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Abstract

A simple model of adaptive control of promotional spending

is analyzed. In the model, company sales (and therefore profits)

are functions of promotional spending rate. Sales response to

the promotion changes with time as a result of changes in a para-

meter of the sales response function. Information about sales

response is collected in each time period by performing an ex-

periment. On the basis of present and past information, the pro-

motion rate is set to maximize expected profit in the next period.

The experiment is chosen to minimize the combined costs of im-

perfect information and experimentation.

A numerical example is studied analytically and by simulation

the adaptive system appears to work well. In a sensitivity

analysis, the system based on one underlying model of the market

is found to perform well when the underlying model is changed

considerably.
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*
John D. C. Little

1 . Introduction

A company must assemble marketing information, use it to modify

its conception of the market, use the revised conception to make mar-

keting decisions, and then arrange for the collection of new informa-

tion. In short, a company needs a control system for its marketing

variables

.

Obviously every company has some procedure for determining its

marketing actions, but usually the relationships between data inputs

and decision outputs are not at all formally specified. Our interest

is in studying possible inputs and possible relationships to deter-

mine their effect on overall company performance. Presumably, by

careful systems design, companies can achieve better marketing per-

formance than they do now.

Formal systems design in the sense we mean will require con-

siderable development. Marketing variables are many and so are the

possible sources and forms of information. However, we can at least

start the job by investigating a simple marketing system that in-

volves some of the important ideas.

The system consists of a model of the marketing process to be

controlled, a means of using the model to set values for the marketing
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variables, and a measurement device for keeping the model up to date.

The model of the process is briefly as follows: company sales (and

therefore profits) are functions of a single variable, a rate of

spending money on promotion. The sales response to promotion

changes with time. The change is the result of a single changing

parameter in the sales response function.

The control cycle operates as shown in Figure 1: Based on the

sales model, a calculation is made that sets the promotion rate to

maximize expected profit in the next time period. An experiment is

then designed to monitor the effectiveness of the promotion. The

results are then implemented, the market responds, and some sales

rate is produced. The sales data thereby generated represents new

information, which is then combined with old information to update

the sales model. The cycle is then repeated.

In designing the control system, we must specify how to combine

new and old information and we must determine what size of experiment

to perform. We plan to combine new and old information so as to

maximize the expected profit from the decisions that use the informa-

tion. The size of the experiment will be chosen to minimize the sum

of the losses arising from imperfect information about sales response

and from the cost of performing the experiment.

Thus, the problem is set up according to the principles of

statistical decision theory. The problem has a complication not

found in elementary applications, however, because sales response is

changing with time, and, as a result, the value of a piece of inform

mation deteriorates with its age.

For a measuring instrument, we shall work with direct sales

experiments. That is, we shall take different groups of customers,
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say, people in different geographical areas^ give them different

experimental treatments, and observe the effect on sales. Other,

less direct devices for monitoring sales response are of course

possible.

The overall system is certainly an idealization of real world

operations, but it is perhaps not too far from practicality. At

least one company we know goes around the feedback loop of Figure 1

in an informal way now.

2. Sales and Profit Models

The profit model expresses company profit rate in terms of its

sales rate, promotion rate, fixed cost rate, and incremental profit

on sales, the latter taken to be constant. To make the quantities as

concrete as possible we shall give them specific units. In particular^

money flows will be expressed in dollars per household per year

(dol./hh.yr.) . Let

s = sales rate, (dol./hh.yr.)

X = promotion rate. "

p = profit rate. "

c = fixed cost rate. "

ra = gross margin, the incremental profit as a fraction of

sales. (dimensionless)

The model of company profit is

(2.1) p = ms-x-c.

Notice that promotion enters here as a fixed cost. Thus we are not

planning to consider variable cost promotional activities (e.g.

price-off deals), although there is no conceptual difficulty in so

doing.





The sales model is set up as a simple quadratic in promotion

rate. We suppose that^ for a given fixed time period, sales response

has the general shape shown in Figure 2 and that the curve can be

approximated, at least near the current operating point, by a quadra-

tic function of x:

2
(2.2) s = a + px - Jfx .

The parameters a, P, and ^ are constants for the fixed time period

(they may be thought of as giving the average sales rate over the

period) but some of them may vary from period to period.

The value of x, say x , that maximizes profit is easily found

to be

(2.3) x = (mp - l)/2my.

If the company uses x instead of x , the loss rate, / , relative to

maximum profit is

.^(x) = p(x ) - p(x)
,

which, using (2.1), (2.2), and (2.3), becomes

(2.4) J^(x) = m^(x - X*) .

3. Changes in Sales Response

If the sales response parameters a, P, and ^ were known, we

*
n *

would set promotion rate to x and obtain the loss X (x ) =0.

However, the parameters are presumably fairly difficult to measure

and we ordinarily expect to come up with some non-optimal x and there-

fore to incur a relative loss.

If the parameters were constant over time, we would put a big

effort into measuring them right away, because the extra profit from

increased accuracy would extend far into the future. However, it is

difficult to believe that in practice the parameters stay constant.
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Figure 2. Shape of sales response to promotion in a fixed time
period.
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For example, competitive activity, product changes, changes in the

quality of the promotion, and shifts in economic conditions lead us

to expect shifts in response. Consequently, an expensive effort to

learn the parameters immediately cannot be justified. On the other

hand, the parameters may change fairly slowly with time, in which

case some effort is worthwhile. In each time period new information

is collected, combined with the old and used to set operations in the

immediate future.

To build a fairly simple model of changing sales response, we

shall suppose that a and p change with time in a specified way in-

volving some randomness, but that Y does not. As a matter of nota-

tion, we shall use the tilde (a^) when we wish to emphasize that some

quantity is being viewed as a random variable. Furthermore, a, P, s

and X usually depend on t, and when this needs emphasis we shall write

a(t), p(t), etc.

At a fixed time period, t, we assume that national sales rate

for the product is

(3.1) s = a + Px - !^x (dol./hh.yr.)

and that

Q:(t) has relatively high variance from time period to time
period

P(t) is dependent on p(t-l),

a and p are independent,

y is a known constant.

As implied by (2,3) and as will be seen, the current information

about a does not directly affect the optimal x. However, informa-

tion about a may make it possible to learn more about p in an experi-

ment. The assumption of high variance for a, (high conditional
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variance given the previous a's if successive a's are considered

dependent) may be fairly realistic and^ in any case^ simplifies the

statistical analysis by removing a as a contributor to information

about p.

The assumption that X is known and constant seems quite un-

realistic, but we shall argue later that this may not be too serious

to the successful operation of the system.

The response parameter p will be considered to be generated by

a random walk. One possibility is p(t) = p(t-l) + £p(t)^ where

C (t) = a random variable with mean = and variance = a
P P

We shall take € (t) to be normally distributed and independent of

previous values of p and €. • The difficulty with the above random

walk is that p is likely to wander unrealistically far from its

starting value. Therefore, we shall hypothesize a long run average

value and a tendency for p to return to that value. Specifically,

let

o ^^

P = the long run average value of p(t) .

k = a constant, < k < 1 .

We take as our model of changing p:

(3.2) 'p(t) = k p(t-l) + (l-k)p° + C„(t)
P

As k —^ 1 , p(t) is increasingly dependent on p(t-l) and also wanders

o
more and more freely from p . As k—^ , p becomes independent from

time period to time period. Figure 3 shows a possible sequence of p(t)

versus t. To make p(t) more operationally meaningful, we observe that

if the promotion rate is held constant, the sales rate consists of a

constant plus a term directly proportional to p(t)

.
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Figure 3. Sketch of a possible variation of the sales response

parameter^ P^ with time period, t.





-7

4. An Experiment to Measure Current Sales Response

In the previous two sections we have described the environment in

which the company is operating. Next we describe the control system.

Our starting place in the cycle of Figure 1 will be the point of de-

signing an experiment to measure sales response.

Measuring sales response essentially means measuring p, since a

does not enter decisions and Jf is taken to be a known constant. Infor-

mation about p will be collected by operating different groups of

market areas at different promotion rates.

Although the national average sales rate is given by (3.1) we

suppose that individual markets differ in sales rate because of

local random variations. For some fixed t suppose that the national

parameters take on the specific values a = a and p = p. We assume

sales in a market are then given by '
.•

(4.1) 's = s(x) + £

where s = sales rate in the market, (dol . /hh.yr .)

2
s(x) = a + px - jTx = national sales rate, (dol . /hh.yr.

)

€. = a random variable for the market, (dol . /hh.yr.)

We assume that £ is normally distributed, is independent from market

2
to market, and has mean - and variance = a .

The experiment is sketched in Figure 4. Suppose that at t we have

picked a promotion rate, x (t) . This will be used everywhere except

that in n markets we shall use a deliberately low value, x^ , and in

another n a deliberately high value, x- • We take

(4.2) x^ = x^(t) - ^/2

X. = x (t) + A/2
2 o

where ^ is a design constant yet to be selected.
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/N

s(t)
n markets

n markets

x(t)

Figure 4. The sales experiment. A group of n markets is given a

promotion rate A,/2 greater than the national average^ x ,

and another group of n is given a rate A/2 less.
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Let s and s be the observed mean sales rates in the grovps of markets

x^ and X respectively. An estimate of p(t) can be computed from the

experimental data:

(4.3) 9(t) = (1/A)(S2+ ^^2^ " ^1 "
^""l^ ^ •

This will be called the "experimental mean". It is a random variable

_ _ *
because s, and s„ are random variables. Let

1 2

v = V [>(tO .

A^ A
From (4.1), (4.2), and (4.3) we find that, given p(t) = P(t), p(t)

is normally distributed with mean and variance:

(4.4) E |j(t)2 = p(t)

2, 2
V = 2a /nA

Notice that v does not depend on t.

The experimental result (4.3) does not represent all our infor-

mation about p. Even before doing the experiment we had the informa-

tion developed in previous experiments. The information will be

summarized in a prior distribution for p(t). This distribution will

be taken to be normal with

pc/ -J
^

E' p(t)[ = mean of prior distribution of p(t),

v' = variance of prior distribution of p(t).

At the beginning of period t^ when the promotional rate, x(t), is

to be set, we have only the prior distribution. At the end of t, the

experimental results are at hand and we can construct a posterior

distribution. The additional information about P(t), however, is of

no use in t even though it will be helpful in t+1.

We use V P^ ^nd E |^ ^ ^° denote the variance and expectation

operators, respectively.
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5. Decision Rules for Updating the Model and Setting the Promotion

Rate

Returning to the control cycle, suppose that the experiment for

period t has been implemented, the market has responded, and we have

in hand the sales results. We are now ready to update the model and

go on to pick a promotion rate for period t+1

.

Decision rules for updating the model and setting promotion can

be determined by formal decision theory arguments, but we prefer to

defer these and begin intuitively. One reason is that the optimality

of formally derived rules is entirely dependent on the specific

assumptions of the model, some of which are rather restrictive. The

form of our decision rules, however, appears reasonable (although not

necessarily optimal) for a wide class of situations.

The decision rules are, first, to update the mean of our prior

distribution by an exponential smoothing process and, second, to set

promotion rate by a formula analogous to (2.3). Specifically, we

choose a number, a, such that ^ < ^ < 1 and update the mean by

(5.1) E' [j(t+l)j = a E" [tit)J + (1-a) p(t) .

Then we choose as our promotion rate for t+1:

(5.2) x^(t+l) = (mE'|j(t+l) - l)/2md' .

Suppose the process starts at t=l . It is necessary to pick a start-

ing value E" p(0) , but, thereafter, promotion rate is set mechan-

istically by the rule. Since we are dealing with an exponential

smoothing process, the effect of the starting value on later opera-

tions decays exponentially with t_.

Notice that the rule as stated makes no assumptions about the

underlying mechanisms generating a(t) and p(t) and, if we think
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of ^ as an arbitrary positive constant^ the rule is not tied down to

any specific sales response process. The rule can be applied to any

situation in which the experiment of Section 4 is performed, pro-

vided that somebody is willing to pick, a and ^ plus E' p(0) I and

the experimental design parameters A and n .

The behavior of the decision rules will be clearer if we ex-

press the resulting promotion rate somewhat differently. Let us

A ^
define a quantity, x (t), to be called the "experimental x " by

(5.3) ^^(t) = [m p^(t) - 1 /zmJT»•
l:

This is the promotion rate that would be best if p actually equalled

the experimentally determined p. Using (5.3), (5,2) can be re-

written;

(5.4) X (t+1) = a X (t) + (1-a) ^ (t)
o o o

Thus the decision rules amount to using a weighted combination of

last period's promotion rate and the experimental x . If we have a

tight, accurate experiment, we should use a small a and so rely mostly

on the current experiment. If the accuracy of the experiment is low ,

a large a is appropriate. Then this year's promotion rate depends

mostly on last year's, which, in turn, represents a summary of con-

siderable past experience.

Still another way of writing the decision rule brings out more

sharply the role of the sales data. Using (4.3) and (5.3) we get

(5.5) ^o(t+l) = x^(t) + r(l-a)/Zm^Al U(s2-sp - zTj •

net profit for increasing the promotion rate from x to x , i.e. by

The quantity m(s„-s.,) -A| is simply the experimentally estimated
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an amount A • If the net profit is positive^ x (t+1) is made larger

than X (t)j if it is negative^ x (t+1) is made smaller. The amount

of the adjustment is controlled by the constant (l-a)/2mS'A . If the

constant is large^ the promotion rate will be sensitive to the most

recent experiment^ if the constant is small^ insensitive.

Although an appropriate choice of constants is necessary for

reasonable operation^ the general form of our rule provides an

adaptive control system that might be expected to work fairly well

for a variety of underlying sales response mechanisms. One might

expect that^ if the constants were chosen with one mechanism in

mind^ they might work satisfactorily with other mechanisms not too

different. Whether or not this is so in a specific case can be

explored by simulation and sensitivity analysis.

For the sales response model being assumed we now wish to

motivate the decision rules more carefully and go on to pick optimal

values for £^ n^ and A .

6 . Choosing the Smoothing Constant

The smoothing constant^ a^ was used in (5.1) to combine new and

old information about p. We shall now show that a can be expressed

in terms of the experimental design constants and the constants of

the p(t) process.

Consider first the problem of finding the posterior distribution

of p(t) given its prior distribution and the experimental results at

t. Let

[p(t)]E'
I
p(t) I = mean of prior

P(t) = experimental mean

[i(t7| . mean of posterior
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v' = variance of prior

V = experimental variance

v" = variance of posterior

Since the prior of p(t) is normal and the distribution of p(t) given

p(t) is normal^ the posterior of p(t) is normal and has mean and

variance (see [ij p. 294-5):

(6.1) E" [ji(t)] = [v/(v+v')3 E' ['p'(t)] +[y'/(v+v')l ^(t)

(6.2) v" == v v'/(v+v')

The process generating p(t+l) has been specified in (3.2):

'p(t+l) = k p(t) + (l-k)p° +Cp(t+1) .

As of the beginning of t+1^ we know the posterior distribution for p(t) .

We also know the distribution of £ (t+1) , Since the two random variables
p

are independent^ the prior distribution of p(t+l) has mean and variance:

(6.3) E' [fCt+ljl = k E" [p(t)] + (l-k)p°

(6.4) V' [p(t+l)[ = k^ V" Q(t)\ + a
2

P

Furthermore, the prior of p at t+1 is normal and so the normality of

P is preserved as time passes.

Substituting (6.1) into (6.3), we obtain

(6.5) E- [^(t+ljj = k ^[^/(v+v'3 E- [p(t)J + [^'/(v+v')] ^(t)]

+ (1-k) p° .

If k is near one, a good approximation may be obtained by setting

k=l in the above expression. This has the advantage of eliminating k

o
and p as parameters in the decision rules and so we shall use it.
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However, there is no fundamental difficulty in carrying along k and

o
P , except that we must specify their values.

Under the k=l approximation, (6.5) is in the same form as (5.1)

and so we see that

(6.6) a = v/(v+v') .

Thus, for this case, we have justified the decision rule (i^.l) and

found a way to compute a. It remains to express v and v' in terms of

known parameters.

We already know v in terms of the experimental design parameters

by (4.4). With respect to v', we first observe that v' and v" will

not change with t once steady state operation is achieved. This is

2
because a and v do not change with t. In steady state, (6.4) and

(6.2) become

, 2 2
v' = k v" + Oo

p

v" = V v'7(v+v') ,

Using the k=l approximation and solving for v', we obtain

(6.7) V' =^apMl + _1 + (4v/ap^)] ^>
,

2 T
where v = 2a /nA . Substitution of v and v' into (6,6) gives the

smoothing constant, a, in terms of a, n, A, and o . This completes

the job of finding a.

7 . Setting the Promotion Rate

Next we wish to justify the decision rule (5.2) for setting pro-

motion rate. Profit rate is a random variable because sales rate is:

(7.1) 'p(t) = m l'(t) - x(t) - c

(7.2) f(t) = -^(t) +y(t) x(t) -^x^t)
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We cannot maximize true profit but choose instead to maximize expected

profit. At the start of t^ the company's view of expected profit in

t is (simplifying the notation by suppressing t)

:

(7.3) E' Pp
I

= mJE'j ^J + E' [Tfx - jfx^j - x - c .

The company can maximize this by setting x(t) to be

(7.4) x^(t) = (mE'[_'p(t)^ - D/lmt .

This is (5.2)

.

At this point we have justified the decision rules of Section 5

for our specific model;, at least to the extent of k.=l approximation.

It remains to pick the parameters n and A of the experiment.

8. Designing the Experiment

The experimental design perameters will be picked to minimize the

sum of two losses: the loss incurred because. we do not know p exactly

and the loss incurred trying to learn p better. The losses will be

calculated relative to the profits obtainable under perfect information.

With perfect information we would choose the promotion rate;

(8.1) V(t) = [[m p(t) = l] /2m!r .

Instead we choose

(8.2) x^(t) = fm E- ['p'(t)1 -rj/Zmy .

Notice that

(8.3) E- p"(t)J = x^(t) .

The loss rate compared to perfect information is seen from (2,4) to be

lit) = mj^p^(t) - K-"(t)] .

Therefore^

E' |j(t)] =myV'p*(t)] = (m/4y)V'p(t)3
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or

(8.4) E'QeJ = (ra/4}r) V'
,

independent of t. This is the expected loss rate relative to perfect

information for those markets where we follow the decision rule to

use X (t)

.

o

In the 2n experimental markets, the expected loss rate is higher

because the promotion rate is deliberately set to be different from

the best available value, x (t) , Suppressing t for the moment, the
o

experimental promotion rates are

X, = X - 1/2A
1 o

x^ = X + 1/2A .

Z o

Consider a market at x^ . Let its loss rate relative to perfect

information be •'

-, 2

^1 = "'^Ei^'^t] = m^fQx^-'x*) -ACx^-'^*) + C-A^/4)J .

Therefore, using (8,3) and (8.4),

Letting J^ ~ \y ~ ^ ^^ ^^® extra cost rate of the experimental

deviation, we see that

ex
r 1 2

(8.5) E' |_./? J = msA /4 . This same expression holds for a market

at x^.

The total expected loss rate can now be computed. The loss rates

above apply to individual markets and have the dimensions dol./hh.yr.

Let

N = total number of markets in the country,

2n = the number of experimental markets,

P = the average number of households in a market,

T = total expected loss rate (dol./yr.)
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We shall assume^ for simplicity^ that all markets have the same size^

but this is not essential. Then^

T = N P m v'/4^ +(l/2)PraJnA^ (dol/yr)

In later discussion of numerical results^ it will be convenient

to express loss rates in percentage terms. A problem is that most

quantities that are candidates for forming the denominators of such

percentages are fluctuating with time. However^ for several quanti-

ties we can construct reference values about which actual values

fluctuate. Let

o
P = long run average of p(t)

o
a = long run average of a(t)

(8.6) x° = (m p°~l)/2ra^
2

,^ -v o O o o , o,
(8.7) s - a + p X - J('(x )' .

Here x is the optimal promotion rate if p = p ^ and s is the

o
corresponding rate when a = a . These quantities make convenient

reference points.

Now^ let

L = expected loss rate relative to perfect information (and

no experiment) as a fraction of the long run average

promotion rate, x

= |jN P m vV4^) + (l/2)Praj-nA J /N P x°

(8.8) L ^ m v'/4^ x° + m JJ nA /2 N x°

The experimental design parameters n and A. will be picked to mini-

mize L. First, we observe from (8,8) and (4.4) that n and A always

2 2
appear in L in the combination nA . We shall therefore find nA to

minimize L. Then we can more or less trade off n against any way

we wish as long as OA is kept to its minimizing value. Practically,

there are limitations (e.g. x must be non-negative and 2n not greater
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than N^ to cite two extremes) but the flexibility implied is inter-

esting and valuable.

2
Rather than minimize L with respect to nA directly, we mini-

2 2 2
mize with respect to the dimensionless quantity z = 8a /a_ nA ,

2
from which nA can be immediately calculated, by means of

2 2 2
(8.9) nA = 8ct /ct„ z .

p

Substituting this into (4.4) to get v, v into (6.7) to get v', and

2
then v' and nA into (8.8), we obtain L in terms of z:

(8.10) L = (ma^/8 J-x°) 1 + (l+z)2 + 8m^ a /Na x°z

Setting dL/dz = 0, we obtain an equation that optimal z must satisfy:
1

2
(8.11) z/(l+z)4 = 8^ a/a nTn" .

The equation can be solved for z graphically, or simply by trial and

error. Therefore, given the system constants, z can be determined

2
from (8.11) and the optimal experimental design constant, nA , can

be found from (8.9).

9 . Numerical Example

The behavior of the system will next be illustrated by a

numerical example . Given a set of values for the constants, we

design the optimal experiment, determine decision rules for setting

promotion rate, and simulate system operation. Average losses can be

calculated from the simulation or directly from expected loss formulas.

In this section we suppose that the underlying model on which we have

based the system design is correct. We compare optimal operation with

various other policies. In a later section we consider examples of

what happens when the underlying model is not what we supposed.

Constants . In constructing the example we have tried to pick

realistic values for the constants. We have not, however, tried to
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represent any specific product. Sales and other figures will be given

in absolute units, but the example is constructed from assumptions

about percentages. Therefore, to the extent that the results are

realistic, they are intended to be realistic under changes of scale

that multiply sales and promotion by the same factor.

The constants have been chosen to give sales of about 25 million

dollars/year (s = .50 dol./hh.yr., based on 50 million households).

Promotion rate is about 1.5 million dollars/year (x = .03 dol./hh.yr.)

or roughly 67o of sales. Gross profit margin has been taken as 1/3 of

the selling price.

The performance of the system is sensitive to the accuracy of the

experiment^ which in turn depends on the variance of sales among

markets. We have chosen a Is = TL, a value that has been achieved by

some companies in field experiments. We permit an experimental devia-

o
tion in promotion rate of ±25% of the long term average, x , Then

oA = .5x . Much larger deviations have been used in practice for

single experiments. The proposed deviation seems workable for con-

tinuous use.

The hardest question in picking constants is how to set reason-

able values for the sales response parameters. There are a few sales

experiments that have given an indication of diminishing returns for

the case of advertising. As might be expected, the results show

considerable variation. We have chosen p and ^ so that they lie

within the rather wide range of values that are consistent with these

experiments. The constant o determines the period to period variance
P

in sales response. The choice here has been quite subjective. However

Field experiments are usually analyzed by regressions that take into
account as many relevant variables as possible. The a here refers to
the residual standard deviation.
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it can be given a concrete interpretation as follows: If promotion

o
rate is held at its reference value^ x , there will be sales fluctua-

tions (arising solely from fluctuations in the sales response parameter

P) that are normally distributed and have a standard deviation of 3%

o
of s . The constant k has been taken as .9 . If k had been set at

1.0^ sales response in one period would be made up of last period's

response plus a random fluctuation of the type just discussed. A

value of .9 gives something fairly close to this but provides a

o
tendency for sales to move toward the reference value, s , Speci-

fically, in the absence of new fluctuations, the difference between

actual sales and the reference value would be reduced by 10% in each

time period.

To summarize and add detail:

o
a = .32 = sales rate m absence of any promotion, (dol . /hh.yr .)

o
P = 9 = long run average of sales response parameter p.

(dimensionless)

^ = 100 = curvature parameter of sales response function.

(dol. /hh.yr)
'^

m = 1/3 = gross profit as a fraction of selling price.

(dimensionless)

These lead to reference values, calculated from (8.6) and (8.7):

X = .03 = reference promotion rate. (dol. /hh.yr.)

s = .50 = reference sales rate, (dol, /hh.yr.)

x°/s° = 67„ .

The model of sales response f luctuations__has_paraffleters

:

a = .5 = period to period standard deviation of p(t).

(dimensionless)

k = .9 = persistence constant for P(t). (dimensionless)





-20

The data related to experimental design are:

o
a = .07 s = .035 = standard deviation of sales rate for an

individual market, (dol. /hh.yr.)

^ = .50 X = .015 = range of experimental deviation in pro-

motion rate. (dol. /hh.yr.)

N = 1000 = number of individual markets of "average" size

required to make up national sales.

Experiment ; To design the experiment^ the appropriate constants

are substituted into (8.11)^ which can be solved to give z = 5.70^

2
then by (8.9)^ nA = .00687, Since we have arbitrarily fixed A at

.015^ n becomes 30.5 or^ rounding,

n = 30 markets.

This completes the experimental design. In each time period 30 markets

o o
will be run at a promotion rate . 25x above the national rate, x (t),

and another 30 markets will be run the same amount below.

The resulting experimental standard error of p is calculated

from (4.4) to be .602 . This does not make a particularly accurate

experiment, considering that we would like to operate on the sales

response curve at the point with slope 1/m = 3.0. Under the above

standard error, we could fairly easily get a measured slope of 2.9

while we were actually operating at 3.5 , However, two factors are

present that make the situation less serious than it might appear.

First of all, the current experiment does not represent all the

available information about sales response. Before setting the pro-

motion rate, current information is combined with past information by

the decision rule. Secondly, profit maximizations of the present type

have the property that, as long as the control variables can be kept

fairly close to their optimal values, losses will be small.
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Decision Rule . In order to set up the decision rule, we need

the smoothing constant a. First v' is found from (6.7) to be .451 .

Then (6.6) gives

a = .446

and (1-a) = .554 . This means we shall be giving fairly equal weight

to new and old information. By combining (5.3) and (5.4), we can

write the decision rule for x (t) as
o^ '

X ,

o
^(t) = a x^(t-l) + |_(l-a)/2ir] ['^(t-1) - (1/m)]

or, substituting numbers,

(9.1) x^(t) = .446 x^(t-l) + .00277 [^(t-1) - 3.o] .

We are now set to operate. Given a starting value, x (0), and a

sequence of experimental results, p(t), we can generate the promotion

rate x (t) .

o

Simulation : To see how the system behaves, we have simulated

the underlying market over time and have operated with the above rule.

The steps in the simulation are briefly as follows: The values for k

o
and p are put into (3.2) to give:

(9.2) %(t) = .9 p(t=l) + .9 +€ (t) .

2
Then random numbers, €. (t), having mean zero and variance a = l/^>

p P

are substituted into (9.2) to generate a sequence of values for p(t).

For the a(t) process we take a(t) = a = .32 dol./hh.yr. for all t. A

varying of a(t) might be more realistic but, since a(t) does not enter

into any decisions, we have simply made it a constant.

Given p(t), the experimental results at t are simulated by

p(t) = P(t) + 6g^ (t) .
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Here ^ (t) is a random normal number with mean zero and variance
^ex

V = .363 . (We could simulate each of the 2n test markets separately

to generate p(t) , but it is equivalent and much easier to simulate

the final experimental result directly.)

The company uses p(t) to generate x (t) . The final sales outcome

can be calculated from this, P(t), a., and ^ :

S(t) = .32 + p(t) x^(t) - 100 fx^Ct)] ^ dol./hh.yr.

The sales, in turn, can be used to calculate profit. Our principal

criterion for judging the system, however, is the loss relative to the

profit that could be made under perfect information. The best promo-

tion rate under perfect information can be developed as a side calcu-

lation using (8.1).

X (t) = [|(t)-3j/200 dol./hh.yr.

The loss rate relative to this is, from (2.4):

^(t) = 33.3 [xo(t)-x (t)] dol./hh.yr.

The further loss resulting from the experimental deviations has not

been simulated, but its expected value can be calculated from (8.5).

The simulation results are shown in Figure 5. 40 time periods

o o
are shown. (The series was started with x(0) = x and p(0) = p and

run for 10 periods before the present data were taken.) Plotted are

P(t), which is driving the system, x (t'), by which the company

responds, and the resulting s(t) and j^(t). The latter is expressed

o
as a % of X

We see that the response of the adaptive system is quite good.

Notice that responses in x(t) lag changes in p(t) by a time period

since the information gained during one period is not available until

the next. The losses are generally small, although occasional peaks
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occur where p(t) has changed substantially and x(t) has not yet

caught up. The 40 period average loss is 1.557o of x

Expected losses . The expected losses relative to an operation

based on perfect information can be calculated from various formulas.

We shall use the exact loss formulas given in the Appendix instead

of those of Section 8^ which are based on the k=l approximation. The

differences^ however^ are slight.

Expected Loss Rate
(compared to perfect information)

Source (dol . /hh.yr.) (dol./hr.) (% of x°)

X (t) not perfect .000376 18,500 1.23

experimental deviations .001875 5,700 .38

Total 24,200 1.617,

The 40 period average loss rate of 1.557o in the simulation is

reasonably close to the calculated 1.23%. These losses are encourag-

ingly small, especially since the standard is perfect knowledge of

the response curve and since our experiment is not terriby precise.

Comparison with other policies ; The results using the optimal

adaptive system may be compared with other types of operations. One

o
possibility is to set x(t) to a constant value, say x , for all t,

o
The rate x has the property of being optimal when p(t) takes on its

long run average value. It is not clear, of course, how the company

would figure out x , Consequently the values ,5x , x , and l,5x

will be tried. Expected losses compared to perfect information can

be computed from (2.4) and (A. 10) For a constant promotion rate

there is no cost of experimental deviations.
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adaptive system: x (t)

constant rate: x

constant rate: ,5x

constant rate: 1.5x

Expected Loss Rate

(compared to perfect information)

(dol./yr.)

Ik, 200

54,700

430,000

430,000

(% of x")

1.61%

3.65

28.65

28.65

Thus the increased loss ranges from TU of x for the lucky guess to

o
277o of x for the substantial deviation.

Suppose that circumstances prevent an experiment of the proposed

optimal size. Instead of 30 markets in each group, suppose we have

to get along with 15. Then the experimental error would increase

from .602 to .726. The value of a would decrease from .561 to .446,

implying more reliance on past information. The system, however, is

still adaptive.

Expected Loss Rate
(compared to perfect information)

optimal experiment (n=30)

smaller experiment (n=15)

(dol./yr.)

24, 200

25,500

(7o of X )

1.617,

1.70

The deterioration in performance is small,

10, Sensitivity Analysis

The optimal adaptive system performed well in the example of

the previous section, but the optimality of the system is based on

various assumptions about the underlying operation of the market.

Many of these assumptions are questionable. How will the system

perform if some of them are incorrect? To investigate this question.
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we use the experiment and decision rule as derived but change the

underlying market model in various ways.

Constant Sales Response , The original model assumed that

sales response fluctuates over time. Suppose that, instead, sales

response is constant and has p(t) = p° • Then the optimal promotion

rate is x(t) = x . If we use the adaptive system of the previous

section some relative loss will be incurred. The loss can be calcu-

lated using the formulas in the appendix by setting cj„ = 0-

Expected Loss Rate
(compared to perfect information)

adaptive system

constant rate: x

constant rate: .5x

constant rate: 1.5x

(dol./yr.)

11,000

375,000

375,000

(% of X )

.74

25.

25.

We see that the average loss rate using the adaptive system is

only . 747o of x . This is quite smallj in fact, it is less than the

1.617o that occurred when sales response fluctuated. (The reason is

that the stable sales response is inherently easier to optimize.) Of

o
course, if the company president is clairvoyant, he will pick x(t) = x

and have no loss at all. On the other hand, if he misses and sets

x(t) = .5x or 1.5x , a substantial loss is incurred.

Changes in Sales Response Have No Persistence . The earlier model

assumed that sales response changed but that the starting point for

the change was the previous sales response. Thus a goal of the adap-

tive system was to follow sales response as it drifted about. Suppose

instead that sales is subject to fluctuation but has no persistence.





-26

In other words^ p(t) equals p plus an independent random variable

for each t. This situation may be obtained in our model by setting

k = 0. Under these circumstances the optimal policy is x(t) = x ,

adaptive system

constant rate: x

constant rate: .5x

constant rate: l,5x

Expected Loss Rate

(compared to perfect information)

(dol./yr.)

25,800

10,400

386,000

386,000

a of x")

1.72

.70

25.7

25.7

The adaptive system is not as good as the constant rate x but

the difference is small. On the other hand if a constant rate sub-

stantially different from x is picked, large losses are incurred.

Different curvature . Perhaps the most serious assumption in

the model is that 'if , the curvature parameter in sales response, is

a known constant. In practice, Jf will usually be unknown or poorly

known. We suggested earlier that perhaps our ignorance of if was

not too serious. To test this possibility we make some fairly drastic

changes in but set promotion rate by the adaptive system derived

from the old value.

First, if is reduced from 100 to 25, a factor of 4. Sales re-

sponse is now much more linear.

Expected Loss Rate

(compared to perfect information)

adaptive system
o

constant rate; x

constant rate: .5x°

constant rate: 1.5x

(dol./yr.)

75,000

219,000

312,000

312,000

(°/o of X )

5.01

14.6

20.6

20.6
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The losses compared to nerfect information are found to be

higher than they were for ^ = 100 for both the adaptive system and

o
the constant rate, x . The more linear response means that a change

in p can be made the basis for a substantial and profitable change in

promotion rate (if response is known perfectly) . Without perfect in-

formation, both ways of operating fumble more than formerly. However,

the adaptive system does much better than the best constant value.

Next we increase § by a factor of 4 to 400. Sales response is

now much more nonlinear.

adaptive system

constant rate: x

constant rate: .9x

constant rate: 1 . Ix

Expected Loss Rate
(compared to perfect information)

(dol./yr.)

27,100

13,600

73,600

73,600

(%
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Figure 6. Behavior of average x(t) when p(t) jumps.
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operation would be x = ,03, jumping to .06 at t = 1. Figure 6b

shows the expected value for x(t) under the adpative system of the

previous section. (Because of randomness in the experimental re-

sults, actual operation would fluctuate about the expected value.)

We see that average x(t) lags one time period before starting to

respond and then responds fairly quickly.

In summary, we have devised sensitivity tests to see how the

adaptive system performs when the assumptions on which it is based

are violated in various ways. These tests have been applied to the

numerical example of the previous section. The performance of the

adaptive system is found to be good.

11. Discussion

Perhaps it is surprising that such simple operating rules can

cope successfully with a changing environment. Other examples,

however, are not hard to find. The home thermostat controls tempera-

ture under widely varying conditions of heat loss and does it without

solving heat flow equations on a digital computer. In our case there

are several reasons why the adaptive system operates well. In the

first place, the system overcomes some of the inaccuracy of its

measuring device by working from an accumulation of present and past

information. In the second place, sales response is presumed (reason-

ably enough) to vary smoothly with spending. As a result, the

profit maximum is also smooth. This means that small deviations

from best operation cost very little: underspending gives fewer

sales but saves almost an equal amount in out-of-pocket expensej

overspending is almost counterbalanced by increased sales. Substan-

tial losses are produced only by large deviations and these tend to
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be avoided by the adaptive systecDo Thirdly, various empirical studies

suggest that, once some nominal promotion rate is achieved, spending

rate per se is not a big factor is sales. (The rapid diminishing

returns of the log curve used by Benjamin and Maitland L "^ can be

interpreted this way.) This is not to say that increases or de-

creases may not be profitable but rather to say that they are not

likely to cause the jumps in sales that are caused, for example, by

product changes or, sometimes, by changes in promotional treatment.

The use of the adaptive system requires a tolerance of explicit

uncertainty on the part of a company's management. The system will

specify some definite number for promotion rate, but the available

information on response may be sufficiently ambiguous that other,

rather different numbers look almost as good. Such a situation may

be disconcerting. Some people prefer the pseudo-certainty of a plan

that is defended as exactly right (even though something quite differ-

ent was done the previous year under roughly the same circumstances.)

The adaptive system must be regarded as a set of operating rules that

produce a good average return rather than as a device for producing

the perfect number each time. In fact, uncertainty plays an essential

role in the system since inaccuracy is deliberately accepted in the

optimal design.

11.1 Practical Problems . We shall try to anticipate and discuss

some practical questions that might come up using a system like the

one presented here. First of all, there is a class of questions re-

lating to setting up the system; Is the model as it stands sufficiently

There is an extremely interesting question implicit here; If some
aspect of promotional treatment, for example, advertising copy, is ex-

ceptionally good, should a company spend more or less on promotion?
The answer does not seem obvious.
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good or should certain complications be added? Several of the para-

meters of the model will almost certain be unknown; how should they

be picked? The decision rules have been derived under the assump-

tion of steady state operation; should anything different be done

in starting up?

One approach to handling the uncertainties behind these ques-

tions would be to develop a formal Bayesian analysis of them. How-

ever, the approach suggested by the work here is to gather together

whatever relevant information can be found, build a specific model,

and investigate its behavior by simulation and sensitivity analysis.

For starting up, the past promotion rate of the company could be

used as the past promotion rate required by the model. It might be

desirable to design extra accuracy into the first few experiments.

As a practical matter, however, experimental accuracy will probably

increase rather than decrease with time because of increasing exper-

ience.

Over a number of time periods, information can be built up on

the validity of the model and better estimates can be made of the

constants. Particularly Important is information about iT, since Y

expresses the degree of diminishing returns. Notice that our pro-

posed operation collects information about ^ even though we have not

acknowledged this fact in the analysis. The information is the re-

sult of using three spending levels (x - (A/2), x , (x + (4/2) ).

These permit an estimate of ^ in each time period. Individual es-

timates are likely to be quite unreliable, however. This is one

reason we have chosen not to build the measurement of ^ directly

into the analysis.

Another practical problem is that the decision rules may occa-

sionally call for a really substantial change in spending .rate. In
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some cases the proposed rate may fall outside the range included in

the experiment. Substantial changes are often disturbing to an

organization and changes beyond the experimental conditions are on

less solid empirical ground than those within. One way to handle the

situation is by exercise of the managerial override that obviously

exists on the whole system, A better way^ however, and one that

can be pre-planned and pre-studied is to clamp the amount of change

permitted, say, by limiting it to ±157o pr ±20%, This will tend to

slow down system response, but perhaps not excessively so.

Different market areas, it may be argued, will have different

sales responses to promotion, whereas the measurements discussed

here produce an average response. It seems certainly true that

markets will differ, at least to some degree. However, whether the

differences are appreciable will depend on the situation. Where

they are, it would be desirable to take advantage of them. Possibly,

one can develop an adaptive system that applies to individual mar-

kets, but the measurement problems appear to be quite difficult. A

feasible approach would be to use whatever empirical and judgmental

information is available to develop individual market adjustments

to apply to the average curve. In this case each market would have

its own X (t) and experimental deviations would be made relative to
o

this.

A related problem concerns the nature of the test markets.

Assuming, as we generally have, that the basic experimental unit is

a market area, the test markets themselves will usually be medium-

sized markets. The very large and very small tend to be ruled out by

various operating considerations. Yet, we wish to set promotional
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rate throughout the country. This is basically a problem of in-

dividual market adjustments and can be handled as discussed above.

The experimental design discussion of Section 8 omits a cost

that may sometimes be appreciable, namely, the out-of-pocket cost

of running the experiment. If the cost is substantial, it can

easily be included in the analysis for determining the optimal ex-

periment. If there is a cost proportional to the number of test

2
markets, the quantity nA. will no longer be an invariant constant.

Instead, the calculation will show that total cost is least when the

number of markets, n, is as small as possible and the experimental

deviation, 4 , in the promotion rate is as large as possible. We do

not want A, to become so large that sales are substantially reduced

in the low markets. Although this consideration could be included

in the formal analysis, a simpler procedure is to place an arbitrary

upper limit onZ\. Then n can be calculated in a straightforward way.

The effect of promotion may be delayed. Empirical data (see

references 3, 4, 5, and 6) suggest that the principal response is

frequently fairly rapid, say, within one to three months. If sales

are measured by factory shipments, a pipeline delay will also be

encountered. A nominal value might to 1-1/2 months. In the dis-

cussion here we have obviously assumed that delays are small enough

that a measurement of the promotional effort can be made within the

experimental time period, A period of a year seems appropriate for

many situations. A year also eliminates certain problems of season-

ality and fits in with the budgeting process.

Any control system should be examined for stability. Con-

ceivably, an inappropriate choice of constants relative to the un-

derlying process could result in too small a value of the smoothing
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constant, a, and so an inappropriately large dependence on the most

recent data. This could perhaps lead to an oscillation of under-

spending alternating with overspending However, this does not seem

likely for the type of decision rule being used. In any case, sus-

pected sources of oscillation can be investigated in advance by

simulation.

11.2 Competition . Businessmen frequently are concerned about

a possible self-defeating aspect in promotional competition. If the

effect of promotion is primarily on market share and not on total

demand and, if promotional efficiency is comparable from one company

to another in the industry, then promotional increases may appear

profitable in experiments. Yet, when the increases are applied na-

tionally, they may be countered by competing companies in such a way

that nobody's sales change much but everybody's spending is increased.

Models of this sort of process have been built by a number of writers.

. 8
Mills' paper contains an example.

Several remarks can be made. Let us consider the extreme case

where promotion affects only market share and not total industry

sales. If the companies are operating at competitive equilibrium,

i.e., the companies are already individually operating (within their

measurement capabilities) in the neighborhood of their independent

maximum profit points, then the adaptive system will continue this

type of operation in an efficient manner. Whenever a company starts

over- or under-spending, the adaptive system will tend to return the

spending rate to the maximum profit position.

If, on the other hand, all companies are spending less than they

would at competitive equilibrium, i.e., an accurate experiment would
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indicate that increases would be profitable for each company if the

others stayed constant, then spending rates tend to be unstable. A

company not wishing to disturb the situation may choose to hold pro-

motional spending constant or to adopt a figure close to the industry

average spending as a per cent of sales. Either way, there is no

need for an adaptive system to set promotional spending for it is

already set. (There may be some other interesting applications, how-

ever, in the allocation of funds between promotional alternatives.)

Another policy for this situation, but one that is more likely

to be misunderstood by the competition, is to set stiffer return re-

quirements on promotional spending than those implied by the

conventional maximum profit calculation. This could be done by

using a smaller value for the gross margin than actually was the

case.

It is a rare company that knows whether it is in competitive

equilibrium with respect to promotional spending and whether its

spending appreciably affects industry sales. Some information about

these questions can be obtained in experiments of the type we have

been considering, although, as we have discussed, the information is

likely to deterioriate unless kept up to date.

11.3 Extensions . We mention three particularly desirable

extensions of the model. First it would be helpful to have an adap-

tive system to allocate a fixed budget between several promotional

alternatives. Second, it is unrealistic and undesirable to rely

solely on past experiments to estimate sales response. Certain other

pertinent information is usually available; knowledge of product

changes, forecasts of economic conditions, etc. A step could be

introduced into the feedback loop to bring this information into the
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prior distributions used to set promotional rate. Finally^ it would

be worthwhile to study the possibility of monitoring individual mar-

ket response by time series analysis as a basis for individual market

adjustments.

12. Conclusions

The adaptive system discussed here is directed toward a major

continuing problem: the setting of spending rate for promotion. The

concept of the adaptive system seems basically correct: a company

should learn from experience in an organized way. The model studied

is a simple one but it may be useful as it stands and it certainly

is capable of extension. The operating rules that have been developed

are simple^ feasible, and seem intuitively reasonable. In examples

using realtistic numbers, system performance has been good, despite

a relatively inaccurate measurement process. Of particular interest

is the .insenEitivity_ of performance to substantial changes in the

underlying model

.
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Appendix

The mathematical development so far has been directed toward

finding optimal operation, particularly under the k=l approximation.

However, for sensitivity analyses it is helpful to have exact ex-

pressions for the expected loss rate under various kinds of non-

optimal operation. Accordingly we here solve the following problem:

Given (1) the basic environmental models

2
(A.l) s = a + P(t)x - 5x

(A. 2) p(t) = k p(t-l) + (l-k)p° +€p(t)
P

(2) the decision rules

(A. 3) X (t+1) = a X (t) + (1-a) x (t)
o o o

(A. 4) . x^(t) = ^m p(t) - l] /2m

y

(3) the stochastic process describing the experiment

(A. 5) p(t) = p(t) + €(^)

(4) the loss rate formulas

(A. 6a) i(t) = m^[x^(t) - x*(t)]
^

(A. 6b) j^.(t) = m^ [x^(t) - x"{t)J ^, i = l,2

Find the steady state expected loss rate L.

We shall do this for an arbitrary (not optimal) smoothing con-

stant, a, and an arbitrary (not optimal) experiment of accuracy

2/ 2
V (£ ) = v = 2a /nA . The calculation will proceed by solving

*
difference equations to express p(t), x (t), and x (t) as infinite

sums of independent random variables. The desired expected loss can

be calculated from these.
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t.

Successive substitutions in (A. 2) give

(A. 7) P(t) = p° + Z k^ G-(t-j),
. ^;

so that in steady state

(A. 8) E [p(t)] = p°

(A. 9) V [pet)] = Op^/d-k^) .

Putting (A. 7) into

t-

•k

X (t) = Qn p(t) - l]/2(!rm

gives

(A. 10) x*(t) = x° + ^ Z kJ € „(t--j)

^^jto P

Therefore in steady state

(A. 11) E [_x (t)] = x°

(A. 12) V G<*(t)] = (l/4sS a^/a-\^S

The calculation of x (t) is a little longer. Successive sub-
o

stitution in (A. 3) gives

(A. 13) X (t+1) = (1-a) £ a^ X (t-j) .

°
j=0 °

From (A. 5) and (A. 7) we have

P(t) = p° + "e k^e „(t-j) +€^^(t),
j=0 P ^"^

so that, from (A. 4)

$^(t) = x° + (1/2*-)^ k-^ €(t-j) + [£g^(t)3 /2« .

Putting this in (A. 13), we finally obtain
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O* ,, s+1 s+1.

s=0 P
(A. 14)

^o^*""^^^
= x° + (ll-a)/2^(k-a)] E(k^ -a^

^^B^'^"^^

j=0

In steady state, therefore,

(A. 15) E [x^(t+l)J = x°

(A. 16) V Qc (t+l)J = (7(l-a)/4(iS^(H-a3 [ aAl+ak) /(1-ak) (1-k^) +

Some manipulation using (A. 14) and (A. 10) gives the following

result to be used shortly:

(A. 17) E[2{x^(t+1) - x°|[ x*(t+l) - x°]j =

[a ^/4^-^jCk(l"a) /(1-k^) (l-ak)J .

Turi:\ing now to the loss rates, we observe that (A. 6a) can be

written: '

J?(t) = mjT fC^o(t) - x^ - 2Cx^(t) - x3Cx*(t) - x^

+ [x*(t) - x°]
j,

so that E []l?(t)J = mis fv Jx^CtT) + V [x*(t)]

- 2E [[x^(t) -x°j[x*(t) -^°]]j.

Using now (A. 16), (A. 12) and (A. 17), we have

(A. 18) E Q(t)J = Qa/4r]Q(l-a)a^^^/(H-a) +

2ap^/(l+k)(l+a)(l-ak2]

2
a
ex
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In the case of the experimental markets the analysis of Section

8 holds so that

(A. 19) Epi^t)] = E [Jl^(t}\ = Eg(t)] + mifL^/U .

Weighting (A. 18) and (A. 19) by the n\imber of markets and ex-

o
pressed loss rate as a fraction of x ^ we obtain. the desired quan-

tity

(A. 20) L = [m/4irx°J [Ql-a) /(1+a^ C 2a^/nZl^J

+ 2ag /(l+k)(l+a)(l-ak)? + mXaA^/2Nx®

Finally it is of some interest to find E[s(t)J :

(A. 21) E [s(tj] = s° + [(l-a)/(H-a)4J]Qag'^(ak+2k-l)/l-ak)(l-kS

-0 'l
ex J

Notice that only under special circumstances will E\_s(t)J = s
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