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ABSTRACT

Since 1973 forecasts of future energy consumption in the United States have

fallen dramatically. Forecasts of consumption in 1985 made as recently as

1974 were too high by nearly a factor of two. Forecasts for consumption in

2000 have fallen by a similar ratio over the same period. This paper tests

the ability of adaptive expectations and univariate trend extrapolation to

explain the history of energy demand forecasts. A behavioral model of the

trend estimation and forecasting process is developed. Energy demand is

forecast by extrapolation of the expected growth rate of consumption. The

expected growth rate is determined by the past rate of growth of actual

energy consumption. The model explicitly considers delays in the

measurement of energy consumption and in individual and organizational

response to changes in the apparent trend. The model is shown to fit the

forecast data well for three different forecast horizons. Univariate trend

extrapolation and adaptive expectations thus account well for significant

evolution of energy demand forecasts during a major period of change in

energy consumption. The results are reconciled with the fact that many of

the forecasts in the sample were based on complex models and were plainly

not simple extrapolations, and implications for behavioral modeling of

expectation formation are discussed.
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MODELING THE FORMATION OF EXPECTATIONS;

THE HISTORY OF ENERGY DEMAND FORECASTS

Since 1973 estimates of future energy consumption in the United States

have fallen dramatically (exhibit 1). Before the first oil crisis

forecasters expected energy consumption to grow as it had been during the

1950s and '60s. Forecasts made as recently as 1974 projected consumption

in 1985 to be near 130 quadrillion BTUs (quads). Actual energy consumption

in 1985 was less than 74 quads. In like fashion, forecasts of consumption

in 2000 have fallen by nearly a factor of two since 1973. Higher energy

prices coupled with lower rates of economic growth are usually cited as

causes of the lower forecasts. Nevertheless, the large errors and

seemingly reactive nature of the forecasts lead to questions about the

nature and rationality of the forecasting methods used.

The evolution of the forecasts also raises questions about how

expectation formation should be portrayed in energy, macroeconomic and

other policy-oriented models. Behavioral simulation models are one

important class of such models. Behavioral simulation models usually

portray expectations as adaptive learning processes. Growth expectations

are often modeled as a distributed lag of past rates of growth, and

forecasts are simple extrapolations. Trend extrapolation, however, seems

naive to many observers, who point out that energy demand forecasts, for

example, are often the result of extensive studies involving detailed,

multidisciplinary analysis, analysis which takes a wide range of factors

into account. How can adaptive expectations and trend extrapolation be

used to proxy such complex and subtle decisionmaking?
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The model described here tests the ability of adaptive expectations

and trend extrapolation to explain the history of energy demand forecasts.

Energy demand is forecast by an exponential extrapolation of the expected

growth rate of energy consumption. The expected rate of consumption growth

is determined by the past rate of growth of actual energy consumption.

Delays in measuring and reacting to changes in energy consumption are

explicity represented.

The model is used to generate forecasts for 1980, 1985, and 2000 using

the historical values of energy consumption from 1947 onward. The

simulated forecasts are shown to fit the actual forecasts quite well.

Univariate trend extrapolation thus accounts for significant evolution of

energy demand forecasts over a period of more than a decade during which

energy consumption underwent major shifts. This is reconciled with the

fact that many forecasts are based on complex models and are plainly not

univariate trend extrapolations. Finally, implications for use of

extrapolative expectations in behavioral simulation models are discussed.

The Model

Expectations are usually modeled in behavioral simulation as adaptive

learning processes (e.g. Holt et al. I960, Forrester 1961, Cyert and March

1963, Mass 1975, Lyneis 1980, Meadows 1970, Low 1974, Sterman and

Richardson 1985). Adaptive expectations are common in economic models as

well, for example Irving Fisher's (1930) theory of interest rates,

Nerlove's (1958) cobweb model (Arrow and Nerlove 1958), Friedman's (1957)

permanent income hypothesis, Ando and Modigliani's (1963) lifecycle

hypothesis of saving, Eckstein's (1981) theory of "core inflation" as well

as a host of macroeconometric and other forecasting models.^ For example,

a firm's expectation of the order rate for its product is often assumed to



D-3800 3

adjust over time to the actual order stream. Often, the adjustment is

assumed to be first-order information smoothing, though more complex

patterns of adjustment may be chosen (e.g. Weymar 1968). Adaptive

expectations are often a good representation of the actual forecasting or

expectation formation process in organizations and single exponential

smoothing has been shown (in the M-competition) to outperform many other

forcasting methods over longer time horizons (Makridakis et al. 1982,

Makridakis et al. 1984, Carbone and Makridakis 1985). However, sometimes

expectations respond not just to the past history of the variable but to

its past growth rate as well. For example, the past values and past trend

in orders may be used to estimate the likely future order rate.

The formation of growth expectations in behavioral simulation and

system dynamics is often modeled with the TREND function (Richmond 1977,

Richardson and Pugh 1981). The TREND function is a set of differential

equations which represent the formation of expectations about the current

rate of growth in a given variable. TREND is not just a clever way to

calculate the rate of growth of a variable, however. As the input to

decision rules in models, TREND represents a behavioral theory of how

people form expectations, and takes into account the time required for

people to collect and analyze data, and to react to changes in the growth

rate.

The causal structure of the TREND function is given in exhibit 2. The

TREND function can be thought of as an information processing scheme which

takes as input a variable (including its past values) and produces as

output a judgement of the current trend in the input variable:

TREND^=f(lNPUT^) T: (t^,t). (l)
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The expected growth rate TREND is a state variable whose derivative is:

(d/dt)TREND^=(lTREND^-TREND^)/TPT (2)

where

TREND = expected trend in input variable (1 /years)

ITREND = indicated trend in input variable (l /years)

TPT = time to perceive trend (years)

INPUT = input variable (input units).

The value of TREND is the expected rate of change in the input

variable, expressed as a fraction of the input variable per time unit. It

is assumed that the trend perceived and acted upon by decisionmakers

adjusts adaptively to the trend indicated by the most recently available

data, given by ITREND. First-order information smoothing is assumed.

The lag in the adjustment of the perceived trend to the indicated

trend represents the time required for a change in the indicated trend to

be recognized, accepted, and acted upon by decisionmakers. The delay in

the acceptance of a new trend as an operational input is often significant.

The adjustment lag depends not only on the time required for individual

decisionmakers to recognize the change, but on organizational inertia: a

new trend may have to become part of the "conventional wisdom" before some

are willing to act.

ITREND^=[(PPC^-RC^)/RC^]/THRC (3)

where

ITREND = indicated trend (l /years)

PPC = perceived present condition (input units)

RC = reference condition (input units)

THRC = time horizon for reference condition (years).

The indicated trend is given by the difference between the perceived

present condition of the input and its average value over some historical

horizon (the reference condition), expressed as a fraction of the reference

condition and annualized by the time horizon between the perceived present

condition and the reference condition.
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(d/dt)PPC^= (INPUT^-PPC^)/TPPC (4)

where

PPC = perceived present condition of input (input units)

INPUT = input to trend function (input units)

TPPC = time to perceive present condition (years).

The indicated trend depends not on the true value of the input

variable but on the perceived present condition, which is an exponential

smooth of the raw input. The smoothing represents two factors. First,

assessing current status takes time. There is an inevitable delay in

measuring the input variable and disseminating information about its recent

values. In the case of corporate and aggregate economic data, the data

collection and reporting lag may range from several weeks to a year. In

the case of demographic, resource, or environmental data, the delays may be

even longer. Second, even if the raw data were available immediately,

smoothing is desirable to filter out the high frequency noise in the raw

values that does not reflect the underlying trend. Such noise arises from

both the processes themselves, from measurement error, and from subsequent

revisions in the reported data.

The reference condition RC is also a state variable:

(d/dt)RC^=(PPC^-RC^)/THRC. (5)

The reference condition of the input reflects the value of the input at

some time in the past. The time horizon for the reference condition THRC

determines the relevant historical period considered in the forecasting

process. Equivalently, 1/THRC is the rate at which old information is

discounted. The reference condition is computed by smoothing the perceived

present condition. Note that the reference condition is based on the

perceived present condition rather than the input variable itself. Raw

values of the input are not actually available to decisionmakers—in most
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cases, only averaged data, reported after a significant collection and

reporting delay, are available.

The judgement of the trend in a variable is often subjective, and

strongly conditioned by experience. Thus, the time horizon for

establishing the reference condition may reflect the memory and experience

of individual decisionmakers. For example, managers whose professional

experience was conditioned by the high-growth decades of the 1950s and 60s

may continue to forecast high growth despite the low actual growth rates of

the 1970s and 80s. Their judgement may reflect a belief that the past "few

years" are an aberration and the economy will soon resume the growth rate

that characterized the past. In such a case, perceived trends may change

only as fast as management turns over and is replaced.

The TREND function provides a behavioral representation of trend

estimation. The formulation assumes expectations about the underlying

trend in a variable are based upon the historical rate of growth in the

variable itself. Further, people are assumed to react slowly to changes in

the trend, adapting over time to new conditions as new information becomes

available, as they come to believe that a new growth rate is lasting enough

to warrant its use in decisions, and as the organization adjusts to the new

conditions. The model takes the time required to collect, analyze, and

report the value of the input variable into account. It permits the

modeler to specify the historical time horizon relevant to the

determination of the trend. The model is intendedly quite simple and does

not include the possibility that the parameters may vary endogenously as

conditions change. For example the parameters may plausibly be argued to

vary with the dispersion of the input series. While changes in the

forecasting process can be modeled (e.g. Caskey 1985), the purpose of the
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analysis below is to examine the extent to which the simpler fixed

parameter model can explain the major shifts in energy demand forecasts.

Behavior of the TREND function

To be a reasonable model of growth expectation formation, TREND should

produce, in the steady state, an accurate estimate of the growth rate in

the input variable. That is, if

INPUT =INPUT *exp(g*(t-t^)) (6)

then

lira TREND = g.

t->«»

The proof relies on the fact that the steady-state response of a

first-order exponential smoothing process to exponential growth is

exponential growth at the same rate as the input. But in the steady state,

the smoothed variable lags behind the input by a constant fraction of the

smoothed value. To prove this fact, one must solve the differential

equation for a first-order smoothing process:

(dy/dt) = y' = (x-y)/AT (7)

where x = x exp(g(t-t )), x and t are initial values, g = growth rate and
O '^^o^ o o o

AT = the adjustment time of the smoothing process. The solution of

equation (?) can be found in any introductory differential equations text.

The result of interest is that in the steady state, the fractional rate of

change in y,

y'/y = g. (8)

But since y' = (x-y)/AT, the fractional steady state error between x and y

is

(x-y)/y = gAT (9)

or

y = x/(l+gAT). (9')
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The steady state error is proportional to both the growth rate of the input

and the average lag between input and output. The solution can be verified

by substitution in the differential equation.

In the TREND function, PPC is a smooth of INPUT, so in the steady

state, PPC will be growing exponentially at rate g. Since RC is a smooth

of PPC, it will also be growing at the fractional rate of g per time unit.

Therefore, g=RC'/RC. But

RC = (PPC-RC)/THRC (10)

so

g = [(PPC-RC)/THRC]/RC = ITREND. (11)

Since TREND is a smooth of ITREND, TREND = ITREND = g in the steady state.

Thus, in the steady state, TREND yields an unbiased estimate of the

exponential growth rate in the input variable.

During transients, of course, TREND will differ from the true growth

rate of the input. To illustrate the transient response of the TREND

function, exhibit 3 shows the adjustment of the expected trend to an

exponentially growing input for various values of the three parameters TPT,

TPPC, and THRC. In the example the input grows at 5 percent/year, starting

from a stationary equilibrium. The true growth rate thus follows a step

input from to 5 percent. In all cases the response of TREND is s-shaped.

The expected trend smoothly approaches the true trend from below, without

overshoot. The parameters TPT, TPPC, and THRC control the mean and shape

of the distributed lag response of TREND to a change in the input's growth

ra te

.

Modeling Energy Demand Forecasts

The TREND function provides the expectation or judgement of the growth rate

in the input variable at the current moment in time. To produce a forecast
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of the input's value at some point in the future one must assume some

degree of persistence. For example, one might assume that the current

fractional growth rate in the input will continue throughout the forecast

horizon. Alternatively, one might assume that the rate gradually

approaches some more fundamental reference, that growth will be linear

rather than exponential, or that the variable itself asymptotically

approaches some limit.

The forecasting process used here assumes continued exponential growth

in primary energy consumption at the currently perceived rate:

FC(FY)^ = PPC^*(l+TREND^*TPPC)*exp[TREND^*(FY-t)] (12)

where

FC(FY)= Forecast Consumption in Forecast Year (Quads/year)
FY = Forecast Year (year)

PPC = Perceived Present Condition (consumption) (Quads/year)
TREND = Expected Trend in Consumption (1 /years)
TPPC = Time to Perceive Present Condition (years).

Note that equation (12) assumes forecasters recognize that it takes time to

perceive the input and also that the input will have grown during the

interval. They are assumed to compensate by adjusting consumption for

growth at the currently perceived rate between the time it was measured and

the present.

Note also that equation (12) produces an accurate forecast of the

input when the input is exponential growth. Assuming INPUT grows at rate g,

INPUT^ = INPUT^*exp(g*(FY-t)). (13)

By equation (9' ),

INPUT_|_ = PPC^*(l+g*TTPC). (14)

Substituting equation (14) for INPUT,

INPUTpY = PPC^*(l+g*TPPC)*exp(g*(FY-t)). (15)

Since TREND = g in the steady state, the right hand side of (15) is

precisely the expression for FC(FY) .
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Parameter Estimation

The proposed model involves only three parameters: TPT, TPPC, and

THRC. In addition the initial growth rate of energy consumption must be

specified. In all cases, the simulations begin in 1947 with an assumed

initial growth rate of 2%/year. Given the parameter values reported

below, the simulated forecasts are virtually independent of the initial

growth rate by the late 1950s, when the actual forecast data begin.

Note that all parameters yield the same result in the steady state.

Thus to estimate the model the actual growth rate of the input variable

must vary significantly. Fortunately, the energy consumption and forecast

data span a period which includes major changes in patterns of energy use,

first accelerating up to 1973 and rapidly decelerating thereafter.

The model is nonlinear, and the parameters were estimated with a

multivariate hillclimbing program. The mean absolute error (MAE) between

the actual and simulated forecasts was chosen as the criterion of fit to be

minimized in estimating the parameters:

1985

MAE=MAE(TPT,TPPC,THRC)=(1/N) ^ / ^
|HFC(FY)^ ^-FC(FY)^j (16)

t=1947 i

where

N = total forecasts available for forecast horizon FY

HFC(FY)= historical forecasts for forecast horizon FY (quads/year)
FC(FY) = simulated forecasts for forecast horizon FY (quads/year)

i = index of forecasts HFC (FY) made in year t

To guard against the possibility of finding only local minima, the

hillclimbing procedure was run from a variety of initial parameter values-

Exhibit 4 presents the optimal parameter estimates for each forecast

horizon. Note that because there are often several different forecasts for

each year, the minimum possible error is not zero. The MAE is compared
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against the mean absolute deviation of the historical forecasts. The mean

absolute deviation (MAD) is computed exactly as in equation 16 but

replacing the simulated forecast with the median of the historical

forecasts for each year. Since the median minimizes absolute deviation,

the MAD of the historical forecasts represents the best possible fit and is

the lower bound on the MAEs reported in the exhibit.

The optimal parameters for 1980 and 1985 produce MAEs quite close to

the lower bound. As a percentage of the mean historical forecasts, the

increase in MAE over the MAD is just 5 and 2 percent for 1980 and 1985,

respectively. Exhibits 5, 6 and 7 compare the simulated and actual

forecasts for each forecast horizon, using the optimal parameters. The

simulated forecasts for 1980 are somewhat low before 1965 but are a good

fit after that date. Likewise the simulated forecasts for 1985 are an

excellent fit.

However, exhibits 4 and 7 show the optimal parameters for the year

2000 forecasts, particularly TPT and TPPC, to be implausibly short. The

short delays in assessing current consumption and reacting to changes in

the growth rate mean the simulated forecast is far too volatile, swinging

wildly in response to business cycle fluctuations in energy consumption.

Further, the simulated forecast is biased upward, reaching a peak of over

250 quads in 1969. Setting the parameters to the optimal values for 1985

results in the forecasts shown in exhibit 8. Here the extreme volatility

of the forecasts is reduced, but the forecasts are consistently too high,

reaching a peak of 225 quads in 1971 and producing an MAE of 33 quads,

double the mean absolute deviation of the historical forecasts.

The overestimation of the year 2000 forecasts is curious in light of

the fact that the 1985 forecasts are unbiased. The forecasting procedure
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in equation 12 presumes a continuation of exponential growth at the

currently perceived rate throughout the forecast horizon. For forecasts of

consumption over shorter horizons such as 1980 and 1985 the assumption of

uniform exponential growth is clearly more likely to be valid than for

forecasts over an additional 15 years. Two interpretations can be offered.

First, it may be that the forecasters, through complex reasoning and

application of economic theory, recognized that continued exponential

growth at historical rates was unlikely over such an extended time frame

and adjusted the assumed growth rate downward, particularly in the later

years. An alternative interpretation in terms of behavioral decision

theory would suggest a conservative bias introduced as exponential growth

carries energy consumption progressively farther from its current level.

Conservatisms in judgement and forecasting, particularly in

forecasting exponential growth, are well known and amply documented

elsewhere (see Armstrong 1985, Hogarth 1980, Edwards 1968, Phillips and

Edwards 1966, Wagenaar and Timmers 1979, Tversky and Kahneman 1974).

To correct for the obvious bias in the simulated year 2000 forecasts,

equation 12 was modified to assume a linear rather than exponential

extrapolation of current energy consumption growth:

FC(FY)^=PPC^*(l+TREND^*TPPC)*[l+TREND^*(FY-t)]. (12')

The linear extrapolation does not necessarily mean forecasters believe

energy growth to be a linear process. A more likely interpretation is

simply that they expect the fractional rate of growth of consumption to

decline in the future, resulting in a roughly linear path. The optimal

parameters for the revised model are also presented in exhibit 4- The

linear model generates parameters which are similar to those for the

shorter forecast horizons. The MAE is 19.9 quads, an increase over the MAD
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of 3 percent of the mean forecast. Exhibit 9 shows the revised model

virtually eliminates the bias and captures the decline in the forecasts

quite well.

Are forecasters also conservative for the nearer horizons of 1980 and

1985? The answer seems to be no: estimating the linear model for 1980 and

1985 yields MAEs of 9.1 and 8.0 quads, respectively, substantially higher

than the MAEs of the exponential model for these horizons. While the

estimated parameters of the linear model are not unreasonable, the linear

projections underestimate the actual forecasts much more than the

exponential model, suggesting the conservatism appears only for the more

distant forecast horizons.

Sensitivity of the MAE to parameter variations

Consider the 1980 and 1985 exponential forecasts and the 2000 linear

forecast. The estimated parameters are all between one and four years.

The estimated values do not seem unreasonable given the transient response

of the TREND function (exhibit 3) and the delays in measuring, analyzing,

and reporting energy consumption data and forecasts. Examination of the

optimal parameters shows no consistent pattern across forecast horizons for

any of the parameters. But how precise are the parameter estimates?

Equivalently, how sensitive is the MAE to variations in the values of the

parameters? Inspection of the actual forecasts shows there is a large

variance among forecasts made in a given year as well as across years.

Intuition suggests the dispersion of forecasts within individual years will

reduce the precision with which the parameters can be estimated.

In fact the MAE is quite insensitive to rather large variations in the

parameters. Exhibit 10 shows the MAE as a function of variations in each

parameter around its estimated value (holding the other parameters
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constant). The error is increased only slightly as each parameter ranges

from one-tenth to twice its estimated value. For example, doubling the

estimated value of TPPC for 1980 would increase the MAE by about 5 percent.

Only for the 1985 forecasts does the error rise substantially as the

parameters vary. This is not surprising since the 1985 forecasts have a

smaller within-year variance than the 1980 or 2000 forecasts. The error

analysis shows that the hypersurface formed by the function

MAE (TPT, TPPC, THRC) is rather like a bowl with a very flat bottom-

variations in the parameters produce little change in the MAE over a wide

range

.

The insensitivity of the MAE to variations in the parameters indicates

that the differences in optimal parameters across forecast horizons are not

significant. The insignificance does not arise because the model fails to

explain the historical forecasts. On the contrary, the model explains the

forecasts nearly as well as the median of the forecasts for each year. But

the large spread among forecasts made in each year precludes strong

inferences about the relative magnitudes of the parameters for different

forecast horizons.

Interpreting the Results

The results demonstrate that univariate trend extrapolation of past

growth in energy consumption can explain the history of energy demand

forecasts for three distinct forecast horizons. The estimated parameters

are consistent with known lags in the reporting of data and reasonable

delays in changing perceptions of energy growth rates. The results show

that adaptive trend estimation is an adequate model of the actual

forecasting process, at least for such long-term forecasts as used here.
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Do the results imply that energy demand forecasts are actually made by

trend extrapolation or only that they can be mimicked by trend

extrapolation? As noted above, forecasts of energy consumption have been

made with a wide range of techniques and models. Many of these models are

quite complex and are plainly not univariate trend extrapolations. Yet,

regardless of the level of sophistication, each model relies upon exogenous

variables or parameters, and for some of these there will be no strong

theory to guide the forecaster in estimating their future values. To

illustrate, the univariate model used here could be improved by using a

model that determines energy consumption in terms of more fundamental

economic forces. Two such models are:

ln(CONS^)=ln(EGR^)+ln(GNP^) (17)

ln(C0NS^)=a^+a2ln(GNP^)+a,ln(P^) (18)

where

CONS = energy consumption (quads/year),
EGR = energy/GNP ratio (quads/$),
GNP = real GNP ($/year),

P = average real energy price ($/BTU),

a^,a2»a,= regression coefficients.

The model in (17) posits energy demand as a function of GNP and the

energy/GNP ratio. The model in (18) allows the energy/GNP ratio to vary

with energy prices by defining energy consumption in terms of standard

income and price elasticities. Such models are easily estimated and

utilize more economic theory than the simple univariate trend forecast used

in the simulations. But one must still forecast the values of the

exogenous variables. Trend extrapolation is likely to be a dominant input

to the forecasts of those exogenous variables. Elaborating the model of

energy consumption does not remove the need for trend extrapolation at some

level. Indeed, many of the studies whose forecasts are reported in exhibit

1 relied on large, complex, and costly models. Yet, in all these models
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there are exogenous variables which must be forecast. Whether these are

GNP and the energy/GNP ratio, population growth and assumed energy per

capita, or population growth, assumed future technical progress, and

assumed future energy prices, there is always at least one such exogenous

variable for which theory provides no strong guidance. Such inputs serve

as free parameters which can be used to manipulate the forecasts to be

consistent with the conventional wisdom of the time. The correspondence of

the simulated and actual forecasts suggests trend extrapolation acts as a

strong constraint or anchor upon choice of these "free parameters".

Conclusion

The nature and rationality of expectations are hotly debated in

economics and management science. Energy demand forecasts provide the

opportunity for direct analysis of expectations. Despite substantial

variance among the forecasts, there are substantial downward trends in the

forecasts after 1973. The results show that adaptive expectations and

trend extrapolation are an adequate model of the energy demand forecasting

process, at least for understanding movements in the forecasts as a whole.

The univariate trend extrapolation model used here provides unbiased

estimates in the steady state and produces results that closely reproduce

actual expectations data during a major transient adjustment period.

The analysis further suggests that for forecasts made between the late

1950s and early 1980s historic growth rates of energy consumption are

extrapolated exponentially to forecast horizons of 1980 and 1985. But for

forecasts made during the same period to the more distant horizon of the

year 2000, the results stongly suggest a substantial conservatism. In

particular, forecasters projected growth that is roughly linear rather than

exponential. Detailed examination of the methodology and behind-the-scenes

reasoning of the individual forecasters would be required to determine if
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the conservatism resulted from explicit calculation of future energy needs,

supplies, and prices or from inadvertent psychological biases.

A useful extension of the present work would be to examine the

evolution of forecasting procedures at a more disaggregate level. While

the model captures the evolution of the forecasts as a whole, the variance

among forecasts for a given year is substantial and remains to be

explained. Exhibit 1 shows that while the year 2000 forecasts of every

organization drop significantly between 1972 and 1983, the relative

rankings are much more stable. Energy companies and industry groups

consistently produce the highest forecasts, environmentalists consistently

produce the lowest. Government agencies tend to fall near the high end.

This phenomenon has not gone unnoticed by the energy forecasters themselves

(Lovins and Lovins 1980, DOE 1983). The stability of the rankings over

time suggests that while vested interest may bias the magnitude of the

forecast above or below the trend, the psychological and organizational

parameters governing the process of extrapolation are common among the

different groups. Such a conclusion is not surprising in view of the fact

that each organization pays careful attention to the forecasts of the

others. Behavioral decision theory suggests awareness of the other

forecasts would tend to anchor the judgements of each forecaster to those

of others (Tversky and Kahneman 1974, Hogarth 1980).

Finally, the results call into question the utility of large, complex

models for forecasting purposes. Complex models may be useful, even

necessary, for policy design and evaluation, for representing and

reconciling alternative viewpoints or for developing theoretical

understanding. But the cost and effort required to use such models for

forecasting has not proven to be commensurate with their forecast accuracy

when compared to far simpler and less expensive methods.
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NOTES

0. The insightful comments of James Hines, Jack Homer, and George

Richardson helped improve on an earlier draft. Becky Waring'

s

technical assistance was instrumental in making the data analysis
possible. All errors remain my responsibility.

1

.

Behavioral simulation models are a class of dynamic models which share

the following characteristics:

(i) A descriptive rather than normative representation of human

decisionmaking behavior. Decisionmaking behavior is portrayed in terms

of the heuristics and routines used by the actors in the system rather
than as the behavior which maximizes utility.

(ii) The limitations of human cognitive capacities and information

processing are accounted for in modeling behavior.

(iii) The availability and quality of information is explicitly treated

including possible bias, distortion, delay, and misinterpretation.

(iv) The physical and institutional structure of the system is

explicit, including organizational design such as task and goal

segmentation, the stock and flow networks that characterize the

physical processes under study, and lags between action and response.

(v) A disequilibrium treatment focussing on the feedback processes

which cause adjustments in the face of various external disturbances is

adopted.

See e.g. Simon 1982, Cyert and March 1963, Nelson and Winter 1982,

Forrester 1961, Morecroft 1983, 1985, Sterman 1985, Sterman and

Richardson 1985.

2. E.g. DOE 1983 and the studies cited in exhibit 1.

3. See e.g. Mincer 1969 and Jacobs and Jones 1980. Adaptive expectations

contrast against rational expectations in which expectations are

assumed to be based on a true model of the system. See Muth 1961 ,

Lucas 1976, Begg 1932. For critiques of rational expectations see

Simon 1979, 1978, Klamer 1983, Shaw 1984 (especially Chapter 10).

4. The model is formulated in continuous time. It is simulated by Euler

integration with a time step dt=.125 years, small enough so integration

error is not significant.

5. The initial values of the perceived present condition and reference

condition of the input are computed so that the TREND function is

initialized in steady-state with respect to an assumed initial growth
rate:
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PPC. = INPUT /(1+TREND *TPPC)
o o o

RC = PPC /(1+TREND *THRC)
o o o

These initial conditions avoid unwanted transients in the adjustment of
TREND to the actual growth of the input.

6. The growth rate of energy consumption between 1930 and 1945
(incorporating both the Great Depression and the war) was 2.1 ^/year
(Schurr and Netschert 19b0, p. 35). The input to the TREND function is
the actual consumption of primary energy in the United States (DOE 1978
and various issues of the DOE Monthly Energy Review ). The actual
forecast data were acquired by digitizing the data shown in exhibit 1

,

using a Macintosh computer with digitizing pad. The digitizing process
introduced some error, but the estimation results suggest these are of
little consequence (see exhibit 10 ).

7. The data and hillclimbing computer program are available from the
author upon request.

8. The estimated parameters for the linear model are:

TPT TPPC THRC MAE MAE(exp. model) MAD

3.4

4.1

1980
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Exhibit la. Source: DOE 1983, p. 7-9.

PROJECTIONS FOR U.S. PRIMARY ENERGY CONSUMPTION FOR
1980 AND 1985 VERSUS REAL PRIMARY ENERGY CONSUMPTION

(Quadrillion Btu per Year)

Projections for 1980

"^'
I960 1965 1960 1965 1970 1975 1980

Year of Publication

140

130-
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Exhibit lb. Source: DOE 1983, p. 7-10.

PROJECTIONS OF U.S. PRIMARY ENERGY CONSUMPTION FOR THE YEAR 2000
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Exhibit 2. Causal Structure of the TREND Function

INPUT
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Exhibit 3: Response of TREND function to exponential growth in input of

556/year. Shovm for various values of the parameters TPPC (Time to Perceive

Present Condition), THRC (Time Horizon for Reference Condition), and TPT (Time

to Perceive Trend).

TPT=1, THRC=5 years.
From left to right:
TPPC=.125, .5, 1, 2, 5.

.05 r

TPPC=1 , THRC=5 years.

From left to right:

TPT=.125, .5, 1, 2, 5.

TPPC=1, TPT=1 year.

From left to right:
THRC=1, 2, 4, 8, 12.
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Exhibit 4

Optimal parameter estimates

Forecast
Horizon

TPT TPPC
(years)

THRC MAE MAD
(Quads)

1980

1985

2.7

1.2

2000 model 1 ° 0.2

2000 model 1 1.2

2000 model 2 ^ 2.0

1.3
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Exhibit 5: Simulated and actual forecasts of US primary energy
consumption in 1980 (Quads/year)

980
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Exhibit 6: Simulated and actual forecasts of US primary energy

consumption in 1985 (Quads/year)
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Exhibit 7: Simulated and actual forecasts of US primary energy

consumption in 2000, exponential model (Quads/year)
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Exhibit 8: Simulated and actual forecasts of US primary energy consumption
in 2000, exponential model with optimal parameters for 1985 (Quads/year)

225
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Exhibit 9: Simulated and actual forecasts of US primary energy
consumption in 2000, linear extrapolation (Quads/year)

1945 1950 1985
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