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ABSTRACT

The problem of an optimal strategy of machine maintenance

and replacement over an infinite horizon is formulated as a linear

programming problem. Computational experience on real data is

given including sensitivity of the LP solution to the maximum

life of the machine and to various parameters of the model includ-

ing discount factor, the method of computing depreciation, effect

of rebuilding, maintenance and rebuild costs.
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1 . Introduction

A number of papers on when to optimally replace an aging or obsolescent

machine have appeared in the management science literature. For example,

there are the papers of Derman [2], Eppen [4], Klein [9] and Kolesar [10],

[11] containing Markovian models of machine deterioration or failure.

Other papers include the dynamic programming model of Bellman [1] and the

papers by Eisen and Liebowitz [3] and Kamien and Schwartz [8]. A survey of

the literature to 1965 is given by McCall [12] and the book edited by

Jardine [7] contains some recent research on the machine replacement problem,

Wagner's book [15] also contains a fairly extensive discussion of machine

replacement models.

The majority of these papers and books contain quantitative models

that are intended primarily to provide qualitative insights into the machine

replacement decision process. By contrast, this paper reports on a machine

replacement model that allows computation of optimal maintenance and re-

placement policies from the appropriate cost data. Specifically, we give

an infinite horizon deterministic dynamic programming formulation of the

maintenance and replacement problem which can be solved as a linear program-

ming problem. Computational experience using the linear programming al-

gorithm MPSX on the IBM 360 system is given for a realistic problem.

It is important at the onset to comment upon the simplification in-

herent in our deterministic model of a decision process studied as a sto-

chastic process by most of the authors mentioned above. First, our model

reflects the increasing probability of failure of a machine by maintenance

costs which increase with time. Moreover, our model can be easily general-

ized to incorporate stochastic failure if the appropriate probability





distributions are known or estimated. It is important to emphasize, however,

that knowledge of these probability distributions requires in most cases

difficult and costly statistical data analysis.

The plan of this paper is the following. In section 2, we give the

dynamic programming model which underlies our equipment replacement problem

and the equivalent linear programming model used for computation. Although

a number of papers have analyzed the theoretical relationship between in-

finite horizon dynamic Pi^ogramming and linear programming, we have not lo-

cated a published paper in which actual computation using a linear program-

ming algorithm was done for a specific dynamic programming application.

Section 3 discusses the specialization of the dynamic programming model

to the equipment replacement problem. Computational experience on data per-

taining to a continuous miner is given in section 4. A continuous miner is

a piece of heavy equipment which automatically mines coal from the face of

a mine. Section 5 contains a few suggestions for further study.





2. Overview of General Dynamic Programming Model

The equipment model we are studying is a special case of a general

dynamic programming model. Since much of the methodology of this paper is

appropriate to the general model, it is appropriate to begin our discussion

with this model. The general model is best described using network termi-

nology [1 3]. The network is G = [N^,A] where H = {1 ,. . . ,s, . . . ,S} is a

collection of nodes or states, and A is a collection of directed arcs

connecting pairs of nodes. Associated with each arc is an immediate return

At the start of any time period, the system can be in one of the

states s e N^. An arc (s,t) corresponds to the decision to make the transi-

tion to state t during the current period with return c . . Let^ f St

A(s) = {t: (s,t) e A}, s = 1,...,S

and

B(s) = {r: (r,s) e A}.

We assume A(s) is not empty for each s.

If the planning horizon is T time periods and the system begins in

state Sr>, the optimization problem is to find a path (sequence of decisions)

y = (s^,s, ) ,(s, ,S2) ,. . . ,(s.j._, ,s-|.) consisting of T arcs in G such that

^-'
i

z a c is a maximum, where a is a discount factor, <^ a < 1.

i=0 ^i'^i+1

This problem can be solved by backward iteration with the recursions

v^ = max {c^. + ay^~ } s = 1,...,S; n = 1,...,T
^ teA(s) ^^ ^

v^ = s = 1,...,S.





A relevant mathematical construct is the infinite horizon problem

which results when we let T -> <». The recursions become the functional

equations

v^ = max {c^, + av.} s = 1,...,S.
^ teA(s) ^* *

The relationship between the finite and infinite horizon models is two-

fold. First, we have convergence of the return values v ; namely lim v

v", s = 1 ,. . . ,S. This is the principle of successive approximation.

Equally important, however, is the following result. For each state s,

define

and

a"^(s) = {t: vJ = St^"^^^

A^(s) = {t: ,; = c^^ + avp.

Then the following obtains [13]: There exists a T* such that for all

T >^ T* and any state s

a"^(s)CA°°(s);

that is, the optimal immediate decision when there are T >^ T* periods re-

maining is to make a decision that is optimal if the planning horizon were

infinite.

Since machines are maintained or rebuilt and new machines bought over

a long indefinite (but finite) planning horizon T, it seems reasonable to

assume that T >_ T* and we wish to make optimal steady state or infinite

horizon decisions. Finding optimal infinite horizon decisions can be done





with less computational effort than doing backward iteration through many

periods. In particular, the infinite horizon decision problem can be

solved by solving one of the following two dual linear programs; see Hadley

[16, sections 11-16, 11-17, 11-18], Wagner [34, section 12-6]. The para-

meters q below are arbitrary positive numbers.

Primal

max T. c^.x^. subject to

(s,t)eA ^^ ^^

I X .
- clY. x=q for all s

(s,t)eA(s) '^ (r,s)eB(s) "^^ '

X . >^ for (s,t) E A

Dual

min z q V. subject to

s=l ^ ^

y^ - ay^ ^ Cg^ for (s,t) e A

y unrestricted in sign, s = 1,...,S.

It can be shown that the optimal values y* to the linear programming dual

satisfy the infinite horizon functional equations; namely,

y* = max {c.^. + y*}, s = 1 ,. . . ,S.

^ teA(s) ^^ ^





3. Equipment Replacement Model

We now discuss how the general dynamic programming model of section 2

can be applied to the machine replacement problem. At each decision point

or state, there are three possible alternatives: maintain the present ma-

chine, rebuild the present machine, or purchase a new machine. The immedi-

ate decision results in an immediate profit which is a function of the de-

cision and of the state of the machine.

1) Maintain: This decision includes normal repairs,

preventive maintenance, routine breakdown maintenance, and more

extensive repairs which may be of an overhaul nature but which

do not constitute a complete rebuild.

2) Rebuild: This decision entails removing the machine

from production for a period of time and completely rebuilding it.

3) Buy: The old macjiine is replaced with a new one.

Each node (state of the machine) is labeled with three

indices, UN. The first index equals the number of times the

machine has been rebuilt; the second index equals the period in

which the machine was last rebuilt (J = if the machine has never

been rebuilt); and the third index equals the age of the machine.

We assume there is some absolute upper bound on the age of the

machine before which a new machine will be bought. This as-

sumption ensures that the state space is finite.

In the infinite horizon dynamic programming model, we

maximize the infinite stream of discounted profits generated

over the infinite planning horizon. The purchase of a new machine





is a regeneration point from which the process begins anew each time it is

reached. As we have noted, the regeneration point must be reached after no

more than a fixed number of years.

The advantages of the infinite horizon model include:

1) The optimal solution it provides represents a steady

state solution without the transient effect of going out of

business after a finite planning horizon.

2) Once the immediate profits of going from one state to

another have been computed, the model can be solved as a linear

programming problem by a standard linear programming package.

3) The sensitivity of the optimal solution to given parameters

can be tested by the use of linear programming sensitivity analysis

routines which are available on standard linear prograrming packages.

The model does not allow for the possibility of making

decisions between periods. The necessity of making such decisions

might result from some major accident or from stochastic machine

failure. We deal with this shortcoming by employing the expected

values of the various profits. Nevertheless, when compared with a

model. which would more fully take into account the probabilistic con-

siderations, the present model is conservative with respect to the pur-

chase of a new machine, i.e., the present model will tend to keep an old

machine longer than would the probabilistic model.

3.1 . Number of States and Number of Arcs in the Network

Let s(n) equal the number of states whose third index is n. Index j

equals the period in which the machine was last rebuilt and therefore





varies from zero to n - 1, Index I equals the number of times the machine

has been rebuilt and therefore varies from zero to J. Thus,

n-1 J

s(n) = 1 + z z 1

J=l 1=1

s(n) = 1 + n(n - l)/2

where the left term of the right hand side counts state (0,0,n). Let us

assume that the machine will not be kept longer than some absolute upper

bound, say L. Then, if S(L) equals the total number of states in the

network, we have

L

S(L) = z s(n) = L[l + (L + 1)(L - l)/6].

n=l

The number of arcs in the network is now easily derived. There are

three arcs emanating from each state whose third index is less than L.

(Each arc corresponds to one of the three decisions.) If the third index

is equal to L, then there exists only one possible decision (buy) and

therefore only one corresponding arc. Thus if A(L) equals the number of

arcs in the network

A(L) = 3S(L - 1) + s(L)

A(L) = 3(L - 1)[1 + L(L - 2)/6] + 1 + L(L - l)/2

3.2. Matrix Generation

Beginning with state (0,0,1), the state space is generated recursively

for N less than L according to the following rules:





Maintain (UN) -v (I,J,N+1)

Rebuild (UN) -> (I+1,N,N+1)

Buy (UN) -y (0,0,1)

When N = L, only the third decision is available. The states are

then numbered in some fashion. Suppose state (UN) is numbered Q

and state (I'J'N') is numbered P. We define C(Q,P) as the cost of

traversing the arc from state Q to state P. Then

C(Q,P) = CM(UN) if (I'J'N') = (I,J,N+1)

C(Q,P) = CR(UN) if d'J'N') = (I+1,N,N+1)

C(Q,P) = CB(UN) if d'J'N') = (0,0,1)

Here, CM(UN), CR(UN) and CB(UN) equal respectively the im-

mediate profit of maintaining, rebuilding or replacing a machine in

state (UN). Having the state space and the arc costs, it is a stralgh^t-

forward matter to generate either the primal or the dual.

3.3. Mathematical Programming System Extended

Our matrix generator computer program produces the linear

programming problem in standard linear programming format appropriate

as input for IBM's Mathematical Programming System Extended (MPSX).

MPSX in turn outputs the optimal solution to the linear program.

The solution gives the optimal strategy out of any state whatever,

and the value of that strategy. The optimal basis is stored for

the purpose of sensitivity analysis. A modified matrix generator

computer program passes to MPSX a matrix which has been altered

in such a way as to test the sensitivity of the solution to a

particular parameter. MPSX retrieves the optimal basis from the
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last computer run and uses this old basis as the new initial basis.

This procedure drastically reduces the number of iterations

required to reach optimal ity. For example, for a maximum machine

life of fifteen years, the reduction for the case of the primal is

from approximately 1000 iterations to approximately 100 iterations.

Sometimes, as few as about ten iterations are needed to reach

optimal ity. It is more economical to solve the primal than the

dual since the primal has fewer rows than the dual.
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4. Computational Experience with Equipment Replacement Model

We now consider the specific problem of when to rebuild or replace con-

tinuous miners, machines employed in the coal industry, by specializing the

equipment model

.

4.1 . Assumptions

•Costs and profits are subject to inflation.

•There is a cost associated with operating and maintaining a new ma-

chine and this cost increases as the machine ages.

•There is a cost associated with rebuilding a machine for the first

time and this cost increases for each period that the machine is not

rebuilt.

•Rebuilding reduces the maintenance cost to some level after which the

cost increases from that level with age.

•Technological improvement affects the production capacity of a new

machine.

•The initial and present capacity of a machine is quantifiable.

•Production capacity decays with age.

•Rebuilding restores a certain amount of production potential.

The present model does not consider e^ery conceivable cost, but it is

a straightforward matter to include any expense which can be identified

and quantified. It is a virtue of the model that the costs need not be

expressed in analytic form but may be expressed in an arbitrary manner,

e.g., they may be tabulated in tables.
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4.2. Input Variables

Following are the parameters which are needed in computing

the various profits:

•Discount Rate (DR).

•Inflation Rate (IR).

•Effective Tax Rate (ETR).

•Depreciation Inflow [DI(J,N)] -- The term "Depreciation

Inflow" is, strictly speaking, a misnomer. In the case of a

capitalized rebuild, this term is equal to the difference between

the cash outflow and the resulting depreciation inflow (the net

result being a cash outflow). If a new machine is being purchased,

the term equals the trade-in or salvage value of the old machine.

The term is therefore calculated separately for each decision. The

double declining balance method of depreciation is used, switching

to the straight line method when appropriate.

•Purchase Price of a new machine (PP).

•Maintenance Cost (MC) -- The cost associated with operating

and maintaining a machine.

•Maintenance Cost Increase Rate (MCIR) -- The rate at which

the cost of maintaining a machine increases.

•Rebuild Cost (RC) -- Cost of rebuilding a machine.

•Rebuild Cost Increase Rate (RCIR) -- The rate at which the

rebuilding cost increases for each period that the machine is not

rebuilt.

•Effect of Technology on the Capacity of new machines (ETC) —

The increase in production capacity resulting from technological improve-

ments.





i:^

•Production Decay (PD) -- The annual rate at which production

decreases.

•Base Capacity (BC) — The capacity of a new machine.

•Effect of Rebuilding on Machine capacity (ERM).

•After Tax Profit of a ton of coal (ATP).

•Equipment Life (EL) -- The Internal Revenue Service

guideline life. It is used in computing the depreciation charges.

•Write-off Period for a Capitalized Rebuild (WPCR) -- The

number of years over which the Internal Revenue Service allows

writing off the cost of rebuilding a machine which is older than its

guideline life.

4.3. Profit Functions

In the following formulas, positive terms represent cash

inflows and negative terms represent cash outflows. Normally, a

tax credit (25%) based upon the tax shield generated by the

depreciation, maintenance and rebuild charges is considered a cash

inflow. For the purpose of simplifing the equations, instead of

taking 25% of the tax credit, we will express the cash effect of

the cash credit in a slightly unorthodox manner. Instead of

taking 25% of the tax credit as a cash inflow, we consider 75%

of the maintenance cost and rebuild cost as a cash outflow and 25% of

depreciation as a cash inflow.

Example:
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Depreciation
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maintenance expense plus the profit from production plus the inflow

from depreciation (eq. 2). If a machine is older than its guideline

life, there is no depreciation charge unless there was a previous

capitalized rebuild (eqs. 2c, 2d, 2e).

Buy Profit Function: CB(IJN) -- Equation 3 states that the

profit of replacing an old machine with a new one is equal to minus

the purchase price and the maintenance cost of the new machine

plus the inflow from the trade-in, which is assumed to be equal to

the remaining tax depreciation on the old machine (eqs. 3 and 3a).

If the old machine is older than the guideline life and has had a

capitalized rebuild, then there is some remaining depreciation

which must be considered (eq. 3b).

4.4. Effective Discount Factor

We combine the discount, inflation and technological improvement

rates into a single effective discount factor given by the formula

(1 + inflation rate)/[(l + discount rate)(l + rate of

technological improvement)].

The rationale behind the addition of the technological improvement

rate to the ostensible discount rate is as follows: One dollar

invested today at a discount rate of 15% is worth $1.15 next year,

and if technology is better next year by 1%, then we can buy $1.16

of productivity next year with one dollar invested this year.
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Rebuild Profit Function: CR(IJN)

1) CR{IJN) = -(1-ETR)(RC)[1+(N-J-1)(RCIR)] - (1-ETR)(MC)

+ (ATP)[(BC)(ERM)^'^^ - (PD)(N-I-1)] + DI(JN)

Let

N . ^
x(N) = (PP)[1- I (DDB)(1-DDB)'^]/[(EL)-N] - (PP) (DDE) (l-DDB)*^

k=0

aid let N be the smallest value of N for which x(N) >^ 0.

la) If x(N) < 0, then DI(JN) = (ETR)(PP)(DDB) (1-DDB)^

No
k

lb) If x(N) > 0, then DI(JN) = (ETR)(PP)[1- Z (DDB)(1-DDB)'^]/

k=0
[(EL)-N^]

Ic) If EL < N, then DI(JN) = (ETR)(RC)[1+(N-J-1 )(RCIR)]/(WPCR)

- (RC)[1+(N-J-1)(RCIR)]

Id) If EL + 1 < N and J = N- 1, then

DI(JN) = (ETR)(RC)[1+(N-J-1)(RCIR)]/(WPCR)

- (RC)[1+(N-J-1)(RCIR)] + (ETR)(RC)/(WPCR)
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Maintain Profit Function: CM(IJN)

2) CM(IJN) = -(1-ETR)[(MC)+(MCIR)(N-J)]

+ (ATP)[(BC)(ERM)^ - (PD)(N-J)] + DI(JN)

2a) If x(N) < 0, then DI(JN) = (ETR)(PP)(DDB)(1-DDB)^

No .

2b) If x(N) > 0, then DI(JN) = (ETR)(PP)[1- Z (DDB)(1-DDB)'^]/

C(EL)-N^]
k=0

2c) If EL + 1 = N, then DI(JN) =

2d) If EL < N and J M - 1, then DI(_N) =

2e) If EL + 1 < N and J = N - 1, then DI(JN) = (ETR)(RC)/(WPCR)

B

Buy Profit Function: CB(IJN)

3) CB(IJN) = -(PP) - (1-ETR)(MC) + (ETR)(DDB)(PP) + DI(JN)

3a) If J < EL. then DI(JN) = (PP)[1- l (DDB)(1-DDB)'']

k=0

3b) If J > EL and J = N - 1, then
N

k
DI(JN) = {PP)[1- Z (DDB)(1-DDB)'^] + (ETR)(RC)[(WPCR)-N+J]/(WPCR)

k=0
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Table i

Parameters for the Continuous Miner

DR = Discount Rate = 15%

RI = Inflation Rate = 5%

ETC = Effect of Technology on Capacity of New Machine = 1%

a = (1 + RI)/((1 + DR) (1 + ETC)) = 0.904

ETR = Effective Tax Rate = 25%

PP = Purchase Price of New Machine = $180,000

MC = Maintenance Cost = $15,000

MCIR = Maintenance Cost Increase Rate = $10,000 Per Year

RC = Rebuild Cost = $20,000

RCIR = Rebuild Cost Increase Rate = 10%

ATP = After Tax Profit of Ton of Coal = $1.50

EL = Equipment Life = 10 Years

PD = Production Decay = 7,000 Tons Per Year

ERM = Effect of Rebuilding on Machine Capacity = 95%

BC = Base Capacity = 150,000 Tons Per Year

WPCR = Write-Off Period for a Capitalized Rebuild = 4 Years

DDB = A Constant Used in the Depreciation Equations = 0.2
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4.5. Computational Experience

Tables 2 through 12 report on computational experience using the data

of Table 1. Table 2 gives the size of the primal linear programming problem

as a function of maximum life L and the number of iterations to solve

them (without starting bases) on an IBM 360/65 using MPSX. The optimal

strategies as a function of L are given in Table 3. In the tables, we

abbreviate the decisions to rebuild, maintain or buy as R, M and B, re-

spectively.

It is easy to show that the optimal value in Table 3 is monotonically

increasing as a function of L. Approximate upper bound calculations in-

dicate that the error introduced by setting L equal to 15 is small. Thus,

for practical purposes, the optimal strategy and the value of the optimal

strategy for all larger L is obtained for L = 15.

Table 2

Maximum Rows Columns Simplex
Life L (states) (arcs) Iterations

5 25 53 40

10 175 433 304

15 575 1573 1134

16 6% 1846 1302

Tables 4 through 12 report on the sensitivity of the optimal solution

to other parameters. In all cases the maximum life was taken to be 15

years, and the number of iterations of the simplex algorithm are greatly

reduced because the optimal basis from Table 3 (L = 15) was used as a

starting basis. Notice from Table 9 that the regeneration cycle is quite

sensitive to the effect of rebuilding on machine capacity. Notice also
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from Table 11 that the two methods of depreciation give almost identical

results.





Table 3

Sensitivity Analysis: Maximum Life (Years)

21
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Table 4

Sensitivity Analysis: Effective Discount Factor
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Table 5

Sensitivity Analysis: Rebuild Cost Increase Rate
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Table 5

Sensitivity Analysis: Rebuild Cost Increase Rate
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Table 5

Sensitivity Analysis: Maintenance Cost Increase Rate
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Year

1

2

3

4

5

6

7

8

9

10

n

12

13

14

Table 7

Sensitivity Analysis: Maintenance Cost

LP
Iterations

$15,000
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Table 8

Sensitivity Analysis: Rebuild Cost





n

Table 9

Sensitivity Analysis: Effect of Rebuilding on Machine Capacity

75% 95% 100%

Year Decision Decision Decision

1 M M R

2 M M R

3 M R R

4 M M R

5 M M R

6 R R R

7 M M R

8 M M R

9 B MR
10 R R

n MR
12 MM
13 MR
14 B M

15 B

Value Value Value

$1,361,157 $1,600,849 $1,964,784

LP

Iterations 188 255
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Table 10

Sensitivity Analysis: After Tax Profit of Ton of Coal
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Year

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Table 11

Sensitivity Analysis: Depreciation

Double Declining Balance vs. Straight Line

Double Declining
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Table 12

Sensitivity Analysis: Purchase Price

$100,000 $180,000

Year ' Decision Decision

1 MM
2 M M

3 R R

4 M M

5 M M

6 R R

7 M M

8 M M

9 R M

10 M R

11 M M

12 B M

13 M

14 B

Value Value

$1,615,845 $1,600,849

LP
Iterations 58
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5, Suggestions for Further Study

The deterministic infinite horizon dynamic programming model of this

paper can be readily extended to a stochastic formulation by allowing, for

example, a random transition to a new machine due to unexpected

failure. The state space can also be expanded to allow states of the machine

in various stages of aging which are probabilistically attained. If the

appropriate transition probabilities are known, the linear programming

formulations are basically the same.

Other areas of future interest are:

•Streamlining of the matrix generation, e.g., elimination of

states of obvious low value.

•Proof (if possible) that the value of the optimal strategy is

a concave function of maximum machine life.

•Development of tight upper bounds on the value of the optimal

strategy as a function of maximum machine life.

•Consideration of lead time if physical replacement occurs well

after the decision to replace is made.
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