

[DEC 211989)

Market-like Task Scheduling in

Distributed Computing Environments

Thomas W. Malone

Richard E. Fikes

Kenneth R. Grant

Michael T. Howard

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

Market-like Task Scheduling in

Distributed Computing Environments

Thomas W. Malone

Richard E. Fikes

Kenneth R. Grant

Michael T. Howard

March 1986

CISRWPNo. 139

Sloan WP No. 1785-86

c 1986 T.W. Malone, R.E. Fikes. K.R. Grant, MT. Howard

Center For Information Systems Research
Sloan School of Management

Massachusetts Institute of Technology

0»f ,<moiko«'t^ I

DEC 2 1 1989 I

Abstract

This paper focuses on a class of market- like methods for decentralized scheduling of tasks in

distributed computing networks. In these methods, processors send out "requests for bids" on tasks to

be done and other processors respond with "bids" giving estimated completion times that can reflect

such factors as machine speed and data availability. A simple and general protocol for such

scheduling is described and simulated in a wide variety of situations (e.g., different network

configurations, system loads, and message delay times). The protocol is found to provide substantial

performance improvements over processing tasks on the machines at which they originate even in the

face of relatively large message delays and relatively innaccurate estimates of processing times. The

protocol also performs well in comparison to one simpler and one more complex alternative. In the

final section of the paper, a prototype system is described that uses this protocol for sharing tasks

among personal workstations on a local area network.

Market-like Task Scheduling in Distributed Computing Environments

With the rapid spread of personal computer networks and the increasing availability of low cost VLSI

processors, the opportunities for massive use of parallel and distributed computing are becoming

more and more compelling ([JonSO); [Gaj85]; [Dav 81bl; [Ens8l]; [Ber82I; [Bir821). One of the

fundamental problems that must be solved by all such systems is the problem of how to schedule tasks

on processors. This problem is, of course, a well-known one in traditional operating systems and

scheduling theory, and there are a number of mathematical and software techniques for solving it in

both single and multi-processor systems (e.g.,[Bri73]; [Cof73]; [Con671; [JonSO]; [KriTlJ; [Lam68);

[Kle81];[Wit80];[Vnt811).

Almost all the traditional work in this area, however, deals with centralized scheduling techniques,

where all the information is brought to one place and the decisions are made there. In highly parallel

systems where the information used in scheduling and the resulting actions are distributed over a

number of different processors, there may be substantial benefits from developing decentralized

scheduling techniques. For example, when a centralized scheduler fails, the entire system is brought

to a halt, but systems that use decentralized scheduling techniques can continue to operate with all

the remaining nodes. Furthermore, much of the information used in scheduling is inherently

distributed and rapidly changing (eg , momentary system load). Thus, decentralized scheduling

techniques can "bring the decisions to the information" rather than having to constantly transmit the

information to a centralized decision maker. Because of these advantages, a growing body of recent

work has begun to explore such decentralized scheduling techniques in more detail (e.g., [StaSSJ;

[Sin85]; [Liv82]; [Mal83|; [Lar821; [SmiSO], [Sto771; [Sto781; [Cho79]; [Bry81I; [Sta84]; [Ten81al,

[TenSlb]; [StrSl] ; [SRC851; see Stankovic for a useful review).

In this paper, we focus on a particular class of decentralized scheduling techniques: those involving

market-like "bidding" mechanisms to assign tasks to processors (eg, [Mal831; [Far72]; [SmiSO];

[Sin85]; [Far73]; [Sta84]). Such techniques are remarkably flexible in terms of the kinds of factors

they can take into account: job characteristics, processor capacities and speeds, current network

loading and current locations of data and related tasks (e.g., see [Sta84]). In succeeding sections of

the paper, we will describe a simple but powerful bidding protocol and present detailed simulation

and analytic results that explore the behavior of the protocol in a wide variety of stituations. These

results apply to many forms of parallel computation, regardless of whether or not the processors are

geographically separated and whether or not they share memory.

Motivating example

Even though the simulation results are applicable in many situations, the driving example that

motivated the development and analysis of our protocol was the increasingly common situation of

large numbers of personal workstations connected by local area networks (e.g., [Bir82I; [BogSO]). In

the final section of the paper, we describe a prototype system, called Enterprise, that uses the protocol

to share tasks among workstations in such a network.

One of the benefits of sharing tasks in such networks is that a new philosophy for designing

distributed systems becomes possible. The traditional philosophy used in designing distributed

systems based on local area networks is to have dedicated personal workstations which remain idle

when not used by their owners, and dedicated special purpose servers such as file servers, print

servers, and various kinds of data base servers (e.g., [Bir821; [Sch84]). A system like Enterprise that

schedules tasks on the best processor available at run time (either remote or local) enables a much

more flexible design. In this new philosophy, personal workstations are still dedicated to their

owners, but during the (often substantial) periods of the day when their owners are not using them,

these personal workstations become general purpose servers, available to other users on the network.

"Server" functions can migrate and replicate as needed on otherwise unused machines (except for

those such as file servers and print servers that are required to run on specific machines). Thus

programs can be written to take advantage of the maximum amount of processing power and

parallelism available on a network at any time, with little extra cost when there are few extra

machines available.

Problem description and related work

In describing the problem on which we are focusing, it is useful, first of all, to distinguish between two

components of task scheduling in distributed networks: (1) the assignment of tasks to processors, and

(2) the sequencing of task once they have been assigned to processors. Much previous work on

distributed load sharing has focused only on the task assignment problem (eg, [Liv82); [Sta85|;

[Cho79]) and used first come-first served (FCFS) sequencing. It is clear, however, that task

sequencing can have a major effect on system performance measures (e.g., see [Con67|). The task

scheduling method we will describe solves both the task assignment and the task sequencing

problems simultaneously.

Another common simplifying assumption in much previous work (e.g., [Liv82]; [BrySl]) is that all

processors in the scheduling network are identical It is frequently the case, however, in our

motivating example of workstations on networks and in many other distributed processing

situations, that there are important differences between processors. These differences include factors

such as speed, ability to do certain tasks at all, and whether the necessary the data or programs are

already present on the processor or must be transmitted from elsewhere on the network. Our

scheduling method is designed to accomodate a wide variety of such processor differences.

In some cases (e.g., [BrySll; [Sta841), it is desirable to be able to have more than one task on a

processor at the same time and to move tasks from one processor to another after the tasks have

begun execution. These capabilities often add substantially to the complexity of implementing a real

system, however, so we have simplified our analysis by omitting them.

The scheduling methods we will consider can be applied in any situation that has the properties we

have just described; tasks are sequenced one at a time on heterogeneous processors without being

moved or preempted afler execution begins.

Bidding mechanisms

We mentioned above a number of advantages (e.g., reliability and flexibility) of bidding mechanisms

for task scheduling in distributed networks. We define a bidding mechanism for distributed task

scheduling to be one in which (1) task descriptions are broadcast (by "clients") to a set of possible

processors ("contractors"), (2) some subset of the contractors respond with "bids" indicating their

availability (and possibly cost) for performing the task, and (3) one of the bidders is selected to

perform the task.

Note that there are many characteristics of human markets that are not included in this definition.

For example, bidding mechanisms as we have defined them here can assign tasks after only one

"round" of bid submissions. They need not include any of the iterative price adjustment, based on

supply and demand, that is widely discussed in microeconomic theory (eg, [Arr71|), and that is

included in the network channel access scheduler described by Kurose, Schwartz, and Yemini

(KurSS). In fact, our early experiments with an iterative pricing mechanism for distributed task

assignment [Mal82] discouraged us from pursuing this approach further because of the difficulties

with guaranteeing convergence at all ((Arr60]; [ArrTlD and because of the extremely

computationally intensive nature of the iterative process.

Several of the systems mentioned above ([Far721; [Sta84); [Ram84]) use non-iterative bidding

mechanisms, but for scheduling problems differer\t from the one we are considering. One previous

system, however, can be used for problems of the type in which we are interested: The contract net

protocol ([SmiSOI; [SmiSlI; [Dav83|) is a very general protocol for distributing tasks in a network of

heterogenous processors based on whatever task specific criteria are provided by the system designer.

Its "announcement, bid, award" sequence allows for mutual selection of clients and contractors; that

is, contractors choose which clients to serve and clients choose which contractors to use. A later

system ([Sin85]) which is based in part on the contract net protocol and on an earlier report of the

system described here ([Mal83I), shows how the protocol can be modified to substantially reduce the

number of messages required.

In order to achieve any particular scheduling objective with these systems, however, specific selection

criteria must be developed. The most important way in which our scheduling protocol differs from the

contract net protocol is by specializing the selection criteria to two primary dimensions: (1)

contractors select clients' tasks in the order of numerical task priorities, and (2) clients select

contractors on the basis of estimated completion times (from among the contractors that satisfy the

minimum requirements to perform the job). We will see below how this simple specialization of the

generalized contract net protocol allows us to make direct use of a variety of optimality results from

traditional scheduling theory, including those about minimizing mean flow times, and to do detailed

evaluations of the effect of numerous factors on scheduling performance.

One of the potential problems that arises in bidding systems like the contract net protocol stems from

the fact that only idle processors submit bids. Thus assignment decisions are made in the absence of

any information about the loads and capabilities of processors that are busy at the time the bids are

evaluated. This may be undesirable, for example, in situations where only slow processors are

available at the time the task arrives, but a much faster processor will become available soon. In the

sections below, we consider two alternative solutions to this problem. Our primary scheduling

method, called the Distributed Scheduling Protocol, uses the simple technique of canceling and

restarting tasks if the later bid is sufficiently better We also consider, in a later section, a much more

elaborate alternative method in which processors maintain detailed future schedules of tasks they

have agreed to perform and use this information in submitting their bids. Our simulation results

investigate the performance ofboth these methods in a variety of situations.

THE DISTRIBUTED SCHEDULING PROTOCOL

Figure 1 illustrates the steps in our primary scheduling process, the Distributed Scheduling Protocol

(DSP):

1

.

The client broadcasts a "request for bids ". The request for bids includes the priority of the

task, any special requirements, and a summary description of the task that allows

contractors to estimate its processing time.

2. Idle contractors respond with "bids" giving their estimated completion times. Busy

contractors respond with "acknowledgements "and add the task to their queues (in order of

priority).

3. When a contractor becomes idle, it submits a bid for the next task on its queue.

4. (a) If more than one bid has been received when the client evaluates bids, the task is sent to

the best bidder. The length of time to wait before evaluating bids is a parameter that

is set depending on the message delay time.

(b) If no bids have been received when the client evaluates bids, the task is sent to the first

subsequent bidder.

(c) Ifa later bid is "significantly better" than the early one, the client cancels the task on the

first bidder and sends the task to the later bidder The criterion for deciding whether a

late bid is "significantly better" is a parameter, the effect of which is examined in the

simulations below. If the later bid is not significantly better (or if the task has side-

effects and cannot be restarted), the client sends a cancel message to the later bidder.

5. When a contractor finishes a task, it returns the result to the client.

6. When a client receives the result of a task, it broadcasts a "cancel" message so that all the

contractors can remove the task from their queues.

A more detailed description of the DSP, including complete specifications of the message contents, is

provided by Malone, Fikes, and Howard ([Mal83]).

Global Scheduling Objectives

One of the advantages of this protocol is that it separates the policy decisions about how priorities are

assigned from the mechanism of actually scheduling tasks according to these priorities (e.g., [Cof731,

[Lam68]). Traditional schedulers for centralized computing systems often use list scheduling as a

basis for layering the design of a system (e.g., [Cof731). In this approach, one level of the system

sequences jobs according to their order in a priority list while the policy decisions about how priorities

are assigned are made at a higher level in the system (see [Lam68]). DSP allows precisely the same

kind of separation of policy and mechanism. The DSP protocol itself is concerned only with

sequencingjobs according to priorities assigned at some higher level. By assigning these priorities in

different ways, the designers of distributed systems can achieve different global objectives. For

example, it is well known that in systems of identical processors, the average waiting time of jobs is

minimized by doing the shortest jobs first [Con67]. Thus, by assigning priorities in order of job

length, the completely decentralized decisions based on priority result in a globally optimal

sequencing of tasks on processors.

Optimality results for mean flow time and maximum flow time. Traditional scheduling theory (e.g.,

[Con671) has been primarily concerned with minimizing one of two objectives: (I) the average flow

time of jobs (Fave)--the average time from availability of a job until it is completed, and (2) the

maximum flow time ofjobs (Fmai)-the time until the completion of the last job Minimizing F^ax ^Iso

maximizes the utilization of the processors being scheduled [Cof73|. (A third class of results from

scheduling theory, involving the "tardiness" ofjobs in relation to their respective deadlines, appears

to be less useful in most computer system scheduling problems.) The most general forms of both these

problems are NP-complete ([Bru74], [Iba77I), so much of the literature in this field has involved

comparing scheduling heuristics in terms of bounds on computational complexity and "goodness" of

the resulting schedules relative to optimal schedules (eg , [Dav81a|, [JaiBO]).

A number of results suggest the value of using two simple heuristics, shortest processing time first

(SPT) and longest processing time first (LPT), to achieve the objectives F^ve and Fmai. respectively.

First, we consider cases where all jobs are available at the same time and their processing times are

known exactly. In these cases, if all the processors are identical, then SPT exactly minimizes Fave

[Con67] and LPT is guaranteed to produce an Fmax that is no worse than 4/3 of the minimum possible

value [Gra69I. If some processors are uniformly faster than others, then the LPT heuristic is

guaranteed to produce an Fmax no worse than twice the best possible value [Gon77). Next, we

consider cases where all jobs are available at the same time but their exact processing times are not

known in advance. Instead the processing times have certain random distributions (e.g., exponential)

with different expected values for different jobs. In these cases, if the system contains identical

processors on which preemptions and sharing are allowed, then SPT and LPT exactly minimize the

expected values of F,ve and Fn,,i, respectively, (IWebSZl, [Gla79J). Finally, we consider cases where

the jobs are not all available at the same time but instead arrive randomly and have exponentially

distributed processing times. In these cases, if the processors are identical and allow preemption,

then LPT exactly minimizes Fmax [VanSl].

Other scheduling objectives. DSP can also be used to achieve many other possible objectives besides

the traditional ones of minimizing mean or maximum flow time for independent jobs. For example:

(1) Parallel heuristic search. Many artificial intelligence programs use various kinds of

heuristics for determining which of several alternatives in a search space to explore next. For

example, in a traditional "best first" heuristic search, the single most promising alternative

at each point is always chosen to be explored next [N'ilSO]. By using the heuristic evaluation

function to determine priorities for DSP, a system with n processors available can be always

exploring the n most promising alternatives rather than only one. Furthermore, if the

processors have different capabilities, each task will be executing on the best processor

available to it, given its priority.

The DSP protocol can also, of course, be used in heuristic searches in a more straightforward

way to assign a fixed set of subtasks to processors. For example, Singh and Genesereth's

([Sin85]) system uses a bidding protocol to assign deduction steps to distributed processors.

Their use of the protocol appears to be minimizing Fmax by giving highest priority to the most

costly tasks.

(2) Arbitrary market with priority points. Another obvious use of DSP is to assign each

human user of the system a fixed number of priority points in each time period Users (or

their programs) can then allocate these priority points to tasks in any way they choose in

order to obtain the response times they desire (see [Sut68) for a similar-though non-

automated-scheme, and Mendelson ([MenSS]) for a related analysis aimed at determining,

not micro-level priorities, but macro-level chargeback policies).

(3) Incentive market with priority points. If the personal computers on a network are assigned

to different people, then a slight modification of the arbitrary market in (2) can be used to give

people an incentive to make their personal computers available as contractors. In this

modified scheme, people accumulate additional priority points for their own later use. every

time their machine acts as a contractor for someone else's task.

8

Estimating processing time

As described above, DSP requires bidders to estimate their completion times for different tasks. This

information is used by DSP only to rank different tasks and different contractors, so only rough

estimates are needed. In some cases, historical processing times for similar jobs might provide a basis

for making even more precise estimates, possibly using parameters such as the size of the input files.

Our simulation studies below include an examination of the consequences of making these estimates

very poorly.

Alternative Scheduling Protocols

For comparison purposes, we now consider two alternative protocols. The first protocol is a scheme

designed to remedy one of the possible deficiencies of DSP. The second is a random assignment

method that provides a comparison with designs where no attention is given to the scheduling

decision.

Alternative 1 - Eager assignment

As discussed above, one of the possible deficiencies of DSP is that no estimates ofcompletion times are

provided by processors that are not ready to start immediately. That is, clients using DSP may start a

task on a machine that is available immediately (possbily their own local machine), only to find that

another much faster machine becomes available soon. If the task is canceled and restarted, all the

processing time on the first machine is wasted. If not, the job finishes later than it could have. If

reasonable estimates of completion times on currently busy machines are available, then clients

would know enough to wait for faster machines that were not immediately available.

In this alternative scheduling protocol, tasks are assigned to contractors as soon as possible after the

tasks become available and then reassigned as necessary when conditions change. In this way, each

contractor maintains a schedule of tasks it is expected to do, along with their estimated start and

finish times, and so the contractor can make estimates of when it could complete any new task that is

submitted. By analogy with "lazy" evaluation of variables ([Fri76|, [Hen76]) the original DSP could

be called "lazy assignment" because clients defer assigning a task to a specific contractor until the

contractor is actually ready to start. This alternative protocol, therefore, will be called "eager

assignment," since it assigns tasks to contractors as soon as possible. This alternative may be

thought of as a logical extension of the "immediate bid responses" used in the contract nets protocol

([SmiSO], [SmiSl]), and is also similar to the "STB" scheduling alternative considered by Livny &

Melman([Liv82]).

In this protocol, all contractors bid on all tasks even if they are currently busy. A contractor

estimates its starting time for a task by flnding the first time in its schedule at which no task of

higher priority is scheduled. Then the client picks the best bid and sends the task to the contractor

who submitted it. When new tasks are added to a contractor's schedule, or when a task takes longer

than expected to complete, the contractor notiiies the owners of later tasks in its schedule that their

reservations have been "bumped." These clients may then try to reschedule their tasks on other

contractors. A related kind of bumping process occurs in the Distributed Computing System ([Far731;

[Far 731) when a processor that has bid on a task is no longer available by the time the task arrives.

It is important to note that even in cases where there is a lot of bumping, this scheduling process is

guaranteed to converge. Since tasks can only bump the reservations of other tasks of lower priority,

the scheduling of a new task can never cause more than a finite number of bumps. To reduce the

finite G>ut possibly large) amount of rescheduling in rapidly changing situations, bumping occurs

only when the currently estimated completion time ofjob exceeds its original estimate by the amount

specified in the "bump tolerance" parameter.

While this alternative is clearly more elaborate and may require much more message traffic than the

DSP, it may also result in better schedules for situations with processors of widely varying

capabilities.

Alternative 2 - Random assignment

In the second alternative protocol, clients pick the first contractor who responds to their request for

bids and contractors pick the first tasks they receive after an idle period. Contractors do not bid at all

when they are executing a task, and they answer all requests for bids when they are idle. If a client

does not receive any bids, it continues to rebroadcast the request for bids periodically. When

contractors receive a task after already beginning execution of another one, the new task is rejected

(with a "bump" message) and the client who submitted it continues trying to schedule it elsewhere.

In the simulations discussed below, the selection of the first bidders when more than one machine is

available, and of the first task when more than one task is waiting, are both modeled as random

choices since the delay times for message transmission and processing are presumably random. (In

reality, fast contractor machines might often respond more quickly to requests for bids than slow ones

10

and so would be more likely to be the first bidders. Thus the performance of this scheduling

mechanism in a real system might be somewhat better than the simulated performance.)

SIMULATION RESULTS

In many real distributed scheduling environments, including our motivating example of

workstations on a network, minimizing the mean flow time of independent jobs is likely to be the

primary scheduling objective. Unfortunately, as we noted above, the problem of scheduling tasks to

meet this objective is usually NP-hard, and other analytic results about the effects of sequencing

strategies (other than random) are quite scarce. It is therefore appropriate to rely heavily on

simulations to investigate strategies for achieving this objective In this section, we summarize the

results of a series of simulation studies that investigate the performance of the DSP in a variety of

situations and compare it to the two alternatives described above (eager assignment and random

assignment). We also report several analytic results that are useful for comparisons to the simulation

results.

Simulation Method

Priorities. Since the objective to be minimized by scheduling is assumed to be the mean flow time of

jobs, priorities in all simulations were determined according to the shortest processing time first

(SPT) heuristic, except in the random alternative where priorities are not used.

Network configurations. Ten diiTerent configurations of machines on the network were defined. In all

configurations, a total of 8 units of processing power was available, but in different cases this was

achieved in different ways: a single machine of speed 8; or 8 machines of speed I; or I machine of

speed 4 and 2 machines of speed 2; etc. We will denote different network configurations below by a

sequence of the machine speeds they contain (eg, "422").

Job loads. For all the simulations, jobs were assumed to be independent of each other and suitable for

processing on any machine in the network. The job arrivals were assumed to be a Poisson process and

the amount of processing in each job was assumed to be exponentially distributed (with a mean of 60

time units on a processor of speed I). System utilization was defined as the expected amount of

processing requested per time interval divided by the total amount of processing power in the system,

and three different levels of system utilization (O.I, 5, and 0.9) were simulated.

11

In order to increase the power of comparisons between different simulations at the same utilization

level, the variance reduction technique called common random numbers was used (see [Law82a], pp.

350-354). In this technique, the same sequence of random numbers is used to generate jobs in each of

the different simulations By reducing the variation between simulations that is due to random job

generation, this technique increases the statistical power of the comparisons between the factors of

interest (different network configurations and scheduling methods).

Statistical tests for equilibrium. A generic problem in simulation studies is determining how many

jobs to simulate. In all the simulations reported below, the procedure developed by Law and Carson

([Law79]) was used to determine when to terminate the simulation and what confidence intervals to

report for the steady state mean. This procedure was recommended by Law and Kelton ([Law82a,

Law82b]) after comprehensive surveys of both fixed-sample-size and sequential procedures. The

procedure is based on the idea of comparing successive batches of jobs to determine whether the

means are correlated. When the number of batches and the batch sizes are large enough for the batch

means to be uncorrelated, then the grand mean and variance are unbiased estimates of the steady

state values for the simulation (see [Law79|).

In practice, this test was quite stringent. Each simulation was run until a 90 percent confidence

interval could be computed with a width of less than 15 percent of the estimated mean. The number

ofjobs required ranged from 1200 jobs in some of the simulations for system utilization of 0.1 to over

75,000 jobs in some of the simulations for system utilization of 0.9.

In many simulation studies, some number ofjobs are discarded from the beginning of the analysis to

remove the "start up" values from the overall mean. However, as Law and Kelton ([Law82b]) and

Gafarian, Ancker, and Morisaku ([Gaf78]) have noted, there are no generally satisfactory methods for

determining how many jobs to discard. Therefore, we adopted the conservative approach of not

discarding any jobs. Since, if anything, this increases the variance between the means of early and

later batches, it may increase the number of jobs necessary to pass the steady state test described

above, but it will not result in biased estimates of the steady state mean (see [Law82al).

Accuracy ofjob processing time estimates In addition to the actual amount of processing in each job,

the jobs also included an estimated amount of processing for each job (i.e., the estimate a user might

have made of how long the job would take). These estimates are used to determine job priorities and

estimated completion times. In order to examine extreme cases, these estimates were either perfect (0

12

percent error) or relatively inaccurate (+ /- 100 percent error). In the case of inaccurate estimates,

the errors were uniformly randomly distributed over the range.

Communications delays. In order to simulate "pure" cases of the different scheduling mechanisms,

most of our simulations treat communication among machines as perfectly reliable and

instantaneous. In real situations where communication delays are negligible relative to job

processing times, this assumption of instantaneous communications is appropriate.

In other simulations, designed to explore the effect of communication delays, we assumed constant

delays for the transmission of all messages. The values for message delay that were simulated were

equivalent to 0%, 5%, 10<!fc, and 15% respectively of the average job processing time. The simulations

include only the effect of message delays; they do not include any other factors such as processing

overhead needed to transmit and receive messages.

Even though, as we will see below, the effect of increasing communication delays is quite linear, the

results cannot be obtained by simply adding the total message delay time per job (the delay required

for 4 messages) to the results for no delays. This simple approach does not work because it neglects

the time saved by having the announcements of waiting jobs already queued at processors that are

busy when the jobs are first announced.

Restarting after late bids. In most of the simulations of DSP, late bids are never accepted no matter

how much of an improvement they are over the earlier bids. In one series of simulations, designed to

test the effect of this parameter, a range of values for this "late bid improvement" parameter is

investigated.

Bumping and rebroadcasting. In keeping with the spirit of simulating "pure" scheduling methods,

jobs in the eager simulations are rescheduled every time their scheduled start time is delayed at all.

In a real system, jobs would ordinarily have to be bumped by more than some tolerance before being

rescheduled. In other words, the performance of the eager method could only get worse if fewer

bumps were made.

Similarly, in the random assignment simulations, clients rebroadcast their requests for bids in every

time interval of the simulation until the job is successfully assigned to a contractor. Thus, this

simulates the best scheduling performance the random method could achieve; if rebroadcasting

occurred less often, the performance could only get worse.

13

Analytic methods

It is possible to derive analytically several simple results that can be used for comparison with the

simulation results.

Random assignment and sequencing on identical processors. The case where tasks are assigned

randomly to identical processors as they become available and sequenced randomly on these

processors is equivalent to an M/M/m queuing system, that is, a system with m servers for one queue.

The expected queue length and waiting time for such a system are, respectively:

L = [(mA/p)'n(X/ii)PoJ / [m!(l-A/p)21 ,

W = L/m\ + 1/p

,

where P= 1/

r m-l

^ (mX/p)'/i! + [(m\/n)'"/m!l / 1 - \/\i)

1 =

Our simulations do, in fact, generate confidence intervals that include these values for the cases

where they can be computed. In these cases, only the analytically derived results are reported.

Optimal assignment (with jobs moving during execution and with random sequencing). Even though

our simulations assume that jobs cannot be moved once they have begun execution there is a simple

formula for the flow times that would result if jobs could be moved during execution in such a way

that the fastest processors were always in use (see (Sta85]). This formula provides a lower bound for

the results of optimal assignment. However, it assumes that tasks are sequenced randomly on the

machines to which they are assigned Since our simulated scheduling methods include sequencing as

well as assignment, they might do better or worse than these analytic results depending on the

relative importance of sequencing and assignment in a given situation. They do, however, provide an

approximate lower bound for rough comparison purposes.

In order to obtain these results, we assume that the processor service rates p, are ordered so that p, a

yijifi^ j. Letting the number of processors be N, we define

14

M(0 = l.V^j .

7 = 1

M(0) = 1.

Using straightforward assumptions about the state transition probabilities and the conservation of

flow principle, Stankovic ([StaSS]) shows that the expected queue length and waiting time for such a

system are, respectively:

w = PA y j— +— N-l
l-\/\i(N)

+a-\/\iiN))
-2

)
n.

where P^=\ ly V \JlM{j)+ —— I (1 -.\/p(JV))j.

j=0

Local processing only. One question of interest in our study is the amount of speedup in mean flow

time that is possible from scheduling jobs anywhere on the network as opposed to processing all jobs

locally on the machine at which they originate. As noted above, analytic results are not available for

the effect of sequencing in this situation. However, it is possible to use the simulation results for the

case with only one machine in the network to estimate of the effect of sequencing and then compute

the overall flow times that would result from all machines performing their local scheduling

similarly.

To do this, we take advantage of the fact that the time units used in the simulation are arbitrary and

can be scaled as desired. For example, the mean flow time for a single machine of speed I is 8 times

that of a single machine of speed 8, since the two simulations are indistinguishable except for the

time units. In general, let n, be the number of machines of type i, s, be the speed of the machines of

type i, C = Ej Sin, be the total processing capacity on the network, and Wi be the mean flow time in a

network containing only a single machine of speed 1. Then the the average flow time in the total

network is

15

W = Ei(ni/C)Wi.

Results

Relative effects ofsystem load, network configuration, and accuracy ofprocessing time estimates

We first investigate the results of DSP scheduling with a variety of system loads, network

configurations, and accuracies of processing time estimates. In order to focus on the effect of these

factors, message delays were kept constant (at 0), and late bids were never accepted, no matter how

much better they were (i.e., the "late bid improvement" parameter was effectively infinite). Table 1

lists these results, Figure 2 shows the effect of system load for a typical configuration (1 machine of

speed 4 and 4 machines of speed 1), and Figure 3 shows the effect of network configuration holding

constant both system load (at 50% utilization) and accuracy of processing time estimates (at 0%

error).

Both system load and network configuration have a major impact on mean fiow time (as much as a

factor of 4 for the range of conditions we studied), while the accuracy of processing time estimates

does not appear to be a major factor in performance (at most a difference of about 15% when estimates

have errors of up to 100%).

Figure 3 shows that the effect of dividing the same amount of processing f)ower into more and more

processors is almost linear and that the number of processors used has a much greater impact on flow

time than the maximum range of processor speeds. Even if we restrict our attention to the first part

of the graph where the number of processors ranges from I to 4, we see that this makes a difference of

approximately a factor of 3 in flow time, while changing from a configuration with identical

processors to one with a speed range of a factor of 4 makes only about a 12 percent difference in flow

time.

Comparing the results in Table 1 for DSP with the analytically derived results for optimal

assignment (with moving during execution and random sequencing), we see that in those cases where

assignment is important (i.e., where processor speed ranges are large), DSP does reasonably well in

comparison to this rough "lower bound". In the cases where assignment makes no difference (i.e
,

where processor speeds are identical), DSP does much better than the rough "lower bound" because

DSP does intelligent sequencing as well as assignment.

16

Increasing the size ofthe bidding network while keeping overall utilization constant

The results we have just seen all involve configurations in which the total amount of processing

power in the network is constant (a total of 8 processing units), but divided among processors in

different ways. From the point of view of a network designer, another relevant question is how many

processors to combine in one bidding network, that is, how many processors to group together for the

purpose of sharing tasks. To answer this question, we assume that the speed of each processor and the

overall utilization remain constant and then consider the effect ofadding processors to the network.

We can estimate this effect in two ways. The first, purely analytic, method uses the well-known

formulas given above for random scheduling on identical machines (i.e., both random assignment and

random sequencing). Since the machines are identical, random assignment is as good as any

assignment method, but random sequencing is certainly not optimal (e.g., see [Con67]). Since simple

ways of analytically computing the effects of sequencing are not known, the second method uses the

results of the DSP simulations to estimate the effect of (shortest processing time first) sequencing.

These estimates are then adjusted analytically to refer to networks with different numbers of

machines, all of the same speed (speed 1). To make this adjustment, we scale time units as described

above. If Wn^ is the mean flow time for a network with N identical machines of speed s, then a

network with N machines of speed s' would have a mean flow time of W-sf.s* = (s/s')Wm g.

Table 2 shows the results of both these methods, and Figure 4 plots the results for the second method.

It is clear that using either random or SPT sequencing, pooling work from several processors can,

indeed, have a significant impact on flow time. This effect, however, is very dependent on the system

utilization. There is essentially no benefit at low utilizations; at moderate utilizations, there is very

little additional benefit after about 4 machines, and even for heavy utilizations, most of the benefits

have been exhausted by about 8 machines.

It is important to realize that this result is quite general. The analytic results are based on well-

known formulas for random scheduling; our simulation results show that the effect holds for SPT

sequencing as well. The shape of the curves shown in the figure does not depend on processor speeds

or average job processing times; changes in these factors merely change the scale of the vertical axis.

Our result does depend on the assumption of exponentially distributed service times, but the intuitive

argument given by Sauer and Chandy [SauSl] to explain their results suggests that the benefits of

pooling jobs from several processors should be even more pronounced in systems with greater

coefficients of variation in service time. Their argument says that with high coefficients of variation,

multiprocessor systems perform better than single processor systems because a few very long jobs can

bottleneck a single processor while in a multiprocessor system, only one of the processors is

monopolized and other jobs can still be processed on the other processors. This argument also

suggests that in systems with very high coefTicients of variation, the benefits of adding more

processors might extend further than in systems with exponential service times.

The implication of this result for system design is quite important. It suggests that there can be

significant benefits from pooling work generated by different machines in a network but that there is

no need to have large numbers of machines all on the same bidding network. In most situations,

several separate networks of 8 - 10 processors each should perform as well, from the point of view of

reducing mean flow time, as a single network including all the processors together.

Effects ofmessage delays

One of the possible problems with pooling work from several machines (even if only a few machines

are involved) is that the message delays required for scheduling and for transferring results back and

forth might overwhelm the flow time benefits obtained from pooling. Figure 5 compares the results of

pooling jobs by network scheduling to the results of processing all jobs locally on the machines at

which they originate. The configurations simulated were chosen from our total set of configurations

to represent the situation in which the least benefit would result from pooling (only two identical

machines) and the situations in which the most benefit would result (the maximum number of total

machines or the maximum range of processor speeds).

The results in Figure 5 show that pooling of work can, in fact, be beneficial, even when message

delays are quite substantial. With moderate loads (50%) and large numbers of processors, pooled

scheduling is superior to strictly local processing even when message delays exceed 20% of the

average job processing time! Even in the configuration where pooling has the least benefit (two

identical machines), pooled scheduling is preferred at moderate loads up to about the point where

message delays exceed 5% of the average job processing time.

Effects of"late bid improvement"parameter

Figure 6 shows the effect of varying the amount of improvement required in "late" bids before jobs

will be cancelled on the machines to which they were originally sent and restarted on the late bidding

machine. If we let tg be the estimated completion time in the earlier bid, tL be the estimated

completion time in the late bid, and t be the time at which the late bid is evaluated, then the

18

"improvement" is i = 1 - (tt - toVCtg - 1). Late bids must exceed some criterion parameter to before

they will be accepted.

We have simulated the configuration in which this factor could make the most difTerence (the

configuration with the maximum range of processor speeds). The most improvement possible for a

single job in this situation is 0.75 (if a processor of speed 4 becomes available immediately after a bid

has been awarded to a processor of speed 1). Therefore, setting iq at 0.75 or greater will result in no

rescheduling.

As Figure 6 shows, at low utilizations performance is improved by rescheduling for any improvement

at all, no matter how small, but at moderate utilizations, performance is made slightly worse by this

strategy. In both cases, the optimal setting for io appears to be somewhere in the range of 0.4 to 0.6.

At moderate utilizations, the maximum benefit from using this parameter appears to be about 5

percent, while at low utilizations using this parameter may result in overall flow time improvements

on the order of 20 to 25 percent. This result is sensible since the only cost of rescheduling is the

processing time "wasted" on the first processor, and with low utilization, this processing time is

plentiful anyway. As utilizations increase, the cost of "wasting" time on the first processor to which a

job is assigned increases and the potential benefit from using this parameter becomes negligible.

Evaluation ofalternative scheduling methods

Figure 7 shows the results of DSP and the two alternative scheduling methods "eager" and "random."

In all cases, DSP is at least as good as, and in some cases, much better than the more complicated and

expensive "eager" scheduling method. With perfect estimates of processing amounts, both DSP and

eager assignment are consistently as good as or better than random assignment. With poor

processing time estimates, DSP suffers little performance degredation, but the performance of eager

degrades quite substantially~in some cases eager becomes significantly worse than random. It is

particularly striking, in view of the fact that the eager method was motivated by problems arising

with large numbers of processors and large speed differences among processors, that the eager

method performs worst in precisely those situations. We believe that two primary factors account for

this result:

(1) "Stable world illusion." In the eager assignment method, each job is assigned to the

machine that estimates the soonest completion time. But ifjobs of higher priority arrive later

and are assigned to the same machine, then they will keep "bumping" the first job back to

later and later times. In other words, jobs are assigned to machines on the assumption that no

13

more jobs will arrive (i.e., that the world will remain stable). Even though in the simulation,

jobs are rescheduled every time any newjobs arrive that delay their estimated start time, by

the time the job is rescheduled, it may already have missed a chance to start on another

machine that could have completed it before it will now be completed.

In some of our simulations (not included here), the bids included an extra factor to correct for

this effect, that is, bids included an estimate of how long the starting time of the job would be

delayed by jobs that had not yet arrived, but could be expected to arrive before the job began

execution. (See [Mal86] for the derivation of this correction factor.) Even though the

inclusion of this correction factor did improve the performance of the eager assignment

method somewhat, the changes were not substantial.

(2) Unexpected availability. When a job takes longer than expected, or when higher priority

jobs arrive at a processor, all the clients who submitted jobs scheduled later on that processor

are notified with "bump" messages and given a chance to reschedule their jobs. When a job

takes less time than expected or when jobs scheduled on a processor are canceled, the

processor may become available sooner than expected, but in these cases, the clients who

submitted jobs that were scheduled elsewhere but who might now want to reschedule on the

newly available machine are never notified. There can thus be situations where fast

processors are idle while high priority jobs wait in queues on slower processors. This appears

to be a serious weakness of the eager assignment method. We have specified, but not

implemented, an addition to the protocol that notifies all clients of such situations and allows

them to reschedule their tasks. The cost of this addition would be even greater message

traffic and system complexity, and we believe it unlikely that the resulting performance

would be significantly better than the much simpler lazy assignment method.

IMPLEMENTATION OF THE ENTERPRISE SYSTEM

In this section, we describe several highlights of the Enterprise system implementation. A more

detailed description is provided by Malone, Fikes, and Howard ([Mal831). The system schedules and

runs processes on a local area network of high-performance personal computers. Processes are

assigned to the best machine available at run-time (whether that is the machine on which the task

originated or another one). The assignment takes into account two primary factors that affect

estimated completion time: machine speed and currently loaded files needed for the task A

prototype version of the system is implemented in Interlisp-D and runs on the Xerox 1100 (Dolphin),

20

1108 (Dandelion), and 1132 (Dorado) Scientific Information Processors connected with an Ethernet.

The prototype version has received limited testing, but no significant operational experience has been

obtained.

As shown in Figure 8, the system is partitioned into three layers of software. The first layer provides

an Inter-Process Communication (IPC) facility by which different processes, either on the same or

different machines, can send messages to each other. When the different processes are on different

machines, the IPC protocol uses internetwork datagrams called PUPs (see [BogSO]) to provide

reliable non-duplicated delivery of messages over a "best efforts" physical transport medium such as

an Ethernet [Met76]. Enterprise uses a pre-existing protocol that is highly optimized for remote

procedure calls ([Bir84], [Tho831) in which messages are passed to remote machines as procedure calls

on the remote machines. The next layer of the Enterprise system is the Distributed Scheduling

Protocol (DSP) which, using the IPC, assigns and sequences the task on the best available machine.

Finally, the top layer is a Remote Process Mechanism, which uses both the DSP and IPC to create

processes on different machines that can communicate with each other.

The implementation assumes that the owners of idle workstations voluntarily put their machines

into a mode where the machines respond to requests for bids from the network. Shock and Hupp

[Sho82| describe an alternative mechanism for locating and activating idle machines on a network

without their owners' intervention.

Several augmentations of the DSP protocol were made to account for (1) processor or communication

failures and delays, (2) the unique status of the "local" processor, and (3) human users who might try

to "game" the system.

Unreliable processors and communications

In addition to the messages involved in the bidding cycle, clients periodically query the contractors to

which they have sent tasks about the status of the tasks. If a contractor fails to respond to a query (or

any other message in the DSP), the client assumes the contractor has failed. Failures might result

from hardware or software malfunctions or from a person preempting a machine for other uses. In

any case, unless the task description specifically prohibits restarting failed tasks, the client

automatically reschedules the task on another machine. Similarly, if a contractor fails to receive

periodic queries from one of its clients, the contractor assumes the client has failed and the contractor

aborts that client's task.

21

Since a task can be restarted several times during its lifetime (e.g , because of processor failures or

because of a late bid improvement), there can be .different "incarnations" of the same process [Nel81|.

Because messages can sometimes be delayed or lost, confusions might result from messages referring

to earlier incarnations of a current task. To prevent such confusions, each task is assigned a task

identifier that is guaranteed to be unique across time and space. In order to do this, a timestamp of

the most recent "milestone event" in the life of the process is included in the task identifier.

Milestone events are the sending of either a request for bids or a task message concerning the task.

Both these events render obsolete all previous DSP messages concerning the task. Before responding

to DSP messages about a particular task, therefore, both clients and contractors check to be sure the

message concerns the most recent incarnation of the task. (These task identifiers serve the same

purpose as the call identifiers used by Birrell and Nelson [Bir84]).

In view of benefits described above from using "late bid improvement" rescheduling in lightly loaded

systems (as ours was), and in view of the unpredictable delays in message transmission, the

Enterprise system implements a variation of the DSP protocol in which the first bid for a task is

always accepted, rather than waiting any fixed time to evaluate bids. Then if a later bid is

significantly better, the task is rescheduled.

The "remote or local" decision

With the variation of DSP just described, if the local machine submits bids for its own tasks (i.e., the

client machine offers to be its own contractor), then the local machine will presumably always be the

first bidder and will therefore receive every task. To prevent this from happening, the client waits for

other bids during a specified interval before processing its own bid. Since contractor machines are

assumed to be processing tasks for only one user at a time, the client machine's own bid is also

inflated by a factor that reflects the current load on the client machine. (Human users of a processor

can express their willingness to have tasks scheduled locally by setting either of these two

parameters.)

"Gaming' the system

If people supply their own estimates of processing times for their tasks and these time estimates are

also used to determine priority, there is a clear incentive for people to bias their processing time

estimates in order to get higher priority. To counteract this incentive, the current implementation of

Enterprise has an "estimation error tolerance" parameter. If a task takes significantly longer than it

was estimated to take (i.e., more than the estimation error tolerance), the contractor aborts the task

22

and notifies the client that it was "cut off." This cutoff feature prevents the possibility of a few people

or tasks monopolizing an entire system.

Conclusion

Any designer of a parallel processing computing system, whether the processors are geographically

distributed or not, must solve the problem of scheduling tasks on processors. In this paper, we

presented a simple heuristic method for solving this problem and analyzed its performance with

simulation studies of a wide variety of situations. This scheduling heuristic is particularly suited to a

decentralized implementation in which separate decisions made by a set of geographically distributed

processors lead to a globally coherent schedule. Our results were encouraging about the desirability

of this and similar heuristics in such a situation. (1) substantial performance improvements result

from sharing tasks among processors in systems with more than light loads; (2) in many cases, these

benefits are still present even when message delay times are as much as 5 to 20 percent of the average

task processing time; (3) the additional benefits from pooling tasks among more than 8 or 10

machines are small; and (4) large errors in estimating task processing times cause little degradation

in scheduling performance.

Finally, we described a prototype system for personal workstations on a network in which programs

can easily take advantage of the maximum amount of processing power and parallelism available on

a network at any time, with little extra cost when there are few extra machines available.

Acknowledgements

The first part of this work was performed while three of the authors (Malone, Fikes, and Howard)

were at the Xerox Palo Alto Research Center. The work has been supported by the Xerox Palo Alto

Research Center, the Xerox University Grants Program, and the Center for Information Systems

Research, MIT. Portions of this paper appeared previously in Malone, Fikes, and Howard ([Mal83]).

The authors would like to thank Michael Cohen, Randy Davis, Larry Masinter, Mike Rothkopf,

Vineet Singh, Henry Thompson, and Bill van Melle for helpful comments. They would also like to

thank Rodney Adams and--especiaIly--Debasis Bhaktiyar for running many of the simulations whose

results are reported here.

24

References

[Arr60] Arrow, K., & Hurwicz, L. Decentraliztion and computation in resource
allocation. In R.W. Pfouts (Ed.) Essays in Economics and Econometrics.
Chapel Hill: University of North Carolina Press, 1960, pp. 34-104
(Reprinted in K.J. Arrow and L. Hurwicz (Eds.) Studies in resource
Allocation Processes. Cambridge: Cambridge University Press, 1977, pp
41-95).

[Arr71] Arrow, K., & Hahn, F. General Competitive Analysis. San Francisco, CA:
Holden Day, 1971.

[Ber82] Berhard, R. Computing at the speed limit. IEEE Spectrum, July 1982, 26-

31.

[Bir84] Birrell, A. D., and Nelson, B. J. Implementing remote procedure calls.

ACM Transactions on Computer Systems. 1984, 2(1), 39-59.

[Bir82] Birrell, Andrew D., Levin, Roy, Needham, Roger M., Schroeder, Michael
D., Grapevine: An Excercise in Distributed Computing. Communications
ofthe ACM, 25(4), April 1982.

[Bog80] Boggs, David R., Shoch, John F., Taft, Edward A., Metcalfe, Robert M.,
Pup: An Internetwork Architecture. IEEE Transactions on
Communications, COM-28, (4), April 1980.

[Bri73] Brinch Hansen, P., Operating Systems Principles. Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1973.

[Bru74] Bruno, J., CofTman, E. G., & Sethi, R. Scheduling independent tasks to

reduce mean finishing time. Communications ofthe ACM, 1974, 17, 382-
387.

[BrySl] Bryant, R., & Finkel, R. A stable distributed scheduling algorithm.
Proceedings of the Second International Conference on Distributed
Computer Systems, April 1981.

[Cho79] Chow, Y. and Kohler, W. Models for dynamic load balancing in a
heterogeneous multiple processor system. IEEE Transaction on
Computers. May 1979, C-18.

[Cof73] Coffman, Edward G., Jr., and Denning, Peter J., Operating Systems
Theory. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.

[Con67] Conway, R. W., Maxwell, W. L., Miller, L. W. Theory ofScheduling.
Addison-Wesley Publishing Company, Reading, Massachusetts, 1967.

[Dav81a] Davis, E. and Jaffe, J. M. Algorithms for scheduling tasks on unrelated
processors. Journal ofthe ACM, 1981 (October), 28, 721-736.

[DavSlb] Davies, D., Holler, E., Jensen, E., Kimbleton, S., Lampson, B., LeLann, G.,
Thurber, K., and Wateon, R. Distributed systems-Architecture and
implementation: Lecture notes in computer science, vol. 105. New York:
Springer-Verlag, 1981.

[Dav83] Davis, R., and Smith, R. G., Negotiation as a Metaphor for Distributed
Problem Solving. Artificial Intelligence. Volvmie 20 Number 1, January
1983.

[Ens81] Enslow, P. What is a distrubted data processing system?. Computer, vol.

11, June 1980.

[Far72] Farber, D. J. and Larson, K. C. The structure of the distributed computing
system--Software. In J. Fox (Ed.), Proceedings ofthe Symposium on
Computer-Communications Networks and Teletraffic, Brooklyn, NY:
Polytechnic Press, 1972, pp. 539-545.

[Far73] Farber, D.,etal. The distributed computer system. Proceedings of the 7th
Annual IEEE Computer Society International Conference, February 1973.

[Fri76] Friedman, D. & Wise, D. CONS should not evaluate its arguments.
Automata, Languages and Programming, Edinburgh University Press,
1976,257-284.

[Gaj85] Gajski, D aand Peir, J. Essential Issues in Multiprocessor Systems. IEEE
Computer, June 1985, pp. 9-27.

[Gaf78] Gafarian, A. V., Ancker, C. J., & Morisaku, T. Evaluation ofcommonly
used rules for detecting "steady state' in computer simulation. Nav. Res.
Logist. Q.. 1978, 25, pp. 511-529.

[Gla79] Glazebrook, K. D. Scheduling tasks with exponential service times on
parallel processors. Journal ofApplied Probability, 1979, 16, 685-689.

[Gon77] Gonzales, T., Ibarra, O. H., and Sahni, S. Bounds for LPT schedules on
uniform processors, SIAM Journal ofComputing, 1977,6, 155-166 (as cited

by[Jaffee]).

[Gra69] Graham, R. L. Bounds on multiprocessing timing anomalies. SIAM
Journal ofApplied Mathematics, 1969 (March), 17, 416-429 (summarized
in Coffman and Denning, pp. 100-106.).

[Hen76] Henderson, P. & J. Morris, Jr. A lazy evaluator. Record Third Symposium
on Principles ofProgramming Languages, 1976, 95-103.

[Iba77] Ibarra, 0. H. and Kim, C.E. Heuristic algorithms for scheduling
independent tasks on nonidentical processors. Journal of the ACM, 1977
(April), 24, 280-289.

[JafSO] JafTe, J. M. Efficient scheduling of tasks without full use ofprocessor
resources. Theoretical Computer Science, 1980, 12, 1-17.

[Jon80] Jones, A. K., and Schwarz, P. Experience Using Multiprocessor Systems -

A Status Report. Computing Surveys, Volume 12, Number 2, June 1980.

26

[KleSl] Kleinrock, L., and Nilsson, A. On optimal scheduling algorithms for time-

shared systems. Journal ofAssociation ofComputing Machinery, 28, 3, pp.
477-486, July 1981.

[Kor82] Komfeld, W. A. Combinatorially implosive algorithms. Communications
ofthe ACM, 1982 (October), 25, 734-738.

[Kri71] Kriebel, C. H., & Mikhail, O. I. Dynamic pricing of resources in computer
networks. In C. H. Kriebel, R. L. Van Horn, & J. T. Heames (Eds.),

Management Information Systems: Progress and Perspectives. Pittsburgh:
Carnegie Press, 1971, pp. 105-124.

[Kur85] Kurose, J., Schwartz, M., Yemini, Y. A microeconomic approach to

decentralized optimization of channel access policies in multiaccess
networks. IEEE , 1985.

[Lani68} Lampson, B. W. A scheduling philosophy for multiprocessing systems.
Communications of the ACM, 1968 (May), 11, 347-359.

[Lar82] Larsen, R., McEntire, P., and O'Reilly, J. Tutorial: Distributed control.

Silver Spring, MD: IEEE Computer Society Press, 1982.

[Law79] Law, A. M., & Carson, J. S. A sequential procedure for determining the
length of a steady-state simulation. Operations Research, 1979, 27, pp.
1011-1025.

[Law82a]Law, A. M., & Kelton, W. D. Simulation modeling and analysis. New
York: McGraw-Hill, 1982a.

[Law82b]Law, A. M., & Kelton, W. D. Confidence intervals for steady-state
simulaitons, O: A survey of sequential procedures. 1982b Management.
Science, vol 28, 5. May 1982, pp. 550-562.

[Liv82] Livny, M., & Melman, M. Load balancing in homogeneous broadcast
distributed systems. Proceedings of the Computer Network Performance
Symposium, Maryland, 1982.

[Mal82] Malone, T. A decentralized method for assigning tasks to processors.

Research meorandum, Cognitive and Instructional Sciences Group, Xerox
Palo Alto Research Center, Palo Alto, Calif., August 9, 1982

[Mal83] Malone, T., Fikes, R., Howard, M., Enterprise: A market-like task
scheduler for distributed computing environments. Working paper, Xerox
Palo Alto Research Center, Palo Alto, CA, October, 1983 (Also available as
CISRWP # 1 1 1 , Center for Information Systems Research, Massachusetts
Institute ofTechnology, Cambridge, MA, October, 1983).

[Mai 86] Malone, T. W. and Rothkopf, M. H. Strategies for scheduling parallel
processing computer systems. Paper in preparation, Sloan Scnool of
Management, MIT.

[Men85] Mendelson, H. Pricing computer services: Queueing effects.

Communications of the ACM, 28,3, March 1985.

27

[Met76] Metcalfe, R. M., and Boggs, D. R., Ethernet: distributed packet switching
for local computer networks. Communications of the ACM. 19 (7), July
1976.

[Nel81] Nelson, B.J. Remote Procedure Call. Xerox Palo Alto Research Center,
CSL-81-9, May 1981.

[Nil80] Nilsson.N.J. Principlesof Artificial Intelligence. Palo Alto, CA: Tioga
Publishing Co., 1980.

[Ram84] Ramamritham, K. and Stankovic, J. Dynamic task scheduling in

distriubted hard real-time systems. IEEE Software, July 1984.

[Sau81] Sauer, C. H. & Chandy, K. M. Computer Systems Performance Modeling.
Englewood Cliffs, N.J.: Prentice Hall, 1981, pp. 296-297.

[Sch84] Schroeder, M., Birrell, A., and Needham, R. Experience With grapevine:
The Growth of a Distributed System. ACM Transaction on Computer
Systems. 1984, 2(1), 3-23.

[Sho82] Shoch, John F., Hupp, Jon A., The WORM Programs - Early Experience
with a Distributed Computation. Communications of the ACM, 25(3),

March 1982.

[Sin85] Singh, V. & Genesereth, M. A variable supply model for distributing
deductions. Proceedings of the International Joint Conference on Artificial

Intelligence, August 1985, Los Angeles, CA.

[Smi80] Smith, R. G., The Contract Net Protocol: High-Level Communication and
Control in a Distributed Problem Solver IEEE Transactions on Computers
Volume C-29 Number 12, December 1980.

[Smi81] Smith, R. G. and Davis, R., Frameworks for Cooperation in Distributed
Problem Solving. IEEE Transactions on Systems, Man. and Cybernetics,

VolumeSMC-11 Number 1, January 1981.

[Sta84] Stankovic, J. and Sidhu, I. An adaptive bidding algorithm for processes,

clusters and distributed groups. In Proceedings of the Fourth Interational

Conference on Distributed Computing Systems, May 1984.

[Sta85] Stankovic, J. An application of bayesian decision theory to decentralized
control ofjob scheduling. IEEE Transactions ofConputers, 1985, C-34, 2,

pp. 117-130.

[SRC85] Stankovic, J., Ramaritham, K., and Cheng, S. Evaluation of a flexible task
scheduling algorithm for distributed hard real-time systems. IEEE
Transactions on computer, C-34, 12, December 1985.

[Sto77] Stone, H. Multiprocessor scheduling with the aid of network flow
algorithms. IEEE Transactions on Software Engineering, vol Se-3,

January 1977.

28

[Sto78] Stone, H. and Bokhari, S. Control of distributed processes. Computer, vol.

11, pp. 97-106, July 1978.

[Sut68] Sutherland, I. E. A futures market in computer time. Communications of
the ACM, 1968 (June), 11,449-451.

[Ten81a] Tenney, R., Strategies for distributed decisionmaking, IEEE Transactions
on Systems, Man and Cybernetics, vol. SMC-11, pp. 527-538, August 1981.

[Ten81b] Tenney, R. and Sandel, Jr., N. Structures for distributed decisionmaking.
IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-11, pp.
517-527, August 1981.

[Tho83] Thompson, H. Remote Procedure Call. Unpublished documentation for

Interlisp-D system, Xerox Palo Alto Research Center, Palo Alto, CA;
January, 1983.

[Van81] Van der Heyden, L. Scheduling jobs with exponential processing and
arrival times on identical processors so as to minimize the expected
makespan. Mathematics ofOperations Research, 1981,6,305-312.

[VntSl] Van Tilborg, A. M., & Wittie, L. D. Distributed task force scheduling in

multi-microcomputer networks. Proceedings of the National Computer
Conference, 1981, 50, 283-289.

rWeb82] Weber, R. R. Scheduling jobs with stochastic processing requirements on
parallel machines to minimize makespan or flowtime. Journal ofApplied
Probability, 1982, 19, 167-182.

[Wit80] Wittie, L. and van Tilborg, A. MICROS, A distributed operationg system
for micronet, A reconfigurable network computer. IEEE Transactions on
Conputing, vol. C-29, December 1980.

cv

Table 1

Mean flow times and 90% confidence intervals for the distributed scheduling
protocol in various situations (different network configurations, system loads, and

accuracies of processing time estimates)

90% Utilization

Network
Configuration

Table 1 (cont.)

30

50% Utilization

Network
Configuration

Table 1 (cent.)

31

10% Utilization

Network
Configuration

Table 2

Effect on mean flow time of adding

processing capacity while keeping utilization constant

(Random sequencing and SPT sequencing)

32

10%

NO. of

machines Random SPT

Utilization

50%

Random SPT

90%

Random SPT

66.64 61.28 ± 3.04 120.00 101.60 t 5.92 600.00 245.20 ± 18.16

60.60 57.44 ± 2.64 80.00 74.28 ±5.12 315.79 150.92 + 10.28

60.01 57.78 ± 2.42 65 22 65.04 ± 2.74 178.16 107 40 t 6 34

60 00 60.43 ± 2.60 60.89 60.66 ± 2.67 112.61 81.14 ± 2.52

33

S:;i,

i CLIENT
^ MACHINE

v."fl««fr^'^'*. "W^O^ ^

Request for Bids

Acknowledgement

Bid

CONTRACTOR
MACHINE

Figure 1

Messages in the Distributed Scheduling Protocol

34

80.0

M 70.0 __

e

3 60.0 X
n

I

o

w

I

m
e

50.0

40.0

300

20.0

10.0

0,0

:iOOt arror

?trftct Estimatts

0.0 .1 9 1

System Utilization

Figure 2

Effect on mean flow time of system utilization and accuracy of processing time
estimates (for DSP with network configuration 41111)

35

80.0

M 70.0 -_

e

3 60.0 -_

n

_ 50.0

w

T

I

m
e

40.0

30.0

20

10.0

0.0

0.0

' Sptid Rang* • 2

•a Rangt • 4

I I

20 40 60 80

Number of Machines

Figures

Effect on mean flow time of network confiauration

36

250.0 __

M
e

3 200.0 __

n

90X Utiliittion

I

o

w

150.0

100.0

m
50.0

0.0

sot Util Kation

lOX Uti I itation

0.0 2.0 40 6.0 8.0

Number of Machines

Figure 4

Effect on mean flow time of adding processing capacity
while keeping overall utilization constant

(for DSP with perfect processing time estimates
and identical machines of speed 1)

Mean Flow Time

37

O
e
o

s
o o

iS

o
o
o

o
3

it

oa —

<e«< o
•^ »« A
n <t 1^

1 =
°

i/» S n
3 3 *

Ifi-

5'

c

o
z
" 5

1 ^

38

80.0

M 70.0 -_

e

3 60.0

n

_ 50.0

I

o

w
40.0

30.0

SOX jti 1 'zat ion

I

m
e

tot util i^atton

200 i
10.0

[I F

0.0

00 15 30 45 60 75 90 105

Late Bid tmprovement Criterion

Figure 6

Effect on mean flow time of various settings
for "late bid improvement" criterion, ip

(DSP with perfect estimates of processing time.
Network configuration 41 1 1 1)

39

Perfect Estimates Poor Estimates

(i 100% Error)

H 1-

n
o

o o

i5

5 1

i«

w« vO
a> («

3 "•

c o» S

M C At

-Si. 3
§5 2 c
3 v» 3 2

^2 3«^ n ft.

» <
5 rt>

^ 3"

1 ^it c
(t
—

^* fO
^ ^*
w* 3"

«< Q.

5<*
321
5
c

o •
<v

Q.

3

t
I

T

c
3
cr

01

n

Q.
JO
b
3

n
II

ISJ

3X1
H 1 1-

o

30
at
3
re

II S --

3 S S S S
e e e e o

H ^ 1
\ H

40

\
1

I

ENTERPRISE
System

Level 2

Level 1

Level

Pup Internetwork Datagram

\ \

Ethernet Arpanet Packet radio

Figure 8

Protocol layers used in the Enterprise system

2384 067

B^SEN15|jIDue

MIT tlBR4RIES DUPL 2

3 TOAD 00S7T021 ^

