the number is 1 if the preceding
trial was completed in minimum and the present trial is locally the same as the last.

Furthermore, from a local point of view, rational behavior would dictate that

In this case, how well the circle does depends only on the probability that the initial
act structure is of type a. The random probability of obtaining a type a initial act
structure is 5/16 = 0.3125. However, after it has been obtained, the probability of
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obtaining a minimum solution is high, and if a

minimum solution is achieved, Fig. III.25 indi-

cates that the probability of obtairing the same

type a initial structure on the next trial is also
Fig. HI.27 high. In fact, Fig. IIl.26 shows the increase of
type a structures with trials. Thus there is an
increasing tendency for the group to obtain minimum solutions simply because of the
increasing probability of a type a initial act. It is reasonable to expect, and it is
substantiated by the argument of section III.4, that once a group has traversed the
same path to success two or, at the most, three times, the entire process will be
so ingrained in the subjects' memories that they can continue obtaining minimum
solutions until the experiment is concluded or until they become bored. Before
presenting a more detailed mathematical analysis of learning in the circle, we shall
discuss the pinwheel in a more or less analogous way.

For the pinwheel it can easily be shown that each of the 32 possible initial structures
begins at least one sequence which is completed in minimum acts. Of these, only the
two structures illustrated in Fig. III. 27 allow a minimum solution by pure alternation.
This may be neglected since each node is in the condition of 1 input, which, according
to Fig. III.18, has a conditional alternation probability of approximately 1/2, yielding
a probability of

2
Telzz) - 15,384

for an alternating sequence. If we begin with any of the other possible initial structures
and let the second act be obtained by alternation, there is at least one node, and some-
times more, in the third act that must not alternate and others that must alternate.
There is no way within the context of the experiment for these people to know which
of these they must do. It appears true, but has not been definitely shown, that in every
minimum solution for the pinwheel there is at least one node which has one decision
which cannot be based on the logic of his local environment nor on some such rule as,

"I will do the opposite of what I did the last time." Rather, there is always a node which
must perform in a fashion dictated by knowledge about the activities of other nodes which
is very difficult, and sometimes impossible, for him to acquire.

Note, however, from the equiprobable random results, that if a network is desired
which does very well without the individual nodes doing very well, the pinwheel is the
most satisfactory of all the networks studied. More than half the cases are completed
in 3 or 4 acts.

We may distinguish the two cases as follows: In the circle, locally rational behavior
will lead to rational solutions (i.e. minimum solutions) for the group. For the pinwheel,
any rational group behavior requires at least one person to perform in a fashion for
which he has no basis.
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6. Probability Model for Learning in the Circle

This section is devoted to making the discussion of the last section computationally
more precise with respect to the circle network. The theory evolved will be only appli-
cable to that network, though in principle the outlines could be applied to other cases if
enough of the abstract properties of these networks were understood.

From the distributions of acts to completion given in section III. 3, it is clear that
for the circle an appreciable increase in minimum solutions occurs over trials, and
from the discussion of section III. 4, it is clear that this increase is not uniformly dis-
tributed over all groups. Some circle groups learn and others do not. We may see this
even more explicitly in Table III.4 which tabulates groups vs trials with the
entries the number of acts to completion recorded. It is quite evident the groups
3, 6, 7, and 8 learn. It is our task here to make a theory which predicts reason-
ably well this learning on the basis of certain nodal transfer functions. To carry
this out we shall need two things: a definition of what we shall mean by learning
and an assumption as to what the transfer function shall take into account.

To define learning (in this situation) we shall, at any stage of the process, dichoto-
mize the class of groups into those that are learned and those that are nonlearned in
such a fashion that once a group is in the learned category it never leaves it. Defini-
tion: A group is nonlearned until it has obtained three consecutive minimum solutions;
it is then placed in the learned category. Thus, we see from Table III. 4 that groups
1, 3, 6, 7, and 8 are in the learned category from trials 16, 7, 16, 15, and 9, respec-
tively. This includes the four groups we mentioned above and one more, 1, which
never, after it is placed in the learned category, achieves a minimum solution. This
is an unhappy circumstance, and we do not at present see how to get around it. The
belief is that this is a rare phenomenon, but we do not have the data to be sure. We
shall want our theory to predict the probability that a group is in the learned category
on the i-th trial. In addition, we should like to know the frequency of minimum solu-
tions in the nonlearned category as a function of trials.

Let R, be the probability a group is in the learned category on the i-th trial, and let
Li be the probability a group in the nonlearned category has gotten the trials i-2, i-1,
and i in minimum. Then

Ry =Ry +(1-R;_)L; (1)
Our problem j:hen is to evaluate L;- To do this we shall introduce certain auxiliary vari-
ables:

pi(a) is the probability that the initial structure on the i-th trial of a group in the non-
learned category is of type a.

Ui is the probability that if on the i-th trial the group was in the nonlearned category,
it obtained a solution in minimum acts.

We shall now obtain three recursive formulas, one each for the variables pi(a), Ui’
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Table III. 4

Number of Acts to Completion: Circle (x)

Trials

Groups

25

24

23

22

21

20

19

18

17

16

15

14

13

12

11

10
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and Li' To do this, we shall have to make assumptions as to how far back the condi-
tional probabilities of behavior extend. With the exception of the learning function

Li which is defined to extend over three trials, the remainder of the conditions will
extend only to the previous trial, and then only consider whether it was done in minimum,
and if so, whether the initial act of the present trial is the same as the initial act of the
previous trial. To do this we must define certain conditional probabilities. These will
be computed ultimately from the network and the observed values of the nodal transfer
function (which is in the form of probabilities conditional on the structural configurations
N, B, S, and O). For the moment we shall not be concerned with the means by which
they are obtained; assume them known for the purposes of discussion.

pi(a, a) is the probability that the initial structure of the (i+1)st trial is of type a if
the initial structure of the i-th trial was of type a, and that trial was not completed in
minimum acts.

pi(a, a) is the probability that the initial structure of the (i+l)st trial is of type a if
the initial structure of the i-th trial was not of t{ype a. We do not distinguish whether
the initial structure of trial i was.type b, ¢, or d. It is probable that their occurrence
is different from equiprobable random and that the transition probability to a is a func-
tion of the structure type; however, a few calculations have indicated that pi(a, a) does
not vary greatly from its chance value of 0.3125, so in our calculations we assume this
value. As we shall see, the task of calculating pi(a, a) from the nodal conditional pro-
babilities is very time-consuming.

qi(a, a) is the probability that the initial structure of the (i+1)st trial is of type a if
the i-th trial was completed in minimum acts.

ri(a, a) is the probability that the initial structure of the (i+1)st trial is the same type
a structure as in trial i, when that trial was completed in minimum acts.

Pi is the probability of completing trial i in minimum provided the initial structure
is of type a and the previous trial was not completed in minimum.

Qi is the probability of completing trial i in minimum provided the previous trial
was completed in minimum and the present trial has the same initial structure as the
previous trial.

The third case, the probability that the i-th trial is completed in minimum, when the
previous trial was completed in minimum and the initial structure is not the same
(though of type a), is difficult to compute. For, as we saw in the last section, those
people in the network who do not see any change from the previous trial will act as if
the i-th trial had begun with the same structure as the previous trial. Our decision is
to use the value Pi whenever this case arises, knowing that this introduces an error.

Now, the probability that initial structure is of type a on trial i, pi(a), is a sum of
three components. First we may consider whether the previous trial was completed
in minimum or not, and if not, whether the initial structure was of type a or not.
If the previous trial was done in minimum, then there is a probability L. , that the
group will go into the learned category. So,
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pi(a) = U;_; q;_,(a.2) [1 - Li-l] + [pi—l(a) B Ui-l] pi_1(a,a)
+ [1 - pi-l(a)] pi—l(a’ 5’)
= Ui [qi-l(a’ a) (1 - Ly 1) - pyy(a, a)]
+p;_,(2a) [pi_l(a, a) - p;_;(a, 5)] +p;_,(a,3). (2)

The probability that a nonlearned group completes the i-th trial in minimum also
falls into three cases. The last two, which are essentially the same breakdown as the
nonminimum case above, simply require multiplying the last two terms of the first
expression for pi(a) by Pi' The minimum case is more complex for it matters whether
the initial structure is the same as in the (i-1)st trial, or a different type a structure.

Taking this into account we have
U, = {Ui—l r, ,(a,a)Q; +U,_, [qi_l(a, a) - r;_(a, a)] Pi} (1-L;, )
+ [pi_l(a) - Ui-l] p;_;(a,a) P, + [1 - pi_l(a)] p;_,(a,3) P,

= Ui-l ri"l(a’ a) (Ql - Pl) (l - Li-l) + pl(a) Pi- (3)

To get an expression for Li we simply write down that the group is a nonlearned
group which on the (i-3)rd trial failed to solve it in minimum, and that it did get it in
minimum on the following three trials. Of course, one must take into account that
having gotten it in minimum affects the probability of getting it in minimum on the
succeeding trial. Thus,

L; = {[91-3("") - Ui-3] Pz, 2) + [1 - Pi-3(a)] pi-3(a’§)} "Pi2
. {ri_z(a, a) Qi-l + [qi_z(a, a) - ri_z(a, a)] Pi—l}

. {ri_l(a, a) Q; + [qi-l(a’ a) - ri_l(a, a)] Pi} . (4)

Observe that these three equations form a set of simultaneous, nonlinear difference
equations with nonconstant coefficients. It is commonly accepted that nonlinear differ-
ence equations are more difficult than nonlinear differential equations, hence it is most
unlikely that a closed solution to this system is possible. Thus we may expect to carry
out numerical computations. The results of such a calculation will be presented after
we discuss the evaluation of the parameters in the equations.

As has been our policy throughout, we shall assume the nodes are identical: hence
we need only obtain one transfer function. We shall use in this context four sets of four
conditional probabilities: one probability of each set to each of the four possible con-
figurations N, B, S, and O.

Two of the sets are concerned with the probability of alternation from act to act
within a trial (these will be distinguished by capital P's and Q's), and the other two
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Probability of perseveration of initial-act choice for nonlearned groups
when previous trial was not completed in minimum acts. Circle (xs)

with initial act perseveration from trial to trial (small p's and q's will be used).
i i i i

PN’ PB’ PS’ PO
will be the conditional nodal probabilities in a nonlearned group of alternation from act
to act on the i-th trial, if the previous trial was not in minimum or if it was in minimun
and the present trial does not have the same initial structure. Such data are presented
in Fig. III. 22 for the set of all circle networks, not just the nonlearned ones. However,
these cases do not exist with high frequency in the learned groups, so as an approxi-

mation to the value we want we shall use those given in Fig. III.22.
Qy Q@ s QW

are the nodal probabilities of alternation from act to act by a member of a nonlearned
group on the i-th trial if the previous trial was in minimum and the present trial has the
same initial structure. Again, estimates of these values can be found in Fig. III. 20 for
combined learned and nonlearned groups. We shall need only QN and QS which are both
practically 1; hence they may be approximated by 1 in the nonlearned groups.

If a member of a nonlearned group is in the condition N, B, S, or O on the initial

act of trial i and that trial was not completed in minimum acts, then
i i i i
pNJ pB’ pSJ po

are the probabilities that that node makes the same initial act selection on the (i+1)st
trial as he did on the i-th. These values are plotted in Fig. IIl.28.

ioio i i
iN- 9B’ 95r Y0

are the same type of probabilities when the i-th trial was completed in minimum.
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PROBABILITY OF PERSEVERATION

o 1 | | | | |
2-7 5-10 8-13 1-16 14-19 17-22 20-25

TRIAL BLOCKS

Fig. III.29

Probability of perseveration of initial-act choice for non-
learned groups when previous trial was completed in mini-
mum acts. Circle (x).

The results are given in Fig. III.29. Notice the rather large variability in these values,
particularly for the N and S configurations. This is due to the fact that in any of these
trial blocks the frequency of occurrence was small, of the order of 10 and 30, respec-
tively, of which 90 percent was perseveration and 10 percent change. Clearly the prob-
ability estimates will be highly sensitive to random variations. This has led us to

lump all that data and assume that these values were constant throughout the experi-

ment.
qliI = 0.89
q]]é = 0.69
qg = 0.86

This assumption seems fair for N and S, but not as good for B where there appears to
be a definite trend up. However, the frequency of occurrence of the B case is about
10, so we cannot be sure that this trend is not an artifact. It also appears that there
may be a slight hump in the N and S curves at about trial 13, but this is even less
certain than the upward trend of the B curve.

As we showed in section III. 5, the probability of a trial being completed in mini-

mum acts, given a type a initial structure, is PI% Pg. Thus

P, = (Py)? (PY)°.
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(It is by no means clear that this is correct if the previous trial was completed in mini-
mum, and certain local variations occur in the present trial. There is a range of possi-
bilities which, if taken into account, would lead to a problem of incredible complexity,

so we have made the assumption that P, is the correct value for this case.) Equally well
_(~1y2 (~1y\5
When we come to initial-act perseveration probabilities, it is perfectly clear that
_ i i, 1.3
ri(a, a) = dg qN (qS)

and we assumed that
pi(a, i) = 0.3125.

By examining all possible cases and carrying out the algebra, it is easy to show that

L o 13
pi(a,a) = [(pg) -pgt 1] [p;3 pg + Py Pg - Pp plil] + [1 - pg]
and

o i 13
qi(a,a)=[(q§) -q§+1] [qé ab + ay a5 - a ay] + [1-qg].

Thus, given observed values for the nadal transfer function as characterized by
PNJ PS’ QN’ QS

pN’ pB’ pS: - 9p- Qg
we may compute
Pi: Qi: ri(a: a): pi(a} a)! qi(a: a)‘

These, with an assumed but reasonable value of pi(a, g), allow us to solve the three
simultaneous difference equations, Eqs. 2, 3, and 4. Finally, the computed value of
Li from these equations allows the solution of Eq. 1 for Ri which may be compared with
the observed group results.

To do this we have used observed values of some of the transfer function averaged
over overlapping trial blocks. This, if it was not to cause a great deal of extra computa-
tion, required a decision as to which of two values to use for each i. Our choice has
been given in Table III. 5.

In addition we have Qi =1, qi(a, a) = 0.6578, and ri(a, a) = 0.3906.

The results of the computation are given in Fig. III.30. Note that the lack of
smoothness is due to the assumption of parameters constant over several trials, and
then a sudden change in values. Some of this detail will be explained more fully later.
In that form no comparison can be made with the observed group results. If, however,
we average blocks of 5 trials we obtain in Table III. 6 the observed probability of a group
being in the learned category as compared with the predicted.

From the average value of Ui and the number of nonlearned groups we may obtain

-69-




0.6

0.51—

0.4

PROBABILITY
8

[oX]

~o-—=e-P, {a)
—O—O-Ui

—0—0-R; PREDICTED
——— R; OBSERVED

Fig. III.30

Predicted learning in the circle.

Table III. 5
Trial Blocks 2 -7 5-10 8-13 11 - 16 14 - 19
Corresponding
Range for 1-4 5-8 9 -11 12 - 14 15 - 17
Computation
pﬁa,a) 0.3361 0.3199 0.4133 0.4151 0.4877
Pi 0.1648 0.3576 0.4601 0.5260 0.5818
Table III. 6
Trials 1-5 6 -10 11 - 15 16 - 20
Ri predicted 0.0116 0.0832 0.2110 0.3510
Riobserved 0.0000 0.1200 0.2200 0.5000
Table III. 7
Trials 1-5 6 -10 11 - 15 16 - 20
Predicted 4,315 8.334 10.132 6.89
Observed 3 10 13 5
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an estimated frequency of minimum solutions among nonlearned groups. This is com-
pared with the observed frequency in Table III. 7.

The theoretical predictions accord reasonably well with the observed values. The
sources of possible error are many, as we have pointed out. In particular, the prob-
ability of a minimum solution on the (i+1)st trial, when the i-th trial was completed in
minimum and the initial act structure for only some nodes is the same on the (i+1)st
trial as the i-th, was assumed to be that observed when the i-th trial was not completed
in minimum acts. For lack of data, qi(a, a) and ri(a, a) were assumed to be constant
over trials — this is very unlikely. The recursive process tends to compound small
errors in the values tor early trials. The probability pi(a, i) was assumed constant,
and though it probably does not deviate greatly from 0.3125, it surely does deviate
somewhat.

It may be worthwhile pointing out that if certain restrictive assumptions are made,
it is possible to give an explicit solution to the difference equations, Egs. 2, 3, and 4.
Assume that the parameters pi(a, a), P, Q; qi(a, a), ri(a, a), and pi(a, a) are constants
independent of i, and that Li is also independent of i.

To simplify notation we shall omit the subscript i on these quantities and we shall

write pi(a) = p;- Then we have two equations of the form

P; = AU;_, + Bp;_, + p(a, 3)

Ui = CUi—l + Ppi (5)
where

A = q(a, a) (1-L) - p(a, a)

B = p(a, a) - p(a, 3)

C = r(a, a) (Q-P) (1-L). (6)
By substituting

¥; = Ui - piP (7)

Eq. 5 may be changed to

p; =Ay;_, +p;_, (AP + B) + p(a, 8)

Yi = C¥jy Py PC (8)

We wish to eliminate the constant term p(a,&). This is effected by the change of vari-
able

1 _ p(a, @)
Pj =P; - APC
1 -5 -AP - B
1 _ _PC p(a, @)
Yi Y T1-C [ _APC T . g
1-C ~ - (9)
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then

1
p; =Ay,_| + (AP + B) Pi (10)
1 1
yil - Cy; |+ PCp;_,. (11)

.k
If we substitute Eq. 11 in Eq. 10, we obtain

1 1 1 1
p; =ACy; , + APCpi_2 + (AP + B) Pi_; (12)

and if we lower the index of Eq. 10 by 1 and multiply by C, we obtain

1 1 1
Cp;_, = ACy;_, + (AP + B) Cp;_,. (13)

By subtracting Eq. 13 from Eq. 12,

1 _ I 1
p; = (AP+B+C) Pi_1 BCpi—Z’ (14)
If we assume that
1
Py
— = e (15)
Piy

then substitute Eq. 15 in Eq. 14

o> - a0 (AP +B+C)+BC =0

so we obtain

2
_AP+B+C AP + B +C\% _
40 92 7 2 i/( p ) BC

and
1 i iy, 1
p; =(Cy e} +C, a3)p)

where Cl’ C2 are constants which may be determined by two given initial conditions,
one each for the equations in Eq. 5. They are of the form

P, =P

«
—_

]

«

From the former we obtain

sk
The following method of solution was suggested to us by Dr. Alan J. Perlis.
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and from the latter

p. =Ay* + (AP + B)p" + p(a, 3) = p(a,a)
2 APC
1 -5 - AP -B
+ (C 0.2+C 0.2)- * p(a, d)
1172 %P TTTAPC o g
1-C

which yields a second linear equation for C1 and CZ' The important thing to observe is

that both o and a, lie in the interval 0 to 1, and in fact, in any examples we have con-

sidered, near 0; so we see from Eq. 9 that after a very short transient phase

Py~ —EhO )
1~
1 - £2C - AP - B
U. p(a, a) . .P
17 8FL AP -B I-C

Thus, under these assumptions, learning is very much an equilibrium phenomenon.
Now, in the approximate solution to the learning in the circle which led to Fig. III. 30,
we said the unevenness of the resulting curves was due to the assumption that parameters
were constant over three or four trials. For the values of the parameters, it turns out
that after i = 3 the transient phase is concluded; hence, the curves are composed of a
series of transients. Inspection of them shows this to be approximately the case. The
shape 1s somewhat distorted, for Li is not strictly constant over any block of trials,
only approximately so.

7. Discussion of Learning in the Chain

Since the chain is simply a circle with one symmetric link removed, it would appear
that an analysis similar to that given for the circle could be carried out with, if any-
thing, less difficulty, since the behavior of the end nodes was by experimental design
completely stereotyped. This is not true. First, what is gained by the reduction to
three behaving nodes is lost in the fact that it requires five acts for a minimum solution
as compared with three in the circle. Second, and far more important, the structure
of all possible minimum solutions is far more complex. For a given numbering of the
three behaving nodes there are eight possible different communication structures
(Fig. III. 31). It may be shown by an exhaustive argument, which is simple but rather
lengthy, that the set of all possible minimum solutions is given by the flow diagram in
Fig. III.32. Thus there are 2304 possible ways of obtaining a minimum solution,
yielding an equiprobable random probability of a minimum solution of 7.05 percent as
compared with the value of 7.56 percent estimated by the computer. Now, unless there
is a very strong added structure to this set of solutions, it is quite unreasonable to

attempt to compute the probability of a minimum solution from the initial-act individual
perseveration probabilities and the individual probabilities of alternation from act to

-73-



/\/\//

3

TS

Fig. III. 31

act. At the time of writing the authors have not discovered such an added structural
condition which would make this feasible; hence no attempt has been made to reconstruct
the group results from the individual node results.

This difficulty is typical of the problems that beset

: ),,4(1., )——-(§)\_( ) the analysis of almost all the po.ssible network's,. and
even such networks as the circle if nonmini-
mum solutions are taken into consideration. To

° / K \ predict the group results from the individual condi-
i 7 : tional probabilities, it is necessary to have at least
: i ?) an estimate of the probability of a solution in k acts
: s 5 in terms of the individual probabilities. If such an
estimate is to be exact, then a complete combina-
torial analysis of the network possibilities must be

g)\_(g 3)’/.@) undertaken, which, as we have just pointed out, is

AGTI  ACTI  ACTHI AT ACTY in almost all cases a tremendous undertaking. With-

Fig. IIL. 32 out the development of appreciably different mathe-

matical techniques, it is most unlikely that the exact

solution technique will prove fruitful. There may be
some cases in which the probability structure at the individual nodes is such that large
numbers of solutions may be ignored without appreciable error, but this will only be a
lucky situation. In the realm of statistical estimates there seem to be two techniques:
to run experimentally groups of human subjects in each new network you wish to con-
sider, and to use high-speed digital computers to obtain estimates of the results. The
former will, of course, be necessary whenever a new area is being explored for which
there is no prediction of the individual transfer functions. If, however, such knowledge
is available it is certainly easier to carry out the numerical estimate than it is to run
the experiments. This may be important, for it will be possible to study many more
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networks on a machine than it will ever be possible to study in the laboratory. If any of
these show strikingly different results from the others (as, for example, the pinwheel
and the circle), then it is time to return to the laboratory to see whether subjects react
as predicted.

To return to the chain, since an analysis as complete as the circle is not at this time
possible, we have not prepared as complete a study of the individual nodes. We have
not, for example, obtained the individual-node initial-act perseveration probabilities.

A gross indication of what these values must be is given in section III. 8 where the per-
severation of initial-act structures is discussed. On the other hand, it was computa-
tionally feasible to make a somewhat more precise analysis of the transitions from act
to act within a given trial. Rather than simply estimating the alternation probability
as a function of the input structure to the node in the previous act, we have considered
what the person could logically know, on the basis of what he had sent in the past, as to
where he would add information. We have separated the nodes into three categories —
end, middle, and center—because of their topologically different relation to the rest of
the network (see Fig. III. 33)., Furthermore, we have considered whether the previous
trial was completed in minimum acts or not. The
final separation is into chain (x-3) and chain (x-5);
<><>OO that is, whether or not the group was told that the
EnNo MooLE CENTER MODLE o minimum solution was three acts or five. The results
Fig. III.33 are presented in Figs. III. 34 through III. 39, where
the following notation has been used: The symbols
come in pairs, identical except as to whether they are
built around a Q or a P. As before, the Q shall mean that the previous trial was
completed in minimum acts, and P shall mean that it was not. It will, therefore, be
only necessary to give the definitions for, say, the Q symbols.

For a middle node:

Q(C| IC) is the probability that a middle node will send a message to the center node
C when the message will only add information to the center node (Ic).

Q(C[ IE) is the probability that a middle node will send a message to the center node
when the message will only add information to the end node (IE).

Q(Cl C, IN + IB) is the probability that a middle node will send a message to the
center node when the last message he sent was to the center node, and either the present
message will add no information at the end node or the center node (IN) or it will
add to both (IB).

QE|E, It IB) is the probability that the middle node will send a message to the
end node when the last message he sent was to the end node and either the present mes-
sage will add no information or it will add to both.

For the center node:

Q(MIIM) is the probability that the center node will send to the middle node M, to

which the message is an addition of information when there is just one such middle node.
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Middle node, chain (x-5), acts II-V. Middle node, chain (x-3), acts II-V.
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Fig. III. 36 Fig. III.37
Middle node, chain (x-5), acts II-V. Middle node, chain (x-3), acts II-V.
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Fig. III. 38 Fig. III. 39
Center node, chain (x-5), acts II-V. Center node, chain (x-3), acts II-V.

Q(M|M, I+t IB) is the probability that the center node will send a message to the
same middle node M as on the previous sending, when either it will add no information
N)’ or it will add to both (IB).

Before examining these curves in any detail, let us consider these probabilities from

to either middle node (I

an a priori "locally logical" viewpoint. If we take "locally logical" to mean spreading

information as rapidly as possible, it is immediately evident that

Q(clr,) = P(c1) = 1
Q(Cl1g) = P(Cl1g) = 0
Q(MIIM) = P(MIIM) = 1.

Behavior in the IN + IB case is somewhat more complex. Naively, it simply does not
matter what we take these probabilities to be; however, there is a strong argument to
indicate that Q(C|C, IN + IB) should be greater than its value would be in the absence
of any forces at all. For example, suppose that in act I a middle node and the center
node interchange information. Then the middle node has information for both the end
node and the center node; however, on act II it is much more useful to send this infor-
mation to the center than to the end node, and it probably does not take very long to
make this discovery. Thus, we must expect a definite tendency toward the center on
act II, which will bias these probabilities which are averaged over four acts. It would
be interesting to have these probabilities for each act, but this would require at least
four times as much data as we now have.

With regard to the other two IN + IB cases there do not appear to be logical reasons
for them to deviate from the rather natural tendency to alternate. It is difficult to

-77-



estimate how strong this is, but as we shall see there is some reason to believe it is
about 0. 7.

In looking at the curves corresponding to these probabilities we certainly cannot
expect the logical values of 0 and 1 to occur; human fallibility and experimentation would
not allow this. In addition, there is in the case of one, Q(C] IE), a possible psychologi-
cal reason which would predict some deviation from purely (local) rational behavior.
Suppose on act III a middle node has only information for the end node and that it does
not have all the group information. It then has the choice of sending to the end node
(which will do no real good for the problem does not end until each member has all the
information) or to the center node. There, his message would indicate to the center
node that this middle node has incomplete information, and thus suggest to the center
node to send the answer to him. That is, in this situation a "locally irrational" choice
may serve as a cue to the center node, and the message is not a problem message at
all, but an indirect organizational message. Thus an analysis of it as a problem mes-
sage is not pertinent. If such organizational messages did occur, and we have no way
of knowing if this was the motivation in any of the decisions, then our experimental
design was imperfect, for there were messages other than problem messages.

To analyze these curves we shall first look at the chain (x-5) case and then compare
the chain (x-3) case to these. For the middle node, we see that Q(C| Ic) and P(C]| Ic)
begin near 0.8, and both increase with increasing trials, the minimum case ending very
near the rational value of 1, the nonminimum case nearer 0.9. On the other hand,
Q(C IIE) and P(C| Ic) begin in nearly corresponding positions, but they do not tend toward
zero. This may be due, as we mentioned, to using these messages in an organizational
way. In both categories the separation between the curves is such that the more rational
behavior follows a trial that was completed in minimum acts.

In the L + I cases for the middle node, Q(E |E, 1y + 1) and P(E |E, Iy + Ig) have
values about 0.3 and are interlaced with no definite trend. This seems to indicate
simply a preference for alternation with no appreciable distinction between the minimum
and nonminimum cases, except greater variability in the latter from trial block to trial
block. This may be due to a hunting or searching phenomena when the group is unsuc-
cessful. On the other hand, the curves of Q(C|C, It IB) and P(C lc, Igt IB)

marked separation and, in the minimum case, an appreciable tendency to repeat behav-

show a

ior. This is in accord with our discussion above which stated that it is important, very
often, to send to the center in the IN + IB condition. Again, the variability from trial to
trial appears somewhat greater in the nonminimum case, suggesting always a searching
for the correct solution.

For the center node, the values of Q(M |IM) and P(M] IM) begin at a point somewhat
less than 1 and both curves tend toward 1. Furthermore, they are quite interlaced,
suggesting little change in behavior from the nonminimum to the minimum case. This
seems to be rational behavior. Q(M]|M, Ig+ IN) and P(M| M, Ig+ IN) have nearly con-

stant values of about 0.3, which accords with those found for Q(EIE, IN + IB) and
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P(E|E, IN + IB) suggesting that this is a rough measure of the tendency to preserve
behavior when there is no reason to behave one way or the other. Again, note that the
curves are interlaced, very strongly suggesting that no learning from the nonminimum
to minimum case occurs at the center node, and that all learning of that type is centered
at the middle nodes. Of course, there is some trend for both types of nodes with trial
blocks, but this is not very strong.

Let us now turn to the chain (x-3), the groups which were told that it was possible to
complete the task in three acts, when in fact it was not possible. Looking at the group
results (Figs. III. 3 and III. 4), we see there is no striking difference. Nonetheless, we
should expect that a failure to achieve a "minimum" solution will cause variations in
behavior, the searching phenomena that was mentioned above. If the curves are looked
at by pairs with the chain (x-5) case, the following will be noted: For the middle node
in the I

N
except possibly that Q(C|C, Iy t IB) curve reaches its maximum value more rapidly.

+ IB condition there is no difference that can be considered significant,

Evidently, any difference there is does not show up in these cases. The curves of
Q(E IE, IN + IB) and P(E IE, IN + IB) are nearly the same, except that they are interlaced
in the chain (x-3) case and the latter seems more variable. The most striking difference
appears in the curves of Q(CIIE) and P(ClIE) which are well separated but, more
important, have a significant trend down after an early peak. This is completely in con-
trast to what occurred in the chain (x-5) and what one would expect from a priori consid-
erations.

For the center node there are no differences that are clear cut. Possibly the
P(M|M, I
reach lower asymptotes. There is nothing quite as striking as with the middle node,

N t1p) curve is more variable from trial to trial, and Q(M]IN) and P(MIIN)

which again suggests that the predominant learning in the chain occurs at the middle
nodes rather than at the center. Furthermore, the searching appears most striking
when a node has only information for one other node, at least as far as he can tell. It

is possible that when a chain group apparently fails to solve the problem in minimum
acts, the subjects begin to doubt that the network is as simple as they had originally
thought. The center and middle nodes may come to a belief that there are paths between
the end nodes which do not pass through them. It is possible that such doubts will lead
to the trends that have been observed in the chain (x-3) case. However, this is pure
speculation.

In summary, it cannot be said that the individual and group results for these two
conditions are strikingly different, but there are some differences. The weakness of
the observed phenomena may be due to insufficient motivation to achieve the solution to
the task; it can hardly be argued that 3 bell rings is a markedly stronger motivation
than 5. An experiment designed to explore the resulting frustration of this type of sit-
uation with high motivation and its effects on group behavior should be of considerable
interest.
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8. Perseveration of Initial-Act Structures

No analysis of the type applied to the circle and the chain has been carried out for
the other networks studied experimentally. This is primarily due to the greater rich-
ness of possible cases stemming from the greater complexity of these networks. If we
attempt to examine the conditional probabilities of choices on the i-th act dependent on
the (i-1)st act, there are so many possibilities that with but 10 experimental groups our
estimates of these probabilities will be very poor.

However, the other phase of learning, the perseveration of the initial-act structure
when the previous trial has been completed in minimum can be readily obtained, at least
in those cases when a significant fraction of the trials was completed in minimum acts.
It is not possible, as it was in the case of the circle, to make this subdivision finer to
obtain the probability of perseveration for a particular node in a particular configuration
on the previous act. Again this is due to the numerous cases that have to be considered,
and the fact that in many cases different nodes cannot be lumped together because of
their different topological relation to the rest of the network.

The initial-act perseverations are given in Table III. 8 for each of the networks,
broken down in trials 2 to 7, 8 to 13, 14 to 19, and 20 to 25. A four-fold table has been
formed for each of the cases. The columns indicate whether the previous trial was com-
pleted in minimum (denoted Min) or greater than minimum (> Min), and the rows indi-
cate whether the same initial-act structure was obtained, that is, zero change (denoted
> 0), or a different one (denoted < 0).

The primary conclusion that can be drawn from these tables is that the initial-act
perseveration tends to correlate with the learning as shown in the acts-to-completion
distribution. Both the pinwheel and the totally connected networks show no learning in
the sense that if the previous trial was completed in minimum, there is no strong tend-
ency for the same initial-act structure to be selected. This must be tempered by the
fact that in both situations there are very few cases of a trial completed in minimum
acts, so the statistics cannot be considered very stable.

9. Remarks on Geometrical Effects

We shall be able to say very little about the geometrical effects of different represen-
tations of a given network. The only cases that were examined experimentally were the
circle (x), circle (0), chain (x), and chain (0). As far as nodes with any choice are con-
cerned, all the x cases appeared physically as shown in Fig. IIl. 40a, and the 0 cases
appeared as shown in Fig. III.40b. From an a priori point of view, a right-handed
person should have a tendency to select slots on the left, as the motion out and across
the body is more natural than one to the right. This should be stronger in the 0 cases
than in the x, for the extreme right slot is somewhat awkward to reach. The argument
is exactly the opposite for left-handed people, but since there are on the average con-
siderably fewer left-handed people than right, the predominant tendency, if any, should
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Trials

8§ -13

14 - 19

20 - 25

Chain (x-3)
Min > Min
0.103 0.121
0.293 0.483
Min > Min
0.281 0.088
0.281 0. 351
Min > Min
0.315 0.056
0. 389 0.241
Min > Min
0.423 0.038
0.385 0.154

Table III. 8a
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Network

Chain (x-5)
Min > Min
0.125 0.125
0.286 0.464
Min > Min
0.207 0.138
0.276 0.379
Min > Min
0. 356 0.102
0.373 0.169
Min > Min
0.379 0.086
0. 345 0.190

Chain (0)
Min
0.233
0.133
Min
0.333
0.444
Min
0.448
0. 345

Min
0.767
0.133

> Min
0.100
0.533
> Min
0.037
0.185
> Min
0.069
0.138
> Min

0.033
0.067



Trials

8 -13

14 - 19

20 - 25

Circle (x)
Min
0.033
0.067
Min
0.117
0.167
Min
0.317
0.167
Min
0.390
0.102

> Min
0.050
0.850
> Min
0.033
0.683
> Min
0.133
0.383
> Min

0.136
0.373

Table III. 8b

Network
Circle (0)
Min

0.100
0.133

Min
0.200
0.167

Min
0.233
0.067

Min
0.233
0.067
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> Min
0.200
0.567
> Min
0.100
0.533
> Min
0.067
0.633
> Min

0.200
0.500

Pinwheel

Min
0.000
0.050
Min
0.017
0.067
Min
0.017
0.033
Min
0.000
0.067

> Min
0.100
0.850
> Min
0.067
0.850
> Min
0.133
0.817
> Min

0.067
0.867
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~«—— CLOSED l |

Fig. III. 40

be to the left.

Any such effect after the first act will be thoroughly confused by the effects of the
information interchange on the first act, so we shall consider only data obtained in the
first act. However, since there is a considerable perseveration tendency in the first
act, the effect may also be destroyed in that data. In the case of the circle, we have
shown there is a marked increase in type a structures. In any type a structure there
must be two nodes which send messages through the left open channel, and two to the
right; it does not matter what the fifth one does (see Fig. IIl.41). So, even if there is
a strong tendency to repeat behavior, we should expect any preference for the left to
show up. However, the number of samples is effectively reduced from 50 in circle (x)

and 25 in circle (0) to 10 and 5, respectively, which of
course are very small samples. The obtained frequen-

\ 7 cies for 50 and 25 people, respectively (for the type a

/ structure does not always appear), are given in Fig.
III.42. We see that there seems to be no preference.
Fig. III. 41 If we turn to the chain there is, even in act I, only
one person who is in a topologically symmetric position:
the center node. The observed frequencies for the center
node of the chain (x-3) and chain (x-5) are given in Fig. 1II.43. Keeping in mind again
that this is a small sample, there appears to be no preference. The case of chain (0) is
a sample of five people, and as we can see from Fig. III. 44, there seems to be a
strong preference for the left of the order of 0.8. However, taking as a population of
10 the center nodes of the chain (x-5), it is possible to select a subpopulation of 5
which yields the second curve in Fig. III.44. This curve is indistinguishable from the
chain (0) curve; hence, we cannot say whether there is in fact a tendency to the left, or
whether what is observed is simply a sampling difficulty. But the fact that we may
select 5 chains (x-5) having a high tendency to the left, and the chain (x-5) curve in
Fig. III. 43 imply the other 5 have a tendency to the right. Thus it appears that the
perseveration effect from trial to trial rather than a left tendency is being observed.
We may make a tentative hypothesis as to the geometrical effect of a particular
representation of a network: The effect on the average is slight if it exists at all; how-

ever, it may be that it is quite strong in particular individuals. Our evidence is not
clear for it does not distinguish between perseveration and choice tendencies. It is an
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Probability of sending message to left, act I, circle.
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Probability of center node sending message to left, act I, chain .
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Probability of center node sending message to left, act I, chain.

effect which may influence learning, but it is probably negligible once the learning is
under way, and decisions are being based more on the local information state and past
behavior. If a network could be found in which a left tendency would prevent or hinder
learning and another in which it would augment it, then differences might be observed.
If this is felt to be an important aspect of the group process, then experiments will have

to be explicitly designed to detect it.

10. Remarks on Complexity and Size

Earlier we pointed out that group learning seems to be correlated in some way with
an undefined notion of complexity, but we suggested that it is most unlikely that there
exists a single parameter of the network to characterize this. We are in a position now
to elaborate these thoughts somewhat, but we shall not be able to say anything definitive,
except that this is a complex problem.

First of all, size is one aspect of complexity. It seems reason-
able to say that a four-node circle is simpler than a five-node
circle. But it is far from clear just what this means with respect
to learning. For example, if we carry out an analysis of the four-
node circle similar to that carried out earlier for the five-node
case, it is easy to show that the minimum solution is two acts

Fig. III.45 and that there is one class of structures, shown in Fig. III. 45,
having two members, which are the initial structures for all mini-
mum solutions. We shall call it type a. Then
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4 4
q(a,a) = qg + (1 - ag)

4
r(a,a) = qf

4 4
p(a:a) =ps+(l = Ps)

p(a, a) = % {(1 - pB)Zplz\I + pZB(l - pN)2 = 2pypPgpp(l - Pg)
+2(1 - py) (1 - pg) (1 - pglpg + pé(l - po)z}

4
P = PS
Using the same values for the transfer function as we obtained experimentally in the
five-node case (we shall discuss this assumption) and carrying out the analysis for 15
trials, we obtain Table III.9.

Table III. 9

Trial Block

1-5 6 -10 11 - 15
4 Node Ri 0.0114 0.0839 0.1641

5 Node Ri 0.0116 0.0832 0.2110

Thus, if the conditional probabilities remain the same, the "simpler" four-node case
does not learn to obtain minimum solutions as well as the five-node case does. How-
ever if we compare three-act solutions in the two cases, the four-node cases will do
considerably better. Furthermore, if actual experiments were run, it seems likely that
percentage-wise the four-node case will do better on minimum solutions than the five-
node case, because the subjects will rapidly see through the network and see that a
minimum solution is given by Fig. III. 46.
However, if a similar phenomenon occurred between, say six-

- and seven-node networks, it is very unlikely that subject per-

I I ception of the situation will differ appreciably, and the assump-

S

tion of the same conditional probabilities would be good. In
er rer i that case, should we say there is more or less learning? How
Fig. III. 46 much?
If we return to situations having a fixed number of nodes,
and attempt to relate learning to complexity, we have shown

that there are at least two aspects of complexity that must be considered. In the
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pinwheel network, the aspect of the situation which apparently prevented learning was
the complexity in the structure of all possible solutions relative to the individual infor-
mation state. The topology of the network itself is similar in many respects to the
circle, and as to memory of past decisions, exactly the same, that is, one bit for each
decision. However, in any minimum solution there arise decisions for which the local
information state is not adequate to prescribe rationally what the subject should do.

A second aspect of complexity is illustrated in, say, the totally connected network.
Here there are, for example, all the possible minimum solutions of the circle, and many
more, but each decision a person makes involves two bits of information, or a total of
10 per act for the group. The memory problem of previous successful trials is twice
as great as in the circle or the pinwheel, and as in the pinwheel, many of the informa-
tional cues are lacking that exist in the circle. It is unlikely that the recall is only a
half of what it was in the circle, but it is probably somewhat less. This factor is com-
pounded five times; hence the probability of a correct recollection of a previous mini-
mumn solution will be considerably smaller than in the circle. It does not seem possible
at present to carry out a precise analysis for the totally connected network, since we do
not know the structure of minimum solutions and there is not enough data to estimate all
the possible conditional probabilities, but it does seem clear that the simple memory
problem is a primary deterrent to learning in this network. These same effects appear
to be present in the barred circle, alpha, and wheel, in that order. The number of bits
to be remembered per act are 6, 6, and 7, respectively.

This argument could be made more substantial if some work were done on individual
memory of the sequence of decisions, with and without a structure to the sequence, the
results being presented in terms of recall as a function of the number of bits in a deci-
sion. In all likelihood it will be important to distinguish recall in various parts of the
sequence.

11. Summary

The observed distributions of acts to completion indicated that for some networks
considerable changes over trials occurred, and for others fewer, and for the pinwheel
practically none. This was attributed to learning. In addition, it was shown that these
distributions are considerably different from those that would have been obtained from
groups of subjects who threw a die to decide where to send. Having established this
learning, the next step was to account for it in terms of the learning of the individuals.

Learning in the circle and the pinwheel were discussed in some detail, and the effect
of their topological differences on the decisions of the subjects were pointed out. It was
shown, at least verbally, that combining the apparently locally rational behavior of the
subjects with the topological properties of the network leads to the wide differences
between these cases that were actually observed.

It was possible, by a more careful mathematical examination of the circle and an
appropriate definition of learning for that case, to account for the observed group
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results in terms of 10 conditional probabilities for the nodes which were estimated from
the observed data. A number of approximations were made that can be eliminated, if

a more precise mathematical analysis is made, and if more data are obtained in order to
yield more stable frequencies.

We then turned to an analysis of the chain. It was shown that there is a considerable
mathematical difficulty in this case, and in almost all others, which, at least at present,
makes it impossible to carry out an analysis analogous to that given for the circle. The
conditional probabilities of the nodal transfer function were presented and examined in
some detail.

In the last three sections rather incomplete remarks were made on several other
topics. It was shown that perseveration of initial-act structure occurs in all networks
that learned, as was to be expected from the analysis of the circle and the chain. The
discussion of the effects of the size of a network on the obtained results and of the geo-

metric representation of the topology of the network were both inconclusive.
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CHAPTER IV — ACTION TIME

1. Experimental Design and Time Measurement

In the early exploratory phase of our experimental program (Experiments 1, 2, and
3), the times when the subjects sent messages were unconstrained; that is, the subjects
chose freely not only the content but also the occasion of their messages. The only
times that were recorded in these situations were the total times taken by the group to
reach a solution in each trial. Because the message content was free, the time recorded
included time spent in the processes of constructing, sending, and interpreting messages
not directly concerned with reaching the solution for a specific trial. For example,
there were organizational messages relevant to the improvement of the efficiency of
group action over a series of trials and various more or less irrelevant messages
expressing attitudes toward different features of the group situation and the group per-
formance. These latter two categories of messages contain many features of intrinsic
interest with respect to the investigation of the interrelation of individual personality
and group action, but from the standpoint of the consideration of the temporal relations
in group action, they serve mainly to becloud the picture. It is not that such processes
do not occur in nonlaboratory groups and are therefore unworthy of attention (quite the
contrary'), rather it is that the sources of variability in solution time under these con-
ditions are so multifarious as, for the present, to defy detailed explanation. The hand-
in-hand consideration of both the treatment of data and the construction of theory force
upon us a policy of "one thing at a time."

Our more recent experiments have been run with the message content restricted and
the group action quantized. For time data obtained under these conditions, we have
developed a theory of group-action time which provides a well-fitting explanation of the
data. The exposition and application of this theory forms the major portion of the
present chapter. We have developed nothing closely approaching a satisfactory theory
for free-content, nonquantized cases. In section 8 of this chapter an attempt to reduce
the data of one nonquantized case to an equivalent quantized case is presented; this can
be accepted only as an approach to the data when not enough was recorded, and when a
wholly adequate theory is not available. In section 9 the outline of a possible theory
for the nonquantized case is given; however, as it stands, the mathematics is so complex
that it is very unlikely that an explicit solution can be expected for more than two nodes.
Whether such simple solutions can be pieced together for cases of greater complexity
remains to be seen. The work in Appendix 3 bears on this problem and does indeed
solve the n node communication problem for a certain narrowly delimited class of
group processes. For this theory to apply, the message flow must be restricted
to the transmission of one single content which may be repeated over and over. The

price of such a stringent restriction is to leave our problem essentially unsolved.
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2. Quantized Action

We shall restrict our attention, for a while, to groups which are action-quantized.
Let T be the time at act i for the group to signal the environment that it is ready to
take action, and let 6i be the time required by the environment, following act i, to feed-
back a signal to the group to take action. If we assume that the task is completed in a

finite number of steps k, then the time to complete the task is obviously

k
Z T, + Z 5..
i i

i=1

i=1

We shall assume that the completion of the task is dependent only on the actions
taken by the group and is independent of the time T, Thus, we may treat the problem
of the time distribution to complete the task as being composed, in an appropriate
fashion, of the independent distribution of the number of acts to complete the task, the
distributions T of the time for the i-th act, and the distributions of the times 6i for the
response from the environment. Without a rather complete specification of the environ-
ment and the group, it seems impossible to discuss the distributions 51, so we shall not
consider this problem here. It will suffice, for our purposes, to note that in Experi-
ments 4 and 5, 6i = 2 sec. The previous chapter presented a discussion of the act
distribution for the experiments in which action-quantization occurred. We shall, in
this chapter, assume that the act distribution is known.

Our aim is two-fold: to obtain a reasonable form for the individual time distri-
butions, and to show how these are composed to give the empirical group distributions
TS The differences in time per act which arise among the performances of different
persons at the nodes of the various networks in our experiments may be attributed to
two classes of causes: (a) pre-experimental differences in the individuals themselves;
(b) differences in the relation of the node the individual occupies to the network of which
it is a part. We are not studying the first class, and we have attempted to eliminate the
effects of individual differences by randomization. The study of the analytic form of the
individual time distribution is the topic of the next section. The composition of these
distributions to yield the group distribution in terms of the given network is the topic of
sections IV.4 and IV.5.

Before turning to these problems, we shall introduce some notation which will be
used throughout the chapter. On the i-th act and for the j-th person in a group it is

possible, in principle, to determine a probability distribution

ify (-t y)
where
i- i-
41 ® Z o " Z S
o=1 o=1



of the time for man j to signal the environment. It is obvious that

f.(t)=0 fortg O
1]

f £ (1) at

1
—

In general, ifj (t) will be a function of the task, the network, and the boundary con-
ditions. In fact, in some situations, it may also be a function of the particular sequence
of acts which has led the group to where it is. In order to simplify notation, we shall
not make these dependencies explicit. In addition, we shall omit the subscript i,
assuming the discussion is for a specific act, and replace the variable t - ti by simply

t. Thus

£ (1)

will be the distribution of the j-th man, and we shall always write the cumulative distri-

t
Fj (t) = f fj (x) dx.

£
3. The Form of the Individual Time Distributions

bution as

The actions demanded of our subjects require that they apprehend the information
available to them before they take the action of sending a message and {in most cases)
that they make a choice of the destination of their message. Under the condition that
the information available (the relevant stimulus situation) is a steady state, the form of
the action time distribution has been shown on both theoretical and empirical grounds
to be well described by an exponential decay function (18, 43). For two reasons, we can-
not assume that the stimulus situation is a steady state from the start of an act until a
message is sent. First, the signal which initiates an act is a signal to send messages,
whereas the relevant stimulus situation exists only when the messages have been
received. This results in a short and fairly constant time lag. Second, the message
content is not instantaneously effective as a stimulus, but builds up to a steady state of
effective stimulation over a short period of time. For these reasons we must give a
somewhat more general derivation of the form of the action time distribution. Rather
than assuming the strength of the message-sending response tendency has a constant
proportionality to the time interval during which it acts for short time intervals, we
must assume that the proportionality is a function of time. Thus we will not write
A At but A(t) At.

* . . '
The following treatment is formally the same as that given for the discharge of a
condenser.
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Let us suppose that if the organism is stimulated at time 0 and does not respond in

the interval from 0 to t, then the probability of a response in the interval (t,t + At) is
A1t) At. (1)

Let Q(t) be the probability that no response has occurred in the interval from 0 to t,
then the probability of a response, f(t) At, in the interval tto t + At is

A1) Q(1) At.
But clearly
Q(t + at) = Q(1) [1 - \(t) at]

or
t+At) - Qt
Q( 21 - 90 - ) Q)
SO
d%itzz = - \t) Q(t)
or

t
InQ(t) - InQ(0) = —f A(t) dt.
0

But Q(0) = 1 for any real situation, so

t
Q(t) = exp l:-—f At) dt:'.
0

Thus the frequency distribution of a response occurring at time t, subject to the con-
dition that no response has previously occurred, is

t
£(t) = \(t) exp [ f A(t) dt:’. (2)
0

In our work it will be appropriate to think of functions A(t) which are displaced so as to
have an origin at to > 0. to is the least dead time between the time of the signal to begin

a message and the actual time it is sent. In this case we shall have expressions of the
form

_ o Lt-t
(o]
f(t - t) =Mt -t)exp|- f (1) dt:|
~ Y
- t
= At - t ) exp —f At - t,) dt], for t >t
L to
=0, fortg to' (3)
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Integrating by parts it is easily shown that

f ft)dt =1 - exp l:— f A(t) dt] .
- 00 0

Thus f(t) is a probability density if, and only if

f At) dt = «
0

otherwise there is a finite probability that no decision will be reached.

The utility of the distribution Eq. 2 or Eq. 3 depends on what function we take
At - to) to be. Since we are using it to characterize the build-up of the message sending
tendency as determined by the stimulus information, it is reasonable to suppose that this
process occurs rapidly compared to the total mean times taken for an act, as in
Fig. IV.1l. This will lead to a distribution of the kind shown in Fig. IV.2. We may
approximate \(t) by a step function beginning slightly after to (the amount depending on
the steepness of rise); see Fig. IV.3. In this case the distribution is an exponential
decay curve as shown in Fig. IV.4. This approximation will be good if the slope of
At - to) is very sharp near t = t,- Moreover, for the use we shall make of Eq. 3 the
goodness of fit of the rising limb is not at all critical. To modify Eq. 3 for the approxi-
mation, we take a new to which includes the dead time plus the initial portion of the rise
time of \(t - to) during which \(t - to) is nearly zero and from t = ty (the new to) on we
take Mt - t) = \ (a constant). Thus

—)\(t-to)
f(t) dt = xe dt. (4)

g { l— MESSAGE SENT = /\
[N T to t

Fig. IV.1 Fig. 1IV.2
il l—— MESSAGE SENT E‘ K
;0 t 1o t

Fig. IV.3 Fig. Iv.4
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4. Theory of Group Act Time

Since an act is completed only when each member of the group has signaled the
environment, the time distribution for the act, T(t), is given by the distribution of the
largest value of time when one and only one value is selected from each of the fj(t),
i=1,2, ..., n. The probability that the largest value is between t and t + At and that

it is selected by man k is

fk(t) At H F.(1).

Thus the probability that the group selects a largest value between t and t + At is given
by

n n .
(t) At = Z £ (0[] F(t) at=(f,f .00 f) At
k=1 i=1
ik

Observe that by carrying out the indicated differentiation we have

n

n n
T Dy E ) = Z g0 ] Fy(t) -4 T] Fy(0)| - (5)
k=1 j=1 j=1

Thus 7(t) is a distribution, for

o] 0 n n n
f i),y f) dt=f 4 H Fi(1)| dt - I1 F () - HF(-OO): 1.

-00

In the case that all the fj(t) are equal, say, to f(t), Eq. 5 becomes

*(t) = nt(t) [F(] ™" = & [F(1)"] (6)

which is the well-known distribution of the largest of n selections from a given distri-
bution f(t) (see ref. 85, vol. I, p. 218).

Though our intermediate argument requires Eq. 5, acfual computations will be
carried out only for Eq. 6. Thus we shall need moments of the distribution of the
largest of n selections from a distribution of the form

i(t) = e M
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that is
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This series has been evaluated for several cases that are of interest to us in Table IV. 1

Table IV.1

Values of gi(n)

. 2 _ ) 4 5
n plk ]J.'Z)\ oA=g! }137\ p':})\ p’s)\
2 1.50000 3.50000 1.11803
3 1.83333 4.72222 1.16667
4 2.08333 5.76389 1.19316 20.29514 88.09142 458. 30352
5 2.28333 6.67722 1.20980

5. Reduction of Number of Parameters

Let us consider Eq. 5 in relation to the data we have. If we suppose that each of the
fj(t) is different and each is characterized by only one constant, then, since the location
of the origin of each of the distributions is arbitrary, it is clear that -r(fl. fz, cees fn) is
dependent on a minimum of 2n parameters, unless certain simplifying assumptions are
made. The values of these parameters must be determined from empirical data. If we
can obtain data about the individual f's directly, then we can readily accept this number
of parameters, since it requires only the first two moments of the time distribution for
the individuals. If, however, there is only data about -r(f], fZ’ RN fn), as is the case at
present, the first 2n (= 10 in our case) moments are needed to determine these. Not
only is this impractical from a computational point of view, but the inefficiency of esti-
mation from high order moments and the moderate sample size do not permit us to use
more than the first two moments with any reasonable degree of confidence in the relia-
bility of our result. We must, therefore, find simplifying assumptions which reduce
the number of parameters to two. Since each individual distribution is dependent on two
parameters, we must find situations in which all the distributions can be taken to be the

same, or situations in which some of the individual distributions can be treated as the
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same, and the remainder neglected without causing a large error.

Consider first the circle network: In act I each of the people in this network are in
essentially equivalent situations; each man receives one piece of input data and must
make a decision between two choices. Thus, if we assume they are statistically identi-
cal people, it is reasonable to suppose that each person has the same distribution f(t).
On act II, information has been transferred and some of the people (those who received
information) have a new decision problem as to where to send it. However, it is very
unlikely that each of the people will have received a new piece of information; in fact,
if the sending is equiprobable over the two links, the chance is 1/16. The equiprobable
chance that one person receives no inputs and the others at least one input is 5/8.
However, as we have seen in the previous chapter (see Fig. III-26), the probability of
selection of a structure of type a (Fig. IV-5) increases appreciably above its chance
value of 5/16, hence increasing the probability of exactly one node failing to receive a
new piece of information. Thus, it is reasonable to suppose that four of the nodes are
operating on a distribution

-X(t-tl)
f(t) = e

and one node on

-A (-t
£,(t) = X e olt~to)

and )\0 > N\ and to < tl'
at least one piece of information in addition to its own, so that each has a decision

By act III it is very probable that each of the nodes has received

problem. Thus we return to the approximation by five identical
nodes. It is clear that the assumption of statistically identical

/\ situations in the third act is poor, for some of the nodes will have
considerably more information than the others; hence, their deci-
sion problem will be more difficult and will tend to cause a greater
spread in the distribution.

*——o The argument for the pinwheel is essentially the same, except

. that in act II we do not have as great confidence in assuming one
Fig. V-3 node rather than two has received no additional information. This
follows from the results of Chapter III which showed a notable lack
of learning in the pinwheel.

For the chain there are in all acts two nodes (the end ones) which have no decision
problem, and there is an exceedingly high probability after only a short period of
learning that each of the other three will receive additional information (at least for the
first two acts). It thus seems reasonable to suppose that three of the nodes have a
distribution

-AMt-t))
f(t) = \e
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and two

A (t-t,)
f (t)y=Xxe
o o
with A _>XNandt <t..
o ] 1
The same argument applies to act I of the totally connected network as applies to
act I of the circle, with possibly a different distribution since, in this case, the decision
is one out of four links. For act II there is a pure chance of 125/128 of having at least
one node which has received no information, and a probability of 19/64 that at least two
nodes have received no added information. The assumptions to be made here are less
clear than those which we made for the circle, but it appears that the assumption of four
identical nodes is appropriate. Again in act III we shall assume five identical nodes.
The remainder of the networks studied in Experiment 4 do not have such simple
structures, and so the argument is both less easy and less convincing. We have there-
fore decided simply to present the data for the four cases mentioned. Table IV.2

summarizes our assumptions.

Table IV. 2

Number of Statistically Identical Nodes Having
Larger Standard Deviation and Mean

Network Actl Act II Act III
Circle 5 4 5
Pinwheel 5 4 5
Chain 3 3 3
Totally 5 4 5
Connected

In general, then, we have a group with n nodes of which k has a distribution f and
n-k a distribution fo' It is reasonable to suppose that when k is greater or equal to

n-k, )‘o is sufficiently greater than X\, and t1 is greater than to’ the error in replacing

-r(fo, RS SV PR f) by 7(f,...,f) is small relative to some characteristic size of f,
say, relative to the maximum value of f, fmax' We make this more precise.
Define
A(t,k)=1'(fo,...,f0,f,...,f)--r(f,...,f) (8)
then

max max
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To show this, observe first that

T[T(fl,...,fk), 'r(ka,...,fn)]=T(f1,...,fk)f T(f) oo f) dx
- 00

j=1 j=k+1
n k
2l 11, < -,
j=k+1 j=1
k n n
=\l ey I wo) =&{ 1 ¥,
i=1 o=k+1 i=1
=T(f1,f2, ,fn)
Then
Gy Bgs foee 8 = T[rE ) T D)

"
_l
~
)
(o]
:—0:
]

N
’\.
8

.«'
P
o

L)
S

o

o]

t
+ 'r(f,...,f)f 'r(fo,...,fo) dx
- 00

k 1 n-k

-1 pk | pepk- Fo

il

n—
(n-k) £ F,

_ k-1 _n-k-1 _
=F< ! FD [olk)Fg)+kFoq.

From this one readily obtains Eq. 9.
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For

f=re M
-kot
fo = )\oe
)‘o
~ = 1.5
and
a
t==—
N
we compute the numbers shown in Table IV. 3.
Table IV.3

Percentage Error in Replacing -r(fo, fo’ f, £, f) by v(£, 1, f)

0 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00
0.0 -9.7 -15.8 -11.8 -4.4 +5.2 +6.2 +4.4 +2.5 +0.7
100 77.8 60.7 47.2 36.8 22.3 13.5 8.2 5.0 1.8
Table IV. 4

Percentage Error in Replacing T(fo, fo’ £, f,f) by +(f, £, f)

0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 4.00
0.0 -7.4 -11.3 -8.0 +1.5 +4.6 +3.8 +2.3 +0.7
100 77.8 60.7 47.2 28.7 17. 4 10. 6 6.4 2.4
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If, however,

£ = ne Mt-9)
_0.25
6= \
and
)\0
T = 1.5

the numbers shown in Table IV. 4 are obtained.

We are unable to show that the conditions for Table IV.4 are met, but we can show
that they seem to be reasonable, and certainly in any future experiments data may be
obtained to show whether the assumption that T(fo,f,f, f,fo) ~7(f,f,f) is appropriate.
Let

fo ) Xoe xo(t to)
and
-x(t-tl)
f=2X\e
where
to = tl - 6.

Y
Bo St 8 %Y

(o]
1
k=t Y
Let
P'O
7%
then
WA=tk - BA 4 = quh = gt h + 1),
o 1 )‘0 1
So
A
N - BN+
_ (o)
a= t'l)\+1

Now suppose the error is negligible; that is, that

0.25
X

52

x.O
T>,1.5
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then, as we shall see from the next section, the approximate values of the parameters
that fit the data are \® 0.1 and tlz 10
SO

and

. 1-0.25+0.66
R T+1

= 0.708.
That is to say, we are assuming only that the mean of the neglected distribution is

70 percent of the mean of the distribution f; this certainly has a ring of reasonableness.

6. Quantized Data: Experiment 4

We shall use the data in this section to show that two assumptions we have made are
reasonable for the experiments we have run. The first assumption is that individuals
can be treated as statistically identical so that group differences depend on the network
rather than on the particular people in the network. We shall show this to be reasonable
by demonstrating that significant differences among the networks occur, but that the
inferred individual distributions are nonetheless not significantly different. The second
assumption is that the individual distributions can be well approximated by exponential
decay curves. We shall test the reasonableness of this by fitting curves to the group-
time data and using the xz goodness-of-fit test. Of course, these two assumptions are
not independently tested, but what we are concerned with is the joint adequacy of our

assumptions to describe the data.

There is a trend in the action time data with trials as can be seen in Figs. IV.6, 7,
8, and 9. (We have presented the time data for only those cases we are able to analyze.
Suffice it to say the rest are similar in nature to those given.) Fortunately, after a
sharp initial drop, both the mean time and the variability about the mean are nearly
constant. Because of this fact we can use all the data on a given network from the flat
portion of the curve in a single combined frequency distribution to test goodness of fit.
In particular, the trials eliminated were: the first three trials of circle, pinwheel, and

chain; the first five trials of totally connected.

The group time per act was recorded on an Esterline-Angus pen recorder and the
data read off the tape to the nearest second with the aid of a ruler. The sample size was
220 (ten groups for 22 trials) for circle, chain, and pinwheel; and 200 (ten groups for
20 trials) for totally connected. With these sample sizes and the obtained spread of the
distributions the smallest class intervals which would yield acceptable values for

expected frequencies were three seconds. It was found that in the process of measuring
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time intervals from the tape, there was a fairly strong bias in favor of even numbers,
and therefore only groupings into class intervals of an even number of seconds would
adequately represent the shape of the distribution. For these reasons the circle, chain,
and pinwheel data were grouped in class intervals of four seconds. In the case of the
totally connected networks it was found that the data were very erratic with a four-
second grouping, so a six-second grouping was employed.

The parameters of the distributions can be estimated from the moments by the

equations from section IV. 4

0=t + g,(n)
H1 "o I
}“2(0) = 9%

The values of gi(n) and o' are given in Table IV.1 and the rule for selection of the
proper n is given in Table IV, 2. The distributions with which we have to deal are very
skewed and, as is well known, moments are inefficient estimators for the parameters
of skewed distributions. From a computational standpoint it was impractical to use a
maximum likelihood estimator or a successive approximation to an efficient estimator
since these methods lead, for the functions we have to fit, to complicated transcendental
equations. Also the normal equations for a least-squares fit are of the same type. It
was therefore decided to use a minimum XZ criterion to find the values of \ and to to
fit the data, and this was done by numerical successive approximation. Since the sample
size is fixed, and there are two parameters to be fitted, the degrees of freedom to be
used in the goodness-of-fit test will in every case be the number of class intervals less
three. The data on the fit of the theoretical curves to the empirical are given in
Table IV. 5.

The theoretical fitted curves and the corresponding data points are shown in
Fig. IV. 10 through Fig. IV.21.

Using the values of N and to found by the minimum XZ fitting criterion, we compute
inferred values for the means and variances of individual action time distributions.
These values and the group mean and variance data from which they were derived are
shown in Table IV. 6.

In circle, chain, and pinwheel our hypothesis supposes that there will be differences
in group mean action time from one network to another but, insofar as the theory is
correct, no differences in individual mean action time (other than sampling variation).
We expect differences from act to act in both group and individual means. The way that
the nodes are assumed to contribute to the determination of group time in each network
involves the consequence that each node which so contributes has two possible inputs
and two possible outputs. Thus, whenever a person in any such nodal position has
received information, he has a two-way choice of where to send that information. The

nodes in the totally connected network differ in this respect: they each have four
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Network

Circle (x)
Pinwheel
Chain (x)

Totally
Connected

Network

Circle (x)
Pinwheel
Chain (x)

Totally
Connected

Network

Circle (x)
Pinwheel
Chain (x)

Totally
Connected

Table IV.5

Goodness-of-Fit Test, Time Data, Experiment 4

8.1
10.0
9.6

7.8

10.0
10.0
12.5

12.5

11.8
13.7
14.5

14.0

Actl

0.120
0.140
0.135

0.115

Act II

A

0.115
0.115
0.140

0.113

Act III

0.106
0.128
0.120

0.100
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6.29
9.05
4.46

5.30

13.20
12.31
9.05

14.36
10.03
7.23

4.28

df

df

df

o o

o O ©

(=2 ]

.51
.18
.49

.39

.12
.10
.20

.37

.11
.19
.41

.38




Table IV. 6

Inferred and Observed Moments: Time Data, Experiment 4

Act

Circle
Pinwheel
Chain

Totally
Connected

Circle
Pinwheel
Chain

Totally
Connected

Inferred Individual |J.'1

I I 11
16.4 18.7 21.2 26.
17.1 18. 7 21.5 26.
17.0 19. 6 22.8 22.
16.5 21.3 24.0 27.

Inferred Individual o

8.7 9.4 9.

8.7 7.8 10.

7.1 8.3 9

8.8 10.0 11.
Table IV.7

Observed Group p'l

1 II I
13 27.55 33. 45
21 27.35 32.00
89 25.16 28.21
98 31.49 36. 09,

Observed Group o

68 11.54 11.46
95 10. 46 12.28
.96 9.42 10.09
71 12.21 14.81

Analysis of Variance: Time Data, Experiment 4

Source
Total
Acts
Networks

Error

Source
Total
Acts
Networks
Error

I. Raw Means

df ss

8 86.22
2 60.88
2 23.01
4 2.32

II. Transformed Means

df ss

8 40.00

2 37.73

2 1.76

4 0.51
-106-

Acts

F = 52.47
p ~ 0.001

Networks

F= 19.83
p ~ 0.001

Acts

F = 147.96
p << 0.001

Networks

F= 6.90
p> 0.05
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possible inputs and four possible outputs. On this account we do not expect individuals
in totally connected networks to have the same time parameters as individuals in the
other three networks.

Table IV.7 presents an analysis of variance for the group mean data and for the
inferred individual means for circle, chain, and pinwheel on acts I, II, and III.

These results bear out the contention of our previous theoretical argument that to a
first approximation at least, it is possible to treat individuals as statistically identical.
The significant difference among networks in raw mean action time disappears when we
find transformed mean action times for the individuals in the respective networks. Thus
the differences among groups using different networks are shown to depend on differ-
ences in the networks, as they must, and it is shown that the approximate theoretical
treatment we have given is adequate to account for these group differences to the extent
that they exist in our data.

7. Quantized Data: Experiment 5

Experiment 5, a common marble experiment, was an action-quantized experiment
similar in apparatus and procedure to Experiment 4 whose time results have just been
discussed. The former, however, differed from Experiment 4 in several important
respects:

(a) Task. Each subject was given a set of five differently colored marbles, with
one color common to all five sets. The task for each subject was to determine that
common color. This is to be contrasted with the task in Experiment 4 in which each
subject was given a number and a trial was concluded when each subject had obtained
all five numbers.

(b) Constraints. The subjects were constrained to action on a quantized time scale,
determined in exactly the same fashion as in Experiment 4, and they were obliged to
send one, and only one, message card in each act. However, the content of their
messages was in no way restricted.

(c) Experimental conditions. Three networks (circle, chain, and star) were studied.
Six experimental groups were examined in the circle network, six groups in the chain,
and seven groups in the star, each group participating in a series of fifteen trials. The
number of acceptable trials had to be reduced to 15 from the desired 30 to encompass
the experiment in a reasonable length of time.

We may draw an immediate conclusion: From such small samples it is unlikely that
the data will prove to be very stable, and this variability will be even worse than a
random selection of six or seven samples from Experiment 4, since the message content
was unconstrained.

We shall proceed in a fashion analogous to the last section. In Fig. IV.22 through
Fig. IV.25, we have plotted mean time per act vs trials for the different networks. We
see from these that only after a period of learning do we obtain relatively homogenous

populations; consequently we have omitted early trials and lumped the remaining ones.
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Table IV. 8 indicates which trials have been used.

Table IV. 8

Trials Used from Experiment 5

Act
Network I I 111 v A\
Circle 6 - 15 7-15 7-15 - -
Chain 6 - 15 5-15 5-15 8 - 15 8 - 15
Star 6 - 15 7-15 6 -15 6 - 15 6 - 15

Within this range of trials the data may be lumped on the basis that the populations
from which the samples occurred are nearly homogenous. Even with such lumping of
the data, we obtain sample sizes of the order of 40 points to be distributed on a time
scale from, roughly, 10 sec to 50 sec. It is thus apparent that even when we group this
data into, say, 6- or 8-sec intervals, the sample size is too small to expect stable fre-
quency distributions. Thus, it would be desirable whenever possible to lump the data
further; this must mean combining several acts. The lumping of acts can be argued
on both an a priori basis and by reference to the curves of Fig. IV.22 through
Fig. IV.25.

Circle: Acts I and II are certainly from different populations, since in the former,
no filtering of the information can occur, whereas it can occur in the latter act. By fil-
tering we mean the action of reducing the number of marbles that may be the common
one, when a node has his and another set of information. In addition, there exists a
greater problem for decision in the second act. If filtering of the information does occur
in the second act, then each node has more information to send in the third act, but it
has been reduced to a more compact form by the filtering process. Thus, act IIl is very
similar in process to act II, which suggests combining them. The curves of Fig. IV.22
substantiate the contention that acts II and III are nearly the same, and that act I is quite
different.

Chain: Act I, as in the case of the circle, is unique. By a similar argument, acts II
and III can be lumped together, for in the chain, act II results in a filtering of the infor-
mation by the middle men, who then pass it to the center man. Much of the decision
time for the third act is occupied by the occurrence of the filtering process in the center,
which can, when the group is operating efficiently, obtain the answer at this point. Acts
IV and V consist in little more than a relay of this information from the center man to
the end men, so that the entire group knows the result. There may, of course, be more
acts than this to obtain the answer; however, by the fifth or sixth trial the organization
of the chain is quite well worked out (see secs. III. 3 and III. 7) so that the groups are
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doing the problem in minimum acts nearly all the time. The argument is neither par-
ticularly well upheld nor destroyed by the curves of Figs. IV.23 and IV. 24.

Star: Act I is unique. Since everyone must send a message, the center man must
have all the information to obtain the answer at the end of act I. In act II, most of the
decision time is probably taken up by his filtering the data to obtain the answer. So act II
is unique also. Acts III, IV, and V are simply a relaying of this answer to the other
three end men in the star, and so they must all be essentially the same. This, of course,
is true only after the efficient organization of the star has been obtained; this occurs
very early as we have seen in Fig. IV.25. Except for trial 14, this seems to be the case
for the groups we have run.

We have lumped our data as indicated above, and we have grouped them in either
6- or 8-sec intervals. The choice depended on the spread of the data. We found that
finer groupings were not satisfactory, since the sample size in an interval became so
small that the variability of the data gave a very rough curve. The grouping used is in-
dicated in Table IV.9.

We have not attempted to fit theoretical curves to this data as we did in Experiment 4,
because we did not think that the computational effort was warranted by the nature and
meagerness of this data. We shall try to show in the following discussion that a priori
considerations would lead, at least in some cases, to curves having three or more para-
meters to fit this data. If this is the case, then we would need much finer groupings,
and hence much more data, to procure the necessary degrees of freedom to obtain a test
of our fit.

In the analysis of Experiment 4, we assumed a constant value of to’ the absolute
minimum time in which a decision could be reached. We may interpret t, as the mini-
mum writing time, which, for the case of messages allowing nothing but numbers, may,
well be nearly a constant. On the other hand, in Experiment 5 the subjects were allowed
to write anything they wished and had to write the colors of several marbles to send a
message. Here, individual differences in writing speed began to be a factor, and thus
it is somewhat unreasonable to suppose to to be constant. If we suppose that to is dis-
tributed in some fashion depending on two parameters, the location of the mean and some
measure of the shape, then the fit requires at least three parameters.

This would account for some of the difficulty at the initial point of these distributions,
which is not very serious, but it would certainly not account for, say, the shape of the
distribution in acts II and III combined of the chain or act II of the star. Let us suppose
that to is a fixed number and not distributed, then we know that the individual time dis-

t
At-t ) exp| - f A(t)dt].
: t

o}

tribution is

Throughout the previous discussion we have assumed A(t) to be a constant; this has
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proved to be a good assumption when the decision problem is very simple indeed and is
not confounded by other factors. We have no reason to suppose that this is the case when
the decision problem becomes much more complex. In fact, in the filtering of informa-
tion — the decision as to which colors are common to these two sets of colors — there

are intuitive reasons to suppose that this is not the case, but that A(t) builds up from a

0 value to some asymptotic value . A particularly simple form of such a build-up is

A(t)

k
-3

t)to

=0 t<t

which yields the distribution

b

This distribution is dependent on three parameters and is, for k an integer, the differ-
ence between a type III, order k distribution, and an order k - 1 chopped off at the lower
end att = to. It may be reduced to a distribution depending on only two parameters if

we make the reasonable assumption that x(to) = 0; that is,
=
o]

A third parameter n is introduced, as before, in the decision as to how many are the
identical distributions from which the selection is made. Without further measurements
this is most easily obtained by the same a priori arguments we previously made. For
the circle and the chain we would use the same values: 5, 4, and 3, 3. For the star
the argument is more complex. As in the chain, the end men will have distributions
whose means are considerably less than that of the center man in all cases; however,
when the decisions are simple as in, for example, the act I or acts III, IV, and V, it
does not seem unreasonable to suppose that the distribution of the largest value from the
selections from the end-man distributions has a mean comparable to that of the center
man. Thus we cannot very well approximate the group distribution by the center-man
distribution. This will entail assuming two distributions of, for instance, the exponen-
tial type, and thus fitting the data by 4 parameters, or 3, if we assume the same t0
for each. In act II the decision problem of the center man is so much more complex
than that of the end men, one might very well assume that the group distribution and the
center-man distribution are the same, but that the distribution is of the form of Eq. 11.

~ In all the cases mentioned and summarized in Table IV.10, we can estimate the
parameters A and to from the first two moments, except in the star cases that require
two distributions. Suppose we have the distributions
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f =xoe ° and f, =\,e

and make the assumption that they both have the same dead time to. Then- a linear

translation of the time axis will allow us to make to = 0. From Eq. 10 we know

nlf

W, £, . £, £]) = (n-1) Fy Ff +FO7

o} (o] [¢]

Thus the i-th raw moment for a star on n nodes is

[+0]
p.il(n) =f (e, £, ..., £, ) dt
[>o]

[+ o}
= (n-l)'/- ¢ (l—e)‘ot)n—z (l-e )\lt)x e_)\Ot dt

o

Recall that in Eq. 7 we defined

o0
. . -a t -x t\n-1
gi(n) = )\;nf ttre © (l-e 0) dt
0

[}

which was shown to be

n-1
= n-1 ] !
gl(n) =n z (——-)(—1) -—'-—-.-_ITI.
j=0 ! (3+1)°
Thus,
® ; R A
(n—l))\o t'\l-e e e dt .

0

o) ./; z e [, +X1]t(l—1:].—2)dt
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Similarly,

0
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o p=

Approximating this series by, say, the first three terms, one can obtain estimates on
the parameters quite rapidly; however, the data must be quite good for these estimates
to be tolerable since we require not only the first two moments, but also the third. We

do not believe that there is sufficient time data in Experiment 5 to warrant this compu-
tation.

Table IV.10

Summary of Assumptions for Analysis of Experiment 5 Time Data

Circle
Acts 1 II + III
k=0 k>0
n=>5 n=4
Chain
Acts I II + III IV+V
k=0 k>0 k=0
n=3 n=3 n=3
Star
Acts 1 I I+ IV+V
k=0 k>0 k=0
two n=1 two
distributions distributions
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8. Nonquantized Data: Experiment 3

In his common-symbol experiment (No. 1) Leavitt recorded the time taken for each
trial and the number of messages sent on each trial (34). This data is shown in
Fig. IV.26 and Fig. IV.27, respectively. From these plots it can be seen that both
time per trial and messages per trial decrease as the groups experience more and more
trials. The groups were motivated to complete each trial in as short a time as possible,
and they made progress toward this goal. We should like to be able to say how such
progress was made. From the gross impressions of the experimenter, it was evident
that shorter times involved both a decrease in the time taken per message and a
decrease in number of messages per trial. It would be desirable to assess the relative
importance of these two modes of achieving time economy. However, the time per trial
is not simply the product of time per message and message per trial, because in this
nonquantized case, trials are not composed of messages in simple succession. On the
contrary, since each man in the group was free to send at any time, the time to prepare
and send a message at one node overlapped the time to prepare and send a message
at other nodes in an irregular manner. Leavitt's data is not amenable to a rational
treatment to circumvent this difficulty.

Smith's noisy marble experiment (No. 3) produced the same sort of time data as
Leavitt's experiment. His results for time per trial and messages per trial are shown
in Fig. IV.28 and Fig. IV.29, respectively. Smith also reconstructed the pattern of
message sending for each trial of each group he ran. If we make the assumption that
the sending pattern observed in Smith's nonquantized situation is approximately what
would have occurred if the experiment had been quantized, it is possible to find for each
trial the equivalent number of act quanta to do that trial with its given message-sending
pattern. When this has been done, we can conceive of the trials as composed of a suc-
cession of act equivalents and therefore interpret the time per trial as the product of
number of act equivalents per trial and time per act equivalent. We have given as data
the time per trial, and from the message-sending pattern we have deduced the number
of act equivalents per trial. Simply dividing the former by the latter gives us the time
per act equivalent. We are therefore in a position to give at least an approximate evalu-
ation to the roles of speed of action (time per act equivalent) and efficiency of action
(act equivalents per trial) in producing trial time economy. The act interpretation of
the message-sending patterns for Smith's star and chain groups was sufficiently clear,
so that this task could be done with fair confidence in the reliability of the result. The
data, plotted against trials, is shown in Figs. IV.30 and IV.31. The patterns for the
circle groups were too confused to be usable.

Once we have reduced the nonquantized data roughly to acts, they are approximately
in a form which enables us to give them a treatmeat similar to that which we have devel-
oped in detail for the quantized case, and hence we can, in principle, compare the

two types of experiments in their temporal aspects. From the data on time per act
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equivalent we can plot frequency distributions of action time. We shall develop below
the theoretical form of this curve, making the same assumptions about the delay
functions of individual nodes as we used in the sections on the quantized case. By fitiing
the appropriate theoretical distribution functions to the empirical distributions in each
case, we can calculate nodal parameters and thereby compare the two experimental sit-
uations in terms of these parameters. The reason for not doing so is given below.

We shall neglect the fact that nodal parameters may vary somewhat from act to act
and treat all acts within a given group's performance on the same footing. Let us denote
the number of acts in a trial by k, the total time for a trial by tk and the time per act

by t. Hence
(=
k
If the i-th act terminates at ti, we can write
t, =1«:t=t1+(t‘2 -t1)+... +(tk-tk_l)

and if we substitute

T o0
k
T
i=1

We have assumed that we have identical nodes and also unchanging parameters from act
to act; therefore the distribution function for T is the same for all i, and we may find
the distribution of t, as the distribution of a sum of variables with known distributions.

k

From the distribution for t,_ the distribution for t is easily found.

k
We assume (see sec. IV.3) that 7; is distributed as

-A(T.~-t
f(r;) = Ae (Tito)

and find that t is distributed as

ey -Akt k=1 ¢ k-2
f(t) = g -9
Tt (k1) T k(k-2)! "

Note that in this expression the parameter k represents number of acts per trial. The
value of k is not fixed for any group but has a distribution. We have not investigated
the problem of the form of the k distribution, but we can give a gross characterization
on a priori and empirical grounds. The smallest value k can have is known a priori to
be 5 for both star and chain, and we know empirically that the frequency of the larger
values of k becomes rapidly negligible. From these facts we conclude that when the
distribution of k is taken into account in the expression for f(t), the result will be a
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Distributions of time per act (trials 6-15).

weighted sum of type III curves of various orders. The result is thus similar in general
form to the results previously obtained for the quantized case. It is further to be noted
that the theoretical frequencies which are given by f(t) are critically dependent on the
value of the product, xto. The data available in Experiment 3 is too meager to warrant
the use of curve-fitting techniques. Therefore, we must be content to present the em-
pirical distributions shown in Fig. IV.32, from which it is apparent the data are at least
of the general form required by our theoretical discussion.

Inspection of Fig. IV.32 shows the times per act in trials 6 through 15 to be shorter
in star than in chain to a degree which makes a statistical test of significance superflu-
ous. On the other hand, the act distributions during these same ten trials do not differ
significantly, as may be seen in Table IV.11.

Table IV. 11
Acts per Trial Frequency Significance
Star Chain
5 17 19 df = 3
6 5 X2 =2.673
7,8 11 6 p ~0.40
>8 6 10
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During the five initial trials the act distributions do differ; see Table IV.12.

Table IV. 12
Acts per Trial Frequency Significance
Star Chain
5 12 6 df =1
>5 8 14 XZ = 3,78
P ~ 0.05

The time-per-act distributions also have different means in the first five trials.
Wilcoxon's Matched Pairs Signed Ranks Test was used because of the strong departure
from normality in the data. With p = 20 and 7 (sum of ranks with less frequent sign)
= 18, the test gives p < 0.01.

Thus we may describe the difference in performance of star and chain in the fol-
lowing way: Star has an initial advantage in time per act and continues to have this ad-
vantage. Star has an initial advantage in acts per trial, but chain improves more than
star and obliterates this difference. The improvement in time per act is slower than
the improvement in acts per trial, so that improvement in time per trial is at first due
for the most part to an increase in efficiency of organization and is later due for the
most part to an increase in speed of action for both networks. This phenomenon is
stronger for star than for chain.

9. On The Interrelation of Decision Time and Decisions

Quantized action can be imposed upon a group in the context of laboratory experi-
mentation, but it is not ordinarily found in the behavior of groups outside the laboratory.
Typically, the time at which a message is sent, as well as the person to whom it is
sent, is determined by the properties of the sending node and its inputs of messages from
other nodes rather than by a strict rule imposed from without the group. As an example,
consider that node i sends to j if he has not received from j, but sends to k if he has
received from j. Suppose further that j is preparing a message for i at the same time
that i is preparing his message. It then becomes inescapably important to compare the
action times of i and j, namely ti and tj’ since if ti > tJ., i's message will go to j,
whereas if tj > ti’ it will go to k. It is clear then that the conditions which determine
where a message is sent are inextricably bound up with action times.

The determination of conditional probabilities and of action time distributions for
the nodes is a straightforward empirical problem. Given these measurements, the cal-
culation of the resulting statistics of group performance is a purely mathematical
problem, but one of great complexity. As we have pointed out in the previous chapter,
even with a highly restricted information flow and with time and decision independent,
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it is not practical, except for one case, to calculate the group-performance statistics. In
the future, high-speed computers may make other calculations possible. However, one
might hope for a mathematical theory which, by employing probability distributions for
the transfer functions of the nodes, leads to a simpler statement of the problem and pos-
sibly a solution in terms of tabulated functions. As an example of this type of theory,
Appendix 3 presents a human group interpretation of the mathematical formalism of
linear electrical network theory. This theory, it will be noted, allows both decision
times and decision probabilities to be taken into account; that is, it is not restricted to
an action-quantized situation. However, the interpretation there has been accomplished
only at the expense of an enormous simplification of the group-network problem. Con-
ditional probabilities are not admitted: their place is taken by fixed sending probabili-
ties for each outgoing link. Even more drastically simplifying is the restriction of the
information flow to one (repeated) item which is simply counted each time it is received
at each node. This, of course, is not an adequate theory. The removal of these restric-
tions in order to have a theory which both applies to more general group situations and
admits mathematical solution is a major theoretical undertaking.

In this section we propose to formulate the assumptions of a general problem which
involves both decision and time for decision interaction and more than one elementary
particle of information. Attempts, so far, to rephrase these assumptions as a system
of integrodifferential equations have failed. It is hoped that by stating the problem ex-
actly, others will succeed where we have failed. There is more point to the section
that this, however, for we shall outline a method of prediction from the assumptions
which is computationally simple and which will permit experimental verification of these
assumptions (or ones similar to them) when data are available.

Suppose a communicating group of n nodes, 1, 2, ..., n, is dealing with a set of
information U. The elements a ¢ U are essentially labels assigned to indivisible pieces
of information (indivisible possibly only in the context of the problem). Assume as given
for each node i, a time delay function fi(t), and for each pair of nodes i, j, a set of
conditional sending probabilities rij(V), where V ranges over all possible subsets of U.

It is assumed that if node i has received a message from or has sent a message
to any other node at time T, and no other message has been sent or received in the
interval from Tt to t, then the probability density that i sends a message at t is fi(t—-r).
1 £ t, then the
process begins anew at time Ty This is to say, each node is activated according to

If, however, an intermediate message arrives or is sent at time Typ TS T

the given delay function by the immediately preceding incoming or outgoing message,
and this activation is independent of what information it has at the time.

If at time t the node i does in fact send a message, and if at that time it has exactly
the subset V of U, then the probability that the message is sent to j is assumed to be
rij(V)‘ It is explicitly assumed that the conditional decision probabilities do not change
directly with time.

Finally, assume that when a node does send a message, it sends all the information
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that it has and it does this without any loss of memory to itself. Thus, if at time t node
i has VC U, and node j has V'C U, and j receives a message from only i, and i
receives no message, then following the message exchange i has the information V and
j the information V U V'. In summary, then, the assumed transfer function of the ideal-
ized person implies that he has a perfect memory of the content of the messages
received, that any outgoing message is governed by a given delay function fi(t) which
is initiated by the last message he sent or received, that his choice of destination is
governed by the set of conditional probabilities rij(V) which are independent of time, and
that each message he sends contains all the information he has at the time of sending.

In addition, a driving function for the group is given in the following form: for each
node i and each element a ¢ U, there exists a frequency function gi(u, t) which describes

the input of the information a to the node i from without the group. Clearly, if i

o0
f gi(a, t) dt = N,
/ oo

receives a N times, then

The nodes are assumed to react to an input from without the group in the same fashion
as to a message from within the group.
Problem: given fi(t)’ rij(V)’ and gi(a, t), i, j=1,2, ..., n, aeU, VC U, deter-
mine the probability Pi(a, t) that node i has the element of information a ¢ U at time t.
This problem may be simplified so that the driving function of the group is simply
an initial condition if there exists some to (which by a simple translation of the time
scale may be taken to be 0) such that

gi(a, t) =0, foralli, e, andtg to-

If this is so, then for each i, a pair such that gi(a, t) £ 0 we shall introduce a new node,
called i(a). This node is chosen to have the properties that it has only the information
a at time t = 0, that it has a delay function gi(a, t), that it can send only to the node i,

and that it can receive messages from no other node. Formally
fiay (V) = gl 1)
Ti(a)i (V) =1, forallV
ri(a)j (V)=0, ifj#i
Tji(a) V) =0

It follows immediately that

]

Pia) (B =1, ifa=p

= 0, otherwise
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using the same notation as before. We shall assume this property. In this augmented
group the driving functions no longer exist; they are replaced by the following initial

conditions: For the original nodes
Pi (a,0) =0, forallaeU

and for the added nodes
Pi(o.) (B,o) =1, ifa=8

0, otherwise.

Thus, the problem is to determine Pi (a,t), i=1, 2, ..., n, given fi(t)’ rij(V), and
the above initial conditions. This, as we mentioned, can in principle, and possibly in
practice, be carried out if the problem is reduced to a system of integrodifferential
equations. The source of mathematical difficulty appears to be the following: Let the
state of the system be described by the information at each node; then the system is not
a Markov process in which "the future development is completely determined by the
present state and is independent of the way in which the present state developed" (see
ref. 81, Chap. VI, p. 337). This is clear, for let two systems be in exactly the same
information state; but in the one, let node i be most recently stimulated at time T, and
in the other at time ', v # T'. The probabilities governing the behavior of i, and so
of the system, are different in the two cases. Very little of a general nature is known
about the solution of non-Markov systems. If the definition of state of the system is
altered, a Markov formulation can be given, but a new difficulty arises. Let the state
of node i at time t be the information V(i, t) at the node, and the time 7(i, t) of the most
recent stimulation of i. For small At, the state variable +(i,t + at) = 7(i,t) or 7' where
t<1'<t+ At. Thus, v does not pass through a continuous change, and any equations
we write must take into account a discontinuous variable. So, looking at the problem
either way, our difficulties are not surprising; indeed, they may be expected to exist
for any intuitively reasonable and nontrivial characterization of information flow in a
group.

Fortunately, the practical problem of prediction about experimental group results
is at least partially soluble. This will be best illustrated by an example. Suppose three
nodes, 1, 2, and 3, are connected as a chain with the links [12], [21], [32], [23], and
each has an initial piece of information. Since the problem is essentially finite, one
may indicate all possible orderings of message sendings which will lead to a solu-
tion. A solution, in this case, is defined as each node knowing what initial information
the others have. Of all these possible orderings, only a relatively few will actually
arise with any frequency in practice, and we would feel confident that the assumptions
applied if from them we could predict these frequencies.

Consider a particular solution of the problem for the three-node chain. Suppose the

+ AT)), [32]in (7, T, + AT,), [21] in (= + AT;), and

sending [12] occurs in ('rl, T 20 T2 30 T3
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[23]111(1'4, T4+AT4), where 01, < 7T +ATIST <T +ATZsT <T,+ AT T, < T

15T 2< ™2 3573 3S T4 Ty
t AT, & t. We shall show below that it is possible from our assumptions to estimate the
probability of this occurrence. Then, if we sum (integrate) over all possible ways this
ordering might occur, we shall obtain the probability that a solution was obtained by
time t, using the given ordering. For small groups with simple networks, the number
of orderings which will have significant frequencies will be relatively small, so that
prediction and comparision will be possible.

Let us calculate the probability of occurrence of the above ordering, where we
assume fi(t) =f(t), i =1, 2, 3, and rlZ(V) = r32(V) =1 for all V and er(V) = r23(V)
= 1/2 for all V. These assumptions are not made with any thought of reality, but for
simplicity in calculation. Note that the first decision made is the minimum of three

selections from f(t), which has a probability of occurring in the interval (-rl, T+ A-rl) of

f('rl) AT, f f(x) dx

T

2

The probability that node 1 made the selection (that is, sent the first message) is, of
course, 1/3. Following this event, the distribution of decisions for nodes 1 and 2 are
both f(t--r1 ), and for node 3 is f(t). The probability that a decision is made in (-rz, T,
+ A-rz), and that node 3 reaches a decision before either ! or 2 is

f(TZ) ATZ ./‘ f(x - Tl) dx

2

2

In the same manner, the probability that node 2 reaches a decision in the interval

(1-3, T3+ A-r3) before either 1 or 3 reaches a decision is

[+¢] o0
f('r3 - TZ) AT, -/. f(x - Tl) dx f f(x - -rz) dx
T3 T3

and the probability that 2 sends to 1 is 1/2. Similarly, the final probability is

) o

1

3 f('r4 - 1'3) A1'4 f f(x - 1'3) dx f f(x - TZ) dx| .
T T4

4

Clearly, the probability of the entire event is the product of these quantities. The

probability that the ordering occurs in time t is the integral over the four r's where

0g T ST,$ 738 T4$t

El
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2

t T4 T3 T2 ®
i—f dt4f d'r3f d‘rzf dr, f(Tl) f f(x) dx
0 0 0 0 T

o0 2 o0 o0
. f(TZ) f f(x - 7)) dx f(-r3 -T,) f f(x - 7)) dx f f(x - T,) dx
TZ "I"3 1'3
. f(~r4 - 1-3) f f(x - -r3) dx f f(x - TZ) dx |.
T4 T4

Obtaining numerical values for a given f is, admittedly, a laborious task, but it
is not beyond ordinarily available computational facilities. Of course, for f(t) = e M
which, as we have seen earlier, fits some data very well, an explicit evaluation is pos-
sible.

A positive advantage for this technique is that models of a generality and subtlety
well beyond general formulation and solution can still be verified. For example, the
conditional probabilities might be so modified that if i sends to j at =, and if by +!,

i still has the same information, then i will not send to j at v'. This, in the above
example, would lead to a coefficient of 1/2 rather than 1/4, since in the final step 2

would send to 3 with probability 1.
10. Summary

The principal concern of this chapter has been the analysis of time data in an action
quantized situation. It was first pointed out that if the individual latency distributions
are assumed known, the group latency distribution results from selecting one latency
from each individual distribution and taking the largest of these. A form for this
function was given. Second, from a plausible assumption as to the nature of the
decision-making process, it was shown that the individual latencies could be expected

t
A(t) exp -f A7) dr|.
t

o

to be of the form

Indeed, it was suggested that for some purposes one can take \ exp [ -a(t - to)] , and an
attempt was made to fit the data by a xz technique using this assumption. The fit proved
to be good, but it was pointed out that the very selection process used to get the group
latency makes the result very insensitive to changes in the rising limb of the individual
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latency distribution. Finally, an analysis of variance indicated that the pair of assump-
tions we made accounted for the data in a simple fashion.

These results are considered of importance only insofar as they are a step toward
an analysis of group communication when decisions and times for decisions are not inde-
pendent. It is surely inviting in any model building of the complex situation to attempt
to use the exponential function which is mathematically tractable. On the other hand,
it is almost certain that it is only the falling limb that is approximately exponential, and
that the rising limb is far from vertical. Without the selection process of action quanti-
zation this will be important, and an error of some magnitude will be introduced. Some
care will have to be taken in this matter.

The final section of the chapter was concerned with the nonindependent case. The
mathematical difficulties are very great, but one computationally feasible suggestion
was offered as a partial solution. Essentially, it is based on the notion that in some
situations there are a comparatively few orderings of message flow that account for
almost all of the cases. It is possible, for any reasonably simple set of assumptions
about the nature of the interaction, to estimate the probability of a specific ordering.

Whether this will in fact be satisfactory remains to be seen.
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CHAPTER V — NOISE

1. Introduction

In previous chapters, the concepts of communication, information, and noise have
been defined and discussed (see sec. 1.2.3). The treatment of group learning and the
time basis for group action and group learning in Chapters III and IV, however, hasbeen
entirely for the noise-free case. In this chapter we will discuss some of the effects of
noise on the task-oriented group, and present data from one series of experiments (No. 3
and No. 6) in which the communication was noisy. It should be emphasized at the outset
that very little experimental work has been done in this area; most experiments which
have been performed in the laboratory on task-oriented groups have either been noise-
free or have been considered noise-free in the sense that the presence of noise was ig-
nored in the treatment of the results. Some experiments using very small groups and
oral communication, with measured amounts of acoustic noise, have been performed by
Heise and Miller (29), but little work has been done with other forms of noise. This lack
of experimental work can be attributed to the difficulties encountered in any attempt to
measure or control noise in an experimental situation, particularly in the most interest-
ing areas of semantic and coding noise. The experiments reported in this chapter are
subject to these difficulties, since they were originally conceived with an entirely differ-
ent purpose in mind, and the discussion inthis chapter is basedonly on the datarecorded,
which does not include any attempt to measure the noise involved.

In spite of the difficulties inherent in experimental work in this area, it remains an
extremely important field for theoretical and experimental development, since, in general,
all real situations are more or less noisy. The ''noise-free' case is a fiction, whichreal
situations may approximate more or less closely. No application of theoretical or ex-
perimental results to practical situations can succeed unless the effects of noise are taken
into account in some way, and we feel that definitive experiments in this field are badly
needed.

The experimental results reported in this chapter involve the intuitively clear con-
cept of '"errors' on the part of the group. The question of errors has not been previously
discussed, and the experimental problems described in previous chapters have generally
been too simple for errors to arise. When the conditions under which the group operates
includes some provision for ending the experiment, i.e. if a certain feedback from the

environment is specified as a ''stop" signal, and the experiment ends whenever this signal
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is received, this provision can be regarded as part of the boundary conditions under which
the group operates. Such conditions allow the possibility that the experiment will end
before the group has succeeded in fulfilling all the requirements of the task. In such a
case, the ending of the experiment without full completion of the task is calledan 'error.'
Obviously, certain real situations include this possibility; very often the task includes
some sort of time limit, and the group may be unable to meet all the conditions of the
task before the expiration of this time,

This chapter presents some consideration of various forms of noise and their effects
on the performance of task-oriented groups — in particular, the relation of the noisepres-

ent and the network used to the relative frequency of errors.

2. Noisy Communication in the Task-Oriented Group

2.1. Definitions

In section 1.2.3 the concepts of communication, symbol contents, symbol designs, and
message were discussed, and information was treated in terms of mathematical informa-
tion theory. Certain deficiencies in the theory in regard to the study of task-oriented
groups were pointed out, and the application of these concepts to symbol contents and the
semantic communication problem as well as some of the problems concerning psycho-
logical information theory were discussed. Keeping in mind the limitations on these ex-
tensions of mathematical information theory, we will discuss here the treatment of se-
mantic or symbol-content noise in a restricted case. In general, we will use the terms
""'symbol" or '""channel' noise to refer to noise which affects the symbol designs during
the transmission process, and the terms ''semantic" or "coding' noise to refer touncer-
tainty arising in the assignment of symbol content to a particular symbol design. We have
assumed that the reader is familiar with conventional information theory and will make

free use of its definitions and theorems.

2.2. Channel Noise

We will first consider the effects of channel noise in a task-oriented group. Fol-
lowing Shannon, we shall describe channel noise by a set of conditional probabilities.
In the case of a discrete noisy channel with a finite number of states, we have a set

of probabilities Pq i(ﬁ,j), which are the conditional probabilities that if the channelis
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in state a and symbol i is transmitted, symbol j will be received and the channel will
be left in state B. Thus, a and B range over all possible states for the noisy channel,
i over all possible transmitted symbols, and j over all possible received symbols. This
most general case results in great complexity when any attempt is made to handle atask-
oriented group with noise present; simplifying assumptions will usually be needed in any
practical example. For example, we may assume that the set of symbols S from which
the transmitted messages are drawn, and the set S' which the receiver may get, are
equal; thus, in the expression above, i and j range over the same set of symbols. We
may alsoassume that the channel has a single stateinregardtonoise. This second assump-
tionis the more limiting one, but in many cases of interestthis assumptionis not unrealistic.
One further assumption is appropriate in most cases: In general, the characteristics of
the noise depend on the channel so that the probabilities mentioned above will be different
for each link of the communication network. Consequently, we actually have Pl;jl as the
probability of receiving symbol j when symbol i is sent over the link from node k to
node 1;this probability will be a function of both k and 1. While many examples of inter-
est exist, particularly in applied situations in which an important characteristic of the
noise is its variation from link to link, considerable simplicityinthis discussionis gained
by assuming Pli{jl invariant over all links in the network, so that we may write the same
probability Pij for any link., Even with this simplifying assumption the introduction of
noise in a network greatly complicates the problem of theoretical consideration.

Under these assumptions suppose there is a series of nodes forming a chain of length
n; that is, nodes 1,2,3,. . ., n, connected so that node 1 has a symmetric link to 2, and
n-1 has one ton, and node k is linked symimetrically to nodes k-1 and k+1. Assume that
the Pij are given. If state Ei refers to the receipt of symbol i by a node, thenthetrans-
mission of a message from node 1 to node n forms a Markov chain. The Pij are then
the transition probal()}i;ities from Ei 1o Ej' We know from existing work on Markovchains
that if we define Pij as the probability of symbol i being received as symbol j after

passing over k links, we have

(k) _ (k-1)
Py o * Z P P
'

and

p M.p

ij ij

where p ranges over S.
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For finite Markov chains algebraic methods may be used to determine values for

Pij(n) (81). In all situations of interest to us at present, the networks are sufficiently

small so that the algebraic manipulations needed to calculate the Pij(n) are simple enough
to be useful. By combining this calculation with the methods previously mentioned for
calculating decision probabilities for nodes which are branch points, we may be able to
extend this Markov analysis to arbitrary networks. This requires that the entire process
be Markov, in which case it is essentially the problem ofthe random walk in n dimensions.

It should be mentioned, however, that it is possible for the transmission of symbols
and the decisions to be Markov processes, but for the flow of information through the net
to be a non-Markov process and hence not susceptible to ordinary methods of analysis.

The essential feature of this discussion is that channel noise in itself, as applied to
noisy networks under certain simplifying assumptions, does no more than complicate an
already complex problem. The features of the noisy channel which are of interest to us
in the network can be treated by known methods.

One further question of interest in the noisy case is that of channel capacity. In the
noise-free case, it was assumed that the time needed for the group to circulate a given
amount of information, or for a node to transmit a given amount, was dependent only on
the transfer functions of the individuals. In the noisy case we have the additional limita-
tion of channel capacity. If we know the entropies of the sources for a given link, and the
characteristics of the noise in terms of the conditional entropies of the corresponding

receivers, then the channel capacity is given by
C = Max H(y) - Hx(y) .

Also, we know that for any source with entropy H £ C, there exists a coding system
which will transmit information at an average rate of H bits per sec with an arbitrarily
small frequency of errors. This is not true for any source with entropy H > C, sochan-
nel capacity poses an additional limitation on a network. Also, in the noisy case, if re-
dundancy is used to attain this maximum possible rate, a delay must generally be intro-
duced at the receiver since a large sample of the transmitted signal must be received
before judgment is made as to which signals have been distorted. In many cases, both
of these factors may be neglected, but examples will exist where one or both play an
important part in the behavior of the network.

Very little experimental or theoretical work has been done to investigate the effects

of different networks in a problem involving channel noise. The mostrelevant contribution
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has been by Heise and Miller (29). Until more has been done in this line, the general
considerations given in this section will point out the complexities introduced by channel
noise, which is the simplest form of noise to treat from the experimental or theoretical

point of view.

2.3. Coding Noise

Semantic or coding noise, as defined above, may in certain cases be treated in exact-
ly the same manner as channel noise. If we can define a finite set R of physicalobjects,
to which all semantic symbol contents refer (possibly two sets, R and R', for the source
and receiver) and also define sets S and S' of semantic symbols (words, phrases, and
the like) used by the source and receiver to code these referents, we may consider the
two coding processes and the transmission channel as one channel and calculate noise
either on the basis of conditional entropies or sets of probabilities that a given referent,
chosen by the source, will be received correctly by the receiver. In this case the con-
siderations of the previous section apply in toto and will not be repeated here.

In the general case of coding noise, however, other factors are present. As in the
case of channel noise, coding noise maybe combated by the use of redundant transmissions,
but this redundancy will be in the form of alternate coding schemes for a given referent.
In any practical use of these considerations, important differences between the channel
and coding noise case become evident. In the case of channel noise, a given use of re-
dundancy in transmissions has the same effect regardless of circumstances, but with
semantic noise the peculiarities of the individual subject become important, i.e. differ-
ences in vocabulary, and so forth. The relative position in the network also plays apart.
In subsequent sections we present experimental evidence for differences between net-
works in the presence of semantic noise. Many of the differences pointed out do not exist
in the noise-free case, and it is doubtful whether they would all be present in the channel
noise case. For instance, the effective use of redundancy seems to depend, among other
things, on the presence of a two-way link. This effect has no parallel in the channel noise
case and serves as an example of the factors which are important in the semantic noise
problem and which are as yet imperfectly understood.

Difficulties in experimentation and measurement in the semantic noise case have al-
ready been pointed out in section I.2.3. These difficulties stem largely from the absence
of any absolute measuring methods, and the experiments reported here are subject to

these difficulties.
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2.4. General Considerations

In section 1.2.3 certain properties of what was termed "psychological information
theory' were pointed out: questions of the unexpectedness of a message, its estimated
truth value, and the like, These considerations form a further extension of the concepts
of information theory as it is currently known, and very little work has been done in this
area as yet. In general we may say that as the concepts of information theory are ex-
tended from the problems of channel noise to coding noiseand ultimately to "'psychological
information theory," the theoretical treatment comes closer and closer to being a theory
of "information,' as we intuitively understand the term. However, at the same time,
progress in this direction introduces increasing theoretical complexity, increases greatly
the number of relevant factors, and places increasing reliance upon psychological meas-
ures of the individual. Experimentally, we can deal with channel noise, and we have begun
to deal with coding noise, although much is lacking in the theoretical side of this treat-
ment. Any further progress toward a theory of communication and information which
takes into account all the factors awaits considerable theoretical and experimental work.
In particular, since communication and the exchange of information is essentially a group
phenomenon, a theoretically full treatment of these problems must be an integral part of
a theory of behavior of groups and must be developed as such. The work reported here

is only a small beginning in this direction.

3. Experimental Results

3.1. Experimental Conditions

InExperiments 3 and 6, each subject was given at the start of each trial a box of
colored marbles. They were informed that there was-one color common to all boxes and
that their task was to determine this color. Communication was by written messages,
with no restrictions on content. The subjects were also informed that after they had sig-
nalled their answer to the experimenter (by dropping the desired marble down a tube),
they were free to change this answer by dropping another marble at any time until the
trial ended, and that the trial would end as soon as all five subjects had dropped a marble,
whether it was the correct one or not.

During the first 15 trials, the marbles used were of plain, solid colors, easy to dis-

tinguish and to describe. On the 16th trial and thereafter, the marbles used were of cloudy,
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mottled, indistinct colors. They were still easy to distinguish if they could be directly
compared, but it was very difficult to describe each one clearly and unambiguously.
The experiment consisted of two phases separated by about 18 months. The second
phase (Experiment 6) was run in an attempt to answer some of the questions raised in
the analysis of the first (Experiment 3). Four groups of five subjects were run on each
of three networks in Experiment 3, and four groups were run on three networks by this
laboratory in Experiment 6, two of the networks coinciding with two of those originally

used. The networks used are listed in Table V.1.

Table V.1
No. of
Experiment Code Groups Network Run By Remarks
C 4 Circle (0) S. L. Smith M.I.T. subjects
3 Ch 4 Chain (0) S. L. Smith M.I.T. subjects
S 4 Star S. L. Smith M.I.T. subjects
C!' 4 Circle (0) G.N.L. Military subjects
6 SF 4 Star G.N.L. Military subjects
Additional feedback
P 4 Pinwheel G.N.L. Military subjects

The second series of three networks were run under conditions approximating as
closely as possible those used in the original experiments, but various differences in
procedure may have occurred in spite of these precautions. In addition, the second series
were run with military subjects from Fort Devens and the First Naval District Receiving
Station, rather than with volunteer M.I.T. undergraduates, and this difference undoubtedly
influenced the results. A specific change occurred in the star groups SF in that at the
end of each trial the experimenter gave the group feedback as to the errors made.
This variation will be discussed in detail in section V.6.

It should be emphasized that considering the fairly large variation between different
groups on the same network, the four groups run on each network are not nearly enough
to establish any sort of reliability in the data. Consequently, the experimental results
presented are extremely tentative in nature; the internal inconsistencies in the experi-
ments and the small size of the samples prevent any high degree of confidence in the

results. It is the hope of this laboratory to run a similar experiment in the very near
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future, using revised techniques and far larger samples. At present, the data presented
here, although extremely tentative, serve as an interesting illustration of the effects

involved and give a good indication of the problems and complexities in this area.

3.2. Noise in the Experiment

The noise occurring in this experiment was present only in the last 15 trials. Two
different subjects would often use different terms to describe a given marble, and the
same word would often be applied by different subjects to two or three different marbles.
Such confusion or ambiguity is an example of the noise discussed in previous sections as
encoding-decoding noise.

This method of producing noise experimentally has several drawbacks. In the first
place, it is almost impossible to control, since the amount of confusion varies greatly
from subject to subject, group to group, and even from marble to marble. In the second
place, it is impossible to measure the amount of noise present at any time, even approxi-
mately, since we cannot estimate the entropy of any subject, or the "average' subject, as
a semantic -information source, and we are even less able to determine the semantic
entropy of the source as seen by the receiver.

It is evident from observation of the experimental groups that the amount of noise
actually present was dependent on the 1.Q., vocabulary, and previous experience of the
subject, and particularly on his color vision. All subjects were tested for color vision
using the standard Ishihara plates, and those who were color-blind were eliminated, but
this procedure by no means guarantees uniform color vision among those who passedthe
test. In addition, subsequent examination of the messages sent gives the impressionthat
several of the subjects used, although they passed the test and hence were not in that sense
color-blind, had definitely peculiar color reactions. As a result of these difficulties, it
is almost impossible to give any exact treatment of the noise in this experiment from a
quantitative point of view, but the most casual study of the data leaves no doubt that

semantic noise was present.

3.3. Evaluation of Errors

All of the errors occurring in this experiment consisted of one or more of the subjects
having registered the wrong marble at the end of the trial. If a subject had dropped the
wrong marble and had corrected it before the trial ended, the correction was accepted as

a correct answer.
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In Experiment 3, the errors were originally counted on all-or-none basis; that is, if
everyone in the group had dropped the correct marble, the trial was scored 'correct,"
but if one or more subjects had dropped an uncorrected wrong marble, the trial was scored

"error."

For the purposes of this chapter we considered that a more sensitive tabulation
would be more suitable, and for each trial we scored the group 0, 1, 2, 3, 4, or 5 depend-
ing on the number of subjects who had dropped an uncorrected wrong marble at the end
of the trial. Among other considerations, some networks tended to produce either all
correct or all wrong answers on any one trial, whereas others had a higher proportion

of trials with one or two subjects having incorrect answers. The original "all-or-none"
scoring method tended to equate these two effects, whereas the second method brought out
the differences between the networks.

In tabulating errors, the data for each group were lumped in blocks of three trials:
16, 17, 18; 19, 20, 21; and so forth., If we assumed that the characteristics of the group
with regard to errors changed relatively slowly as the trials progressed, this method
tended to eliminate some of the fluctuations which were caused by the small sample size.

The errors made by the groups were also tabulated as a function of the marble which
was held in common, with the figures lumped for all groups run. This plot showed acon-
siderable variation in the number of errors, depending on the marble which was the cor-
rect answer. Apparently, some marbles were more difficult to describe than others. The
tabulation of errors has been corrected for this effect in order to bring all blocks oftrials
to the same basis. Figure V.l presents the uncorrected tabulations, and Figs. V.2 and
V.3 give the corrected relations. Figure V.4 presents theerror data scored onthe original
"all correct or all wrong' basis.

Since there remained a large amount of fluctuation in the error figures from one block
of trials to the next, it was considered advisable to test the significance of any differences
which occurred. Using Students ''t"' distribution, we may establish 95-percent confidence
limits. These are plotted in Fig. V.5. In this figure the rectangles indicate the areas
within which the true population mean is expected to lie in 95 percent of the cases, sothat
those groups whose rectangles do not overlap for a given trial block are significantly
different at better than the 5-percent significance level with regard to the error count.

When the corrected error plot is examined with these confidence levels in mind, sev-
eral points emerge as significant: (a) None of the networks show any appreciable differ-
ences during the first fifteen relatively noise-free trials, in which the solid color marbles

were used (see Fig. V.1). The differences among these networks are evident only in the
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Corrected error count and significance limits, Experiments 3 and 6.

presence of noise. (b) Both circle groups, C and C', are significantly more accurate

than all other groups in the last six trials. (This is true for the original circles, in which
M.LT. subjects were used, for the last nine trials,) (c) The pinwheel is more subjectto
error in the first few trials than all other groups. (d) The star with additional feedback

is more accurate than the original star or chain groups in the last few trials.

3.4. Conclusions and Hypotheses

From the results mentioned above and from the general trend of the data (even at
points where this difference is not significant), we may develop a feeling for the differ-
ences among networks. The circle groups seem to learn to reduce their errors more
quickly, and after ten to twelve trials they are much more accurate thanany other group.

We have assumed that the difference between the first and second groups of circles
(C and C') arises from differences between the subjects used. Therefore, it should be
noted that the P and SF groups should properly be compared with the C' groups rather
than the C groups, because of this subject difference.

The original star and chain groups show relatively little learning and remain at a
high level of errors throughout. The pinwheel groups start with an extremely higherror
count, and while they display some learning, they are only able to bring their accuracy

up to approximately that of the star and chain groups. The star with additional feedback
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has about the same error count as the star and chain in the first ten trials, but in the last
few trials it learns to be considerably more accurate than the original star, chain, and
pinwheel,

In the next few sections of this chapter we will examine the mechanisms of these effects
and will discuss some of the questions raised by the differences noted above. Amongthese
questions are the following: Why do the circle groups display learning and reduce their
errors more effectively than any of the others? Why do the star, the chain, and the pin-
wheel continue at a high error level, and why does the star with feedback show learning
toward the end of the experiment? Why is the pinwheel unable to reduce its errors fur-
ther, in spite of the initial period of learning displayed? While we cannot provide com-
plete answers to these questions, we have been able to gain some insight into the effects
of noise on these networks and the mechanisms used to reduce it, and we have givensome
very tentative explanations for the differences observedbetween networks. Morethanthis
is impossible with the existing data, but the available material points to experiments

involving noise as one of the most interesting for future research.

4, Measurement of Noise

4.1. Conventional Measurements

It would obviously be convenient to discuss and measure the noise in these experi-
ments in terms of existing information theory concepts. Unfortunately, several diffi-
culties arise when this attempt is made. The noise in this experiment is not of the symbol
or channel type, but is noise of the second kind, that is, semantic or coding noise. While
information theory measures can still be applied to this type of noise, such application
requires knowledge of several facts unavailable in the present case. We are unable to
define the semantic symbol space S, and more important, we have no way of observing
the transformations from the set of referents R to the messages formed from units of S.
Nor can we observe the corresponding transformations from the symbol units of the re-
ceived messages to the receiver's referent set R'. Consequently, although we may dis-
cuss the noise in this experiment in terms of information theory in a qualitative manner,
we are unable to arrive at the usual quantitative measures. Nevertheless, such a meas-
ure is needed, and it may be achieved in an approximate manner by considering more

closely the characteristics of the noise occurring in the experiment.

-142-




4.2. "Ambiguity'' as a Measure of Noise

Since noise is fundamentally a question of uncertainty, any single-valued measure of
the amount qf uncertainty in an experiment can be expected to be monotonically related
to the noise. In Experiment 3, the uncertainty arose largely from different subjects ap-
plying the same name to different marbles, with the result that comparing the names used
by each man to describe the marbles he had of that trial led to several possible answers
or, in some cases, to a single incorrect answer. Specifically, during the first fifteen
trials, in which solid color marbles were used, the groups generally learned to refer to
each marble by a single color name, such as "red," "black,' and the like. After the six-
teenth trial, even though the marbles used were mottled and streaked, often with more
than one color or with shades of one color, this behavior persisted. The subjects usually

" "aqua" or in some cases such

attempted to use such one-word color names as "'amber,
compound words as 'light-green' or "blue-green" to describe the marbles, and the noise
in the experiment lay in the coding-decoding process of translating a name in terms of
the actual marble to which it referred.

Thus, it is reasonable to attempt to measure the uncertainty by counting the number
of marbles referred to by a given name in any one trial, and averaging this number over
all the names used. Since some names were used far more frequently than others, a
weighted average was indicated.

The following procedure was used to calculate this uncertainty, which will be referred
to as "ambiguity," or marbles per name, and denoted by the letter A, For each trial, the
message cards sent by any subject were examined, and in all cases in which a definite
assignment of names to marbles could be made on the basis of the experimenter'sknowl-
edge of the marbles in each man's box, this information was tabulated. In most cases,
this method resulted in considering only those cards sent which listed the marbles inthe
subject's box for that trial. From the results for all five subjects for that trial, lists of
names which had been used to describe each marble were compiled, with the frequency
of occurrence of each. From these lists a master score sheet was prepared for each
group, which listed the number of marbles referred to by each name at any given trial,
the number of names used to describe each marble, and their relative frequency of occur-
rence. The weighted average of the number of marbles referred to by a single name was
calculated, and this was assigned as the value of A for that group at that trial.  This
procedure was followed for trials 16 to 30, for all the groups run. From this master

sheet a corrected value of A was prepared as follows: If a given name was used to

-143-




describe two different marbles on trials i-1 and i+l, but specific evidence for this con-
fusion could not be found during trial i, we assumed that it was present on the strength
of its occurrence before and after trial i. Fromthese corrected values of A, anaverage
value was computed for each network during each block of three trials. Theseresults are

presented in Fig. V.6.
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Average ambiguity of messages, Experiments 3 and 6.

An examination of this graph shows that the values of A are roughly those which would
be expected if A is considered as a measure of noise and if the errors made in the ex-
periments are considered due to the noise. The chain, the star, and the pinwheel groups
start at a high level of A and show very little reduction as trials progress, This be-
havior is in conformity with their error scores. The circle groups (C and C') show a
steady reduction of ambiguity, with C somewhat ahead of C'. This agrees again with
their error results. The star with additional feedback has a high value of ambiguity dur-
ing the first nine or ten trials, but shows a reduction in the last five or six trials, again
in agreement with its reduction of the error score toward the end of the experiment. From
these results we may conclude that the observed values of A serve as a useful measure
ofnoise on the basis that changesin the values of A have roughly the effect thatchangesin
the noise level would be expected to produce.

It is possible to relate A to the semantic noise level calculated on the basis of source
and receiver entropies if a few very questionable assumptions are made. Suppose that
the source in all cases uses a code of six symbols to refer to the six marbles, and that
each of these six symbols occur equiprobably; then we may calculate the entropy of the

source
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H(x) = - Z p(i) log,p(1)

1

if p(i) = 1/6 for all i, H(x) = 2.59 bits per symbol. Note that this assumption, while per-
haps fairly close to the actual case during the first fifteen trials, is definitely not accu-
rate during the last fifteen trials; the subjects use many more than six symbols to refer
to the six marbles, and they do not occur with equal probability. Nevertheless, we may
gain some insight into the relationship of A to the semantic noise as defined by entropy
if we proceed on this basis.

Since the observed average value for A lies between 1.0 and 2.0, let us assume that
all the ambiguity for each received semantic symbol lies in a choice between two possible
referents. If a symbol which encodes a is received and A is given, the probability that

the referent o will be chosen is

1
Py () = 5(3-A)

which is a linear function. Hence, when A =1.0, Pn(u) =1,0and A = 2.0, Pa(u) =1/2, If

B is the other possible referent, then

P (B) =1 - P (a)

This is definitely an inaccurate assumption, since the marble chosen, when the symbol
a is received, is often picked from a set of three or four marbles. However, sincethese
secondary choices are not distributed in an even fashion over the six marbles, it does
not seem possible to improve these assumptions on the basis of the existing data.

The average conditional entropy of the receiver, when the source message isknown,

is defined as

H(3) = =) P(.j) log, P,()

i,j
=- ) Py P log, P ()
i j

where Pi(j) is the probability of picking marble j when symbol i is sent. We have

assumed
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P(i) =%

P.(Q) == (3-A)

it T3

P.Gj.) =1-P.()==(A-1)
i) AR T

Using these values in the expression above, we get

6
1 3 1 3 1 1 1
Hx(y) Z 3 [(5 - -2—A) log2 (§ - EA) + E(A-l) IOgZE(A-I{I
i=1

1
1-3 [(3-A) log, (3-A) + (A-1) logz(A-l)]

In Fig. V.7, Hx(y) is plotted as a function of A from 1.0 to 2.0. The relationship between
these two measures is not linear and would probably be even less linear if calculated on
the basis of a knowledge of the actual number of referents among which each choice was
made,
The calculation given above, of course, does

not constitute a measured value of Hx(y); the values
20— of A are measured, but Hx(y) was calculated from
A only after making several assumptions about the
coding processes which cannot be verified from the
data. Future experiments will be designed to make

direct measurement of H(x), Hx(y) and H(y) possible.

AMBIGUITY "A"
I
I

4.3 Errors as a Function of Noise

It is possible by a few calculations based on

0 | I | ! | some simplifying assumptions, to confirm the hy-
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BITS / SYMBOL pothesis that the errors in this experiment aredi-

Fig. V.7 recﬂy related to the noise level as measured by

R . - A. Consider a node which has received sufficient
Ambiguity vs semantic noise,
Hx(y) . messages toreachadecisiononananswer. Uncer-

taintyinthe coding processrenders this decision
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ambiguous. We will assume that the final choice is between two marbles and that the
probability of picking the correct one is P = 1/2(3-A), as above. The answer must be
sent to the other members of the group, and we assume they each have probability P of
picking the right marble when sent a description of it. So the first man to get the answer
has probability P of dropping the right marble, and the others have probability Pz. The
expected percentage error will then be

100

P.E. = [4(1 -PH+a - P)]

This predicted error is plotted against ambiguity as the solid line in Fig. V.8. If we
assume, on the other hand, that each member of
the group drops a marble independently of the
others, with probability P of getting the right
one, then the expected value of the percentage

80— error would be 100(1 - P). This is plotted as

. the dashed line in Fig. V.8. The plotted points in
N this figure are the observed percentage error for
ol

various ambiguity values. These points fall along

the solid curve (the first assumption) quite closely,

P.E. PER GENT ERRORS (CORRECTED)

20
I considering that it was not a fitted curve. This
° 1 12 14 ' 8 20 supports the assumption that errors are afunction
a4 of ambiguity.
Fig. v.8 Using the same values of P, we may predict
Theoretical and observed percent the error curve for all-or-none scoring. Under
error vs an;b;il,;itg, Experiments the first assumption, the expected number of all-

or-none errors is

P.E.' = 100 [1 - P(P2)4]

which is plotted against the ambiguity A as the dashed line in Fig. V.9. On the other
hand, if we assume all members act independently with probability P of a right answer,

the expected number of all-or-none errors is

5
P.E.'=100(1 - P )
which is plotted as the solid curve in Fig. V.9. In this case the observed values, plotted

as points, lie along the solid curve representing the independence assumption. These
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results show that neither of these two simple assumptions give a completely accurate
picture of the group process. Considering the crudeness of the assumptions, this isnot
surprising. The occurrence of errors as a function of the ambiguity is clear, however.
We may then conclude, on the basis of
the analysis of these data at this point, that
100— we have established the nature of the noise
in this experiment, that the errors in the

80’-—

60—

performance of the group are caused by
this noise, and that a knowledge of the
amount of noise present, in terms of A,
40— enables one to predictin a straightforward
manner the average percentage of errors

20—

made by the group. The fact that the as-

P.E! PER CENT ERRORS "ALL - OR - NONE" COUNT

sumptions under which this prediction was

actually made were not very accurate is not
AMBIGUITY A

too relevant; the fit obtained by the pre-

Fig. V.9
'8 dicted curves shows that the assumptions

Theoretical and observed group errors

.. . t t it-
vs ambiguity, Experiments 3 and 6. are about as accurate as the error data

self, which is all we need ask of the pre-
diction at this point. New experiments, with better data, will permit more complex and
accurate assumptions about the relationship between the noise and the percentage of errors.
For the present, we can only establish in general terms the role played by noise in this

experiment.

5. Redundancy and the Reduction of Noise
5.1. The Use of Redundancy in the Coding Process

Since certain networks manage to achieve a reduction in ambiguity, and hence in their
error level, one is led to inquire about the mechanism of this effect. This problem may
also be approached by an application of the concepts of information theory, extended tofit
this case.

In the conventional case of signals transmitted along a channel, accurate transmission
in the presence of noise is achieved at the expense of the transmission rate by the intro-
duction of redundancy; that is, repetition of a given message or the use of symbols in the

original which are predictable fromothers. We shall examine the present case for a similar
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mechanism. Of course, since the noise here is semantic noise, we shall have to look
for semantic redundancy, i.e. duplications in the coding scheme. In our case, these du-
plications, if they exist, will take the form of synonyms or alternate descriptions of a
given marble, We shall show that these duplications do exist and that they are used to
overcome the noise.

Since the noise present in this experiment is semantic noise and is measured by am-
biguity A, the use of redundancy to overcome the noise and insure accurate transmission
of the message will also effect a reduction or elimination of the apparent ambiguity or
uncertainty present. This will be reflected in a decrease in the measured value of A, In
a sense, this case is not an exact parallel to the usual case of channel noise, since with
channel noise the introduction of redundancy in the coding does not remove the noise, but
merely removes the errors caused by the noise. Hence, in the symbol or channel noise
case, the redundancy must be maintained at a high level in order to insure accuracy. This
is not the case with semantic or coding noise, for once the uncertainty in the coding opera-
tions has been eliminated, the redundancy may then be reduced without impairing the ac-
curacy of the transmissions. However, semantic noise may also be thought of as having
the constant character of channel noise by considering the effect of memory. Once the
redundant coding has been used, and the errors reduced thereby, we may assume that the
receiver remembers the synonyms used for a given symbol in the redundant code, and
that in future messages these synonyms or alternate codes are understood even though
not physically present. If the effect of this understood or remembered redundancy is as-
sumed, we may describe the system as one with constant noise but with the effect of the

noise overcome by the redundant coding, just as in the channel noise case.

5.2. Measurement of Redundancy

To detect semantic redundancy, we use a method analogous to that previously used to
calculate ambiguity. In any one group and at any one trial, six names are sufficient to
identify the six marbles. By tabuléting from the message cards the names used by the
group to describe a given marble, we obtained a record of synonyms or alternate codings
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