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Abstract

Given the central role that software development plays in the delivery and application of

information technology, managers are increasingly focusing on process improvement in the

software development area. This demand has spurred the provision of a number of new and/or

improved approaches to software development, with perhaps the most prominent being object-

orientation (00). In addition, the focus on process improvement has increased the demand for

software measures, or metrics with which to manage the process. The need for such metrics is

particularly acute when an organization is adopting a new technology for which established

practices have yet to be developed. This research addresses these needs through the development

and implementation of a new suite of metrics for 00 design. Metrics developed in previous

research, while contributing to the field's understanding of software dev«»'.jpment processes, have

generally been subject to serious criticisms, including the lack of a theoretical base. Following

Wand and Weber, the theoretical base chosen for the metrics was the ontology of Bunge. Six

design metrics are developed, and then analytically evaluated against Weyuker's proposed set of

measurement principles. An automated data collection tool was then developed and implemented to

collect an empirical sample of these metrics at two field sites in order to demonstrate their feasibility

and suggest ways in which managers may use these metrics for process improvement.
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Introduction

It has been widely recognized that an important component of process improvement is the ability to

measure the process. Given the central role that software development plays in the delivery and

application of information technology, managers are increasingly focusing on process

improvement in the software development area. This emphasis has had two effects. The first is

that this demand has spurred the provision of a number of new and/or improved approaches to

software development, with perhaps the most prominent being object-orientation (OO). Second,

the focus on process improvement has increased the demand for software measures, or metrics

with which to manage the process. The need for such metrics is particularly acute when an

organization is adopting a new technology for which established practices have yet to be

developed.

This research addresses these needs through the development and implementation of a new suite of

metrics for OO design. Previous research on software metrics, while contributing to the field's

understanding of software development processes, have generally been subject to one or more

types of criticisms. These include: lacking a theoretical basis [26], lacking in desirable

measurement properties [31], being insufficiently generalized or too implementation technology

dependent [30], and being too labor-intensive to collect [15].

Following Wand and Weber, the theoretical base chosen for the OO design metrics was the

ontology of Bunge [4, 5, 28]. Six design metrics were developed, and analytically evaluated

against a previously proposed set of measurement principles. An automated data collection tool

was then developed and implemented to collect an empirical sample of these metrics at two field

sites in order to demonstrate their feasibility and to suggest ways in which managers may use these

metrics for process improvement

The key contributions of this paper are the development and empirical validation of a set of

theoretically-grounded metrics of OO design. The rest of this paper is organized as follows. The

next section presents a brief summary of the research problem followed by a section describing the

theory underlying the approach taken. Then Weyuker's list of software metric evaluation criteria

are presented, along with a brief description of the empirical data collection sites. The Results

section presents the metrics, their analytical evaluation, the empirical data and a managerial

interpretation of the data for each metric. Some concluding remarks are presented in the final

section.



Research Problem

There are two general types of criticisms that can be applied to current software metrics. The first

category are those theorencal criticisms that are leveled at conventional software metrics as they are

applied to traditional, non-00 software design and development. Kearney, et al. criticized

software complexity metrics as being without solid theoretical bases and lacking appropriate

properties ( 14]. Vessey and Weber also commented on the general lack of theoretical rigor in the

structured programming literature [26]. Both Prather and Weyuker proposed that traditional

software complexity metrics do not possess appropriate mathematical properties, and consequently

fail to display what might be termed normal predictable behavior [23, 31]. This suggests that

software metrics need to be constructed with a stronger degree of theoretical and mathematical

rigor.

The second category of criticisms is more specific to 00 design and development. The OO
approach centers around modeling the real world in terms of its objects, which is in contrast to

older, more traditional approaches that emphasize a function-oriented view that separate data and

procedures. Several theoretical discussions have speculated that OO approaches may even induce

different problem-solving behavior and cognitive processing in the design process, e.g. [3, 16].

Given the fundamentally different notions inherent in these two views, it is not surprising to find

that software metrics developed with traditional methods in mind do not readily lend themselves to

00 notions such as classes, inheritance, encapsulation and message passing [12]. Therefore,

given that current software metrics are subject to some general criticism and are easily seen as not

supporting key 00 concepts, it seems appropriate to develop a set, or suite of new metrics

especially designed to measure unique aspects of the OO approach.

The shortcomings of existing metrics and the need for new metrics especially designed for OO

have been suggested by a number of authors. Some initial proposals are set out by Morris,

although they are not tested [20]. Lieberherr and his colleagues present a more formal attempt at

defining the rules of correct object oriented programming style, building on concepts of coupling

and cohesion that are used in traditional programming [18]. Moreau and E)ominick suggest three

metrics for OO graphical information systems, but do not provide formal, testable definitions [19].

Pfleeger also suggests the need for new measures, and uses simple counts of objects and methods

to develop and test a cost estimation model for OO development [22]. Other authors, such as

Chidamber and Kemerer, Sheetz, et al., and Whitmire propose metrics, but do not offer any

empirical data [8, 25, 32]. Despite the growing research interest in this area, no empirical metrics

data from commercial object oriented applications has been published in the archival literature.



Given the extant software metrics literature, this paper has a three fold agenda: 1) to propose

metrics that are constructed with a firm basis in theoretical concepts in measurement and the

ontology of objects, and which incorporate the experiences of professional software developers; 2)

evaluate the proposed metrics against established criteria for validity, and 3) present empirical data

from commercial projects to demonstrate the feasibility of collecting these metrics and suggest

ways in which these metrics may be used.

Theory Base for OOD Metrics

While there are many object oriented design (OOD) methodologies, one that reflects the essential

features of OOD is presented in Booch (1991). 1 He outlines four major steps involved in the

object-oriented design process:

1) Identification of Classes and Objects In this step, key abstractions in the problem space

are identified and labeled as potential classes and objects.

2) Identify the Semantics of Classes and Objects In this step, the meaning of the classes and
objects identified in the previous step is established, this includes definition of the life-

cycles of each object from creation to destruction.

3) Identify Relationships between classes (and objects) In this step, class and object

interactions, such as patterns of inheritance among classes and patterns of visibility

among objects and classes (what classes and objects should be able to "see" each other)

are identified.

4) Implementation of Classes and Objects In this step, detailed internal views are

constructed, including definitions of methods and their various behaviors.

The metrics outlined in this paper will map to the first three (non-implementation) stages outlined

by Booch, since they parsimoniously capture the essential features of OOD. Since the proposed

metrics are specifically aimed at addressing the design phase and do not depend on code-based

constructs, the potential benefits of this information can be substantially greater than metrics aimed

at later phases in the life-cycle of an application. In addition, implementation-independent metrics

will be applicable to a larger set of users, especially in the early stages of industry's adoption of

00 before dominant implementation standards emerge.

Measurement theory base

An object oriented design can be conceptualized as a relational system, which is defined by Roberts

as an ordered tuple consisting of a set of elements, a set of relations and a set of binary operations.

l For a comparison and critique of six different OO analysis and design methodologies see [10].
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[24]. More specifically, an object oriented design, D, is conceptualized as a relational system

consisting of object elements (classes and objects), empirical relations and binary operations that

can be performed on the object elements. Notationally:

D = (A. Rl... R n . Ol...Om )

where

A is a set of object elements

Rl...Rn are empirical relations on object elements A (e.g., bigger than, smaller than, etc.)

Oi...Om are binary operations (e.g., concatenation)

A useful way to understand empirical relations on a set of object elements is to consider the

measurement of complexity. A designer generally has some intuitive ideas about the complexity of

different object elements, as to which element is more complex than another or which ones arc

equally complex. For example, a designer intuitively understands that a class that has many

methods is generally more complex, ceteris paribus, than one that has only a few methods. This

intuitive idea is defined as a viewpoint. The notion of a viewpoint was originally introduced to

describe evaluation measures for information retrieval systems and is applied here to capture

designer views [7]. More recently, Fenton states that viewpoints characterize intuitive

understanding and that viewpoints must be the logical starting point for the definition of metrics

[9]. An empirical relation is identical to a viewpoint, and the two terms are distinguished here only

for the sake of consistency with the measurement theory literature.

A viewpoint is a binary relation > defined on a set P (the set of all possible designs). For P, P',

P" € P , the following two axioms must hold:

P > P or P' > P (completeness: P is more complex than P' or P is more complex than P)

P.£ P', P .> P" => P.> P" (transitivity: if P is more complex than P' and P' is more

complex than P , then P is more complex than P")

i.e., a viewpoint must be of weak order [24].

To be able to measure something about a object design, the empirical relational system as defined

above needs to be transformed to a formal relational system. Therefore, let a formal relational

system F be defined as follows:

F <C.Si...Sn,Bi...Bm)

C is a set of elements (e.g., real numbers)



S\... Sn are formal relations on C (e.g., >, <, =)

B\... Bm are binary operations (e.g., +,-,*)

This required transformation is accomplished by a metric n which maps an empirical system D to a

formal system F. For every element a e D, (i(a) e F. The example below involving a set of

school children illustrates the mapping between an empirical relational system and a formal

relational system [13]:

Empirical Relational System



arc defined independent of implementation considerations and encompass the notions of

encapsulanon, independence and inheritance. According to this ontology, the world is viewed as

composed or" things, referred to as substantial individuals, and concepts. The key notion is that

substantial individuals possess properties. A property is a feature that a substantial individual

possesses inherenUy. An observer can assign features to an individual, but these are attributes and

not properties. All substantial individuals possess a finite set of properties: "there are no bare

individuals except in our imagination" [4, p. 26]

Some of the attributes of an individual will reflect its properties. Indeed, properties are recognized

only through attributes. A known property must have at least one attribute representing it.

Properties do not exist on their own, but are "attached" to individuals. On the other hand,

individuals are not simply bundles of properties. A substantial individual and its properties

collectively constitute an object [27, 28].

An object can be represented in the following manner

X = <x, p(x)> where x is the substantial individual and p(x) is the finite collection of its properties.

x can be considered to be the token or name by which the individual is represented in a system. In

object oriented terminology, the instance variables2 together with its methods3 arc the properties of

the object [ 1
]

Using these representations of objects, previous research has defined concepts like scope and

similarity that are relevant to object oriented systems [4, 27]. Following this tradition, this paper

defines two important software design concepts for objects, coupling and cohesion. Coupling

refers to the degree of interdependence between parts of a design, while cohesion refers to the

internal consistency within parts of the design. All other things being equal, good software design

practice calls for minimizing coupling and maximizing cohesiveness.

Coupling. In ontological terms, two things are coupled if and only if at least one of them "acts

upon" the other. X is said to act upon Y if the history of Y is affected by X, where history is

defined as the chronologically ordered states that a thing traverses in time [4].

Let X = <x, p(x)> and Y = <y, p(y)> be two objects.

p(x) = { MX } u { IX )

2 An instance variable is i repository for part of the stale of the object.

3 A method is an operation on an object that is defined as part of the declaration of the class.



p(y) = {MY ]u(IY ]

where ( Mj } is the set of methods and ( l[ } is the set of instance variables of object i.

Using the above definition of coupling, any action by (Mx) on (My) or {Iy} constitutes

coupling, as does any action by {My} on (Mx) or (Ix)- When Mx calls My. Mx alters the

history of the usage of My, similarly when Mx uses ly, it alters the access and usage history of

Iy. Therefore, any evidence of a method of one object using methods or instance variables of

another object constitutes coupling.

Cohesion. Bunge defines similarity c() of two things to be the intersection of the sets of properties

of the two things:

o(X,Y) = p(x) n p(y)

Following this general principle of defining similarity in terms of sets, the degree of similarity of

the methods within the object can be defined to be the intersection of the sets of instance variables

that are used by the methods. This is an extension of Bunge's definition of similarity to similarity

of methods. It should be clearly understood that instance variables are not properties of methods,

but it is consistent with the notion that methods of an object are intimately connected to its instance

variables.

a(M!,M2...Mn ) - { Ii J n {

I

2 }. n {

I

3 } ... { In }

where a() = degree of similarity of methods Mi and

{ I{ } = set of instance variables used by method Mj.

The degree of similarity of methods relates both to the conventional notion of cohesion in software

engineering, (i.e., keeping related things together) as well as encapsulation of objects, that is, the

bundling of methods and instance variables in an object. The degree ofsimilarity of methods can

be defined to be a major aspect of object cohesiveness. The higher the degree of similarity of

methods, the greater the cohesiveness of the methods and the higher the degree of encapsulation of

the object

Complexity of an object. Bunge defines complexity of an individual to be the "numerosity of its

composition", implying that a complex individual has a large number of properties [4, p. 43].

Using this definition as a base, the complexity of an object can be defined to be the cardinality of

its set of properties.

Complexity of <x, p(x)> = I p(x) I, where I p(x) I is the cardinality of p(x).
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Scope of Properties. The scope of a property P in J (a set of objects) is the subset G (P; J) of

objects possessing the property (27].

G(P; J) =
( x I x e J and P 6 p(x) }, where p(x) is the set of all properties of x e J.

Class Qp; J) = ^
all P I G(P) I P e g() ) where g() is a given set of properties.4

A class P with respect to a property set g is the set of all objects possessing all properties in g. In

simple terms, a class is a set of objects that have common properties. The inheritance hierarchy, a

directed acyclic graph will be described as a tree structure with classes as nodes, leaves and a root.

In any design application, there can be many possible hierarchies of classes. Design choices on the

hierarchy employed to represent the application are essentially choices about restricting or

expanding the scope of properties of the objects in the application. Two design decisions which

relate to the inheritance hierarchy can be defined. They are depth of inheritance of a class of

objects and the number of children of the class.

Depth of Inheritance = height of the class in the inheritance tree

The height of a node of a tree refers to the length of the maximal path from the node to the root of

the tree.

Number of Children = Number of immediate descendants of the class

Both these concepts relate to the notion of scope of properties, i.e., how far does the influence of a

property extend? Depth of inheritance indicates the extent to which the class is influenced by the

properties of its ancestors and number of children indicates the potential impact on descendants.

The depth of inheritance and number of children collectively indicate the genealogy of a class.

Methods as measures of communication. In the object oriented approach, objects can communicate

only through message passing.5 A message can cause an object to "behave" in a particular manner

by invoking a particular method. Methods can be viewed as definitions of responses to possible

messages [1]. It is reasonable, therefore, to define a response set for a class of objects in the

following manner

Response set of a class of objects = { set of all methods that can be invoked in response to a

message to an object of the class

}

4
ln strict ontological terms, n ^j p { G(P) I P e g() )is the definition of a "kind", bui is used here to define the concept of i

class.

'While objects can communicate through more complex mechanisms like bulletin boards, the majority of OO designers

employ message passing as the only mechanism for communicating between objects.
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Note that this set will include methods outside the class as well, since methods within the class

may call methods from other classes. The response set will be finite since the properties of a class

are finite and there are a finite number of classes in a design.

Metrics Evaluation Criteria

Several researchers have recommended properties that software metrics should possess to increase

their usefulness. For example, Basili and Reiter suggest that metrics should be sensitive to

externally observable differences in the development environment and must also correspond to

intuitive notions about the characteristic differences between the software artifacts being measured

[2]. The majority of recommended properties are qualitative in nature and consequently, most

proposals for metrics have tended to be informal in their evaluation of metrics.

More recently however, Weyuker developed a formal list of desiderata for software metrics and

has evaluated a number of existing software metrics using these properties [31]. 6 Two of

Weyuker's nine properties are rudimentary in nature; one requires that there are only a finite

number of cases having the same complexity metric and the other is that when the name of the

measured object changes, the metric should remain unchanged. Both these properties are typically

met by all metrics and will not be considered in this paper.7

Another property is that permutation of elements within the object being measured must change the

metric value. The intent is to ensure that metric values change, for example, in case the nesting of

if-then-else blocks change due to permutation of program statements. If this property were to be

satisfied by an OOD complexity metric, values for a class will change when the order of declaration

of methods or instance variables is changed, which seems at odds with OO design. And, in fact,

Chemiavsky and Smith specifically suggest that this property is not appropriate for OOD metrics

because "the rationales used may be applicable only to traditional programming" [6, p. 638]. Since

this property seems to be based strictly in the traditional paradigm, it is not considered further. The

remaining six properties are repeated below.8

^Weyuker's properties are not without criticism (e.g.. [11, 6. 9, 331, *nd some of thes* critiques will be discussed below.

HoweveT, her list remains the currently most widely used list of such criteria, and therefore is the list chosen for this

evaluation.

'Since class libraries have a finite number of classes, no metric value can be repeated infinitely. And, unless the metric

depends on the name of an object, the second property is also easily met.

'Readers familiar with Weyuker's work should note that the exclusion of these three properties makes the property numbers

used here no longer consistent with the original property numbers. It should also be noted that Weyuker's definitions have

been modified where necessary to use the term object rather than program.
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Property I : Non-coarseness

Given an object P and a metric p. another object Q can always be found such that: u,(P) * u,(Q).

This implies that not every object can have the same value for a metric, otherwise it has lost its

value as a measurement.

Property 2: Non-uniqueness motion of equivalence)

There can exist distinct objects P and Q such that u.(P) = |i(Q). This implies that two objects can

have the same metric value, i.e., the two objects are equally complex.

Property 3: Design Implementation not function is important

Given two object designs, P and Q, which provide the same functionality, does not imply that u.(P)

= |i(Q). The intuition behind Property 3 is that even though two object designs perform the same

function, the details of the design matter in determining the object design's metric.

Property 4: Monotonicity

For all objects P and Q, the following must hold: n(P) <, |i(P+Q) and u,(Q) < ^(P+Q) where P + Q
implies concatenation of P and Q.9 This implies that the metric for the combination of two objects

can never be less than the metric for either of the component objects.

Property 5: Non-equivalence of interaction

3 P, 3 Q, 3 R, such that

u(P) = u.(Q) does not imply that u.(P+R) = ^(Q+R).

This suggests that interaction between P and R can be different than interaction between Q and R

resulting in different complexity values for P+R and Q+R.

Property 6: Interaction increases complexity

3 P and 3 Q such thac

u.( P) + uXQ) <: ^i( P+Q)

Designers' empirical operations of combining two objects in order to achieve belter representation are formally denoted

here as concatenation and shown with a + sign. Concatenation results in a single joint stale space of instance variables and

methods instead of two separate slate spaces, the only definite result of concatenation of two objects is the elimination of

all prior messages between ihe two component objects.
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The principle behind this property is that when two objects are combined, the interaction between

objects will tend to increase the complexity metric value.

Assumptions. Some basic assumptions made regarding the distribution of methods and instance

variables in the discussions for each of the metric properties.

Assumption 1:

Let X
Y
Z
C

= The number of methods in a given class i.

= The number of methods called from a given method i.

= The number of instance variables used by a method i.

= The number of couplings between a given class of objects i and all other classes.

Xj, Yi, Zi, Q are discrete random variables each characterized by some general distribution

function. Further, all the Xjs are independent and identically distributed (i.i.d.). The same is true

for all the Yis, Zis and Qs.

Assumption 2 : In general, two classes can have a finite number of "identical" methods in the sense

that a combination of the two classes into one class would result in one class's version of the

identical methods becoming redundant.

Assumption 3 : The inheritance tree is "full", i.e., there is a root, several intermediate nodes which

have siblings, and leaves. The tree is not necessarily balanced, i.e., each node does not

necessarily have the same number of children.

Empirical Data Collection

As defined earlier, a design encompasses the implicit ideas designers have about complexity.

These viewpoints are the empirical relations Ri, R2, ... Rn in the formal definition of the design

D. The viewpoints that were used in constructing the metrics presented in this paper were gathered

from extensive collaboration with a highly experienced team of software engineers from a software

development organization. This organization has used OOD in more than four large projects over

the past five years. Though the primary development language for all projects at this site was

C++, the research aim was to propose metrics that were language independent As a test of this,

data were collected at two sites which used different languages.

The metrics proposed in this paper were collected using automated tools developed for this

research at two different organizations which will be referred to here as Site A and Site B. Site A

is a software company that uses OOD in their development work and has a collection of different

C++ class libraries. Metrics data from 634 classes from two class libraries that are used in the
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design of graphical user interfaces (GUI) were collected. These two class libraries are written in

C++ and are typically used at Site A in conjunction with other C++ libraries and traditional C-

language programs in the development of software sold to UNIX workstation users.

Site B is a semiconductor manufacturer and uses the Smalltalk programming language for

developing flexible machine control and manufacturing systems. Metrics were collected on the

class libraries used in the implementation of a computer aided manufacturing system for the

producnon of VLSI circuits. Over 30 engineers worked on this application, after extensive training

and experience with object orientation and the Smalltalk environment Metrics data from 1459

classes from Site B were collected-

Results

Metric 1: Weighted Methods Per Class (WMC)

Definition. Consider a Class Ci, with methods Ml,... Mn . Let CI,... cn be the complexity 10 of

the methods. Then :

n

WMC = X c
i

1=1

If all method complexities are considered to be unity, then WMC = n, the number of methods.

Theoretical basis. WMC relates directly to Bunge's definition of complexity of a thing, since

methods are properties of class objects and complexity is determined by the cardinality of its set of

properties. The number of methods is, therefore, a measure of class definition as well as being

attributes of a class, since attributes correspond to properties.

Viewpoints.

• The number of methods and the complexity of methods involved is an indicator of how much

time and effort is required to develop and maintain the class.

• The larger the number of methods in a class the greater the potential impact on children, since

children will inherit all the methods defined in the class.

10 Complexity u deliberately not defined more specifically here in order to allow for the mo»t general application of thii

metric. It can be argued that developer* approach the task of writing a method as they would a traditional program, and

therefore some traditional static complexity metric, such as McCabe's Cyclomahc number, may be appropriate. This is left

as an implementation decision, as the general applicability of any existing static complexity metric has not been generally

agreed upon. The general nature of the WMC metric is presented as a strength, not a weakness as has been suggested

elsewhere ( 121.
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• Classes with large numbers of methods are likely to be more application specific, limiting the

possibility of reuse.

Analytical Evaluation of Weighted Methods Per Class (WMC)

From assumption 1, the number of methods in class P and another class Q are i.i.d., this implies

that there is a finite probability that 3 Q such that |i(P) * \i(Q), therefore property 1 is satisfied.

Similarly, there is a finite probability that 3 a R such that n(P) = M-(R)- Therefore property 2 is

satisfied. The function of the object does not define the number of methods in a class. The choice

the number of methods is a design implementation decision and independent of the functionality of

the class, therefore Property 3 is satisfied. Let n(P) = np and n(Q) = nq, then |i(P+Q) = np + nQ-

Clearly, n(P+Q) ^ |i(P) and |i(P+Q) > p.(Q), thereby satisfying Property 4. Now, let |i(P) = n,

ji(Q) = n, and 3 an object R such that it has a number of methods d in common with Q (as per

assumption 2) and (3 methods in common with P. Let |i(R) = r.

H(P+R) = n + r - p

H(Q+R) = n + r - 3

therefore n(P+Q) * M-(Q+R) and Property 5 is satisfied. For any two objects P and Q, p.(P+Q) =

np + nQ - 8, where np is the number of methods in P, nQ is number of methods in Q and P and Q
have d methods in common. Clearly, np + nQ - 8 < np + nQ for all P and Q i.e., M-(p+Q) ^ M-(P)

+ (J.(Q) for all P and Q. Therefore, Property 6 is not satisfied.

EmpiricalData

The histograms and summary statistics from both sites are shown below:

300 r

200

100

d=D^
55

WMC
Site A

110

1000 -
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properties the object must inherit in order to perform its function. In other words, depth of

inheritance is design implementation dependent, and Property 3 is satisfied.

When any two objects P and Q are combined, there are three possible cases (in all cases, it is

assumed that there is no multiple inheritance 11
) : i) P and Q are siblings ii) P and Q are neither

children nor siblings of each other and iii) one is the child of the other.

Case i) P and Q are siblings

In this case, |i(P) = |i(Q) = n and M-(P+Q) = n, i.e. Property 4 is satisfied.

Case ii) P and Q are neither children nor siblings of each other.

IfP+Q moves to P's location in the tree, Q cannot inherit methods from X, however if P+Q moves

to Q's location, P maintains its inheritance. Therefore, P+Q will be in Q's old location. In this

case, n(P) = x, n(Q) = y and y > x. ^i(P+Q) = y, i.e., ^i(P+Q) > ti(P) and ^(P+Q) = |i (Q) and

Property 4 is satisfied.

1
*It can be shown thai Property 5 is satisfied even with multiple inheritance. u.(P) and M-(Q) will be np

and i1q respectively

and p.(P+Q) will be equal to Max(n
p

-hiq). Consequendy u(P+Q) will always be greater than ot equal to u(P) and u(Q).
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In this case, u.(P) = n, p.(Q) = n + 1, but H(P+Q) = n, i.e. |i(P+Q) < M- (Q)- Property 4 is not

satisfied.

For all three cases, let P and Q' be siblings, i.e. p.(P) = n(Q')= n, and let R be a child of P. Then

|i(P+R) = n and |i(Q'+R) = n + 1. i.e., |i(P+R) is not equal to |o.(Q'+R). Property 5 is satisfied.

For any two objects P and Q, [i( P+ Q) = n(P) or = n(Q). Therefore, |i(P+Q) < ^i(P) + n(Q), i.e.,

Property 6 is not satisfied.

Empirical Data

The histograms and summary statistics from both sites are shown below (all metric values are

integers):
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• The number of children gives an idea of the potential influence a class has on the design. If a

class has a large number of children, it may require more testing of the methods in that class.

Analytical Evaluation ofNumber Of Children (NOC)

Let P and R be leaves. |i(P) = u.(R) = 0, let Q be the root ^(Q) > 0. u(P) * ^i(Q) therefore

property 1 is satisfied. Since |!(R) = n(P), Property 2 is also satisfied. Design of a class involves

decisions on the scope of the methods declared within the class, i.e., the sub-classing for the class.

The number of sub-classes is therefore dependent upon the design implementation of the class.

Therefore. Property 3 is satisfied.

Let P and Q be two classes with np and ng sub-classes respectively (i.e., |i(P) = np and |i(Q) =

ng,). Combining P and Q, will yield a single class with np + ng - d sub-classes, where d is the

number of children P and Q have in common. Clearly, d is if either np or ng is 0. Now, np +

ng - d > np and np + ng -d > ng. This can be written as: p.(P+Q) > |i(P) and |!(P+Q) ^ H(Q) for

all P and all Q. Therefore, Property 4 is satisfied. Let P and Q each have n children and R be a

child of P which has r children. n(P) = n = \i(Q). The class obtained by combining P and R will

have (n-1) + r children, whereas a class obtained by combining Q and R will have n + r children,

which means that p.(P-i-R) * (i(Q+R). Therefore Property 5 is satisfied. Given any two classes P

and Q with np and ng children respectively, the following relationship holds:

|i(P) = np and ^(Q) = ng

H(P+Q) = np + ng - 3

where d is the number of common children. Therefore, M.(P+Q) ^ H(P) + M-(Q) for a11 p ^d Q-

Property 6 is not satisfied.

Empirical Data

The histograms and summary statistics from both sites are shown below:
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• In order to improve modularity and promote encapsuladon. inter-object couples should be kept to

a minimum. The larger the number of couples, the higher the sensitivity to changes in other pans

of the design and therefore maintenance is more difficult.

• A measure of coupling is useful to determine how complex the testing of various pans of a design

are likely to be. The higher the inter-object coupling, the more ngorous the testing needs to be.

Analytical Evaluation of Coupling Between Objects (CBO)

As per assumption 1, there exist objects P, Q and R such that |i(P) * n(Q) and u,(P) = u.(R)

thereby satisfying properties 1 and 2. Inter-object coupling occurs when methods of one object

use methods or instance variables of another object, i.e., coupling depends on the manner in which

methods are designed and not on the functionality provided by P. Therefore Property 3 is

satisfied. Let P and Q be any two objects with u.(P) = np and n(Q) = nq. If P and Q are

combined, the resulting object will have np + t\q - d couples, where d is the number of couples

reduced due to the combination. That is u,(P+Q) = np + i\q - d, where d is some function of the

methods of P and Q. Clearly, np - 3 > and nq - 9 > since the reduction in couples cannot be

greater than the original number of couples. Therefore,

np + t\q - d > np for all P and Q and

np + nq - d > nq for all P and Q

i.e., u.(P+Q) > M-(P) and u.(P+Q) ^ H(Q) for all P and Q. Thus, Property 4 is satisfied. Let P and

Q be two objects such that u.(P) = ji(Q) = n , and let R be another object with M-(R) = r.

H(P+Q) = n + r - 3, similarly

u.(Q+R) = n + r - B

Given that d and B are independent functions, they will not be equal, i.e., p.(P+R) is not equal to

u.(Q+R), satisfying Property 5. For any two objects P and Q, |i(P+Q) = np + nq - 9.

u,(P+Q) = H(P) + ti(Q) - 3 which implies that

u.(P+-Q) £ n(P) + n(Q) for all P and Q.

Therefore Property 6 is not satisfied.



Empirical Data

The histograms and summary statistics from both sites are shown below:
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Metric 5: Response For a Class lRFC)

Definition. RFC = I RS I where RS is the response set for the class.

Theoretical basis. The response set for the class can be expressed as:

RS = {M}UaUi{Ri)

where ( Rj } = set of methods called by method i and { M } = set of all methods in the class

The response set is a set of methods available to the object and its cardinality is a measure of the

attributes of an object. Since it specifically includes methods called from outside the object, it is

also a measure of communication between objects.

Viewpoints.

• If a large number of methods can be invoked in response to a message, the testing and debugging

of the class becomes more complicated since it requires a greater level of understanding required on

the pan of the tester.

• The larger the number of methods that can be invoked from an class, the greater the complexity of

the class.

• A worst case value for possible responses will assist in appropriate allocation of testing time.

Analytical Evaluation ofResponse for a Class (RFC)

Let Xp = RPC for class P

Xq = RFC for class Q.

Xp and Xq are functions of the number of methods and the external coupling of P and Q

respectively. It follows from assumption 1 (since functions of i.i.d. random variables are also

i.i.d.) that Xp and Xq are i.i.d. Therefore, there is a finite probability that 3 a Q such that |J.(P) *

u.(Q) resulting in property 1 being satisfied. Also there is a finite probability that 3 a Q such that

|i(P) = u.(Q), therefore property 2 is satisfied. Since the choice of methods is a design decision.

Property 3 is satisfied. Let P and Q be two classes with RFC of P = np and RFC of Q = nQ. If

these two classes are combined to form one class, the response for that class will depend on

whether P and Q have any common methods. Clearly , there are two possible cases: 1) when P

and Q have no common methods and therefore the combined class P + Q will have a response set =

np + nQ. 2) In the second case, P and Q have methods in common, and the response set will
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smaller than rip + riQ. Mathematically, u.(P + Q) = rip + riQ - d, where d is some function of the

methods of P and Q. Clearly, np + riQ - 3 > np and np + t\q - d > nr\ for all possible P and Q.

u(P+Q) > u.(P) and > \i(Q) for all P and Q. Therefore, Property 4 is satisfied.

Let P and Q be two objects such that |j.(P) = u.(Q) = n , and let R be another object with u.(R) = r.

u,(P+Q) = n + r - 3, similarly

u.(Q+R) = n + r - Q

Given that d and B are independent functions, they will not be equal, i.e., p.(P+R) is not equal to

|i(Q+R), satisfying Property 5. For any two objects P and Q, M-(P+Q) = np + nq - 3.

H(P+Q) = ^i(P) + n(Q) - 9 which implies that

^i(P+Q) < ^i(P) + [i(Q) for all P and Q.

Therefore Property 6 is not satisfied.

EmpiricalDam

The histograms and summary statistics from both sites are shown below:
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potenoal invocation of methods. This reinforces the argument that a small number of classes may

be responsible for a large number of the methods that executed in an application, and that if testing

effort were concentrated on these outlier classes, a bulk of the dynamic behavior of the object

oriented systems can be checked for customer acceptance.

Another interesting aspect is the difference in values for RFC between Site A and B. Note that the

mean, median and maximum values of RFC are higher than the RFC values at Site A. One

possible hypothesis may relate to the differences in the memory management facilities provided by

Smalltalk and C++. Site B has the benefit of automatic memory management provided by

Smalltalk. C++ on the other hand, does not provide automatic garbage collection mechanisms for

memory management. This could deter, at the design phase, the usage of message passing

through method invocation, since this is memory intensive and requires periodic garbage

collection. Another possibility is that complete adherence to object oriented principles in Smalltalk

necessitates extensive method invocation, whereas C++'s incremental approach to object

orientation gives designers alternatives to message passing through method invocation.

Metric 6: Lack of Cohesion in Methods (LCOM)

Definition. Consider a Class Ci with n methods Mi, M2-... Mn . Let (Ij) = set of instance

variables used by method Mj. There are n such sets (Ii),... {In }. Let P =
( (Ij Ij) I Ii n Ij - )

and Q =
( (I^Ij) I Iin Ij * )

LCOM = IPI - IQI, iflPI>IOJ

= otherwise

Example: Consider a class C with three methods Mi, M2 and M3. Let (11} = (a,b,c,d,e) and

{12} = {a,b,e} and {13} = {x,y,z}. {11} n {12} is non-empty, but { 1 1 } n {13} and {12} n {13}

are null sets and LCOM is the number of null intersections - number of non-empty intersections,

which is 1.

Theoretical basis. This uses the notion of degree of similarity of methods. The degree of similarity

for two methods in class Ci is given by:

a()={Ii}n{I2 )

The larger the number of similar methods, the more cohesive the class, which is consistent with

traditional notions of cohesion that measure the inter relatedness between portions of a program. If

none of the methods of a class display any instance behavior, i.e. do not use any instance

variables, they have no similarity and the LCOM value for the class will be zero. The LCOM value
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provides a measure for the disparate nature of methods in the class. A smaller number of disjoint

pairs (elements of set P) implies greater similarity of methods. LCOM is intimately tied to the

instance variables and methods of an object, and therefore is a measure of the attributes of an

object.

Viewpoints.

• Cohesiveness of methods within a class is desirable, since it promotes encapsulation.

• Lack of cohesion implies classes should probably be split into two or more sub-classes.

• Any measure of disparateness of methods helps identify flaws in the design of classes.

• Low cohesion increases complexity, thereby increasing the likelihood of errors during the

development process.

Analytical Evaluation ofLack Of Cohesion OfMethods (LCOM)

Let Xp = LCOM for class P

Xq = LCOM for class Q.

Xp and Xq are functions of the number of methods and the instance variables of P and Q

respectively. It follows from assumption 1 (since functions of i.i.d. random variables are also

i.i.d.) that Xp and Xq are i.i.d.. Therefore, there is a finite probability that 3 a Q such that (i(P) *

|i(Q) resulting in property 1 being satisfied. Also there is a finite probability that 3 a Q such that

u\(P) = n(Q), therefore property 2 is satisfied. Since the choice of methods and instance variables

is a design decision, Property 3 is satisfied. Let P and Q be any two objects with n(P) = np and

|i(Q) = t\q. Combining these two objects can potentially reduce the number of disjoint sets, i.e.,

|i(P+Q) = np + nq - d where 9 is the number of disjoint sets reduced due to the combination of P

and Q. The reduction B is some function of the particular sets of instance variables of the two

objects P and Q. Now, np > d and t\q > 9 since the reduction in sets obviously cannot be greater

than the number of original sets. Therefore, the following result holds:

np + nq-d^np for all P and Q and

np + nq - 8 £ nq for all P and Q.

Property 4 is satisfied.

Let P and Q be two objects such that p.(P) = p.(Q) = n , and let R be another object with |i(R) = r.

|i(P+Q) = n + r - 3, similarly

^(Q+R) = n + r - B



Given that 3 and 6 arc independent functions, they will not be equal, i.e., |j.(P+R) * |i(Q+R),

satisfying Propeny 5. For any two objects P and Q, |i(P+Q) = np + r\Q - 3. i.e.,

H(P+Q) = p.(P) + |i(Q) - 3 which implies that

u(P+Q) < |i(P) + mQ) for all P and Q.

Therefore Property 6 is not sarisfied.

Empirical Data

The histograms and summary statistics from both sites arc shown below:
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A high LCOM value indicates disparateness in the functionality provided by the class. This metric

can be used to identify classes that are attempting to achieve many different objectives, and

consequently behave in less predictable ways than classes. Such classes could be more error prone

and more difficult to test and could possibly be broken up into two or more classes that are more

well defined in their behavior. The LCOM metric can be used by senior designers and project

managers as a relatively simple way to track whether the cohesion principle is adhered to in the

design of an application and advise if necessary, at an earlier phase in the design cycle.

The Metrics Suite and Booch OOD Steps

The six metrics attempt to capture the three non-implementation steps in Booch's definition of

OOD. DIT and NOC directly relate to the layout of the class hierarchy, and WMC is an aspect of

the complexity of the class. This suggests that WMC, DIT and NOC relate to the object definition

step in OOD. WMC and RFC attempt to capture how the class is "behaves" when it gets

messages. For example, if a class has a large WMC or RFC, it has many possible responses

(since a potentially large number of methods can execute). The CBO and RFC metrics also attempt

to capture the extent of communication between classes by counting the inter-object couples and

methods external to a given class. The table below summarizes the six metrics in relation to the

steps in Booch's definition of OOD.

Metric
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considered, then all six metrics would satisfy Property 6. Zuse s analysis of Property 6 suggests

that metrics that fail to meet this property cannot be used as a ratio scale, and therefore one could

not use these metrics to, for example, demonstrate that one class is twice as complex as another

[33]. '3

Failing to meet Property 6 implies that a complexity metric could increase, rather than reduce, if an

object is divided into more objects. Interestingly, the experienced OO designers who participated

in this study found that memory management and run-time detection of errors are both more

difficult when there are a large number of objects to deal with. In other words, their viewpoint

was that complexity can increase when objects are divided into more objects. Therefore, Property

6 may not be an essential feature for OO software design complexity metrics.

The only other violation of Weyuker's properties is for the single case of the DIT metric. The DIT

metric fails to satisfy Property 4 (monotonicity) only in cases where two objects are in a parent-

child relationship. This is because the distance from the root of a parent cannot become greater

than one of its children. In all other cases, the DIT metric satisfies Property 4. 14

Concluding Remarks

This research has developed and implemented a new set of software metrics for OO design. These

metrics are based in measurement theory and also reflect the viewpoints of experienced OO

software developers. In evaluating these metrics against a set of standard criteria, they are found to

both (a) possess a number of desirable properties, and (b) suggest some ways in which the OO

approach may differ in terms of desirable or necessary design features from more traditional

approaches. Clearly, some future research designed to further investigate these apparent

differences seems warranted.

In addition to the proposal and analytic test of theoretically grounded metrics, this paper has also

presented empirical data on these metrics from actual commercial systems. The implementation

independence of these metrics is demonstrated in pan through data collection from both C++ and

Smalltalk implementations, two of the most widely used object oriented environments. These data

are used to demonstrate not only the feasibility of data collection, but also to suggest ways in

which these metrics might be used by managers. In addition to the usual benefits obtained from

valid measurements, OO design metrics should offer needed insights into whether developers are

'•'Property 6 is ihe only property lhal requires ratio scales.

14
It is interesting to note that other authors have also observed difficulties in applying this particular property of

Weyuker's. For example, see (11].
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following 00 principles in their designs. For example, in the results presented here it was shown

that a significant percentage of classes were not benefiting from the potential reuse opportunities

via inheritance. This use of metrics may be an especially critical one as organizations begin the

process of migrating their staffs toward the adoption of 00 principles.

Collectively, the suite provides senior designers and managers, who may not be completely

familiar with the design details of an application, with an indication of the integrity of the design.

They can use it as a vehicle to address the architectural and structural consistency of the entire

application. By using the metrics suite they can identify areas of the application that may require

more rigorous testing and areas that should be redesigned. Using the metrics in this manner,

potential flaws and other leverage points in the design can be identified and dealt with earlier in the

design-develop-test-maintenance cycle of an application. Yet another benefit of using these metrics

is the added insight gained about trade-offs made by designers between conflicting requirements

such as increased reuse (via more inheritance) and ease of testing (via a less complicated

inheritance hierarchy). Since there are typically many possible OO designs for the same

application, these metrics can help in selecting one that is most appropriate to the goals of the

organization, such as reducing the cost of development, testing and maintenance over the life of the

application.

Thit-set of six proposed metrics is presented as the first empirically validated proposal for formal

metrics for OOD. By bringing together the rigor of measurement theory, Bunge's ontology,

Weyuker's evaluation criteria and empirical data from professional software developers working

on commercial projects, this paper seeks to demonstrate the level of rigor required in the

development of usable metrics for design of software systems. Of course, there is no reason to

believe that the proposed metrics will be found to be comprehensive, and further work could result

in additions, changes and possible deletions from this suite. However, they do provide coverage

for all three of Booch's steps for OOD and, at a minimum, this metrics suite should lay the

groundwork for a formal language to describe metrics for OOD. In addition, these metrics may

also serve as a generalized solution for other researchers to rely on when seeking to develop

specialized metrics for particular purposes or customized environments.

It is often noted that 00 may hold some of the solutions to the software crisis. Further research in

moving 00 development management towards a strong theoretical base should provide a basis for

significant future progress.



30

Bibliography

[ 1] Banerjee, J. et al., "Data Model Issues tor Object Oriented Applications", ACM Transactions

m ()fflce Information Systems, vol. 5, pp. 3-26, 1987.

[2] Basili. V. and Reiter, R., Evaluating Automatable Measures of Software Models, IEEE
Workshop on Quantitative Software Models, 1979, Kiamesha, NY, pp. 107-1 16.

[3] Booch, G., Object Oriented Design with Applications, Redwood City,

CA:Benjarnin/Cummings, 1991.

[4] Bungc, M., Treatise on Basic Philosophy : Ontology I : The Furniture of the World,

Boston:Riedel, 1977.

[5] Bunge, M., Treatise on Basic Philosophy : Ontology II : The World of Systems,

Boston:Riedel, 1979.

[6] Chemiavsky, J.C. and Smith, C.H., "On Weyuker's Axioms for Software Complexity
Measures", IEEE Transactions on Software Engineering, vol. 17, pp. 636-638, 1991.

[7] Chemiavsky, V. and Lakhuty, D.G., "On The Problem of Information System Evaluation",

Automatic Documentation and Mathematical Linguistics, vol. 4, pp. 9-26, 1971.

[8] Chidamber, S.R. and Kemerer, C.F., Towards a Metrics Suite for Object Oriented Design,

Proc. of the 6th ACM Conference on Object Oriented Programming, Systems, Languages and
Applications (OOPSLA), 1991, Phoenix, AZ, pp. 197-211.

[9] Fenton, N., "When a software measure is not a measure". Software Engineering Journal, vol.

pp. 357-362, September 1992.

[10] Fichman, R. and Kemerer, C, "Object-Oriented and Conventional Analysis and Design

Methodologies: Comparison and Critique", IEEE Computer, vol. 25, pp. 20-39, October 1992.

[11] Harrison, W., "Software Science and Weyuker's Fifth Property", University of Portland

Computer Science Department Internal Report 1988.

[12] Kalakota, R. et al.. The Role of Complexity in Object-Oriented Systems Development, 26th

Annual Hawaii International Conference on System Science, 1993, Maui, Hawaii, pp. 759-768.

[13] Kaposi, A.A., Measurement Theory, in McDermid, J. ed.. Software Engineer's Reference

Book, Oxford: Butterworth-Heinemann Ltd., 1991.

[14] Kearney, J.K. et al., "Software Complexity Measurement", Communications of the ACM,
vol. 29, pp. 1044-1050, 1986.

[15] Kemerer, C.F., "Reliability of Function Points Measurement: A Field Experiment",

Communications of the ACM, vol. 36, pp. 85-97, February 1993.

[ 16] Kim. J. and Lerch, J.F., "Cognitive Processes in Logical Design: Comparing Object-Oriented

and Traditional Functional Decomposition Software Methodologies", Carnegie Mellon University

Graduate School of Industrial Administration working paper 1991.



31

[17] Kriz, J., Facts and Artifacts in Social Science: An Epistemological and methodological
analysis ofempirical social science techniques. New York:McGraw Hill, 1988.

[18] Lieberherr, K. et al.. Object Oriented Programming : An Objective Sense of Style, Third
Annual ACM Conference on Object Oriented Programming Systems, Languages and Applications

(OOPSLA), 1988, pp. 323-334.

[19] Moreau, D.R. and Dominick, W.D., "Object Oriented Graphical Information Systems:
Research Plan and Evaluation Metrics", Journal of Systems and Software, vol. 10, pp. 23-28,

1989.

[20] Morris, K., Metrics for Object Oriented Software Development, M.I.T. Sloan School
Masters thesis, 1988.

[21] Parsons, J. and Wand, Y., "Object-Oriented Systems Analysis: A Representational View",
University of British Columbia Working Paper January 1993.

[22] Pfleeger, S.L. and Palmer, J.D., Software Estimation for Object-Oriented Systems, 1990
International Function Point Users Group Fall Conference, 1990, San Antonio, Texas, pp. 181-

196.

[23] Prather, R.E., "An Axiomatic Theory of Software Complexity Measures", Computer Journal,

vol. 27, pp. 340-346, 1984.

[24] Roberts, F., Encyclopedia of Mathematics and its Applications, Addison Wesley Publishing

Company, 1979.

[25] Sheetz, S.D. et al., "Measuring Object-Oriented System Complexity", University of Colorado

Working Paper 1992.

[26] Vessey, I. and Weber, R., "Research on Structured Programming: An Empiricist's

Evaluation", IEEE Transactions on Software Engineering, vol. SE-10, pp. 394-407, 1984.

[27] Wand, Y., A Proposal for a Formal Model of Objects, in Kim, W. and Lochovsky, F. ed.,

Object-Oriented Concepts, Databases and Applications, Reading, MA: Addison-Wesley, 1989.

[28] Wand, Y. and Weber, R., An Ontological Evaluation of Systems Analysis and Design
Methods, in Falkenberg, EI), and Lindgreen, P. ed., Information Systems Concepts: An In-depth

Analysis, Amsterdam: Elsevier Science Publishers, 1989.

[29] Wand, Y. and Weber, R., "An Ontological Model of an Information System", IEEE
Transactions on Software Engineering, vol. 16, pp. 1282-1292, November 1990.

[30] Wand, Y. and Weber, R., Toward A Theory Of The Deep Structure Of Information Systems,

International Conference on Information Systems, 1990, Copenhagen, Denmark, pp. 61-71.

[31] Weyuker, E., "Evaluating Software Complexity Measures", IEEE Transactions on Software

Engineering, vol. 14, pp. 1357-1365, September 1988.

[32] Whirmire, S., Measuring Complexity in Object-Oriented Software, Third International

Conference on Applications ofSoftware Measurement, 1992, La Jolla, California.

[33] Zuse, H., "Properties of Software Measures", Software Quality Journal, vol. 1, pp. 225-260,

December 1992.











Date D ue

S£P- • 9 1994

may •} r,3
' 1988



MIT LIBRARIES

3 TOflO ODAMbZflO 3




