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Abstract

A few of the properties of electromagnetic waves in periodic structures are consid-

ered, with some discussion of propagation in open-boundary structures. Iris-loaded

waveguides of standard cross section are then analyzed to obtain an accurate solution

for the propagation constant. A measurement performed on a loaded rectangular wave-

guide shows the calculation to be quite accurate. An experimental and analytical inves-

tigation of the so-called interleaved-fin structure to judge its application as a slow-wave

circuit for traveling wave amplifiers is described.
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ELECTROMAGNETIC WAVES IN PERIODIC STRUCTURES

I. Introduction

The theory of electromagnetic fields in periodic structures has important applica-

tions in the field of microwave electronics, and it is this aspect of the subject that has

supplied the motivation for much of the investigation described in this report. It is

probably impossible to analyze rigorously the electronic devices using these structures,

but one approximate approach, which is good when the free electron current density is

small, is to make use of the fields in the charge-free structure. This technique is

applicable in the case of the linear accelerator tube and, through J. R. Pierce' s sim-

plified theory of traveling wave amplification (8), to the small-beam-current traveling

wave tube. In certain cases another approach, not having the small current density

limitation, is possible. This is a direct solution of the problem (current density present),

in which an initial simplifying approximation is made by substituting appropriate smooth

boundaries for the periodic boundaries (see, for example, ref. 9). Our interest here,

however, arises from the first approach; we are concerned, in particular, with the

following properties of the structure fields: (a) the phase velocities of the space

harmonic components of the field, (b) the axial electric field strength of these wave

components. After a brief statement of a few simple properties of fields in periodic

structures, two specific problems will be considered.

The first of these problems deals with an accurate solution for the propagation

constant in iris-loaded waveguides of standard cross section. In more or less special-

ized forms, this problem has been treated extensively in the literature. (Consult refs.

1 through 5.) A segmented treatment of this problem is in certain respects desirable,

since the approach that leads to the most simple and accurate numerical solution depends

to some extent upon the range in which the variables (frequency and the parameters of

the geometry) fall. Nevertheless, in section III an attempt is made at unifying the prob-

lem by presenting a result which is common to all the standard types of waveguide

cross sections and is general to the extent that the loading irises can be taken to be

infinitely thin. The formal result is expressed as a quotient of infinite sums whose terms

depend upon the field distribution in the aperture (which is always a complete standing

wave). The result can be solved to a quasi-stationary approximation, and in the case

of the rectangular guide, it is possible to virtually sum the series so that the result is

useful in practice. Calculated and measured results for a particular guide are compared

in Fig. 4.

The second major problem with which we shall be concerned is somewhat more

specific than the first. It is the investigation of the use of the so-called interleaved-fin

structure as a slow-wave circuit for traveling wave amplifiers. Proceeding from

Pierce's simplified theory of traveling wave amplification, we use a combined experi-

mental and analytical approach to determine the pertinent properties of the circuit fields.
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The structure is considered for the case of either open or closed lateral boundaries

parallel to the y, z plane (see Fig. 6); it is found that certain advantages accrue in each

case. Though the geometry of the structure makes an exact field-theory analysis impos-

sible, there is an approximate way of treating the structure, which is shown by experi-

ment to be quite accurate. Basically, we look at the structure as a folded rectangular

waveguide having either open-circuited or short-circuited side walls. The basis for

substituting open-circuited (magnetic) walls for the open lateral boundaries rests on

experimental observations, and we find that this approximation is quite good, provided

the axial propagation constant does not lie in or close to certain "forbidden regions,"

which will be discussed later. The discontinuity at each bend of the folded guide is

accounted for by an equivalent network whose parameters are calculated at some length

in Appendix B. Although most of the theory neglects the presence of the beam trans-

mission holes, experiment shows that the propagation constant is only negligibly affected

by the introduction of even relatively large holes. The degree to which the circuit will

couple to a given beam, measured by Pierce's impedance definition, is difficult to

determine experimentally and is calculated from the field distribution in the model. In

general, the structure can support a relatively high impedance space harmonic that

can be made to travel either with or against the flow of power. Though the phase velocity

of the high-impedance wave will be found to vary with the frequency, reasonably

large amplifying bandwidths are possible with medium-to-high perveance, high-voltage

electron beams.

Before proceeding to the details of the two special problems, we shall obtain in the

following section some general results which will be of help in these discussions.

II. Some Basic Properties of the Modes

2. 1 Introduction

In this section we will be concerned with some of the fundamental properties of waves

in periodic structures. The discussion that follows is not intended to be a comprehensive

treatment of the subject, but is directed at a few special ideas that will serve as a back-

ground for experimental and analytical work on some particular structures in sections III

and IV. The interest will be in the free modes of propagation in these structures, that

is, those which persist at indefinitely large distances from a source. The general type

of structure considered may have lateral boundaries which are closed by conducting

walls, or open to the outside world. A periodicity L is assumed along the propagation

axis (taken to be the z-axis), although periodicity in other directions is not excluded.

The field quantities are assumed to vary harmonically with time, and the factor exp(jwt)

is understood.
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2. 2 Floquet's Theorem and the traveling wave definition

The wave solutions for periodic structures are distinguished from those for the uni-

form waveguide in that in the former case the field distribution is not the same in every

transverse plane. The modes of oscillation in periodic structures are described by

Floquet's Theorem, which states that in a given mode and at a given frequency, the

electromagnetic fields at any pair of corresponding points separated by a period L are

related by the same constant factor. Traveling waves are defined by choosing a

complex number as the constant factor in order to impart a phase shift between the

fields at points separated by a period. In the case of a single traveling wave, if the

medium is lossless and no energy is lost by radiation (should the structure have open

boundaries), the complex number must have magnitude unity. Let the constant factor

then be written exp(-jhoL) to give a phase shift of hoL radians over a period. One

need not go any further in formulating traveling waves in periodic structures; however,

in some types of analyses it is convenient to introduce the space harmonic concept, which

is deduced as follows. The most general type of z-dependence which multiplies the fields

by exp(-jhoL) as we move down the structure a period is the function exp(-jhoz) times

a function of z of periodicity L. If the periodic function is written in complex Fourier

series form and multiplied by exp(-jh 0 z), the field quantities can be written as a sum

of space harmonics

00

F = fn exp [-j(ho + ) ] (1)

n= -a

where fn expresses the transverse dependence of the n-th space harmonic of the vector

field component F. In this light, h is the fundamental propagation constant or the

propagation constant of the zeroth space harmonic.

2. 3 Relation between stored energy, power flow, and group velocity

In the well-known theory of uniform waveguides a relation is established between

time average, axial power flow P, stored energy per unit length W, and frequency rate

of change of the propagation constant h, namely

WP = dhWd (2)

1/(dh/dw) can be interpreted physically as the velocity of energy propagation and is given

the name, group velocity. Equation 2 is useful in establishing certain proofs. Many

authors have used it directly, substituting ho for h, in the analysis of periodic structures.

One readily observes, however, that Eq. 2, as it stands, is meaningless for periodic

A good part of the discussion on Floquet's Theorem is drawn from reference (1), p. 6.
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structures, since the energy stored per unit length is generally a function of position

along the propagation axis, whereas the axial power flow is not. In terms of the energy

stored in any one period of the structure WL one might expect a relation of the form

WL/L
P dho/dw (3)

to exist. This in fact proves to be the case.

The proof of Eq. 3 comes from the energy theorem (see ref. 6, p. 55)

V7 *[E x a + K x ] =-j lE · E + H' H (4)

which is obtained by frequency differentiation of the Maxwell equations. Here, E and H

are complex field vectors which are functions of all space coordinates. The procedure

will be to integrate Eq. 4 over a volume bounded laterally by a cylindrical surface and

on the ends by transverse planes separated by a period of the structure. If the structure

is closed by conducting walls, then the lateral surface is taken to lie on the walls,

whereas if the structure has open boundaries, the surface is chosen to lie at infinity.

Integrating the right side of Eq. 4 over such a volume yields simply -4jW L . To integrate

the left side, use is made of the divergence theorem, which gives

-* aff af i· aF aEfv.[E x+-ax Hl]dV = [E* x + Ex H*V X XH*R =5 H· dS (5)

where is the outward normal to the closed surface S bounding V. The contribution

due to integration over the lateral surface is zero in the case of conducting walls since

n x E is zero on the walls; it is zero in the case of open boundaries since the fields must

vanish faster than (1/r 1 /2) at large distances. (This restriction is necessary to insure

that the structure is not radiative (see subsec. 2. 4). ) Choosing the propagation axis to

be the z-axis and denoting the field quantities in the plane z = z1 by subscript 1 and those

in the plane z = z1 + L by subscript 2, we have

z + x H ( + H dS = -4jWL (6)
plane

Since the fields in planes separated by a period are related by the factor exp(-jhoL), we

have

E 2
= E1 exp(-jhoL), H2 = H1 exp(-jh0 L)

2 = E1 exp(ho), H 2 = H exp(jhoL)

Performing the frequency derivatives and canceling terms, we find
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-jL iz E 1 xH 1 + E 1 HdS

-4jL doJ iz [1 Re(E 1 x H)] dS = - 4 jWL (7)

which, in view of the complex Poynting Theorem, can be written

WL/L

P+z (8)
dho/dw

This is the relation which was to be proved. There is an important result of this

relation which will be useful later. Since WL is a nonnegative quantity, P+z and (dho/dw)

must always be of the same sign. If we always take the source to be at z = -o, then P+z

is nonnegative and (dho/dw) must always be positive or zero. Nothing in the derivation

prohibits h from being negative. This allows for the situation in which phase and

"group" velocities are of opposite sign.

2.4 Forbidden regions of the propagation constant for open-boundary structures

S. Sensiper, in his solution for the free modes of propagation on a wire helix (7),

discovered that there are periodic ranges of disallowed values of the propagation constant

for this structure. Using an elementary approach, we shall show that this phenomenon

is true for any open-boundary structure having periodicity along the propagation axis.

If the structure is to support a free mode, there can be no power loss in the propa-

gating wave. If it is found that the propagation constant of the assumed free mode is such

that power leaves the structure by radiation, then the assumption of a free mode having

the given propagation constant is contradicted. Such values of the propagation constant

are called (after Sensiper) "disallowed values," and when plotted in a certain plane, they

fall in the "forbidden regions." In seeking the radiation condition, we are led to consider

the open-boundary periodic structure as an infinitely extending antenna array.

Now suppose that the structure is propagating a free mode. Focusing attention on

one period, we can in principle calculate the far-field pattern due to the current distri-

bution on this period. Adopting the coordinate system shown in Fig. 1, let the pattern

in an arbitrary plane through the z-axis be some function of , say F(~). From straight-

forward linear antenna-array analysis (see ref. 10, p. 342) it follows that the pattern

due to n periods separated a distance L with a phase shift hoL between is

Fn(O) sinn 2(kL cos - ho L)
F(nP) 1 = k (9)

sin (kL cos - hL) c

-5-
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Fig. 1 Fig. 2

The coordinate in an arbitrary Map of the forbidden regions of the propagation
plane through the z-axis. constant for open-boundary structures.

As we consider the result of adding the effects of an increasingly greater number of

periods (n - o), the over-all pattern approaches a series of infinities, located at values

of such that

2(kL cos % - hoL) = mr, m = 0, +1, +2, ... (10a)

or at

h oL + 2mr1
+ cok- j(ok ), m = 0, +1, +2,... (0lb)

If no power is to leave the structure by radiation, the infinities must not occur at any

real values of . Thus, we conclude that allowed values of the propagation constant must

satisfy the inequality

IhoL + 2mrI > kL

or

hoL kL
-+ m > m = 0, +1, +2 ... (11)

When the inequality (Eq. 11) becomes an equality, the forbidden-region boundaries are

defined. These plot in the (kL/2rr, hoL/2w) plane as in Fig. 2. If the mode is resolved

into a set of space harmonics (see Eq. 1), it is seen that free-mode propagation can

occur only if each space harmonic has a phase velocity less than that of homogeneous

plane waves in the medium.

It is worth while to determine the form of the radial dependence of the fields at

large distances normal to the propagation axis. For this purpose we can enclose the

structure by an imaginary cylindrical surface and express the fields outside in terms
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of the wave functions of the circular cylinder. Outside the surface, as inside, the

z-dependence of the fields must be given by a sum of exponential dependences, repre-

senting the space harmonics of the field. The form of the n-th space harmonic compo-

nent, having the propagation constant, hn = ho + (2rn/L), is

F= exp(-jhn) Km (hn k) r { m (12)
b sin mO

m m

Now, for large values of the argument, the Km functions approach the same value for

all m; this value is proportional to

(1/r 2 ) exp{ -(hn- k2 ) rl}

Thus, at large radius, the radial dependence of the n-th space harmonic component

is

exp J-[(h2 - k2) r]}n

Fn(r) (13)
1/2r

The radial dependence of the total field is generated by a sum over n of the terms

(Eq. 13); hence, the total field is a rapidly decaying (though, not necessarily monotonic)

function of radius. This being the case, one would not expect the field distribution of a

free mode to be significantly altered by the introduction of a closed conducting shield

having a relatively large radius.

When any of the space harmonic components has a wavelength greater than the

free-space wavelength, kZ is greater than h (for some n) and the argument of then
exponential function in Eq. 13 becomes imaginary. This form of radial dependence

represents an outward traveling wave, which dies off in magnitude only as (1/r 1 /2).

When this is the case, one will not find a free mode propagating unless the shield

is present to insure that the radiation condition is not violated. Here, the conducting

shield becomes a very important part of the waveguide, and we find that a large

fraction of the total field energy is stored in the space between the structure and

the shield.

In practice, structures used with traveling-wave tubes of the beam type are almost

always shielded by the shell of a beam-focusing electromagnet. In this case, a radia-

tion condition is not possible, and there are no forbidden regions of the propagation

constant. However, it is still well to keep these regions of the propagation constant in

mind since they serve to indicate a radical change in the field structure and possibly a

greatly reduced coupling between the circuit and beam. As long as each space harmonic

-7-
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has a phase velocity less than that of light, it will be a good approximation to neglect

the presence of the shell in determining the fields.

2. 5 Periodic structures as resonators

Under the proper conditions, a standing wave on a periodic structure can be confined

between perfectly conducting transverse planes. If the structure has closed lateral

boundaries, then the planes close the ends of the structure to form a cavity. If the

structure is open, then the planes must in principle extend indefinitely in the transverse

direction. We will formulate the conditions for the existence of fields in the resonator

in the manner in which these problems are usually handled, that is, by considering the

total field to be constructed from a pair of free modes propagating in opposite directions

If a transverse plane can be located along the propagation axis at a position such that

the structure has even symmetry about the plane, then waves incident upon the plane

from opposite directions can be phased so that there is complete cancellation of the

transverse electric fields in the plane. The fields in each traveling wave are multi-

plied by exp [ +j(mhOL)] as we move m structure periods away from this node; hence,

if mhoL = qr (q is any integer), we are at another node. Conducting planes can be

inserted at each of the nodes to confine the standing wave, and the boundary conditions

are automatically satisfied. The existence of fields in the resonator is thus possible if

the end planes are separated by an integer number of structure periods and each plane

is so disposed that the structure has even symmetry about the plane. (The proper dis-

position of one plane, of course, automatically insures the proper disposition of the

other when the planes are separated by a whole number of periods. ) If these geometri-

cal conditions are satisfied, resonances will occur only when

h L
o q
ir m

where q = 1, 2, 3, ... , and m = the number of periods between planes. If these geo-

metrical conditions are not satisfied, resonances will generally occur, but they will not

be related in any simple way to the propagation constant of a free mode.

If the symmetry requirement can be satisfied for one location of a plane, it can also

be satisfied at another location which is one half a structure period removed from the

first. Unless the structure is self-resonant, the preceding development is valid for

either location. When the structure is self-resonant, the device of using oppositely

directed traveling waves with controllable phase is not valid, and here the method fails.

In this case, if the structure periods have even symmetry about a plane, there will be

short-circuit planes (whose positions are easily deduced) at which conducting surfaces

can be placed to confine the standing wave.

-8-
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III. The Propagation Characteristic for Iris-Loaded Waveguides

of Standard Cross Section

3. 1 Introduction

A number of basically different types of periodic structures can provide for the

transmission of a "slow wave" with strong axial electric field. If it is not required that

the wave velocity be relatively independent of the frequency, the physically simple iris-

loaded waveguide can be used to support the wave. This structure has been considered

for practical application with the linear accelerator tube and for use as a slow-wave

circuit for traveling wave amplifiers (1, 2, 3, 4, 5, 8). Outside the field of microwave

electronics, the loaded waveguide has been used as a foreshortened delay line for phasing

antenna arrays. As a special type of microwave circuit, a short-circuited length of the

loaded guide can be used as a cavity resonator. Each use for the loaded guide places

specialized requirements on performance; in section IV some of the requirements per-

tinent to traveling wave amplification will be noted. Of primary interest in all applica-

tions is an accurate determination of the propagation constant h o .

J. C. Slater has given an accurate solution for the iT-mode frequencies for loaded,

round waveguides (2). The technique used is equally applicable to waveguides with other

standard cross sections. A solution for the traveling wave problem, obtained by

W. Walkinshaw (3), is very accurate as long as the phase shift over a period of the

structure is not too large. In reference 3, excellent experimental agreement with

Walkinshaw's calculation is shown for hoL l (2/7) r. For applications to traveling wave

linear accelerators and traveling wave amplifiers, the case of a small phase shift over

a period is often useful since it results in a dominant space harmonic. For some appli-

cations, however, it might be useful to have a means of accurately predicting the propa-

gation constant over the entire range of the first passband, 0 h L L -t. In this section
o

we will develop a method of carrying out this calculation for the case of infinitesimally

thin irises in the commonly occurring waveguide cross sections. Using characteristic

function expansions, we first obtain the exact solution to the problem. It is impossible

to use this solution in practice, but we find that it indicates an approximate method of

solution which should be quite accurate if the iris hole is not too large a fraction of the

free-space wavelength.

Numerical computations, though generally somewhat tedious, are carried out most

readily for those problems in which the iris spacing is comparable with the transverse

extent of the waveguide.

3.2 Formal solution for the propagation constant

Three types of waveguide of practical importance are those with rectangular, circular,

and concentric circular cross sections. We shall be concerned with the case of periodic

loading by capacitive irises symmetrically located in the cross section of these guides.

-9-
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, r,y In the case of guides with circular symmetry,
L L

Z 2 Z 2 only fields with no angular variation are con-

sidered. The problem of a rectangular wave-

guide with capacitive irises is most simply

i I solved by first solving the corresponding
2b Z problem in an infinite parallel plane wave-

guide and then making a simple substitution

for the wave number. In all these cases, the

jL fields will be a sum of E waves and (possibly)

a TEM wave, which vary with one transverse
Fig. 3 coordinate only. In the development which

The iris-loaded waveguide. follows, it proves simplest to deal with the

general E wave functions in the initial part

of the calculation; at a later stage, the problem is specialized to a given geometry by

substituting the appropriate set of characteristic functions.

Let the coordinate system be chosen as in Fig. 3. Here, we have indicated a longi-

tudinal section of the rectangular or circular guide; obvious additional lines will include

the case of a concentric line waveguide. Because of the periodic nature of the field dis-

tribution, we need consider the fields in only one period of the structure. Let the period

be bounded by the planes z = (L/2). Further, let this period be divided into two regions,

the interface lying in the plane of the iris, z = 0. In each region the uniform waveguide

equations are valid; the complete set of waveguide modes will represent the most general

type of field distribution that can exist in each region. A unique solution is obtained

from the general solutions in each region by (a) matching the total transverse electric

and magnetic fields across the interface, and (b) using the periodicity condition to relate

the fields at z = +(L/2) to those at z = -(L/2). Thus, we write for the fields in region I

ET 1 = VTSn(An cosh k z + Bn sinh knz) (14a)

n

jk- 

HT- I jk VTn X iz(An sinh knz + Bn cosh knz) (14b)
n n

2

Ezl kn (An sinh knz + Bn cosh knZ) (14c)
n

where

2 2 2 1/2
k kn = =Vk - iZ; =

and 4n is a solution of(V. +Pn n = 0, subject to the boundary condition on the wave-

guide wall

-10-
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an = , Pn 0 (E wave)

Tn = 0, Pn = (TEM wave)

where n is a vector normal to the waveguide wall. The wave functions in region II differ

from those in region I only by amplitude factors. Thus, in region II

ET2 = VT n ( C n cosh knz + Dn sinh knZ) (15a)
nn

HT2 = Z kVTnXT i(Cn sinh k z + D cosh knz) (15b)
n n

2

Ez2 E k (C n sinh knz + D cosh knz) (15c)
n

n

with the same definitions as before.

Now, at z = 0, transverse electric field is continuous across the entire waveguide

cross section. Because of the orthogonality of the VT n over this region, we must have

An = C n , n = 0, 1, 2, .. . (16)

Further, at z = 0, transverse magnetic field is continuous over the aperture region.

Thus, subtracting HT 2 from HT1 at z = 0,

B -D

VT n Xiz nkn n = O (17)
n

n

over the aperture. There remains the relation between the field quantities in planes

separated by a period

ET1 (L)= ET2 (L) exp(-jhoL) (18a)

HT ( 2)= HT2 (+ -) exp(-jhoL) (18b)

Because of the orthogonality of the transverse parts of the wave functions over the guide

cross section, this relation must hold for each of the transverse parts separately. Thus,

from Eqs. 14a, 15a, 14b, and 15b, the amplitude factors in the wave functions must

satisfy the relation

kL k L (k L k L

n 2 n 2 ch2 n 2
A n cosh +B+ Bn h - sinh = exp(-(hL ) n cosh D sinh - 19a)

k L kL k L kL
An sinh 2-+ B cosh 2= exp(-jhL) Dn cosh - Cn sinh 2 (19b)n 2 n 2 0 n 2 n 2

-11-



where n = 0, 1, 2, .... Solving these equations for (Bn - Dn), using Eq. 16, and sub-

stituting in Eq. 17, we find

A (t k L h L k L h2 L\
anh cos + coth sin n (20)s T = 0 (20)n

n

over the aperture.

Equation 20 is the end result of satisfying all the physical requirements of the

problem; it expresses the fact that at a given frequency, the amplitudes An and the

propagation constant ho must be such that the function given by the left side of Eq. 20

vanishes at every point of the aperture. The vanishing of the function is insured by

having all of its Fourier components vanish; that is, we satisfy the requirement by

setting equal to zero the integrated scalar product of the left side of Eq. 20 and each

member of a complete set of functions which are orthogonal over the aperture domain.

Thus, denoting members of the orthogonal set by

VTjm X iz, m = 0, 1, 2, ... (21)

we can write

An (t knL 2 h L kL hL\
k an os 2+ coth -sin 2 = 

n (22)

m = 0, 1, 2, ...

where

In = A (VTn X i) · (VT m X z) dS

(23)

= A (fVTn VTm) dS

A particular waveguide geometry determines the functions VT n, and a convenient

choice for the functions of Eq. 21 determines the coefficients Imn. In this form one

sees that Eq. 22 constitutes the exact solution of the problem for these equations have

nontrivial solutions for the An only if the determinant of the coefficients vanishes. The

determinantal equation furnishes the solution for ho , and from Eqs. 16, 19a, and 19b,

we can calculate the remaining wave amplitudes. Because of the infinite extent of the

determinant, this procedure cannot be carried out in practice. The exact formal solu-

tion is useful,.however, in that it leads to a method of operating on Eq. 20 which should

be quite accurate in determining the propagation constant approximately. One notes that

the functions 7VTn and VT. m can be chosen, without loss in generality, to be pure real

functions. Thus the coefficients of An in Eq. 22 are all real, and a proof in the theory

of determinants (ref. 15, p. 25) states that the An must all be real or, at most, all

-12-
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real numbers multiplied by the same complex constant. From Eq. 14a one sees that

the An are the Fourier coefficients for the expansion of transverse electric field at

z = 0 in the functions 7VT n . Thus, as we might have guessed from physical reasoning,

the transverse electric field in the aperture is a complete standing wave. This being

the case, it is not difficult to fit a good quasi-static approximation to the aperture field

and determine the coefficients An approximately. The higher-order coefficients, which

are the amplitudes of the rapidly (space) varying functions, will in fact be determined

exactly (in the limit as n -, o) by the quasi-static field in the neighborhood of the singu-

larity of the iris edge. With this approximate method for determining the A n in mind,

we reconsider Eq. 20. Regarded as a function of the transverse coordinate, Eq. 20

vanishes over the aperture region but has unknown behavior on the iris surface. Since

the transverse electric field vanishes on the iris surface, the vector product of Eq. 20,

with the transverse electric field at z = 0, vanishes everywhere in the waveguide cross

section. From Eqs. 14a and 20, therefore, we must have

AmAn knL 2 hL kL 2 L
k anh 2 cos 2 + coth -- sin 2

m n

(VT nx iz) X VTm = 0 (24)

over the waveguide cross section. Now since the VT 4 n are orthogonal over this region,

Eq. 24 can be integrated over the region to obtain

anh -2 cos o + coth cos h°l= 0 (25a)
k a 2 2 2 2

n

where we assume that the transverse parts of the wave functions have been normalized

so that

avuVT+n 2 dS = 1 (25b)waveguide
cross section

Finally, rewriting Eq. 25a so that the solution for the propagation constant is indicated

more explicitly, we obtain

A 2 tanh (knL/2 )

2 h0 L n (knL/2) 2 2 1/Z
tan 2- , k =(p n - ) (26)

2 coth (knL/) n

n (knL/2)

Equation 26 is the desired formal result; from here it is only necessary to calculate the

An from the equivalent static field to complete the relation for a numerical solution.

-13-
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One notes that Eq. 25a or Eq. 26 can be interpreted to predict the correct result for

the limiting cases of both a vanishingly small iris hole and a vanishing iris surface.

The fact that the field amplitudes An appear as a squared'factor suggests that Eq. 26 is

capable of interpretation in terms of the energy stored in a period of the structure.

Though it is not our intention to do so here, this matter could be pursued further to

determine whether or not Eq. 26 is a stationary form.

Now, to complete Eq. 26 for a numerical solution, we calculate the An from

n

ET A Vn (27a)

naperture n

An = E T VT n dS (27b)

aperture

To get down to specific cases, the functions VT~n , their corresponding characteristic

numbers pn, and the calculation of An are given for the waveguide geometries in mind.

Case I. Round Waveguide

- Jl(Unr/b)
VT( n i r 1/2 J() (28a)

bJ(un)

where un is the n-th root of Jo(Un) = 0, and pn = Un/b

The exact static field in a circular hole of radius a in an infinitely extending trans-

verse plane which intercepts a uniform longitudinal field (see ref. 11, p. 160) is given by

r/a

1 r<a(r/a)

T

0 r>a

Thus, neglecting constant multipliers, we find

r/a ur

1 a j( nrdr
An= J(U ) [ - (r/a) ]1/2 b

We then make the change in variable, r = a sin , and carry out the integration, using

the integral relation (see ref. 13, p. 373)

m+n+(Wsin ) sinm+l Cos n+1 ode
m 1where Re(n+l) and Re(m) > -1.

where Re(n) and Re(m)> -1.

-14-
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The resulting form for An is

1 J 3 /2 [un(a/b)]

n ti 1 (un)

Case II. Infinite Parallel-Plane Waveguide; Ey Odd about the Midplane

VTn 1- 21/2 (2n + 1) ry

y Zb

(2n + 1) 
pn =

2b
, n = 0, 1, 2, ...

The exact static field in the slit of an infinitely extending transverse plane inter-

cepting a uniform longitudinal field (see ref. 11, p. 91) is given by

ET =

1
y

y/a

[1 - (y/a)2] 1/

0

y< a

y> a

Thus, again neglecting constant multipliers, we have

a y/a
A= y/a

[1 - (y/a) ]

The integration is carried out by making the

the integral relation (see ref. 14, p. 150)

JZn+l () =

The resulting form for An is

1r/2
2
TrI

(Zn + 1) ry
sin dy

2b

change in variable, y = a sin 0, and using

sin(W sin 8) sin(2n + 1) dO

(2n + 1) ral
A = J1 In 1L 2b 

(29b)

Case III. Infinite Parallel-Plane Waveguide; Ey Even about the Midplane
Y

niry

VTn = y6 cosy n b 6= fl, n =0
n>O 0

Pn =b' n = , , ...

The exact static field in the slit between two semi-infinite parallel planes with potential

-15-
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difference between (see ref. 12, p. 106) is

1 - (y/a)2 ]

ET =

0 y> a

Thus, neglecting constant multipliers, we find

.a cos nrry/b
A =6 2 dy

n nj [1- (y/a) 

The integration is carried out by making the change in variable, y = a cos 0, and using

the integral relation (sue ref. 14, p. 150)

w/2

J 2 (W) = J cos (W sin ) cos 2n dO

The resulting form for An is

(n )

An 6nJo( ); n j 0 (30b)

Having calculated the coefficients An and indicated the characteristic numbers n,

we are now in a position to solve numerically for the propagation constant for any of the

three cases. In the sums we have to deal with in Eq. 26, only the first few terms are

influenced by the frequency; this leaves remainder sums which are functions of the

waveguide geometry only. Since the hyperbolic factors in the remainder sums can, for

all practical purposes, be equated to unity, the remainder sums each take the form

°° A2

R(b L) n= ZX ( /(31)
R b'-Z (PnL/2)

The rate of convergence of these sums depends upon the ratio a/b and is especially slow

when this ratio is small. Generally speaking, a termwise summation is too tedious to

render the calculation useful in practice. Following the technique used in reference 7,

section A-7, the author was able to obtain a rapidly converging power series represen-

tation of the function R for both of the rectangular waveguide problems. For the range

a/b < 1/2, the first two terms of the power series are adequate to describe the function.

The series (5) and (6) given in Appendix A apply to Cases II and III, respectively. Using

this simplifying technique, the calculation given in Eq. 26 has been carried out for a

particular waveguide (Case III), and the results plotted in Fig. 4 from the values

-16-
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The propagation characteristic for an iris-loaded rectangular waveguide.

Fig. 5

The -mode guide wave numbers in an iris-loaded rectangular waveguide.
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in Table I(b). Measured results for this case are tabulated in Table I(a) and plotted in

Fig. 4 for a comparison.

The frequency at which hoL = rr can be calculated directly, using the method of

Slater. This calculation proceeds exactly as in reference (2) for the round waveguide,

except that the wave functions of the circular cylinder are here replaced by trigono-

metric functions. The results of this calculation are plotted in Fig. 5 from the values

in Table II. The rr-mode frequency (or guide wavelength) predicted from this calcula-

tion for the particular guide considered in the sample calculation above is indicated in

the plot of Fig. 4.

Table I

Table of Values for Curves of Fig. 4

(a) Experimental

X = 14.42 cm
c

X
Measured X = 0
Resonant 212 

hoL/r Wavelength X 1 - (Xo/c) L -=. 2L/\g

1.0 9. 706 cm 13.05 cm 0.371

0.9 9.758 13.20 0.367

0.8 9.918 13.63 0.355

0.7 10.190 14.38 0.337

0.6 10. 600 15.63 0.310

0.5 11.160 17.55 0.276

0.4 11.882 20.87 0.232

0.3 12.704 26.70 0.181

0.2 13.530 39.10 0.124

0. 1 14.180 75.80 0.064

(b) Calculated

XL/rr hoL/rr

0.150 0.242

0.200 0.333

0.250 0.434

0.300 0.562

0.350 0.756

0.365 0.868
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The measured results were obtained by observing the resonant frequencies of a ten-

section, iris-loaded, rectangular waveguide cavity. The cavity represents Case III of

the preceding calculations with a conducting plane placed midway between the broad

faces of the guide. The construction of only one half the guide is, of course, a practical

simplification. Very thin (1/64 inch) irises were used in order that discrepancies

between measured and calculated results could not be attributed, to any appreciable

extent, to finite iris thickness.

Table II

Table of Values for Plot of Fig. 5

L/rr pb/r

a/L = 0. 30

0.502

0. 506

0. 502

0.484

0.439

0. 421

0.406

a/L = 0.90 a/L = 1.50

0.568

0. 702

0.832

0.951

1.031

1.030

1.011

0.628

0.883

1. 133

1.374

1.583

1. 616

1.614

a/L = 2. 00

0. 678

1. 033

1.383

1. 724

2.035

2.095

2. 114

To obtain the

tabulated above,

Tr-mode frequencies for values

the following two equations are

of the parameter a/L other

solved simultaneously:

tan (b-a)
C 1 -

[(/P1L) - 11

coth - (PL)]L IT -L

+ 0. 689 - 0. 104 PL tan P(b-a) = 0
iT

C L + [4 - (L/,)211/2 Tra L2 1/ 21 }

L [1 - (0-L/1r)2] c L i

where (a/L) 0. 3.
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IV. The Interleaved-Fin Structure as a Slow-Wave Circuit

for Traveling Wave Amplifiers

4. 1 Introduction

From the discussion in the preceding section, it is apparent that the source-free

field solutions for even the simplest type of periodic waveguide are relatively compli-

cated. Moreover, we dealt there with only a small part of the problem for these wave-

guides: attenuating modes and higher-order free modes were not considered. Now if

we introduce an electron stream into such a guide to investigate traveling wave amplifi-

cation, we must deal in one way or another with a mixture of all possible modes, and

the problem becomes impossibly difficult to handle rigorously by the field theory. This

is generally true when the interaction circuit is periodic and one finds it necessary to

make approximations in treating this type of problem. Though in some cases, periodic

boundaries can be approximated by appropriate smooth boundaries, to simplify the

problem, the case we will consider is not of this nature.

Pierce has developed a general theory of the thin beam traveling wave tube (ref. 8,

chap. VII). This theory is a refinement of a simpler theory developed previously

(ref. 8, chap. II). Though the general theory states the problem in a compact form,

the solution contains a troublesome parameter (the space-charge parameter Q) which

must be evaluated from the field theory; this proves to be a very difficult task when the

interaction circuit is periodic. Thus, we shall restrict the problem as follows:

a. Let the total beam current be very small. This restricts the gain constant of

the growing wave to small values.

b. Let the stream velocity be very nearly equal to the phase velocity of a given

space harmonic in the absence of the beam. This assumption, coupled with assump-

tion (a), results in the phase constant of the growing wave being very nearly equal to

that of the unperturbed circuit wave.

With these assumptions, one sees from Pierce's "circuit equation" (ref. 8, p. 242) that

the term involving the space charge parameter is negligible. It follows that the simple

theory which Pierce proposed is valid and the complexity of the problem is reduced to

the extent that amplifiers with periodic circuits can be treated. Although assumption (b)

prohibits a direct calculation of the amplifying frequency bandwidth (at constant beam

voltage), Pierce indicates a result (ref. 2, p. 18) which can be used to determine the

bandwidth approximately.

4. 2 Some Results of Pierce's First Theory of Traveling Wave Amplification

As set down in the simple theory, the following quantities are of interest:

a. the circuit impedance Z c, defined by

2
Z c = p(32)

t

-20-



where Ezw is the axial component of the electric field in the beam space of the synchro-

nous circuit wave, h is the propagation constant of the synchronous circuit wave, and

Pt is the total axial power flow.
b. the beam impedance Zb, defined as

direct beam voltage
Zb = (33)

direct beam current

The gain parameter C is in turn defined in terms of the circuit and beam impedances

rC = 1(Zbc) (34)

Within the limitations of the simple theory, the traveling wave gain in decibels per slow

wavelength is 47 times the gain parameter C, and the allowable departure of the phase

velocity of the circuit wave from that for maximum gain is

P + C

p

If we now define the circuit dispersion d as

dv / v

d= 1 -P (35)

where vp and vg are the phase and group velocities, respectively, of the synchronous

circuit wave, we may say that the frequency bandwidth for amplification is approximately

AWA 2_C (36)
w d

We now have a basis for estimating amplifier gain and bandwidth; the circuit prop-

erties entering into these considerations are the impedance and dispersion parameters.

4. 3 General Properties of the Fields in the Interleaved-Fin Structure

Let us now proceed to the investigation of the interleaved-fin structure, which is

shown in Fig. 6. The pair of lateral boundaries of the structure parallel to the y, z

plane will be considered as being either of two types: (a) perfectly conducting walls,

or (b) boundaries which are open to the outside world.

On the basis of experiment, it was found that the manner in which type (b) boundaries

influence the field distribution is adequately described as follows: As long as the propa-

gation constant does not lie in or close to a forbidden region (see subsec. 2.4), one can

consider the fields to be totally confined within the structure by magnetic walls at the

planes x = (w/2).* This approximation will be used whenever we are concerned with

A magnetic wall forces the tangential magnetic field to vanish at the wall.

-21-
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The interleaved-fin structure. The characteristic distribution for

E(1) = sin(nS/w).

type (b) boundaries in the following discussion.

The essential nature of the fields in the structure, whether it has type (a) or type (b)

boundaries, can be explained from a simple point of view. When the ratios of the

structure dimensions are qualitatively like those indicated in Fig. 6 and the beam trans-

mission holes are small (a << w, a << X ), it is natural to regard the structure as a

folded waveguide. In this light, possible fields can be constructed from simple traveling

waves which run down the structure in the serpentine path between the interleaved fins.

For example, in Fig. 7 we show a characteristic distribution for E z for type (a) bound-

aries. In the absence of reflection at the bends, this field pattern is a uniform traveling

wave in the folded path, propagating as exp(-jps) (s is the distance measured in the

folded path) with E z reversing direction at each 180° bend. P is related to the frequency

and the cutoff wavelength for the characteristic distribution in the usual way.

k = 2w

c

For this particular distribution or mode, Xc equals 2w. Higher modes having distri-

butions

E(a) = sin m, m = 2, 3, 4,... (38a)
zm w

and cutoff wavelengths

(a = 2 m = 2,3,4,.... (38b)cm m ' 

may also propagate.

In the case of type (b) boundaries, the magnetic walls force distributions of
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the type

E( b ) = cos m_, m = 0, 1, 2,... (39a)
zm w

with cutoff wavelengths

X(b) = 2w m = 0, 1, 2, . (39b)cm m'

although, here, m may also take the value zero. In this case the mode is TEM and

propagates as exp(-jks). In both cases we exclude propagating characteristic fields

which have variations between opposing fin surfaces, for it is always assumed that

L << X, a condition which is necessary for good coupling to the electron beam. Thus,

although fields having variations between fins are excited at each discontinuity, they

damp out rapidly and are confined to a small region in the vicinity of each 180 ° bend.

4.4 The loaded transmission line model

To define the path s rigorously and, at the same time, consider the effect of reflec-

tion at each bend, we shall replace the discontinuity region between uniform line

sections by an equivalent transfer network for the propagating wave. Let us anticipate

a result and represent the network by a pure shunt susceptance with terminal planes at

y = +(b/2). Then for the possible propagating fields, the structure is equivalent to the

form shown in Fig. 8.* If, under a given set of conditions, the normalized loading sus-

ceptance b' vanishes, then the field is a uniform traveling wave in the now defined path

s, and the path length over a period of the structure is A s = 2b. In the more general
P

case the field is not uniform along s, and we must use some results from the theory of

lump-loaded transmission lines to pursue the problem further. For the end results we

have in mind (relations for the phase velocity and circuit impedance for the space har-

monics of the total field), it is necessary to find the phase shift over a period of the line

and the power which flows for a given amplitude of electric field in the plane y = 0.

Adopting the convention indicated in Fig. 9 and letting

En
z e-ja

En-(1/Z)

one finds that a is related to the phase shift in the absence of loading fb and the normal-

ized loading susceptance b' through the transcendental relation

b'
cos a = cos b - 2 sin b

The phase shift over a period of the line , which is defined for fields having the same

*The extension of the uniform guide to the planes y = +(b/2) should not be-con-
founding. Looking at the equivalent circuit in another way, we could take the terminal
planes at y = ±(b/2 - d); then, insofar as a characteristic field in the uniform guide is
concerned, the discontinuity appears as a shunt susceptance viewed through a length of
line d on either side.
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The equivalent folded waveguide
for the propagating wave.

S

i iITXF

0 010 020 Q30 040 050 0.60 0.70 2L/Xg

Fig. 10

The normalized susceptance of the 180 ° bend.
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assumed positive direction, is just 2a. Thus

cos = cos b -b sin b (40)

In terms of the z-component of electric field in the plane y = 0, the power flow is given

by

P 2Z wi/ Ez(X,O,Z) 2 dS (41a)

guide cross section

where the iterative wave impedance for the plane y = 0, Zwi, is defined by

Zwi P ( tan cot (41b)

The loading susceptance b' is implicit in the calculation (Eq. 41b) through the relation

indicated by Eq. 40. One notes that in the absence of loading, the factor [tan (b/2)

cot (/4)] becomes unity and the iterative wave impedance becomes the familiar uniform

wave impedance.

The determination of the equivalent circuit of the 180 ° bend is a rather lengthy cal-

culation and is deferred to Appendix B. The normalized loading susceptance b' does not

depend explicitly upon the type of characteristic field but is a function only of its guide

wavelength. One notes from the plotted results in Fig. 10 the rather surprising result

that when d/L is adjusted for the ratio 0. 3, the loading susceptance is practically zero

over a considerable range of guide wavelength.

At this stage the folded waveguide concept has been developed to the extent of its

usefulness; it now remains to interpret these results in terms of a set of component

waves which run in the z-direction.

4.5 The phase velocities of the space harmonic fields

Recalling from subsection 2. 1 the fundamental property of a given mode in a peri-

odic structure, one finds that each vector component of the total field (in particular, we

shall be concerned with the component Ez) must obey the periodicity relation

Ez(x, y, z) = Ez(x, y, z-L) exp(-jhoL) (42a)

Hence, it is expressible in the series form

oo

E(x y, ) = E Ezn(x,) exp[-j(ho + 2m)z] (42b)
n=-oo

The components Ezn(x, y) are the space harmonic amplitudes of the axial electric field

in a given mode (corresponding to a given characteristic field in the folded waveguide)

and travel along the z-axis with phase velocity
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pn k kL

c h + (2wn/L) h L an (42c)o o

Thus, the problem of determining the phase velocity of any space harmonic at a given

frequency is that of finding hoL at that frequency. hoL is, of course, the phase shift

between the total field quantities at any pair of corresponding points separated by a

structure period. By choosing the points to lie on the axis of the structure, where, for

all practical purposes, only the dominant wave of the folded guide exists, we can use the

equivalent circuit formulation for the dominant wave to deduce that h L should be just

the phase shift given by Eq. 40.

4. 6 Measurement of the propagation characteristic, kL vs h L, and comparison with
theoretical results

To compare the propagation characteristic predicted by Eq. 40 with the measured

results, we choose a structure with open boundaries (in this case the experimental

results will indicate the validity of the magnetic wall approximation) which has been

adjusted for the no-loading condition, (d/L) = 0. 3. In the absence of loading, Eq. 40

indicates that hoL/2 = b. By covering a sufficiently large frequency range, we can

show the presence of a few of the lower modes corresponding to the lower characteristic

fields given by Eq. 39. In the case of the lowest mode (for which m = 0), equals k,

and we have

hL =2kb, m = O (43a)
o

For the next higher even mode (our experiment is set up to detect only the even modes),

we have

h L = 2[(kb)2 - (kb)] kc = m = 2 (44a)

Since the structure has open boundaries, we will expect forbidden regions of the propa-

gation constant, as indicated in subsection 2.4. For this reason it is convenient to plot

the propagation characteristics given in Eqs. 43a and 44a in the (kL/2w, hoL/21r) plane

and we accordingly rewrite these expressions in the form

2-k ( ) o , m = 0 (43b)kL L +(L\(Lm=2(4b)

kL ([(L)( )] +(L)) , m = 2 (44b)

To check these results experimentally, the setup sketched in Fig. 11 is used; this makes

use of the principle discussed in subsection 2. 5. The resonator is five structure periods

in length; resonances are thus observed at

hoL/27r = 0. 1, 0. 2, 0. 3, ...
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for each mode, provided, of course, that these values do not lie in the forbidden regions.

By measuring the frequencies at which these resonances occur, a point-by-point repre-

sentation of the propagation characteristic is obtained. The results of theory and experi-

ment are compared in Fig. 12. One notes that the theory, which is founded on relatively

simple ideas, predicts the propagation constant quite accurately, particularly in the

case of the m = 0 mode where the propagation constant does not depend upon the width w.

In the case of the second higher mode, the measurements show that the apparent width

of the structure is slightly greater than w and varies somewhat with the frequency.

This is the type of result one would expect qualitatively. The investigation of the higher

modes is, in a sense, academic since a narrow structure propagating in the m = 0 mode

will be found most useful in practice. Though experimental results were not obtained

for type (a) boundaries, it is felt that the theory should be very accurate in this case.

When the boundaries are of type (a), we expect from Eq. 40 propagation characteristics

of the type shown in Fig. 13.

One notes from Eq.. 42c that the phase velocities of the various space harmonics

are readily determined from the propagation characteristic by means of the simple con-

struction shown in Fig. 14. By means of this construction, a basic result is readily

established. From the discussion of subsection 2. 3, one recalls that the slope of the

propagation characteristic (dk/dho) = (1/c)(dw/dho) cannot be negative. One thus sees

from Fig. 14 that it is impossible to have a situation in which a space harmonic traveling

towards the source (vn/c < 0) has a phase velocity independent of frequency over any

small range.

4. 7 Space harmonic analysis

Before proceeding to an analysis of the total field into its space harmonic com-

ponents, we note that the symmetry peculiar to the interleaved-fin structure requires

that the total field satisfy the general relation

Ez(x, y, z) = -E [x, -y, z - (L/2)] exp( 2 o) (45)

This property, when substituted in Eq. 42b for the particular case, y = 0, leads to the

result

Ezn(x, o) = 0 for n = 0, +2, 4, ... (46)

That is to say, in the plane y = 0, all the even-order space harmonics (including zero)

are absent. In particular, if it is desired to couple an electron beam to the zeroth space

harmonic of the m = 0 mode (this wave component has phase velocity substantially inde-

pendent of frequency), it is necessary to pass the beam along a path off the structure

axis. This point is incidental, since we shall be concerned in this report only with the

case of coupling at y = 0.

The eventual purpose of a space harmonic analysis is to allow a calculation of the

circuit impedance (Eq. 32) for the various space harmonic components. For purposes
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setup used to measure the transmission frequencies
of the interleaved-fin resonator.
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Fig. 12

The propagation characteristic for the first two even transverse
variations of the fields in the interleaved-fin structure.
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Propagation characteristics in the
guide with type (a) boundaries.
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The construction which determines the
space harmonic phase velocities.
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of simplicity, it is necessary to assume that the beam to be introduced is very thin; in

fact, it is only in this case that the circuit impedance parameter can be defined in the

simple manner (Eq. 32). In calculating the circuit fields, we shall accordingly continue

to neglect the presence of the beam transmission holes. Calculated on this basis, the

impedance parameter for a given space harmonic will not be far wrong, provided the

holes are small as compared with the space harmonic wavelength.

Let us suppose that the beam is to be transmitted along the line x = x0 , y = 0, where

x ° is so chosen that the axial electric field has maximum amplitude. Letting the magni-

tude of E z between the fins and along this line be Eo , we have in the coordinate system

of Fig. 6

Ez(XO, , z) =

E << 0E o , 0 < < 2

0 6<< L
0 <<' 2 2

0 L+62 2 L-E o exp(-jhoL/2) ' L < z < L+

0 <z< LI J, 2~~

Expanding this function in the series

00

Ez(x, o, z) = Ezn(Xo, o) exp{-j[ho + (2wn/L)] z}
n=o- oo

one finds

IEzn(x,o) = 

sin r6 S)L )

E0 ( -r L n(odd

(47)

0 I n even

where

Zrr
Xz, n = h + 2n/L

is the n-th space harmonic wavelength. For the particular case 6 = L (the fin thickness

is vanishingly small) the amplitude spectrum is of the form shown in Fig. 15. As the

frequency increases, the hoL increases, and the lines slide to the right as a group

within the (sin x/x) envelope. Decreasing the frequency to zero (or the lower ctoff)

moves the -1 space harmonic to the point (L/Xz, _1) = -1, the +1 space harmonic to the

point (L/Xz, +l) = +1, and so forth. Thus, the dominant space harmonic at low frequen-

cies is the -1 space harmonic. More generally, the space harmonic with the longest
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wavelength is dominant and remains dominant throughout the range -1 < (L/z, n) < +1.

The impedance parameter given in Eq. 32 also favors the longer wavelength space

harmonics through the factor 1/h2; we thus form the general conclusion that the circuit

couples best to high-voltage electron streams. Using the result of Eq. 47 with that of

Eq. 41a to compute the impedance parameter, one obtains the relation

hiTr L

Z = {a( 5 6- tan cot X |( * ) L

where the subscript m denotes the mode of propagation and the subscript n denotes a

particular space harmonic of this mode. The quantity am distinguishes between the

characteristic fields with sinusoidal x variation and the one with no variation,

l, m=0

m l2, m> 0

The factor tan (Pmb/2) cot (h 0 L/4) arises from the periodic loading in the folded guide

and is significant in the case of closed boundaries when the phase shift between disconti-

nuities, hL/2, is an integer multiple of it. If the structure has open boundaries,

these critical values are not allowed; otherwise, this factor becomes either zero or

infinite according to the patterns shown in Fig. 16(a) and (b). A pole due to the factor

tan (Pmb/2) cot (hoL/4) may not be a pole of the impedance parameter for all space-har-

monics, since at the critical values h L/2 = q, an odd integer, one notes from Fig. 15

that only a single space harmonic is present, the -q-th. The notation, -1, in Fig. 16(a)

and (b) serves to indicate a pole for the -1 space harmonic only (implying a zero for all

others), and an extended plot would show a similar notation at h oL/2-r = 3, 5, and so forth.

By adding to these plots a pole at hL/2 = which results from the low-frequency

cutoff, all critical values of the circuit impedance relation (see Eq. 48) are shown.

4. 8 Coupling to the - space harmonic of the m = 0 mode

In the foregoing discussion, we attempted to show the general nature of the imped-

ance parameter and the phase velocity of the space harmonic fields; we have derived

relations which will determine these quantities for any particular geometry, frequency,

and structure mode. We shall not try to anticipate all the possible applications of the

structure as an interaction circuit nor specialize the results to these applications. How-

ever, the m = mode of the open-boundary structure is worthy of special consideration

since, for propagation in this mode, the structure width can be quite small. It is thus

generally possible to obtain relatively large values of the coupling impedance without

operating in the region of an impedance pole, where the impedance is large only over a

narrow frequency band.

-30-



c)

0

$ Cd
p 4

Cd
Qo

o -"-4
g .~~~~~~~~~~~1. 

.; A l .r

4 

0o a)
O C

Cd
l
a)

b0

O . O=o
'-4

0
U

o

Q- 6
o

Z/nI1

0 Q

_ A
-
c

0 A

o

Cd
00 o

.Cd Cd

-4

0 o

.0 a) Cd

o S0U4 0

C :

a Cv

0 -
c 

I I I I I I I 111 1 1 I I I
0
o o

III I I I I 

JozI 
7--5 

0
o

z

I.

A4
1

+
0

a

Cd

u

a)

0

C)
a)
u]

4Z/'N

-31-

I _d.- �

____________�_II_____ __ I _ � ___�__

"'

II

2



All other things being equal, large impedances result when the spacing between fins

is a small fraction of the coupled-wave wavelength. When the spacing meets this

requirement, the loading susceptance of the 180 ° bend is very small, as we note from

Fig. 10. In this case the following simplifications result: (a) The periodic loading

factor, tan (mb/2) cot (hoL/4) in the impedance expression is replaced by unity.

(b) The propagation characteristic is computed on the basis of no loading, hL = 2kb.

At a given frequency, the phase shift over a period of the structure can be adjusted

(by adjusting the dimension b) to make any particular space harmonic dominant (consult

Fig. 15). Adjusting for dominance of the -1 space harmonic results in the smallest

b-dimension and, assuming this to be desirable, we shall consider the case of coupling

to the -1 space harmonic field.

Presumably, for a tube design, the electron stream velocity and the free-space

wavelength are given quantities. This immediately determines z, 1' and the coupling

impedance follows from the ratio (L/kz -1 ) through the relation indicated in Eq. 48.

This relation is plotted in Fig. 17 for the case of vanishing fin thickness (6/L = 1). The

b-dimension necessary to give the required wave velocity is given by

2b L +1
X X

o z, -1

(Note that the quantity Xz -1 can have either a plus or a minus sign according to whether

the -1 space harmonic is a forward or a backward wave.) If the frequency is now changed

from the design frequency and the stream velocity is held constant, the cold phase veloc-

ity differs from the electron velocity and the amplifier gain drops. The frequency band-

width for amplification is given approximately by Eq. 36, in which we substitute for the

dispersion

z,-1
L

1 I



Appendix A

Power Series Expansions of some Schlomilch (and Associated) Series

Jo(nx) sin nx
n nx

l 14 7x 4 0 +In 2 + xx T 4+4 12, 800

O< x< r

Jo(nx)
cos nxn

2 3x 2 35 +
x 48 32 720

O< x< 

2 4
2 + + x + xn 2 48 7680

0 < x< Ir/2

Jo(qx)
q

J2(qx)

q

J2 (nx)

n

1 2 x
2 n-x 4--x 4

2 4
21x

L8 23, 040

O< z < t

2 4
x2 Z1 x +

= 4 48 20 288

0 < x < rr/2

2
In 2424

4
+ 28 + 1280

0 < x < rt/2

2
Trr
= 6 x

Jo(nx)
2n

2

8

sums were computed in reference (7).
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Appendix B

Equivalent Circuit of the 180 ° Bend

As a result of treating the interleaved-fin structure as a folded waveguide, we are

confronted with the problem of determining the equivalent circuit for a 180 ° bend in the

waveguide. There are two types of waveguide to consider; these are indicated in

Figs. B-l(a) and B-l(b) and correspond to the cases of open and closed lateral bound-

aries, respectively. In practice, the dimension L/2 will always be a very small

fraction of a free-space wavelength; as a result, only waves from the class of H
m, o

waves can propagate (m refers to x-variations, o to y-variations). Now if, in either

guide, a propagating H, o wave is incident upon the discontinuity, only waves with vari-

ations of the m type are excited. From this fact it is not difficult to show that the

solution for any of the admissible m-variations of the incident wave can be obtained from

the solution for a particular value of m, say m = j, by substituting X for .. The
gm g3

simplest problem to solve directly is that for j = 0, or the case of an incident TEM wave.

This is the problem we shall deal with in detail.

The principles of microwave circuits lead us to the boundary-value problem which

must be solved to determine the equivalent circuit parameters. We first assume that

the effect of the discontinuity on the propagating wave can be represented by a T-network

joining the uniform sections of waveguide. The proof of the existence of such a network

(which implies the reciprocity relation) follows from the fact that the system is com-

pletely closed. The solution can be simplified somewhat by making use of apparent

symmetry properties (see Fig. B-2). If the terminal planes for the equivalent network

T 1 and T2 are symmetrically located with respect to the discontinuity, the network is

symmetric, and Zll = Z22. We must then in some convenient way solve for the

remaining two quantities Z 1 2 and Zll (or Z 2 2 ). Figures B-2(a) and B-2(b) illustrate

the application of Bartlett's bisection theorem for symmetric networks in reducing the

problem to the solution for two driving-point impedances. With dominant waves incident

upon the discontinuity as in Fig. B-2(a), each wave sees Zll- Z12 at its terminal plane.

We see that in this case tangential electric fields cancel in the plane of symmetry and

a conducting plane can be placed here (indicated by the heavy line). A convenient

choice for the location of the terminal planes is thus in the surface S; then we have

Z11 - Z12 = 0, and the equivalent network is a pure shunt impedance. With the excita-

tion as in Fig. B-2(b), the dominant wave in each guide sees Z l + Z12 = 2Z 1 2 at its

terminal plane. In this case, the tangential magnetic fields cancel in the plane of sym-

metry, and a magnetic wall can be placed here (indicated by the dashed line). To deter-

mine the shunt impedance of the discontinuity, we thus solve the boundary value problem

in either half of the folded guide, replacing the aperture by a magnetic wall (Fig. B-3).

The impedance seen by the dominant wave at z = 0 (or any integer number of half-

wavelengths back from this plane) is just twice the shunt impedance for the equivalent
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network representation of the 180° bend.

We now turn to the solution of Maxwell's equations in the geometry of Fig. B-3. A

dominant wave incident upon the discontinuity will produce a reflected dominant wave,

plus a local field distribution in the vicinity of the discontinuity. Since the exciting

dominant wave fields do not vary with coordinate x, and the structure is uniform in the

x-direction, none of the field quantities will vary with coordinate x. This being the

case, no current is required to flow in the x-direction, and we can set H = 0. Now, the
z

Maxwell equations, with a/ax = 0 and H = 0, reduce to the following form

[ vz + k2 ] Hx = 0 (B-la)
8yz

8H
-j E = ay x (B-2b)

aH
jE Ey = azx (B-lc)

The proper general solutions to these equations must be chosen for the two regions,

0 < z < d, z d, and the transverse electric and magnetic fields matched across the

interface, z = d. This procedure leads to the exact solution of the problem, all fields

being determined to within an arbitrary constant factor. The ratio of the reflected to

incident dominant wave amplitudes is uniquely determined, and from this ratio the

impedance Z 12 follows. The boundary conditions which must be satisfied in each region

are that the normal derivative of tangential H must vanish at a conducting wall, and that

tangential H must itself vanish at the magnetic wall. As can be readily verified, the

appropriate solutions to the Eqs. B-la, b, and c are

0 z< d

Hx = jwE Aq cos pqy cosh kqz (B-2a)

q

Ey = E Aqkq cos pqy sinh kqz (B-2b)

q
2 2 2where k = pq - k , p = (q'r/L), and k = (w/c) (q = 1, 3, 5,...)

z>d

Hx =jw [B0 exp(jk) C0 exp(jkz) + Z Bn cos pnY exP(-knz)] (B-3a)

Ey -jk[B0 exp(-jkz) + CO exp(jkz)] - X Bnkn cos Pny exp(-knz) (B-3b)
n
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where kn = Pn - k , Pn = (2n/L) (n = 1, 2,

gives

Z Aq cosh kqd cos pqy =
q

3, ... ). Matching total Hx and Ey at z = d

Bo exp(-jkd) [1 - r(d)]

+ Z Bn exp(-knd) cos pny
n

(B-4a)

Aqkq sinh kqd cos pqy

q

= -jkB0 exp(-jkd) [1 + r(d)]

(B-4b)Z Bnkn exp(-knd) cos pny
n

where r(d) = (Co/B o ) e j 2kd is the reflection coefficient for the dominant wave at z = d.

We must now expand the factors cos pqy in terms of the cos pny so that we can equate

corresponding coefficients of the functions, cos pny, which are orthogonal over the inter-

val (0, L/Z). From straightforward Fourier analysis, there follows,

oo

os pq = a + Z an cos ny
n=l 

a = 2 1)(q-1)/2
o q(rr

a = q 1 ( 1)(Zn+q-1)/2
n 2 2

(q) - n

(B-5a)

(B-5b)

(B-5c)

Substituting these results in (B-4a, b)

we obtain

and equating corresponding coefficients of cos pny,

B 0 exp(-jkd) [1 - r(d)] = Z ()(q 1)/2 Aq cosh kqd
q

B exp(-k d) =

jkB exp(-jkd) [1 + r(d)]

q 1 (_1)(n+q-1)/2

Xq r2 - n

X Aq cosh kqd, n = 1, , 3,...

=- 2 (-1)(q-1)/ A k sinh k d

q
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knBn exp(-kd) = Eq 1 (2n+q-)/2

q 2) -n

Aq k sinh k qd, n = 1, 2, 3,... (B-6d)

Dividing (c) by (a), (d) by (b), we get an infinite set of simultaneous homogeneous equa-

tions for the coefficients A :
q

Aqkq sinh kqd q (-1(1)/2
qq q 2 2}

q n

+ k coth kq 0, n = 0, , 2,... (B-7)
q

where, in the n = 0 equation, the quantity

1 + r(d) Z
jk - -jk

1- r(d)

is substituted for jk o . The normalized impedance (Z/Zo)' is the impedance seen by the

dominant wave in the half-guide at z = d. Once we have solved for this quantity, we must

find the corresponding value at z = 0 and divide this by two to obtain Z 1 2 '

The equations (Eq. B-7) have nontrivial solutions for the Aq only if the determinant

of the coefficients vanishes. Setting the determinant equal to zero furnishes the exact

solution for (Z/Zo)' in terms of the frequency and waveguide dimensions, but, of course,

this cannot be carried out in practice and we must look for a method to solve these

equations approximately. A method used by Slater (2) solves these equations very

accurately; the form of the resulting approximate relation is well suited to a numerical

solution.

It is noted from Eq. B-2b that the A k sinh k d in Eq. B-7 are the Fourier coef-
qq q

ficients of the expansion of Ey at z = d in the cosine functions, cos(qwy/L). The equiva-

lent static field in the vicinity of the singularity at z = d will determine the higher

Fourier coefficients very accurately. For an approximate solution we will use the static

field to determine all but the first (q=l) coefficient. This coefficient can be left open and

eliminated between the n = 0 equation and any other equation in the set (Eq. B-7). Now,

the equivalent static field becomes infinite inversely as the square root of the distance

from the singularity; on the conducting wall at z = d, y = 0, the normal derivative of

normal electric field must vanish. The appropriate form for E is thus
y

(d)1 =2 (B-8)
y [1 - (2y/L)2]
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Expanding Eq. B-8 in the cosine functions, cos(qry/L), we find that the coefficients are

given by

a =A k sinh kqd= J (q)
q qq q q

Since we do not intend to use the aq's thus determined for q = 1, the asymptotic form

for Jo(qW/2)

J o(q,) )(q 1)/2

can be substituted for aq. In addition, for q 3 3, kq can be replaced by (ql/L), and the

factor coth k d can be replaced by unity (to within one percent, provided d/L > 0. 30).

Using these approximations, together with the numerical values of the sums tabulated

for m = 0, 2, 4 in reference (2), p. 11, the first three equations of the set (Eq. B-7) take

the approximate form

n=0

(kL/Tr) X c 689 + k 20 (kL X=O

C 1 (L + Lcoth + 0. 689 +0. 104 -

n=l

[4 - (kL/rT)2]1 coth/1 - 3.258= 
C I + coth 'L 3 58 = 
=2 [4 ~d - 211/21/2 L

n4 2d

C l + 4 cothd [ - (kL/r) 2] 6. 50 = 

[1 - (kL/,) 2] /2 L

where jX = (Z/Zo)' and C is proportional to the first Fourier coefficient of the expan-

sion of Ey(d). To solve these equations for a given geometry and frequency, C is deter-

mined from either the n = 1 or n = 2 equation and substituted in the n = 0 equation to

compute X. In terms of the quantity X we know, from straightforward transmission

line relations, that the normalized susceptance at z = 0 for the equivalent circuit repre-

sentation in the folded guide is

b' = -2 cot(tan - 1 X - kd)

Using these relations, we have calculated and tabulated the normalized susceptances in

Table BI. (Unfortunately, the susceptance was computed for values of kL/2 rather than

kL/r. )

It was found that the values of C calculated from the n = 1 and n = 2 equations agreed

quite well, indicating that the approximate method of solution should be very accurate.

To check the results of the calculation experimentally, the measuring scheme shown
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Table BI

Values of the Normalized Shunt Susceptance of the 180 ° Bend

kL/2 d/L

0. 15

0. 2

0. 4

0. 6

0.8

1. 0

0. 180

0. 368

0. 568

0. 789

1.056

0.30

-0. 020

-0.035

-0. 034

-0. 008

+0. 070

0.45

-o. 169

-0. 333

-0. 488

-0. 621

-0. 702

0.60

-0. 301

-0. 608

-0. 930

-1.271

-1. 595

0.75

-0.429

-0.891

-1. 434

-2. 127

-3. 044

in Fig. B-l(c) was used. In this construction, the dominant wave in each guide sees,

at the short-circuiting end plane, a susceptance which is just one-half the susceptance

for the equivalent circuit of the 180 ° bend. If the measured distance from the end plane

to the point of minimum field strength in the guide is /, the susceptance for the equiva-

lent circuit is just

b' = 2 cot
g

To check the symmetry of construction, both broad faces of the waveguide were slotted,

and the minimum position measured in each half-guide. The results of the measure-

ments are tabulated in Table BII and plotted with the calculated results in Fig. 9.

Table B II

Table of Measured Results. The Waveguide
Construction of Fig. Bl(c) Was Used; d/L = 0. 75.

x
g

23. 15 cm

15.65

13.84

11. 14

2L/Xg1

2.985 in.

5. 320

4. 800

3.960

2.980 in.

5. 320

4. 800

3. 960

0. 294

0.435

0.491

0.610

-1.05

-1.72

-2.01

-2.82

A standard S-band waveguide with a 1/32-inch-thick septum was used

ment.

for the measure-
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