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Abstract

The paper formulates a set of stochastic models to study the i)roduction and inventory

policies of a firm that considers explicitly the behavior of customers and com])eting firms.

We start with a single firm i)roduction control problem. The ojjtimal jiolicy is solved

explicitly, and the optimal mix between make-to-nrder and make-to-stock operations is

determined with customers characterized by patience levels in a simple newsl)oy-like for-

mula. The model is then extended to a n-firm market game in which firms compete for

orders in the aspect of early delivery. One could think of this setting as an oligopoly racing

market. The analysis shows that competition can breed a demand for produce-to-stock,

just as other economic phenomena such as ecouomi(>s of scale, uncertainty, or seasonality

can induce production to inventory, and that com])etition of this kind increases the buyer's

welfare while decreases the producer's welfare. The pai)er also suggests the analytical and

numerical methods which can compute an e(iuilil)rium of the stocking game.

*This paper was stinmlafed by the prosenf atioii given liy John nolirrt"^ and the related di«r\i'i>iion' during the Production

and Operations Manapemeiil Summer Camp at Stanford University. 1987. I am also indebted to the comments of David Kreps,

Charles Fine and the seminar attendaut<i at MIT and UniversitN- of Iowa.





1. Introduction

Inventories held in the United States exceed one-half trillion dollars in value. Inventory holding

is a prominent economic phenomenon that concerns economists as well as operations mcinagement

academics and practitioners.

The make-to-order versus make-to-inventory question is a fmidamental one in organizing and

controlling production, but the one that has been subject to relatively little formal modeling in

either economics or operations management literatures. One excejjtion is the recent paper by

Milgrom and Roberts (1987) that uses a newsboy-type model to formali7,e the idea that inventories

and information aboTit demand are substitutes for one another in production. Their results suggest

that firms should employ only one of the two strategies: firms either produce for inventory or

produce to order, but not the both.

Many examples support this conclusion, but many others do not. Some firms often shift from

one alternative to the other; other firms constantly emi)Iny a mix of th(- two alternatives. For

example, in a Burger King Restaurant, much of the sandwich and drink production is triggered

by the counter hostess calling in the order to the kitchen during any very slow period of demand.

However, in high-demand time intervals, a finished goods inventory of i>rincii)al binger products is

maintained, and the broiler loading operation responds to the finished burger inventory situation

rather than to the call-in of orders. (See Schmenner (1981)).

In the Burger King case, the production activity is not a newsboy-like, one-shot decision prob-

lem as in the Milgrom and Roberts paper. Therefore, the dynamics of the environment, for example,

variations in demand, may provide incentives for holding inventory even when the imcertainty has

been resolved at the design stage. Uncertainty can arise from many sources. On the demaind side,

both the quantity demanded and the demand timing may be luicertain. Uncertainties also arise

from stochastic variability in the different stages of production. Thus a complete resolution of

micertainties via commujiication of information might not be possible, or could be very expensive.

Li other words, the convexity of survey costs may result in a mixed use of two alternatives. We

conclude that determining optimal use of inventory requires detailed operational analysis as well

as the static design strategy examined by Milgrom and Roberts. Hence, in order to answer the

make-to-order versus make-to-stock cjucstion in many productive organi/.ations, dynamic models

are necessary.

Why do firms make to stock instead making pinely to order? Because of the obvious costs of

holding inventory, we may phrase the question more directly: why hold inventories? The traditional

ecouomic justification for inventories aro decreasing costs or iucreasiiig rettims to scale (the pres-

ence of ordering cost or set-up cost) in procurement and jirodnction, seasonality (the anticipated

variability in requirements or supplies), and uncertainty (the stochastic variability in requirements

or supplies).
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Most invrnfory control policies air obtaiiiff! hy analyzinp; tradeoffs aiMoup the sct-uj) costs

(adjustinout costs), boldini^ costs, aii'i stockoiit or lost sn\c costs (shortage costs) But there are

other reasons besides. If firms ro)ni)i'te on sjjced of delivery, then jirndnrtion lead times may

necessitate holding inventory First, if the j)roductioii lead time is siiffirieiifly long, then the early

realization of sales itself may become a reason to liav( inventory Second, the characteristics of the

customer are iniiiortaiif For example, if customers are im])atient. then holding inventories may

help to reduce the customer waiting time and to increase the number of sales that arc completed.

Finally, the existence and characteristics of competing firms may alsci l)e a decisive factor for the

firms use of inventory. For example, sujipose there are rival firms in a market competing on the

quality of service, particularly, the speed of delivery The firm which can deliver the product the

earliest completes the sale witli a waiting customer. Then holding inventoi7 can be used as a

tactic to facilitate j^romjjt delivery as ojiposed to other measures such as increasing the capacity

(shortening the production lead time). Certainly, these effects occur only when there is lead time

or demand arrival luirertainty lu-cause no matter what the lead time, if we know far enough

in advance what the requirements will be, we can scheduh- deliveries accordingly as long as the

capacity allows. Traditional inventory models lumj) these economic effects of timing uncertainty

into cosf.s of short^gr (see Scarf (19C3)). However, this simplification makes rusts of shortage

the least computable costs among those that concern inventory control. For the reasons mentioned

above, obviously, no one knows how to do it correctly even in a very rough sense without some kind

of model of the economic environment in which the productive organization operates. Therefore,

incorporating the behavior of other agents in the economy is an important task for modeling the

strategic use of inventory.

In this paper, wc work toward a better luiderstanding of economic issues regarding make-to-

order versus make-to-stock, particularly taking into accoiuit th(- chaiacteristics of customers and

comi)etiug firms. We first set up a continuous time, stochastic control modi^l to study the stocking

policy of a single firm, and show that the o])timal mix between mak<--to-order and makc-to-stock

operations can be determined in our setting. In this case, the firm simjily sets an inventory limit

via a newsboy-like formula. The oi)tim?iI inventory limit increases as tin- demand rate is higher, the

average production lead time is longer, the sale's contribvition is larger, and the holding cost is lower.

In the case that the firm can backlog all of its demand, the i)ossil)ility of holding inventory is purely

due to the time value of money. We also study the case in which customers are characterized by

differences in patience and show how increasing imjiatience shifts the firm's oj>timal policy toward

produce-to-stock regime. These comparative statics results are consistent with and illuminate a

variety of observed behavior of productive organizations, for example, the Burger King Restaurant

mentioned above. The nuidel is then extended to an n-firm market game in which firms compete

for orders in the aspect of early delivery, as in an oligopoly racing market. It is noteworthy that



this mode of competition is very common for microchip producers in the semiconductor industry*.

Li that industry, customers often place dupHcate orders with a muuber of suppHers and buy from

the first one that can deliver. Duplicate orders are then cancelled so that only the winner of the

"race" makes a sale.

The analysis shows that competition can induce inventory holding jiist as other economic

reasons like economics of scale, seasonality, or imcertainty. Firms are more likely to hold inven-

tory when the number of competitors increases (competition is intensified). We also discuss the

analytical and numerical methods to solve for the ecjuilibrium in a duopoly racing market. Al-

lowing duplicate orders increases the buyer's welfare and decreases the prodiicers welfare. Hence,

duplicate ordering and induced delivery-time competition may or may not be socially desirable.

2. Formulation of the Model

We consider a firm that produces and sells a homogenen\is good. Demand arrives in a random

fashion. Orders that occur when the products are available in inventory are fulfilled immediately;

others must wait for processing. The firm processes orders on a first-come-first-served basis. The

cumulative input (demand) and output (production) are represented by two increasing non-negative

integer-valued stochastic processes A = {A{t).t > 0} and D = {D(t),t > O}, where A{t) and B{t)

denote the amount of demand and the amount of jiroductiou in the time intei-val [0,<]. Then the

order waiting and inventory level at time t can be represented by

Z(t) = x+ A{t)- D{t), (2.1)

where x is the amount of order waiting at time zero if j > and —x is the amoimt of initial

inventory if i < 0. Similarly, Z{t) is the amount of order waiting at t if it is positive and —Z{t) is

the amovmt of inventory at t if Z(t) < 0. We assume that

A, B are independent Poisson processes with random intensities {nii,t > 0} and {/?/,t > O}.

(2.2)

That is, {A(t) - /pQ,rf.t,t > 0} and {D{t) -
J^ ft, (1)^,1 > 0} are martingales, hi the model, /?,

is the actual production rate at time t which is controllal)le by the firm. The maximum rate that

the firm cam achieve is fi. A feasible operating policy is then defined as a stochastic process ft

{{ftt,i ^ O}) that satisfies the following:

(2.3) ft is left continuous and have right-hand limits,

(2.4) ft is adapted with respect to Z,

(2.5) 0< ft, < fiioT all ( > 0.

*I am indebted to Professor R. Learhman of University of Califoruia at Berkolpy for ronversations on this topic.
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On thr other h'-\iid, cbf\rartori?tir<! of prorc?!' rt rrflcrt? tlic artion of rnstonuTs. For cxaiiii)lc,

if wc assume that Qi — X,t "> 0, i.e., /I i? a Poisson iirorcs? witli ron!>laiit iiitrusity A, then demands

that arrive will wait indrfijiitcjy uo matter what the firiiiV ()i)eratinp i>oliry is. Obviously this is

not realistic for many cases, as we allow customers change their behavior based on the historical

information. The process a must satisfy the conditions:

(2.C) a is left continuous and have right-hand limits,

(2 7) Q is adapted with respect to Z,

(2.8) < a, < A for all t > 0.

Essentially, these conditions assume that customers behave according to the historical informa-

tion and that the maxiiinim deniaml is characterizerl by a constant arrival rate A. For further

mathematical justification of the fomnilatiou. see Dremaiid (1981) and Li (198C).

Note that the monotone increasing assumption of jiroress A imi)lies there is no customer

renege, i.e., a customer can not cancel the order once it places the order with tjie firm. However,

this assumption will lie relieved in Sertioii 5. where renegiu}; is endogeiiized in an equilibrium

model.

To complete our formulation, we Fjierify the cost strueture as follows The contribution of each

order fulfilled is ;> dollars. A i)hysical holding cost of h dollars j)er unit time is incurred for each

iniit of jiroduct held in inventory. Assume that the firm earns interest at rate r > 0, compounded

continuously, on the fluids which are required for production operations. Production is planned

over an infinite time hori7,ou. Given an initial order waiting or inventory of x, the expected firm

profit is

t(j) = E,{r e-''[l(o.^){Z(t))p,lD(t) + l,_«,o)(2(<));"M(0 - hZ{trdt]}, (2.9)
Jo

where E^ denotes the exjjectation conditional on Z(0) = x. ls( ) '^ '"^i' indicator function for set

S. and Z{t)~ = max(0, — Z(()). Note that the firm is making to order when Z > and is making

to stock when Z < 0. Thus, a comjiletion of the jirocessing generates a sale when Z > 0. an

order arrival generates a sale when Z < 0, and neither of them generati^s any sah" when Z = 0. A

realization of processes A. D. and Z is constructed in Figiue 1.

The i)roblem of the firm is to choose a control process /? to maximize the expected profit (2.9)

such that assumption (2.1)-(2.2), and feasibility constraints (2.3)-(2.!i) are satisfied.

S. The Single-Firm Problem

We first consider the case that that customers have no alternative and definitely need the

processing service from the firm, i.e., ni = A, for t > 0. hi the situation like that, make-to-order

business seems quite attractive since backlogged demand is not lost and there is no waiting cost.

However, the firm still could hold inventory as shown later, trathng off the holding cost for a quicker

completion of sales.



The form of tbe optimal policy is rather simjile, namely, a Earner policy. That is, the firm

operates at its full capacity luitil process Z hits a lower barrier —h(h>0) and resumes operation

imtil the inventory level b is depleted by one \init. Under a l^arrier jioliry with parameter 6,

/?, = Ml(-t,oo)(^(«-)),

and we denote the value fimction by t; (x) where the sujjcrscript h will be used only when it is

necessary.

Proposition 3.1. The value function under a harrier policy with parameter h (h > 0) is of the

form

,

jGp^ + '^p, ifx>0;
"^^^ ^\Epl + Fpl + A;, + (A^ + x)^, ifx < 0;

where p = Pi, Pi and P2 are the two roots of the quadratic equation

(3.1)

X + fi + r X + fi + r

with < Pi < 1, p2 > I, for r > 0. More explicitly.

^
r' + VT^^— (3.2)

A + M+r- \/{X + n + r)^ - iXn
P. = -—

, (3.3)

A + M+r + ^/{X + n + ry -iXfi
P2 = -^ , (3.4)

^ _ d(p, p,)^lh - a[P2)x{{n -x){i-p]- r)p-,\r + ;)

a{p,)X{[ti - A)(l -p)- T)p-\p + ?) - d{p, p,)tih

re{b)

X — u , h
^G = E + F-h -{p+ -)

T r

-h\
fi'iPi - P2 )h - A((A - ,t)(l -p)^ r)[a{p,)p-C - a[p2)pl'')[v + ^)

rc(ft)
(3.7)

A - /i h
+ (;'+-),

r r

a(^) = A(l -/).•) + r, rf(/>,/>,) = A(l-/.) + /x(l-^-') + r, t- = l,2, (3.8)

t[h) = a{pi)d(p,p2)p^'' - a{p2)d{p,pi)p:^ . (3.9)

Proof. By the Markov property of process Z under a barrier policy, we can write down the system

of difference equations that the value functions t; should satisfy, i.e.,

v(x) = t;(x + 1) + v{x - 1) + /), for x > 1, (3.10)
X + n+ r A + /i+r A + ^ + r
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v(0)=- v(\)+
^

v{-l). (3.11)
A-f/i+r X + fx + r

X u X]i + xh
v(t) = v(x + 1) + u(j - 1) + — , for - 6 + 1 < z < -1, (3.12)

X Xp-hh
v(-f>) - Y—v(-h + 1) + -^—-. (3.13)

A 4 r A + r

Wr show ouly tbf drrivafioii of cciuatioii (3.12) a? an rx<iiiii)|(\ The rciiiaiiiiup ('(juation? ran he

obtained in a similar fashion. Suppose Z(0) = x and T is the first jtiiiii) time of Z. Under a

barrier pohcy, T is expoiionfia) with parameter A + /i for — /< + 1 < 7 < — 1. If a demand comes

before a comi'letion of prodnrtioii, tlic firm f\ilfils it at time T. pet p fh)]Iars, and the inventory

level decreases by one luiit, i e., Z(T) = j + 1. Otherwise, the firm lias no pain but increases the

inventory by one unit by time T, i.e., Z(T) = x — I. In either case, the firm holds |z| unit of

inventory for T lengtli of time Thus,

v{t) =i<:,l.-'^i,,,,)(Z(r))i,.(T + 1) + £;,le-''"i,,_,,(z(T))lr(T - i)

+ £;,lr-'^i,,+,,(z(r))i,. + £;,[/ r-''dt]zh.
Jo

Equation (3.12) follows by noticing that

^,[e-''"l,,+,,(Z(T))] = XEaI c~"dt].
Jo

EAr-'''U.-i)(Z(T))]^^EAl c-^'dt].

Jo

/^
1 - f"'^ 1

EA e-"dt] = EA 1 = 7——-
Jo r X -i ^t -i- r

where the first two equations come from Lemma 3.5. in Li (198G) taking /(•) = 1(^4.1) () and

/( ) = l(,_i)( ) respectively.

It ran be verified that the general solution of the above differenre etjuation must have the form

of that defined in (3.1) (sec Levy and Lessman (19G1)). The remaining ]5rol)lem is to determine

C?, i?, F usinp the boundary conditions (3.11), (3,13) and the <'(iu;\tion

// A X — u li

G+ -/' = .C; + F+ -;» + ( -)-. (3.14)
r r r r

which follows from the fact that v{0) satisfies both forms in (3.1).

From the proof of the above proposition, we can see that the comptitation of the value functions

vinder a barrier policy requires solving a system of difference equations. This is the standard

technique we will use throvighout the i)aper. The following i)roi)osition shows there is a miique

optimal barrier policy.



Proposition S.2. There exists an opfinia/ hHrricr poliry with the iiivrntary Hmit b* . that is

uniquely determined by the condition

k{h' + l)< '-^, and k(ir) > 4—, (3.15)
p + h/r p + h/r

where

a{piMP2)((X - m)(1 -r) + r)(p-' - f-')

r{(l(Pl)cl(p,P2)(l - Pl)P2 - (l(P2)fi(P^Pl){l - P2)P\]

And k(b) is decresising in b with k(oo) =

k{b) =
, /:,;,: '\

"^'"" '^
> ^ . (3.16)

Proof. Compute the difference

v'ix) - v'-'{x) = (G(h) - G{h - \))p\ = C[k{h) -

where

„ _ ^i^[P). ' - P2^)HPi)'^iP^P2){^ - Pi)Pi - <i(p2)<l(P^Pi)(l - P2)p2 ](/' + h/r)

e(b)e(b-l)

So as a function of b, the vakic function is strictly increasiuR for ft < ft* and strictly decreasing for

b > b* since it can be verified that k is strictly decreasinp; to 7,ero.

I

Note that the ojitinial barrier policy deterininrd above is also oi)timal among all adaj^tcd

policies and that we have actually solved the intensity control i)roblem formulated in the preceding

section (see Li (1984) for a proof). Siuj)risingly. the solution is very simple and is similar to that

of a newsboy problem which fixes a fractile of the demand distribiition equal to a critical ratio (a

function of the overage cost and the underage cost). Here, the firm simply fixes a inventory limit

to balance a decreasing fmiction k and a ratio. To get the economic intuition of formula (3.15),

we can rewrite (3.15) as follows either through a policy impiovement logic as in Chapter 3.3. of Li

(1984) or through direct verification. Let

T{y] = mi{t>0:Z(i) = u}.

e{x,y) = EAe-'''^%

Av{x) = v{x) - v(x + I).

Then, (3.15) is equivalent to

^(-(6 + l),oo)At^(oo) - At;(-(ft + 1)) < 0, and 0(-b. oo)Av(oo) - Av(-b) > 0,

or simply,

Av{-(b + 1)) > 0, and At>(-ft) < 0,

since At;(oo) = 0. Therefore, the firm builds up inventoiy just to the point where marginal profit

equals zero.

Direct observation gives the following comparative statics result.
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Corollary S.l. Tin' optiniHl invrnlory limit h' incrmsrs as }> iiirrrm^m or h dcrrrascs.

In this paprr v/c want to study tlir ratiouair l)rliin(l iiiakc-to-stork and makc-to-ordcr. TLerc-

forr w(- arc niorr intcrcstrd in the conditions undrr wliirli tlir Imiuidary is drawn bptwcou make-

to-ord**r and makc-to-stork.

Proposition 3.3. Tlir firm Imlds inventory if ami only if

h
9(Pi.X,ti.r) > -, (3.17)

P

where

9{p.X.,,.r) = X(l- ^,^'^~/!
). (3.18)

A(l - r) + r

Proof. Usinp the same technique a."! in flie jiroof of Projjosition 3 1, we can compute the value

function? fur the policies of zero inventory and only (^nc unit of inventory. That is, for i > 0,

v°N = -r- ,,,
^\— pI (3.19)

r A(l - /),) + '

Then,

J
/t /i((/i + r)p + h)

V Ix] = ~p
i

r' A(A + r)(l -/),) + (A + /i + r)r'

"'^'^ - ''^'^ = w>^ w, Tin.. -. ^

(9{Pi.y^^r] - -).
A(A + r)(l — ^i) + (A + /i + r)r p

(3.20)

So, v^(x) > v'^{x) if and only if (3.17) holds. We conclude the i)roof hy observing the monotonicity

property of w proved in Proposition 3 1.

('ondifiou (3.17J inii)lies that whether the firm would like to hold inventory or solely make to

order depends on the parameters of the model: the demand rate (A), the processing capacity (//),

the interest rate (r), the holding cost (/i), and the contribution of a sale (/)). In particular,

Corollary 3.2. The firm tends to hold inventory if tlir demand rate. A. is hipher, the processing

capacity, fi is lower, the sale's contribution, p, is lyif^grr. or fiie iii>l(hni^ rost. h. is smaller.

The proof follows from the simi)le lemmas stated below.

Lemma 3.1. Finiction p{X,n,r) is increasing in fi, and drrreasing in A and r, where

n ^- X + ^i+r-^/(\ + ^l + r)^-4XJl
f{X,ti,r) = pi = —

. (3.21)

More explicitly,

dp p(l - p) dp \ - p dp p

dX fip ^ — Xp dfi ^ip ^ — Xp dX HP ^ — Xp



Lemma 3.2. Function g{p. A, /i, r) is increasing in p. A nnd r, nn'J drcrcHsing in fi. More explicitly,

dg Xfir ^3 _ ._ Mf-il - p)

dp (A(l -/.) + r)2' d\ ' (A(l -/)) + r)2'

dg _ A(l - p) dg^ _ A/i(l -
p)

J/l
~ ~A(1 - p) + r' 57 ~

(A(l -/)) + r)2'

Lemma 3.S. Function g{p(X, fi.,r), X, ^,r) is increasing in X and decreasing in /i.

Proof. Usiug the result iu the above two lemmas and the rhain rule of differentiation, we can

calculate



Corollary 3.3. TIip optimal invnitory limit ft* inrrrn^r;^ as X j/iTfasr.; or // <irrrrascs.

Wr omit the proof lirrr since if cou-'^ist.'! only of ."^traiKliffoiwaici cojiipufations.

4. The Single-Firm Problem with Impatient Customers

111 the previous section, wr Inokcd at tlir stockiii;^ i)nlirirs of a firm that can backlog all

uiifiilfillod demand. The customer orders may therefore wait for ])rocessiuR for a long time. In

reality, a custoiiuT who has waited or expects to wait for a Inn^: tinir may want cancel the order,

or docs not place the order in the first jilace. and tnnis to other alternatives. We now look at a

formulation in which customers have limited jiatiencc Siiiiixisc that each customer who comes in

with an order can see the numtx-r of l)ackorders the firm cuiTeufly lias and leaves if the numlier

of orders waiting exceeds certain ])arameter c, (r > 0). If the backing is le.ss than r, the customer

issues the order and waits for j^rocessiug. In other words, the arrival of demand will be turned off

if the order waiting hits an ujijier barrier c. Mathematically, we assume,

a, = Al,_^,,,(Z(f_)).

Here, the parameter c can be viewed as a measurement of the patience of customers. The larger

c is. the longer customers are willing to wait, and the more ])atient they are. As a matter of fact,

the i)roblem we solver! witji jierfert backlogging is a sjiecial case by setting r = CO. Again, we can

prove that the ojitimal policy of the firm with imiiatienf customers is still a barrier policy with

certain jiarametcr h. the o])timaI inventory limit.

Proposition 4.1. Thr value fuiirtion iiiidrr a barr/er foliry with j>nrniiirtrr ft (ft > O) if^ of the

form,

fCp\ + Hrl+'^p, iTt>0;
"(^) ^

\ 17 7 _^ r 7 ^ X ,/A-M^ >/, -f ^ f.
(4.1)

[ Epi + F(>2 + jp + i-;^ + t)~. ifj<0:

where pi hikI p2 are defined in (3.3) and (3.4). and (i . H, E. iukI F are uij/fjiie solution of the

following linear equations,

II X X — II h
, ^

G -^ H + -p = E + F + -p + • -

,

(4.2)
r r r r

Gp[ + Hp'^ = -^(Gp\-' + Hp[-' + ^/O + -^7.. (4.3)
/i + r r /' + r

a + H +-p= (Gpi + Hp2 + -p)
r A + /x + r r

u
,

, X X — 11 h
+ —-^^

(E/^r' + F^j- ' + -;.+ ( ^-1)-). (4.4)
X + fi + r r r r

Ep-' + Fp-' = -^{Ep-'^' + F/>,-*+') + 7^ • -. (4.5)
X ->t r X -It T r

We omit the proof of the proposition which is very similar to that of Projiosition 3.1. Also we

do not list the values of G, H, E, F here to avoid complex exi)ressions. Parallel to the results from

proceeding section, we have

in



Proposition 4.2. There cxistf^ an optimal /larr/rr pnliry with iiivrnfory limit h' , that if^ uniquely

determined by the condition

ki{h' + l,c)< -^, and k,{b\c) > -7^, (4.G)

p + n/r p + h/r

where

j^
„ . ^ a'(Pi)a'(P2){p7' - ^2"')((A - ^)(1 - P2) + r)a4p,)p\ - ((A - m)(1 - Pi) + r)a.(/>2)^^)

'

r(a.(^i)rf(/'2,^i)(l-/'2)/'^^ + «.(/'2)'/(/'i./'2)(l-/'i)/'2^')

(4.7)

where

a.(r,)^Hl-p,) + r, a'{pi) = p(l-p-') + r, (4.8)

and d{pi,pj) is defined in (3.8). And ki{b,c) is decreasing in h with ^1(00, r) = 0.

Proof. Similar to the proof of Proposition 3.2.

I

Corollary 4.1. The opfiina/ inventory huiit h' determined }iy (4.C) is an nonincreasing function

of the patience measure c.

Proof. Denote the denominator of the fractional expression of ki{h.c) in (4.7) by Ci(b,c). We have

ki{b,c)- ki(h.c-l)

^ aAPi)(i*(P2)p\P2{p'[^ - P2^)

ei{b, c)ci(b. c — 1)

• (((A - m)(1 - Pi) + r)d(p2, Pi)(l - P2)p\ + ((A - /i)(l - P2) + r)d(p,,p2)(l - ^i)^)

< 0.

That is, ^1(6,) is decreasing. Condition (4.G) together with the fact that ki{-,c) and ki(b,) are

decreasing implies that b'{c) is decreasing in c.

I

Proposition 4.3. The firm hohis inventory if and only if

g(4>(c),X,ti.r)> -, (4.9)

where function g is defined in (3.18), and

^^^^^P2a.{pM-Pi-AP2)p'2
(4 10)

a*(Pi)p[ - <^'{P2)P2

Proof. Compute the value functions for the policies of zero inventoi-y and only cue unit of inventory.

That is, for any x > 0,

0, . M ((lApl)p[p2 - (i'(p2)p2P^i)W ,.,,.
V (x) = —p , (411)

r a'(p2)n,(pi)p\- n'(pi)n4p2)P2

1, , M (a.(pi)p[pl-(i.{p2)P2p'i)t^{{t^ + r)p + h)
V (x) = -p -—

, (4.12)
r V(c)

11



wlicrc

V'(c) = (X{X + r)(l - P2) + (A -f y/ 4 r)r)n.(p^)p\ - (A(A + r)(l -/>,) + (A + /i + r)r)a.(p2)pl

Thru.

V (x)-v (x) = —
(?('A('-), A,/i,r) ).

V'(c) p

So, v'li) > u°(i) if and only if (4.9) bold?.

I

Lemma 4.1. Fimrtinn <f>{c) is decreasing in c, and

lini <f>{c) = pi

Proof. Simply notire tb^t

a4Pi)<iAr2)p[^'p2^'ip:' -02')'

{(^>(Pi)p'i - n.{p2)P2){'iApi)p\~^ - n.(p2)p'2'

,, X J.I i\ -"vri /"vri//i 1-2 w'l 12 I ^ ,,

^(C) - ^(C - 1) =
, , , , , . ,w , , r-l , , .-1, < 0-

Corollary 4.2. Function g{<i>(r). X, fi.r) is drcrcasing in r. and hence, tlie firm tends to hold

inventory if customers are less patient, that is. c is smaller.

Pronf. Tbe first assertion follows from Lcinina 3.2. and 4 1., and siToiid is a rorollary of Proposition

43

I

With inipaticnt ctistoniers, in addition to the two rffrrts of holding inventory mentioned in

Section 3 (earlier realization of demands and inrnrrenre of lioldinp rost), there is a third effect: a

reduction of lost sales. Hence, facinp; less patient customers, a situation of having more demands

lost in the lonp run, the firm tends to liold more inventory.

What happens to a demand lost to the firm? hi reality, it d(ic,« not arfuaily (lisa])pear; rather,

it goes to other alternatives. One can not precisely capt\ire the cost of lost sales to the firm

without exj)anding the srojje of a siiifrle firm setting to equilibrium models to study the behavior

of customers as well as rival firms,

5. Competitive Stocking

In this section, we extend the single-firm model to a multi-firm market setting and study the

impact of competition on inventory policies. The comi)etition we introdiice here is only on the

12



timely delivery rather than price, product quality, or other apiirct,"? of the market. Our goal is to

show that competition may breed a demand for produce-to-stock.

Assume there are n firms in the market and each has a maximum processing rate fi. We

consider a particular form of competition - order racing, hidustry demand arrives in a Poisson

fashion with intensity A. The demands that occur while the ])roducts arc available in the inventory

of exactly one firm are fulfilled immediately by that firm. If several firms have non-empty inventory,

then each will complete a sale with equal probability. If the product is not immediately available in

any of the firms, then the buyer places the same order with each firm, b\it com])lrtes the sale only

with the firm which finishes the order first. Orders with rest of the firms arc cancelled. Assume

there is no penalty for order cancellation. It is noteworthy that this is a common occurrence in

the semi-conductor industry. Production yields of chips arc very uiiprrdictabie. A great deal of

reprocessing is required and it is often difficult to meet delivery schedules of the buyers who are

primarily the assemblers of electronic equipment. As a result, assembly plants often issue the same

orders to several suppliers and later cancel the orders with the late supi>liers.

We first look for the necessary and sufficient condition under which firms will have inventory

in the equilibrium, or equivalently, the condition under which there is an ecinilibrium in which no

firm holds inventory.

Proposition 5.1. For any t, t = 1, . . . , n, suppose Rniis j. j ^ i. do not held inventory. Then

firm t's best response is an barrier policy with inventory limit b' , thnt is uniquely determined by

the condition
hlr - -. hlr

p + hlr ]i + h/r

where

hb) - "^^i)^(^2)((-^ - /^)(^ - ^") + '•)(^r' - p7^)
(5 2)

r[a(pi)d(r]„,p2)(l - pi)p^2 - (^{Pi^in,,^ Pi){^ - P7)p\\'

_ A + n/i + r - \/{X -f nil + rf - AnX^i
rin = p(X,nfi,r) = —

, (5.3)

And k{h) is decreasing in b with ^(co) = 0.

Proof. Suppose firm t plays a barrier policy with parameter h (h > 0). Then the payoff fimction to

t, Uj's, satisfy the system of equations (3.10) - (3.13) except eciuation (3.10) altered to be

Vi(x) = v[x -f 1) + v(x - 1) + r, for I > 1, (5.4)
A + n/i-fr A-t-n/i + r A-t-n/t + r

Therefore, the solution is of the same form as in (3.1) - (3.9) but p is replaced by rj,, wherever it

appears. The rest of the proof is just a repetition of the proof of Proposition 3.2.

13



Proposition 5.2. Then- rau/mf /» an rqiu/i/inii/ji )/j wiijV/j no iiivrntory j.« lirl<l if Ami only if

h
?(';„. -^ /'.») > -, (5.5)

r

wlirrr thr fitnction g is dcfinri] in (3.18).

Proof. U.<;ing the samr argiiiiKut a.'' m Proposition 3.3. apjaiu witli p iTi)Iarod by fj„ wherever it

ai)pears, we can show th.vt fiiiii t has inrcnfive to drviafr finm zrm inv(iitf)ry arraiigemcut if and

only if (5.5) holds. Tin- asprrtinn of the proj)osition follows dirrrtly

I

We rail the gaming situation fornnilafcd above an Olipojioly Rucini^ Mnrkct. We would like

to compare firms" stocking i>olicy in a raring market with that in a M'uiojioly Market tind that

in a Demand Sharing Market. By Monopoly Market, wr iiiran one firm in the market aloue. By

Proposition 3.3., the monopoly holds inventory if and only if

(?(/.,, A. /i, r) > -. (5.C)

In a Demand Sharing Market, jilacing duplicate orders is somehnw jirohibited and n firms share

the demand in the following fashion. Earh time a donianfl orrurs, the prol)ability for each firm to

get the order is 1/n, whirli is inflependent of the arrival i)rorrss A. The d(Tomj)osition of a Poisson

process implies that the demand stream each firm fares is an Poisson Process with rate A/n whirh

is independent of the others. Thus, earh firm's decision jiroblem is reduced to a single-firm decision

problem with a Poisson demand of rate A/n. The demand sharing firms hold inventory if and only

if

g(r{\/n,^l,r].^/u.^l,r) > -. (5.7)

The Demand Sharing Market represents the situation in which du])lirate order is not allowed,

a customer arrives places an order to a firm on a i)urely random basis without any strategic

consideration, and hence, there is no delivery-time comi)etition at all.

Proposition 5.3.

g(pi,X,fi,r) > g(p{X/n.(i.r).X/n,ii.r). (5.8)

g{p(X/n,^l.r),X/n,^l.r) > g(p(X/{n + 1). ,/. r). A/(m + l).//.r). (5.9)

for n > 2, and g(p{X/n, /i, r), A/n, /i, r) —» a-s n —» oo.

Tijaf is, the firm as a monopo/y is more Ukely to hold inventory than in a demand sharing

multi-firm market and the likeliness of holding inventory decreases as the numlier of firms increases

in a demand sharing market.

Proof. A direct corollary of Lemma 3.3.

I
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Proposition 5.4.

p(r?„,A,/i,r) > (7(/'i,A,/i.r), (5.10)

(/(»/„+,. A, M,r) > 5(f7„,-^. /'•'). (5-11)

for n > 2, and g(nn- -^.M^ r) —> A a.s n —> oo.

Tijaf is, finjis are more likely to have inventory in an oi/fi-o/ui/y racing market than in a

monopoly market and the likeJiness of holding inventory increases as the competition is intensified

(the numlier of firms increases).

Proof. Note that by Lemma 3.1.,

'Jf.+ i
= p{>^,{^^ + IIMi*-) > n,, = /'(A,n/i,r) > p{X.fi,r) = d.

So, the first two assertions in the proposition follows directly from 3.2. The limiting result is easy

to verify.

I

To explain the word "likely"" iisod in the above propositions, we provide the following examples.

Siii)pose the parameters of the model. A, /z, r,p, and /i, are so rhnsen that

h
g(p{X/m,^l,r),X/m,^i.r) = -.

V

Then, by conditions (5.5), (5.C), (5.7) and the aljove propositions, no hiventory is held in any

demand sharing market in which the number of firms is greater than or equal to m, while there is

inventory in any other demand sharing market, in the monopoly market, or in any oligopoly racing

market. Suppose that the parameters are such that

h
9{pi,X,n,r) = -.

7'

Then, no inventory held in any of the demand sharing markets or monr^jioly market, but there is

inventory in any of the oligojtoly racing markets. Suijjiosc that the parameters are such that

^ h
g{t),„,X,ti,r) = -.

r

Then, no inventory held in any demand sharing market, the monopoly market, or any oligopoly

racing market in which the number of firms is less than or etiual to m. but firms hold inventory in

any other ohgopoly racing market which is bigger.

The inventory that occurs in the third example is solely induced l)y comi)etition since a firm

wouldn't have any inventory in a monopoly market or a demand sharing market. The basic conclu-

sion we CEin draw here is that inventory holding can he used as part of a firm's comjietitive strategy.

We call the inventory of this kind, the Competitive Stock, analogous to the common terms safety

stock Jind cycle stock.

To further illustrate competitive stocking, we comiiare the stocking i)olicies with and without

competition when the discoimt rate is small.
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Proposition 5.5. Fit ri/i > A hikI n > 1.

For n(i > X and ri > 2,

Proof By L'liospital's nile,

if /i > A. Till.'; iini)li('s that

liin(7(/)(A/n,/i,r),A/ri,/i,r) = 0. (5.12)
r|0

hmg(n„.X/n,^i.r) = A(l - -). (5.13)

liiii =/x-A, (5.14)
r|o l-/,(A,/i,r) ^ '

lini = fi — A/n, aiifl liiii = nu — A,
rjo 1 - p(X/n,ti.r) r\() 1 - r}„

if n/( > A Therefore,

lini g(p(X/n. fi. r), A/n. /t. r) = liin A 1 5

r\0 rlO \
i

-I-
l-^(A/r.,/i,r)

lim j(r7„, A/n, /i,r) = lim A 1
- ^— = A(l ).

no no \^ A + j3;^y

The assumption that the joint capacity of firms is greater than the deinaud rate, n/i > A, is

necessary to avoid having the oider waiting l>Iow up to infinity in the loiifr run. The jirojjosition

say.<: that in that case, no inventory will l)e lield in a iiiono])(i|y market or a (h'liiand sharing multi-

firm marlcet when the interest rate i? sufficient small, hut tliis is not tlie cas(^ in an oligoiioly racing

market hi the presence of competition, the firms alway.s have incentive to hold inventory no matter

how little discounting there is as long as A(l — 1/n) > h/]>.

Finally, we ol)serve that customers do have incentive to i.'^suc iiiultiplc orders instead of sjjlitting

their orders in a demand sharing market. Assume that customers are l)etter off by spending less

time from order to its completion. Also assume no inveutoiy held in hoth oligojioly racing and

demand sharing cases, i.e., condition, p('Jn. A, /i, r) < h/]i. holds Then, ai)i)lication of the simple

fj\ieueing formula implies that the average time a customer waits in an oligo])oly racing market is

strictly less than that in a demand sharing market, that is

1 1 n - 1

w" - w = = < 0.
nu — X /x — A/n n/i — A

for tifi > A, and n > 2, where W and W are average waiting times in an oligopoly racing market

and in a demand sharing market respectively. From the social welfare point of view, allowing

duplicate orders increases the buyer's welfare.
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However, the increase in the buyer's welfare is achieved hy scarifying the jirodiicer's welfare.

To see this, we again assume no inventory holding is ojjtimal in both oligopoly racing and demand

sharing cases and let v" and v' be the expected profits of a firm in a o!igoi>oly racing market and

in a demand sharing market. That is,

^"{x) = -p- — r^^^^ ^7— ^(^' "Z^-'-))'-
r A(l - p{X,n^i.r)) + r

v'(x) = -p- — — r—— /'(A/n, /i, r))',
r A(l - p(X/n,fi,r)) + r

where the function p is defined in (3.21). And

v'(x)-v''(x)

((p{X,nn,ry - p(X/n.fi,rY)
X{1 - p(X,nfi,r)) + r

XpiXIn, II, rV
+ \T^^V^^^^^^'^r{Kn^l,r) - p{X/n,^i,r))) >

A(l - p(X/n,n)) + r

since

p{X,nn,r) - p{X/n,fi,r)

X + nfi + r — \/(X + nfi + r)^ — 4riA/i A + n/t + nr — \/(X + n/j + nr)"^ — 4nA/i
~

2A 2A

(n — l)r(/)(A, n/i, r) + p{X/n, fi,r))
> 0,

>/(A + nfi-h nry - 4nA/i + x/(XT"n^rT7)2^^^'4nA//

for n > 2. In the case that there are inventories in the eqnilil)rium of an oligopoly racing market

(remember that there is no inventoiy held in a demand sharing market when the interest rate is

small), the holding costs are the further losses to the prod\icer"s welfare.

In summary, allowing duplicate ordering increases the buyer's welfare and decreases the pro-

ducer's welfare. From a policy-making point of view, a more careful study of the situation (the

preferences of buyers and producers, the parameters of the market, etc.) is needed in order to

decide whether duplicate orders shoiild be allowed or not. Sometimes, a cancellation fee may be

appropriate as a measure to deter duplicate orders or as a welfare transfer mechanism.

In the remainder of the section, we shall discuss briefly how to obtain a solution to a duopoly

racing game. We restrict the strategies of the players to be the barrier jiolicies. Note that the

best response to a barrier policy is a barrier policy if firms obsei-ve their own inventory level

instantaneously but not the other firms' inventory level. Supjjose firm t employs a barrier policy

with 6,-, t = 1,2, in a two-player game. The payoffs to firm 1, denoted by Vj, satisfy the following

equations. Note that the states are the number of orders waiting if Z > 0, or the inventory levels

of both firms if there is no order waiting. If there are orders waiting, then firms race for the order,

and whoever generates an output first gets the first order in line. Thus.

'''('') =
, ^ o\ "^li^ + 1) + ttt4-*''(' " ^) + TTT-r-^'' (^-^^^
A + 2/i-l-r A-f-2/x + r X + 2fi-^ r
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for 2 > 1 where z is the uuniher of order waifinp. If there i? no order waitinp, theu firms are

operating in the make-to-?tock regime, aud Ui(i,j/) is the payoff to finu 1 if its own inventory level

is —2 aiul the rival? niventory level is —y for i < 0, j/ < or 7 < 0, (/ < 0. Th\is,

t'i(0)= i'i(l)+- ^ (ri(-l,0) + .;j(0.-l)), (G.IC)

"'(^'V) =
, ^. ^ t'i(n.t/+l) + TTV-— ("i(-i.v) + «'i(n,i/ - i)). (517)
A + 2/i + r A + 2/i + r

for -62 < 1/ < 0,

t,,(n. -62) =- rjfn. -/,2 + 1) + T

—

t;,(-l, -/.2). (5.18)
A + /i4-r \ ->r n -^ r

A
»'»(^'0) =T fi(^+ 1.0)

A + 2/i + r

u Af) + ih
+

, ^, ^ (t^i(^ - 1.") + .'il^. -1)) + .^^ ^ , (5.19)
A + 2/1 + r A + 2/i + r

for -61 < J < 0,

fi{-''i.O)=- t;,(-6i + 1,0)+ t-i(-/M,-l)+ ~ —, (5.20)
A + /i + r A + /; + r A + // + r

A/2
•^il^;.!/) =-; (fil^ + l,y) + t;,(x,}/ + I))

A + 2// + r

M A;»/2 + xh
+ —^^(".(x - 1, J/) + .•i(:r, V - D) + TV^—-. (5.21)

A + 2// + r A + 2/i + r

for -61 < z < 0, -62 < y < 0,

A/2
t^ii-'-i.v) =T ("i(-^ + l.jy) + t.,(-ft,,y + 1))

A + /i + r

i'i(-''i. V - 1) +
A + /z + r A + /i + r

for -^2 < 1/ < 0-

A/2
v,(a:. -^2) =T (fi(^ + 1- -''2) + "1(3-. -''2 + 1))

A + /i + r

(5.22)

(5.23)
u Af)/2 + j/i

A + /i + r A + yi + r

for -fti < X < 0,

A/2 A7)/2 - f>,/i
, ,

t^i(-fci,-/'2) = -^(i'i(-6i + l,-i2) + "i(-'M.''2-f 1))+ -^ - (5-24)
A + r A + r

In order to get the value functions for each player, we have to solve a second order, two variable

difference equation on an rectangle with specified boundary conditions (see Fig\ire 2.). The general

solution for (5.15) is simple,

uj(2) = An + -p,
r
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where
X + 2^l + r - y/(X + 2/i + r)2 - 8A/i

'
=

n '

and >4 is a constant to determine. The general solution to (5.21) is

Jr r r r

where r and ^ satisfy the following relations,

A + 2M + r=-(r + + M(^"' + r').

and B's are parameters to determine.

Theoretically, one may pick up proper base {ti,T2,. . .} and determine the constants by the

boiuidary conditions (5.1G) - (5.20) and (5.22) - (5.24). Nnmerically, system of difference equations

of this kind can be solved by two-color nniltigrid method (Causs-Seidel) very efficiently (see Kuo

(1987)). After the payoffs to each player are obtained, searching for an equilibrium is routine (see

Lemke and Howson (1964)). We do not intend to discuss in dejjth the equilibria of the stocking

game here. More technical readers may find the Apj)endix interesting.

6. Conclusion

In this paper, we model formally the role of inventory in the competition of timing. It has

long been recognized that imcertainty justifies safety stock, but not much has been done to exjiand

the scope of inventory models to include the interaction between a productive organization and

other agents in the economy. With lead time uncertainty, we iflentify three important factors

in the decision on make-to-ordcr and make-to-stock: discoimting, customer characteristics and

competition. Though the Poisson assumptions may not fit exactly in many real-life situations, the

qualitative results obtained should prevail. We also show that allowing duplicate orders increase

the buyer's surplus while decreases the producer's surplus. Thus, otir analysis provides a basis

to study the welfare and policy implications mider the competition of this kind. The possible

extension of the work would be to include price competition as well. In that case, we conjecture

that firms would use pricing to mitigate the inventory effect induced by delivery-time competition.

Our model also provides a framework to further study the other strategic interaction among buyers

Eind suppliers, for example, the dynamic selection of suppliers, bribing for an early service, etc.
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Appendix

Alternate Stocking and a Folk Theorem in the Stocking Game

WV yliall look at a nioclificd vcrsiou of a duviioly raring t^niiir, uaiiicly, ultcrnfitc stocking iu

tbi? .occtiou. In the sotting of the altrniHtr stocking g^iitr. wlirurvor tbrrc i? uo order waiting,

only one firm is allowed to make to stf)ck. and the opi>oifiuiity of storking i? given to the firms

alternately. To make the game symmetric, wc assign ecjual proliahility for each player to be the

starter of stocking. Denote by v](x) the payoff to player » if Z{t) = j and player t can hold

inventory the first time Z = and t', (x) that if j)layer t ran hold inventory the second time Z = 0.

Assnmc that player t adopts a barrier policy with jiarameter /',, t = 1,2.

Proposition A.l. The value functions under barrier policies with j)nrnnieters l>, (l>, > 0) t = 1,2,

arc,

''•^^^ "
I EAh,.h,)p: + F,{hi,b^)pl + ^;. + (^ + x)'j. ,fx < 0;

^^^^

''^''''~
\E2(h,.b,)r',+F2{f>,.h,)pl i{x<(V. ^^'^

for i = 1,2, anJ j ^ t. whr^rr- r; = ^(A, 2/i, r), p^ and P2 arr th<^ twf rant^ nf the qtiadratic equation

(3.2).

Ei(bi.b,) = -r^[((A + // + r)h,{b,) - (Ar, + iiP2')h2{b,))ti-

+ a{p2)P2'''(hAf^,)ci-h2(b,)c2)]. (A.3)

F,(b,.b,) = -—L--[((A + M + r)h,{b,) - (Ar, + HP:')h2{bj))n-
9{t>„bj) r

+ a{p,)p:'-(h,(b,)c,-h2(bj)r2)]. (AA)

E2{b,.b,) = "^f'^?/ [/'2(^)o - h,(b,)r2 - (A + ;. + r){p;' - ^7^/-). (A5)
gV'i^bj) r

F2(6.,ft;) = -^%^[/i2(M<-. - h,(b,]r2 - (A + // + r]{p;' - />7')/''-I. {AC)
gibt^bj) »

Gi(6.,6;) = ^2 + ^2

(X + fi-i-r)g(b,.bj)

G2{b,.bj) = E:-\- F, + ^^(;>+ -)
r r

_ (A + /i + r)(^7' - P2')h2{b,)^i''- + /.i(ft.)(/.2(fty)r2 - /»i(ft;>i)

(A + /i + r)g(b,.bj)

+ (P+ -).
r r
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h,{b) = (X + n + r)(a(/.,K* - a(p2)P2''). (A.9)

^2(6) = (Arj + tiP2')a(pi)r-['' - (Af, + tip:')n{p2)p^''

,

(A.IO)

g(bi,b,) = /),(6,>i(ft>) - /i2(ft.)/i2(6y). (A.U)

ci = -[A(A + nn + r)p + (X + n + r)(X - n)h/r]. (^12)
r

C2 = -[A(A + m(2 - r7))r + ((A + /i)(A - ,1] - tir)h/r]. [A.U)
r

Proof. For notatioual simplicity, we ouly calculate the value fiuiction? for firm 1. Similar to the

proof of Propositiou 3.1., we can write dowu the system of difference equations that the value

functions v\ should satisfy, i.e.,

•'i(^) = ,^o\ ^i(^ + 1) + ,JS ^ ''i^^ - 1) + TTT^^'' ^°' ^ ^ 1' (^-^^^
A + 2/i + r A + 2/i + r A + 2/i + r

A + /i + r A + /i + r

.}(-!) = —^^'AO) + Y-^t.}(-2) + -^p^. (A16)
A + /i+r A + /i + r X -\- fi + r

1 A , u 1 Ai» + xh
vlix) = T—

—

-v}(x + 1) + —^vK. - 1) + T^-^. (A17)
A + /x+r A + /t + r A + /i+r

for - fci + 1 < 2 < -2,

A + r A + r

.^(-1) = \ vliO) + / v}(-2). (A19)

^2(2.) = t;J(j + 1) + vl(x - 1). for - ^2 + 1 < z < -2, (A.20)
A + //+r A + /i + r

vl{-b2) = j^/A-f>2 + l)- (^-21)

It can be verified that the general solution of the al)ove difference etiuatious nuist have the form of

that defined in (A.l) and (A. 2). Parameters G,-,^,-,F, are determined liy the boiuidary conditions

(A.15), (A.18), (A. 21) and the relations,

Gi + -p = E2 + F2, (A.22)
r

u X X — (i h
, ,

Gj + -p = ^1 + ^1 + -r +
.

(>l-23)
r r r r

imposed by equations (A. 16) and (A. 19).

I

The following two propositions show that there is a symmetric stationary Nash equilibrium in

the alternate stocking game.
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Proposition A. 2. (livni that firm 2 ,v/o/)fs a Imrrirr j>'<liry with invrutory hinit ^2. the best

response of Bnii 1 is a barrier [lohry witii iiivontory liiiiit ''1(^2) siirli tlint

k(bi + 1,^2) < 0. aiKi k(liy,l,2) > 0, (>4.24)

where

k(f>i'h) =r<i(PiU(P7){Pi - P2){ci - 7(''2)<'2)

- fihp\'p','((h,(h,) - h:(by - D) - 7(ft2)(/«2(''i) - /»2(ti - I)), (^.25)

Proof I'siug the valnr fuiirtinne nbtaincfl in Propositinii A 1 . we have

,2
41.63/ V 'l— l.'ji \ \ ^( j.^i.'ij/ \ l.t'\—it'1 / M

where the positive constant

^ ^ M(Mt_2) + /«2(62))/»l(''2)(^'r' - ^2'')/'r'V2~''

Note that for 6 > 2,

hi{b) - h2(h) = a{ri)d(rj,P2)p;^ - a{p2]d(fi.ri)P2' > 0, {A.27)

where functions a and d are defined a? in (3.8), and also the defcrenre in (A.27) increases to infinity

as h increases. Therefore,

< -,({,] < 1, and 7(M i
— ^^^. as /- | 00. (A.28)
A + /J + r

Then the only term in ^(''i,''2) which depends on /'j.

D)
(>1.29)

p\'P2'(f^ii''i) - hAbi - 1)) - libiWMf'i) - /.2(''i - 1))

= n(Pl)'i{n'l{h)^p2lV'2))(i - Pl)P2 - '^{P2)<i{ni(l>2)-Pil(l'7))(i - /'2)/'t'-

increases to infinity as ftj increases. This implies that ib(''i./'2) I —00 as
//i | 00 since expression

(A. 29) has a negative sipn in k(hi,h2). Hence, ^1(^2) does the jol).

Proposition A.S. Thrre is a stationary symmetric Nasli eqiiihl>ri\ini in wliirli each firm sets its

inventory limit b' where h' is determined by

k(b' + l,b') < 0, an(/it(^*,ft*) > 0. {A.30)
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rropf. Suppose 62 = CO. meaning firm 2 sets no upper Ijairior for lioldinp inventory. Then firm I's

best response is determined by

k(hi + 1,00) < 0, and k(hi,oo) > 0,

where,

A:(6i,oo) =ra{pi)a(p2)(pi - p2)(ci - 7(00)02)

- tihp\'p\^({h,(b,) - /i,(6, - 1)) - 7(cx))(/i2(^,) - /i2(6i - 1)),

where 7(00) = (Ary + fip2^)/(X + /i + r) as in (A. 28), and k(lii,oo) decreases to negative infinity

as 61 increases to infinity. That implies fti(oo) is bounded from above, and hence, there exists a h*

such that (A. 30) holds. The symmetry of the game imjjlies the assertion in the proposition.

I

However, there are many other possible equilibria for this game, hi particular, the stocking

game described in the paper is a strategic rivalry in a long term relationship which, as recognized

by many game theorists, may differ from that of a one-shot game. As A\imann and Shapley (197C),

Rubinstein (1977), Fiidenberg and Maskin (198G) and others have shown, any individually rational

outcome, i.e., an outcome that Pareto dominates the minimax point, can arise as a Nash equilibrium

in infinitely repeated games with sufficiently little discounting. This assertion constitutes the well-

known "Folk Theorem" for repeated games. Though the stocking game we studied is not a repeated

play of a one-shot game, and as a matter of fact, it is a stochastic game of timing, we shall show

that the phenomenon addressed by the Folk Theorem is still tnie.

For simplicity and illustration, we only i)rove a weak version of the Folk Theorem. That is, for

the case that X < fi, v/c show that any outcome that Pareto dominates the zero inventory outcome,

can arise as a Nash equilibrium in the alternate stocking game with sufficient little discoimtiug.

Denote by v" the payoff when no firm holds inventory, i.e., v" = v^' (D), and v°° the payoff to one

firm that employs a barrier policy with parameter h when it is the rival's turn to hold inventory

and it sets no upper limit for the inventory, i.e., t;°^ = t'
' '°^(0).

Lemma A.l.

r A 1 -n) + r)

-1 „-l\_/^ \..7h

t;°° =
(A -f /x + r)(Pi - />^')7(oo)/^ 7 + hi{h)(')(co)c2 - ci)

(X + ^l + r)(h^{h)-'1(oo)h2(l>)]

X X — u h , ,

r r r

where 7(00) = (Af? -f fip2 ^)/(A + n + r). For /x > A,

A 2A'
lim rt; = — , and lim rt;°° = —

-: -h. {A.33)
rlo 2 r|o (X + n)(2fi-X)
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Proof. Equation (A.31) follow? from (3 19) by roplariup; /), witli r). aii<l

v°^ = lini(<72(ft.ft')4 -/•).
b'\oo T

Till limit in (A. 33) caii he ol>taiiirfl by uotiring the fart? in the folIf)wiiip Icmnia.

Lemma A. 2. F^r /i > A, />!
—

1, ^2 ~* mZ-^i

I- Pi 1 ,1
an (I

r /J - A r 2/i

85 r —» 0.

Proof. By L'Hospitals nilo.

In the Folk Theorem, the individually rational outroinc arisi-s a? an rfiuilil)riuin ?uj)ported by

certain penalizing strategy. We will see that the strategy of sotting infinite inventory is sufficient

to make the outcome that dominates the zero inventory oiitroiiir be an e(juilibriuiii outcome.

Proposition A. 4. Suppose // > A. There exists r* G (0,OO) siirii tlmt. far nil r G (0,r*) and for

any feasible payoff pairs fi'i,i'2i •''"<'^' f^"*' ^i(^)
>"".« = 1.2. thnr exists a Na,sii equilibriuin of

the stocking game in whicli firm is i)ayoff is i>,- wiirn thr f/jsruimf rate is r.

Proof. Suppose that h, is the strategy emi)loyed by firm t which n-snlts in the payoff i;,, i = 1,2.

The strategies that su])port the etjnilibrium arc as follnwp. Each firm i)lay ft, as long as the rival

is doing so, and once firm t deviates from h,, say, to b'-, the other firm will j^unish it by inlaying

b' = 00. What we would like to show is that no firm wants to deviate wIkui r is sufficient small.

Without loss of generality, otir discussion concerns firm 1 only. Sui)i)os(' it is firm Is turn.

Denote by v\(0) and v\{0) the payoffs to firm 1 if it stay with /», and if it deviates to b\ respectively

when Z = and it is firm V turn to hold inventory. Tlinii,

1, ,
A / 2/i 2, ,

A(l - r?) + r fi \
v\(0) = vUO) + ^ -/)
'^ ' A + /i + r VA(1 -r;) + 2/i + r '^ ' A(l - r?) + 2// + r r'

J

A + M + r V (A + /i(l - ,,2"') + r)a(p,)p:'"-'' - (A + /i(l - /-fM + r)n(p,)p;'"^' J

"

0,(0) = I V + ; -y
'

A + /i + r VA(1 - r/) + 2/x + r A(l - r?) + 2/i + r r'j

' Ha[p,)pf^^' - a[p,)p-/^^')[v^ - (^,. + ^^)) + [p-' - p-')n-''-

'^ + M + ^ \ (A + ,i(l - ^-') + r)a{p,)pf^^' - (A + ,i(l - />:') + r)a[p2)p-''^^'

Using the above expression and Lemma A. 2., we have for /i > A,

limr(.;|(0)-p|(0))
''"

2 (^.34)
= limr(t;J(0) - u°°)

r|0
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By assumption and Lemma A.I.,

A 2A'
lim r(u?(0) - u°°) > lim r(v^ - ,;°^) = -;, + h > 0,

for auy h\. Therefore, there exists a r* such that for r G (".r*), w}(0) > t)}(0), for any b[ ^ ftj.
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