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ABSTRACT

Many factors affect retail outlet profitability, including market poten-

tial, distribution and product costs, market pricing levels, cost (and avail-

ability) of land or space and the relationship between share of outlets and

share of markets. A model is presented which was used to plan building de-

cisions for outlets for a consumer product across time and across market arez

The model has been in use for a number of years and has provided important

input for budgetting and planning decisions. The implementation process for

this model is also discussed. The model and its use provide an example of

what the authors believe to be "successful" management science application —

the characteristics of and reasons for this success are discussed.
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I. INTRODUCTION

In a number of industries, products or services are offered to consumers

through company controlled retail outlets; each outlet offers only the pro-

ducts or services of the company controlling it. Examples of such indus-

tries are retail banking, gasoline, and fast foods, where retail outlets are

branch banks, service stations and franchised restaurants respectively. Com-

panies in such industries grow by constructing or acquiring new outlets and

one of the most important decisions faced by marketing management is the de-

velopment of a plan for such construction.

The authors participated in a project to develop a systematic, model

based approach to this planning decision. The approach was to provide guide-

lines on how many outlets should be built in each geographical market in each

of the next 5-10 years. Traditionally, each year, district managers had

submitted requests for construction of outlets on a number of sites that met

company requirements in terms of anticipated profitability. These requests

would be screened and then met subject to the availability of funds. The

long term impact of construction on company profitability was never explicitly

considered. The development of a model based approach was motivated by a top

management desire to invest larger sums of money in outlet construction than

it had in the past and by the recognition that the payback for such invest-

ments would occur over an extended time period. Thus the traditional approach

was considered inadequate.

The profitability of a given site depends, among other factors, on its

Hales volume. Sales volume is affected by a number of site characteristics

3Ui h aa tidttii- tiow auvl nt> I j;hborhood population. Wlien developing a long range

plan, a list of specific sites is generally not available, so that one has to

assume an "average" volume figure for each potential site. In implementing
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the plan, only sites that satisfy this assumption are selected. More impor-

tant from a planning viewpoint is the impact of the number of sites constructed

on average volume per outlet, and thus, on market share. Total market demand

in the product classes considered is rather inelastic — new outlets divide

essentially the same "pie". Thus, if a very large number of outlets were to

be constructed in a single market, the average sales per outlet would be sub-

stantially depressed. Marketing management believed that a relationship did

exist between the share of outlets s, and the (volume) share of market ra en-

joyed by a company, and that other things being equal outlets tended to have

larger volumes in markets where s was larger than where s was small. The only

quantitative work on the relationship between s and m that had been reported

in the literature supported this belief. In their paper, "Brand Switching

and Mathematical Programming in Market Expansion," Hartung and Fisher [1]

2 2
showed that for 0< s<.2, dm/ds and d m/ds were both positive; thus all other

things being equal, it is preferable to build in markets where s is high than

where it is low. Hartung and Fisher do not consider the impact of saturation

alluded to above, and their model has other more serious shortcomings, but

their work formed a starting point for this analysis.

In this paper, we present a model for the relationship between s and m,

and then show how the relationship was used to develop a model for the out-

let construction decision. The output of this model was a specification of

the number of outlets to be constructed each year in each market, given con-

straints on the total budget for construction and the availability of sites

in each market in each year. These constraints are really estimates; thus,

the initial output of the model is really a demand for refinement of these

estimates. That is, once the model determines that n outlets should be





constructed in market i and year t, a search Is conducted for such sites; if,

an adequate number cannot be found, then the constraint is revised and input

to the model, a new solution obtained, etc. Given the crudeness of the vari-

ous cost estimates and the mixture of hard and soft "data", an approximate

procedure for solving the model was developed: this procedure, in most cases,

provides optimal solutions, and always gives solutions close to optimal.

2. A MODEL OF THE OUTLET SHARE-MARKET SHARE RELATIONSHIP

Hartung and Fisher [1] model the sequence of purchases by a customer as

a 2-state Markov Chain. The states are "purchase company brand" and "purchase

some other brand". They assume that the probability that a customer will buy

the company's brand on the t occasion, given he bought it at t-1 is k^s and

the probability that the customer buys the brand at t given he bought some

other brand at t-1 is k„s, where k and k ai

it can be shown that this model implies that

(1-s) + (1 + k^ - k^)i

The values of k and k are estimated from aggregate data and found to be 4.A4

and .64 respectively. Although this model provides a good fit in the range of

data available to Hartung and Fisher, it breaks down for s more than about

0.20; for s = 1/k , m=l.

In more recent work Naert and Bultez [3] question the robustness of the

Hartung-Fisher model and suggest several alternative model structures. These

structures are based on empirical evidence, not on fundamental behavioral

hypotheses. For example, they do not question the Markovian basis for the
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Hartung-Fisher model although they promise to explore it in later work.

Initial attempts to fit the Hartung-Fisher model to the data available

to the authors were unsuccessful, even in the range < s < .20, and a new

approach seemed advisable. In the product field being considered, there

was practically no brand differentiation in terms of quality. The major

reason customers gave for patronizing a particular retail outlet was "con-

venience", equated in this case to closeness to home or work. Modelling such

a market using the concept of brand loyalty-disloyalty is questionable. A

more plausible hypothesis was that buyer purchase behavior was really an in-

dependent trials process, the motivating factor in outlet selection on each

purchase occasion being convenience — that is, the outlet easiest to get

to at a given time would be selected. Since most people have fairly fixed

patterns of work and travel during a year, this hypothesis would encompass

the case of a customer who patronized one outlet exclusively without attri-

buting "brand loyalty" to him. In a market without product differentiation,

brand loyalty implies consumer irrationality; our hypothesis avoids this

implication while permitting apparently brand loyal behavior.

Formally, we hypothesize that:

HI. Purchase behavior is an independent trials process.

H2. The probability that a randomly chosen customer will select an outlet

of a particular brand depends on whether an outlet of that brand is

conveniently located for him.

In a given market suppose there are N brands with outlet shares si = 1,...

On a given purchase occasion suppose the outlets of more than one brand are

convenient. Let J denote the subset of convenient brands.

H3. The probability that an outlet of brand i is selected is s./J^Sj , i e J and

zero otherwise. Thus, an outlet is selected at random from the set of

convenient outlets.





H4. The probability that an outlet of a brand with outlet share s. will

be convenient to a randomly chosen customer on a given purchase occa-

sion is denoted by f(s.).

Obviously, f(0) = and f(l) = 1; in addition, we assume only that

f (s.) > 0, < s. < 1, that is f(s) is monotonia, non-decreasing. Since it

is difficult to imagine a case when adding an outlet will make a brand

less accessable, we feel this assumption quite realistic.

H5. The average quantity purchased per occasion is relatively constant over

customers.

For the time being we shall also assume that the outlets of each brand

are identical in size, and that they are all modern, well located facilities.

This assumption will be relaxed later.

Now we explore the consequences of HI - H5. First, consider a 2-brand

market. For simplicity in notation let us drop subscripts and assume ttiat

the share of outlets of brand 1 is s and its share of market is m.

(1) Probability (A customer selects an outlet of brand 1) = Probability

(Brand 1 convenient and Brand 2 inconvenient) + s Probability (Brand 1

and Brand 2 convenient) = f (s) (1-f (1-s) ) + s f(s) • f(l-s) = m by H5.

Now suppose each brand has exactly equal numbers of outlets, i.e. s = 1/2.

Then, so long as these outlets are essentially similar, they should share

the market equally: that is m = 1/2. Therefore,

(2) f(0.5) (l-f(0.5)) + 0.5 f(0.5) = 0.5, or f(0.5) = 1

By H4 this implies that

(3) f(s) = 1, s > 0.5.

Now substituting (3) in (1) , the share

(4) m =fs f(s), s < 1/2

'2

=fs f(s), s < 1/2

/i - (1-s) f (1-s), s > ii:





We have shown that f(s) =1, s > 1/2; f(s) may reach 1 earlier however, say

at s = s*< 1/2. Then f(s) < 1 for s < s* < 1/2 and from equation (4),

for small values of s, market share is less than outlet share, while for

larger values of s, it is greater than outlet share, (which agrees with the

operational part of the Hartung-Fisher model). For example, if we assume

that f(s) = 2s, then:

2
(5)

1
s < 1/2

23^-1 s > 1/2

This relationship is graphed in Figure 1.

m 1/2

/

/

/





Now we generalize the relationship between m and s to the N brand case,

N > 2. Using the same argument as in equation (1) the market share of Brand

1,

(6) m = f(s ) TT (l-f(s,)) + I --^ f(s-) f(s.) TT (l-f(s.))
^ ^ iH " i^l ^1 "^

^i ^ ^ j?^l,i J

+ I s +'i + s
f(si)f(s.)f(s ) TT (l-f(s)+...+

i?tj?tl ^1 ^ ^i ^ ^j ^ ^ J 1^1, i, 3
^

... +s^TT f(s.)

i

Now, if each brand has exactly the same share of outlets, then as before

they should have the same share of market; substituting s. = tt, i = 1,...N in

(6) and setting m^ = — also, the relationship is satisfied if f(—) = 1. Thus,

when a brand has 1/N or more of the share of outlets, it is conveniently lo-

cated to all customers in the market. Again, it is easy to show that for

some < s. < 1/N, m < s.. For example, suppose all brands except brand 1

have equal shares of market, that is, s = 1 i j^ 1.
^ N - 1

Then,

1-s, . 1-s,
(7) j_ = Y

/U-l\ ., . ,, "l, i ,^ ^, °l,,N-i-l (N-l)si
"^1

ito V i ^ ^1^ ^^'^^^ ^^-'^^^=1-^^ ^N-l-i)s|TT

When s, < ^ , s, > ^, so that f(s.) = 1, i i« 1: similarly when s > -, f(s )INiN 1 xiNi
and f(s ) < 1 i ?t 1. Thus,

(8)
'

'
-^

xw o^ ^v^3^/, --1 - N





Again, assuming a linear form for f(s.) for < s < ^ > ^e get

2 1
m = Ns , s < — in agreement with the operational part of the Hartung-

Fisher Model.

So far we have assumed that the outlets of each brand are basically simi-

lar. Consider again, the two brand case. Supose now that the outlets of Brand

1 have been constructed more recently. Thus, it is likely that they are better

located compared to older outlets. In the industry under study, the average

life of an outlet could be 20 years; substantial changes in traffic patterns

and neighborhoods occur during this time. Thus, we can hypothesize that if

Brands 1 and 2 had the same number of outlets. Brand 1 would have a larger

market share than Brand 2, because its outlets will be convenient to more people.

The model presented above can be easily modified to include this phenomenon.

Let r be the effective share of outlets for brand i. In general r will

differ from s , the share of outlets for brand i, depending upon the relative

building rates of brand i and the rest of industry in the past. Operationally

r. may be computed as follows. Let us classify all outlets into recently

built and old. The recently built ones, on the average, will be able to ser-

vice more customers than the old outlets. Let n. and N be the number of
ir r

recent outlets of brand i and the rest of industry respectively; similarly

let n _ and N be the number of old outlets. Also suppose a recent outlet is

capable of attracting k times as many customers as an old outlet. Then

^^r + ^0

en. + N

where c is a constant, and n. and n.„
ir lO





Now replace s by r in equation (4) and equation (6). Assuming again

a linear form for f(r,) and setting c = 2, the resultant relationship between

market share m and outlet share s is shown by the dotted line in Figure 1 for

the two brand case.

Thus we have identified another crucial factor impacting profitability:

the age distribution of a company's outlets compared to competition. This

reinforces the importance of developing a long range building plan rather than

relying on the traditional "bottom up" approach to outlet construction described

in the Introduction.

3. EMPIRICAL VALIDATION

In the previous section we demonstrated that the relationship between

outlet share s and market share m is a non linear one; for small values of s,

m <;^ s while for large values of s, m ^ s. This analysis tells us the type of

function that should be fitted to data to empirically obtain the m-s relation-

ship. In many empirical studies, the typical fitting procedure resembles a

"fishing expedition" with no real idea of what shape of function theory dictates

should be fit; the theoretical analysis avoids this pitfall and indicates that

an s-shaped function should be employed. It also requires us to select a func-

tion that can be parameterized to be less or more steep, depending upon the out-

let building rate in the market. The precise functional form e.g. cubic, Gompertz

etc. — is unimportant; any function that is likely to provide useful, useable

results may be applied.

Initially, two types of data sources were located within the company.

The first was a Retail Competitive Survey which was conducted annually by com-

pany salesmen. This survey provided information on outlet numbers and estimated

sales volumes by brand. This data source was considered by company management





-11-

to be much more reliable than commercially available data of the same type.

The second data source was the New Outlets Openings Report, which was a record of

all new outlet openings for the last ten years. Data from both sources were

initially available for thirty markets and these were used for estimation pur-

poses. Outlets that were less than five years old were classified as recently

built. This admittedly arbitrary classification provided the best fit and

also agreed with the intuition of marketing management. A variable called

"aggressiveness" was defined as

# of recently built company outlets
Total company outlets

// of recently built industry outlets
total industry outlets

and a function m = g(a,s) was fitted to the data. Figure 2 shows contours of

this fitted function for a -= 1.25 and a = 0.85. Also shown is the fitted Hartung-

Fisher model for the same data set. While in the range < s < .14 there is

not too much difference between this model and the Hartung-Fisher model, beyond

2
s = . 14 substantial differences occur. A high R ( > .8) was obtained and

the impact of building rate found to be highly significant. The proprietary

nature of the data precludes a fuller discussion of the estimation procedure

or presentation of those data.

It should be noted that the results presented were initial ones. In

practice the curves are reestimated each year to reflect the most recent data

available. The most recent curves differ somewhat from those shown in Figure

2, but their general character is as illustrated.





30
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4. ALLOCATION PROCEDURE

As mentioned before the model discussed here was designed to aid in

the analysis of a planning problem. The output of the model was to aid manage-

ment in constructing a building plan — how many outlets the company should

expect to build in each of a large number of market areas during a several-

(usually 5 ) year planning period. The first year results become budget

items — building funds are allocated in accordance with plan "year 1". The

following year results are used to prepare profit plan projections and to help

allocate outlet-site procurement funds (in anticipation of building)

.

The nature of the managerial decision is such that a near-optimal solu-

tion to the mathematical formulation of the problem is quite adequate. All

the planned outlets cannot or are not always built due to changing local build-

ing codes, construction difficulties, lack of sites, etc. And if an extra

"choice" site comes available in a desirable area, an outlet will be constructed

on it immediately, even if no money was originally allocated. What management

is concerned with here is whether it should acquire five sites or twenty sites

in an area; the difference between five sites and six often washes out during

implementation.

It has been demonstrated that the firm's market share m is related to

the aggressiveness a and share of outlets s by a relationship

(9) m = f(a,s)

In general m, a, s as well as f will be known for a particular market.

Thus, for consistency the following is assumed:

A-1 : In equation (9) market share (m) , aggressiveness (a) and the function (f)

are known with certainty, while outlet share (s) is to be determined from

the equation.
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A-1 gives an operational definition of outlet share which may seemingly

be different from the one observed. This could be due to (a) differences in

the size and effectiveness of outlets in the market (as discussed in Section 2)

,

(b) marketing factors, (c) random, or other factors. The reason for the

differences need be of no concern in general; specific, significant differences

should be brought to the attention of management for purposes of control.

Given this starting point (m = m , s = s , a = a ), and an assumption

about non-firm building rate, one can now calculate the annual expected market

share for a given building plan for each year of a planning horizon. This is

not the whole story, of course: a host of other data (growth rates, discount

rates, cost factors, margins, etc.) are needed to choose an economically opti-

mal building plan for a particular market. The details of the economic evalua-

tion will vary from application to application. The highlights of one such

application are sketched here.

The problem of determining an optimal building plan was originally for-

mulated as a dynamic programming problem. The procedure was cumbersome, compu-

tationally inefficient and was not able to handle several of the constraints.

An empirical market-by-market analysis of the relationship between cumulative

NPV and building investment indicated that most such curves were nearly con-

cave. Thus the dynamic programming approach was scrapped and the following

algorithm developed.

The objective of the algorithm is to maximize the total net present

value (NPV) of a Y-year building program subject to restrictions on the total

number of outlets that can be built (a) within a market, (b) across all markets

in a given year and (c) during the Y-years, where NPV is defined as:

J T CF..
(10) NPV =

I I
^

j = l i=l (l+R)"^
^
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where CF.

.

= cash flow associated with market area j in year 1

R = discount rate

J = market areas considered in the plan

T = planning horizon (x > Y)

To do this, the procedure selects the group of outlets in the market which has

the highest average NPV per outlet. It then selects the next highest NPV group

and so on until all allowable outlets have been allocated.

It will be assumed that if one knows, for a particular market:

- the firm's building/investment plan,

- the firm's current market share,

- market growth rate,

- discount rate

- margin,

- competitive building/investment plans,

- current age distribution of firm/ industry outlets,

- other financial information: land costs, improvement and equipment costs,

depreciation methods, working capital needed, etc,

then it will be straightforward together with equation (9) to calculate cash

flows, and, hence the NPV associated with any particular building plan. The

following assumptions have been used in practice in making such NPV calculations

though they are somewhat arbitrary, we trust they seem reasonable.

A-2 : "New" outlets, : used in the definition of aggressiveness are defined as

those five years old or newer. In year 3 of the building plan, outlets

built in years -1 (last year), this year), 1, and 2 are included

in the definition of aggressiveness.
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The building plan is designed for Y years (where Y usually equals 5) ;

the planning horizon is set for x (generally 20) years. Because of the non-

linear relationship between outlet share and market share, if one assumed no

building after year Y it could seriously understate the profitability of the

building plan. On the other hand, it would be a mistake to assume the continua-

tion (and reap the model'-prof its) of an aggressive building plan in years

after Y (with no capital outlay). As a compromise:

A-3 : The model assumes, after Y years, that the firm will build enough outlets

to maintain its market share: m^ = m,^, k = Y + 1, .... Thus aggressive-

ness is assumed = l:(a, = 1) k = Y + 1 ....

Note, that were an infinite planning horizon, and an infinite building

horizon being considered, A-3 would not be necessary. There are also some

minor end-off problems (which can be taken account of by properly defining

salvange values) which this finite horizon approach entails. However, since

the model was developed as an operational tool for managers, it had to conform

to the planning practices currently in use. The inconveniences encountered in

such modelling are rather minor and the implementation benefits are considerable.

An allocation algorithm for a single building plan can now be developed.

It will then be extended to Y years and theoretical justification for why the

procedure is, at least, near optimal will be given. First, some notation:

Let

n. = market building constraint

T = overall building constraint

v., = Incremental net present value (NPV) of the kth station in market i.
ik

J

y V = cumulative NPV of the first j stations in market i, j = 1, 2, ... n .

k=i
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^ii ~
) ^ ^ik'^^

" average NPV of the first j stations in mai
A k=l ket ij j = 1, ...n^.

L
"^

j > n^, M is large positive number.

M = Number of markets

N = max [n^].

The single year problem is to

M X.
1

Massachusetts Institute of Technology

Alfred P. Sloan School of Management
50 Memorial Drive

Cambridge, Massachusetts, 02139

Erratiom: Page 17, Theorem : (should read) if, in every market, NPV
is a concave function of the number of outlets.,.

Theorem ; if, in every market, NPV is

lets built, then a simple allocation according to incremental

NPV yields an optimal building plan.

Proof : let

8j(Xj) = cumulative NPV associated with building X.
outlets in market j, j=l, ... J J

and assume g. is concave for all j.

A building plan can be considered a vector X = (X , X , . . . , X )1' 2

and the NPV of that building plan is simply

J

G(X) =
I g.(X.).

j=l ^ ^
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A resource constraint exists:

J

I X. = K (Assuming management uses all building resources)

The Lagrangian can be formed:

_ _ J

L(X,X) = G(X) + A(k -
I X.)

j = l ^

Setting partial derivatives of L = 0:

ft •0-8.'(Xj)-», gj'Uj) -X^fj

Thus the NPV maximizing solution has equal incremental NPV's for

each market. The solution is a global optimal since L(X,A), a

sum of concave functions, is concave. This completes the proof.

In general, the cumulative NPV curves may not be concave; thus the W

matrix is constructed and only entries of maximal size are allocated. This

forms a concave envelope for the cumulative NPV curves (transforming them

into concave functions). Then maximal W entries, the only ones chosen for

allocation, always correspond to a feasible point. As an example consider

Figure 4 with the solid line indicating the concave envelope.

Point A in Figure 4 would be a maximal entry for market i'. Thus 5 sta-

tions would built in market i' (assuming it had the highest current [w ]

ij

entry) and then Step 7 in the algorithm would move the origin, 0, to point

A where the algorithm is repeated. The next set of stations picked in this

market will correspond to point B, i.e., nine stations (or 4 additional).

Note that if the slope from to B (—) were greater than that from to A (—

)

either the entire set of 9 outlets would be included in the building plan or

none would be at all (i.e., W would be the largest entry in the i'th row).

A numerical example is included in the next section which illustrates this

procedure.
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Cumulative NPV

for Market i'

Figure 4

Assume the process continues until T outlets had been selected (and

ignore Step 6 for the moment). Two events are possible:

(a) S, the running total of outlets, = T

(b) S > T.

If (a) occurs the resulting X is optimal by the theorem. If (b) occurs,

an optimal solution has been found for problem (4.3) with S replacing T. Thi.'

is not feasible for the original (4.3), but S is usually close enough to T to

be acceptable for planning purposes.

An alternative which has been used is to insert a set of steps, (2a) in

the algorithm:

(2a) If S + j* < T continue to 3.

If S + i* > T, Find M. , . = Max W^ , .

,

•J
' I'j T i'j

such that j' = T-S. Then let i'

replace i* and go to 3.
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This may lead to a less than optimal solution and is, in essence, an al-

gorithm "end effect." The end-effect problem has not proved nearly Important

enough in practice to justify the dynamic programming solution which would

guarantee theoretical optimality.

Let us now consider a building program which can span several years (Y > 1) ,

Define: X = number of outlets built in market i in year t.

V. = NPV of the cumulative jth outlet built in market i, given
it is built in year t.

T = cumulative number of outlets which can be built up through
^ year t. t = 1 Y.

All other quantities are altered by adding a subscript, t, to the prior

symbol. The problem becomes:

M Y "it
(4.4) max Z = I I I V

i=l t=l j=l ^^^

subject to

< X. < n. ^ i = 1...M, t=l...Y.
- It - 1

t

t M

^ ^ ^Ik- '^t'
t = 1, ... Y

k=l i=l
^^

The multi-year problem is slightly more complicated that the single year

problem. Two assumptions make the problem more tractable, however. Assume:

(A4) V. is independent of the time at which outlets j-1 were built.

(A3) V > V , , — the earlier an outlet is built, the greater its
^^ ^

NPV.





Then the algorithm for the multi-year case is very similar to that for

the one-year case; the main difference is that the cumulative NPV matrix is

formed from a three dimensional NPV matrix [V. _]^^.,,,^ where N = max [n. ].
iit MXNXY . ^ It

A problem which would seem to arise here (the reason for assumption A5)

is that even though V. is independent of the time at which other outlets

are built, the cumulative value of the first j stations does depend on the

time at which the first (j-1) outlets are built (due to the aggressiveness

definition among other things.)

Since it has been assumed that V,. > V..,^,, ., the cumulative value is
ijt i3(t+l)

the greatest when outlets are built as fast as constraints allow. Thus, the

algorithm will always assume stations are built as soon as possible, and there

is no ambiguity in calculating NPV's.

We still have the "end-effect" problem mentioned above in the multi-year

problem and the comments made earlier apply here as well. In addition, another

problem rests with the assumption that V,. ^ V , . , ^, , . This cannot always
ijt ij(t+l)

be assumed in advance, although a large discount rate (internal rate of

return) will almost always lead to this event. Large market growth rates

or profit growth rates could lead to this assumption being violated.

Experience with this procedure has indicated that management generally

concedes that the assumptions are reasonable, if debatable. Violation of

the assumptions seem to be rare and when they occur, are slight and have

little effect on allocation. And, as stressed earlier, the type of planning

decision which the procedure is designed to support will not be grossly

affected by small variations from optimal solutions.





NUMERICAL EXAMPLE AND COMPUTATIONAL EXPERIENCE

A small, two-market, example indicates basically how the algorithm works:

Cumulative NPV Cumulative NPV

# outlets Market A Market B15 4

2 8 9

3 12 16

4 14 20.5

5 15 22

Initially,

Step 0.
"., -\l U L 1:1 u [x:l'lol^ = °-

The maximum entry is 5.3 for Market B, 3 outlets. Three outlets are added

Step
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The algorithm is simple and efficient. Including set-up calculation of

NPV's, a 170 market, 5-year problem, allocating 600 outlets has been run in

under five minutes on an IBM 360-75. The bulk of that time is I/O and NPV

Calculation; the allocation procedure itself took less than one minute. This

makes update runs and sensitivity analysis quite inexpensive.

6. IMPLEMENTATION

This system has been used as an aid in outlet building plans at a major

U.S. Corporation since 1969. For planning purposes the company breaks the

U.S. down into seven operating regions, with each regional manager providing

a five-year "building proposal" for markets in his region. (A region might

contain as many as 35 markets) . These proposals are then considered at a

building-plan meeting, presided over by the Marketing Vice President. Invari-

ably the individual proposals add up to considerably more building requests

than the company annual constraints allow. Prior to the development of the

model, political considerations and pseudo-quantitative arguments preceded

an executive decision which left little room for reconsideration.

After the model was developed, the regional managers still produced

manual proposals. But the model results, produced in parallel, became an

additional input at the building plan meetings. The model inputs, as well

as the outputs, were plain for all to see. Initial runs were rarely close

to the proposals made by the regional managers — input items were changed

for further runs and building proposals were updated. After several itera-

tions, model output and regional proposals were close enough so that the few

differences could be resolved by hand. This process is schematically repre-

sented in Figure 5.
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7. CONCLUSION

A model was developed to help plan retail outlet building. From some

very simple hypotheses about buyer behavior, an S-shaped outlet share-market

share relationship was devised. This relationship was then one input in a

resource allocation algorithm which efficiently produced optimal or near

optimal plans.

The results of the study were "implemented" in the sense that they had

an important influence on the decision-making process. Through use, manage-

ment became more comfortable with the procedure and it became an integral

part of the planning procedure.
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