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The Optimum Structure of Public

Prices under Conditions of Risk

The theory of pricing of publicly produced goods

has received considerable attention lately. Some authors

(Baumol and Bradford, Diamond and Mirrlees, Dixit, Reldstein,

Mohring) have been concerned with clarifying and extending

the optimal pricing rules for public enterprises derived

by Boiteux and Ramsey. Another line of enquiry (Boitrux,

Brown and Johnson, Pressman, Turvey, Williamson) has beet]

the consideration of pricing in the particular context of

a public utility which faces varying demands in different

periods. In the former ap roach, the emphasis -as been on

consider ng deviations from the marginal cost pricing rule

in the presence of constraints on the profit to be made b. the

enterprise, distributional eq ity or other constraints on

the optimization. The analysis of public utility pricing

has been oriented towards deriving optimal pricing rules

in the context of variations in demand between periods.

In both problems, it has been recognized that a key

element of the analysis is the interrelationship between

,the demands for dif: erent commodities or of the same

commodity in different periods. For example, the demand for

the service provided by a public telephone company in each

of two periods (known as the peak and oik-peal; erlods)

defends on the price charged in both periods. Similarly,
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the demand for air-mail letters depends on the prices of

both air and s-.rface-mail letters. In the context of the

peak-load pricing problem, Brown and Johnson introduced

th e notion of stochastic variation in the demand but &l rl

not explicitly reoop-nize the possibility o~f intrraction

between the demands in the peak and off-peak periods.

A similar consideration is relevant in the r cneral case

of public pricing of close substitutes, whose demands are

subject to stochastic variations. It is proposed in

this paper, to extend the notion of risk to the case of

pricing of goods whose demands are interdependent.

The Objective Fuction

One of the problems in the area of pricing of publicly

produced goods is the specification of an objective that

is both theoretically acceptable and analytically tr..- table.

While it has been generally recognized that some notion of

value of the goods to the consumer less social costs should

be optimized, there has been considers le debate on the

choice of the specific measure to be used. One measure

that has considerable analytic al ap ea.1 is the aotion of

consumer's surplus which was defined (by Marshall) as the

difference between what the consumer would be willing to

1. Por an excellent critioue of this concept see Harbergcr.





pay for a good and what he actually pays for it. Considering

both the producers and consumers as a rroap, the gross

benefit would be the sum of the consumer's sur. lu? and

the total revenue of t e producer, also known as the

consumer's willingness to pay. Thus, the net benefit to

the group (and to society as a whole) is the dif ;• eronce

between the consumer's willingness to pay and the costs

incurred by the producer with the proviso that the

producer's costs reflpct social cosis (ie. th ei e are no

divergences between the prices of in uts and the soc'al

opportunity costs^ It is therefore assu.,.?d foi purposes of

this analysis, t iat the objective is to maximize the

difference between the consumer's willingness to pay

and the producer's total costs.

Although the use of the abo e procedure is fairly

widespread, several theoretical and practical objectio s

to its use in cost-benefit studies have been raised.

In a recent article, Harberger lists the criticisms

and provides fairly persuasive arguments against their

validity. The major criticisms have been a) Consumer's

surplus analysis is valid o ly when marginal utility of

real income is constant b) Consumer's surplus analysis

does not take account of changes in income distribution

caused by the oolicy change being studied c) Consumer's /

surplus analysis i = martial equilibrium in nature and
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does not take account of the general equilibrium consequences

of the actions whose effects are being studied and d)

Consumer's surplus analysis is valid for small changes

but not for large ones.

The measurement of consumer's surplus will be

conceptually accurate if the Hicks-Slutsky comoensated

demand curve is used for analysis so that only pure

substitution effects are included. Tt has been argued

by Mishan that even in the presence o_ income effects,

"the difference that arises from using constant real

income as against constant money income in the statistical

derivation of a demand curve for a single good, is likely

to be too slight relative to tie usual order of statistical

error to make the distinction significant in any cost-benefit

study." Mishan qualifies this statement by saying that

if alterations take place in the prices of closely

related goods, the measure of consumer's surplus has to

be suitably adjusted. Hnrberger orovides a more convincing

theoretical just if icati /a when he says that comparability

of consumer's surplus measures does not require the

constancy of the marginal utilit" of real income but

only ' well-behavedness' ie. when real income falls by

AY as a consequence of a change in one policy variable,

its marginal utility should change by the sane amo-.nt
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as occurs when real income falls byAY as a consequence

of a change in some other policy Variable.

The criticism regarding changes in income distribution

is valid. Several authors included lump sum transfers in

their analysis to counteract such effects. Recently,

Feldstein has proposed that the effects be explicitly

incorporated in the analysis. The other tv/o criticisms

are valid in general in practical studies, though not at

a theoretical level for the general equilibrium effects

and size effects can be explicitly incor orated if necessary

However, to the extent that partial equilibrium analysis

provides us with explicit benchmark relations, L'i would bf

more fritful to employ it, unless the problem u..der

consideratio has widespread economy-wide effects.

Several mathematical definitions of consumer's surplus

exist in the leteraiure . The most popular definition has

been the area under the demand c-«.rve above the price line

as proposed by Marshall and most of the above discussion

pertains to this concept. p

If P* is the price actually

paid by consumers of a rood,

corresponding to an equili-

brium ouantity 0* , the

consumer 1 would be willing to

pay a price P(o)— P* for the
at

62J
q
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good rather than go without it for e/ery quantity between

and 0*. Thus, the summation of the minute changes in the

satisfaction of the consumer is represented by the

Marshal lian consumer's surplus.

If P(0) is the inverse demand function, the consumer'

surplus is given by ^

J o

Alternatively,

where Q(P) is the d ema id function. In the case of goods

with independent demands , the total surplus is obtained

by summing over the consumer's surplus for the different

goods. *
A<- * *

f- p*J Ui o0) 5=. 2.

When the demands are interdependent, the total surplus is

given by^ ^t
}̂

where Pi and Pp are each functions of both Q^ and Op ie. .

Pl" ?i(Ql>Q2^ and P2 = p
2^°-l , ^2^ and S is fc,/le total

3« See Hotelling, f'aass et. al, Pressman.
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consumer's surplus between (Q]_,Q2) - (0,0) and (Qi,0.2)= (Q^>Q%)»

In terms of the price variable, „ „

where On = Q1(Pi,P2 ) and Q 2
=Q2(P

1
,P

2 ) and S is the total

consumer's surplus between (?}_,?)-( ?j_, P£) and (?n, P2 ) = (P^, P^)

It is to be noted that the concept of consumer's surplus

carries over into the tv/o good interdependent demand case,

ie. what the consumer is willing to pay for both goods

rather than go without them, the only change being in the

definition of the limits of integration. Presumably,

in oider to estimate consumer's surplus in this context,

some notion of the substitutability of the two goods

between themselves is relevant.

Pressman clarifies that the necessary condition for

an optimum (the first derivatives vanish at all critical

points) is satisfied and the integration is path independent

if the following conditions are satisfied,

ie. if and only if the rate at which the quantity of the

first good dema ded changes when the price of the second

good changes equals the rate at which the quantity of the /

second good demanded changes wh m the price of the first

good changes. This relation is not a general property of





all 'normal' goods and holds only if the two demand functions

are of the Hicks-Slut sky income compensated type or if the

income elasticity of dema d for both goods happens to b

e

.4
unity.

The Peak-Load Problem

The problem of peak load pricing in the context of

independent demands was first attempted by Fouthakker

and was extended (especially into practice) by Boiteux

and other economists of the French school? A geometric

analysis of the problem for linear costs with a caoacity

co stiaint was provided by Steiner. Williamson orovided

a welfare justification for the earlier analysis a .d

extended to the case of peak, a.'id off peak pricing with

unequal periods and linear costs, usin.- more rigorous

analysis. The solution was extended to the case of

int erdependeit dema ds between periods by Pressman

in a more general framework. Brown and Johnson introduced

the concept of risk in the context of peak-load pricing

4. The cross effects -^ and ^yf - can be separated into
two distinct components, a substitution effect and an i icome

effect. By the symmetry of t^e problem, since the order of
differentiation of the cost function with resoect to the
individual rices o" the two goods is immaterial!, the two
subs ti. tut io ' effects a-r e eeiu 1. The icoi.v efj ect reflects/
the chaii esl . purchases o' ' -\

. ood with a ch-v.. r Ln the nice,
which causes u eha-";:e Ln 'che real lco.'.t oi' i ;e consumer. The
real income changes when the budget of t .e consumer is fixed
a''d he can buy snort o r t e cor.,.- edition whose price has fai" en

and less o. commodities whose price has ilse . However,
when thp budget is not fixed, ::rioe changes can t- -O a reciaoi^
change in the effective buying power of the consumer ie. the
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and considered a stochastic element of demand in their

analysis. However, they considered explicitly only a

single period demand function which varied stochastically

between the peak and off-pea.- periods and stated that the

result could be generalized to several periods when the

demands and independent.

The present study extends the analysis to the case

of interdependence between the peak and off-peak demands.

Contrary to the expectation of Brown and Johnson that

their results " can be easily extended to include cases

in which random shocks exist in the peak-load and off-peak-

load cycle" where the results are "qualitatively comparable

to the simpler situation," the present anal.ysis leads to

significantly different results. In fact, only in the

particular case when the peak and off-peat: periods occur for

equal durations are the prices in both periods equal to the

operating co^t oer unit. When the peak eriod occurs

less than (more than) half th e time both peak ana off-peak

prices are greater than (less than) the operating cost

per unit.

same amount of each commodity can be purchased, thus

the income effects will be negligible. For a more detailed
discussion, see "-'cPadden and Winter-.

5. A summary of their work ±3 available in Dre^e. Several /

of the articles on neak-load pricing are reprinted in elson,
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The Riskless rod el

In the case of a single period problem, let the

demand function be represented by QsQ(P), where the

function is single valued, monotone decreasing and continuously

diff erentiable. The total surplus obtained is given by

the sura of the consumer's and producer'? surplus ie.

O) T- 4(P)dP + ''**

r*

The total welfare is obtained by subtract! -st t^e total

costs to the producer,

ft) o-

Assuming that the total costs are separable into fixed

(capacity) cos^s per unit" Q and variable (operating)

costs per unit b, the cost functio ) can be written as

C(o)-= (b + P )0 , assuming that the plant capacity is

7completely utilized. Maximizing with respect to the

price OF , we ootain

PR )AQ -c@*)

(9)
P ^ Cb+f )

6. Following Williamson, short run marginal costs ai

e

defined as the onerati i p costs of supplying the incremental
unit of output (at levels of o, oration less than full
capacity) over a whole demand cycle, namely b per unit per /

cycle. Similarly, the incremental capacity costs are
dcfi.'.ec1 at the rate of

f> per unit cer cyc.e so that long
mn marginal costs are b *-G per unit per cycle

7. Marginal operating costs are co. sta~t at b rex u:.it per
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This result can be explained by reference to Fig. 2.

The optimum levels of price and quantity are obtained by the

intersection of the demand

function DD and th e long run

marginal cost curve LF: T0.

The short run marginal cost f'

curve SR"C is at a level b,
b

the operating, costs per

unit, upto the optimum

quantity 0* when it becomes

vertical.

The solution was extended by Williamson to the case

of changing but independent demand functions within a

planning period from peak to off-peak times. If the off-peak

and peak demand functions are given by Qi(P^) and Op(Po)

respectively and the fraction of the total time for

which the peal: demand occurs is w, the welfare function

becomes, ^ v>

8. Williamson's analysis was an extension of the work done
by Boiteux, Houthakker, T-Tirs>'leif er and Steiner. However,
it was more general and orovided a link between geometric ,

and algebraic methods.

cycle, so long as output is less than capacity. When capacity
is reached, a share kink develops and the ...ai.'inal operating
costs becoiin effectively i - iniite.
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In the above equation, the capacity costs per unit (5 are

associated with the quantity Q2(^c) since capacity is

assumed to be perfectly divisible. There is no reason

to have a capacity greater than the peak demand Q ?
(P*)

since this is the maximum possible demand; if the

is multiplied by a quantity less than (P*)> "the entire

capacity costs would not be covered.

Williamson distinguishes two cases, a) when the

plant is used to capacity in both eriods and b) when

the plant is underutilized in the off-peak period.

Geometrically, in the first case, the off-peak de.i.a d curve

intersects the SPh'C curve in the vertical section while

in the second case, the off-peak demand curve intersects the

SPa'C curve in its horizontal section. In case a), the

Quantities in both periods are set equal to 0, the

8'. Equation 10 can be written in terms of the inverse
demand "curves for ease in further analysis ie.

,.o w. 6-,/S'«>"< --/^
o

"

- b [c.—wfl i--«*itfj -fA'S)





Pi -

b+
f

-

Qjusa- <*-)

&.
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optimal plant size- After using the relationship Q-, = q ^ q

and differentiating the welfare function,

Equilibrium prices P* and P£ clear the market in each of

the sub-periods. The demand for capacity curve used

by Williamson is represented by q(P) and determines the

optimal capacity Q*°. The amount by which revenues in

the off-peak oeriod fail to cover pro-rata total costs

is precisely offset by the revenues in the peak period in

excess o^ pro-rata costs.

In the second case, the welfai e eauation is differentiated

partially with respect to the Quantities in the two periods

Q-. and Q„. The equilibrium conditions are

,
- P - b 4- -£~

7

The off-peak price P]_ is set eq-al to the marginal operating

costs per unit b and no capacity costs are levied since the

/

9. The demand for capacity curve is obtained by adding vertically
to the SPJ'C the vertical summation of the weighted demand for
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capacity is underutilized. The peai: price includes the

operating costs as well as the capacity costs j2 spread

over the peak phase of the cycle.

Thus, in geneial, the optimal price in each period is

given by the intersection of the SRMC and the sub-period

demand curve. Further, in a fully adjusted two-period

model, the peak-load price is always above the LR!'C, while

the off-peak-load price is always below theLRMC, in the

riskless case; o^ly when the off-peak load fails to use

the plant to capacity when priced at theSP^'C, does the

peak load bear the entire burden of the capacity costs.

Brown and Johnson introduced a stochastic demand

element into a single demand function a^d determined

the optimum price P and capacity Z before the ..reduction

period begins a^d the actual demand is known. They

concluded that the optical price u.ider risky conditions

will always be lover than under the riskiest case and

with linear demand, the optimal output will generally

be higher than in the riskless model. Thus, the enterprise

fails to recover its capacity costs unlesc the risk can

be diversified awa; through perfect risk markets.

capacity curves, which are constructed by taking the
vertical difference between the periodic-load curve and the'
SR"C and multiplying It by the fraction of the cycle for
which the particular curve arises.
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The Risky Demand I.'odel

Consider the case of a public enterprise which faces

different demands during- peal: and off-peak periods 9

Suppose that although the patterns of demand in the two

periods are known, there is a great deal of random variation

about the known patterns in the two periods. It is

reasonable to assume that there is a certain interrelationship

between the demands in the two periods ie. ~^H t o

B^ y o where Q-, and o are the demands in the off-oeak
g7? *1 "2

and peak-periods respectively and P* and P* ai e the

respective prices.

In order to simplify the analysis, it is assumed

that the peak demand occurs for a fraction w of the total

planning period, while the off-peak demand occurs during

the rest of the planning cycle, 1-w. The manager of the

enterprise is faced with the problem of choosing the

optimum prices ?J and PS, in the two periods as well as the

optimum plant size Z. The choice of a particular price for

the peak period not only affects the Quantity demanded in

that period but also thc^peak period demand. If the

peak period price is chosen at a level without regard to its

effect on the off-peak demand, it may hap. en that there is

a shift in demand from o.ie period to the next, v;hich now

IP. A similar analysis can be carried out in the pricing of
different goods with interdependent demands. However,
general results do not emerge in that case without making
resyrictive as -u..:trtions regarding the nature o r the costs.
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renders the price chosen for the peak- period non-optimal.

It is therefore imperative to choose the prices in the two

periods with due consideration being given to the

interaction between the respective demands.

The riskless demands in the two periods are given by

t +
0*> (S, ~ <s,C '<*&*) <** - Q»W>'» )

The prices corresponding to zero demands in the two

periods are finite ie. in

««*',*) - o and «.ttV/>-"
OH

r
1 ?

*

The Additive Case

It is assumed that the stochastic element in the demand

enters as follows

where the probability density functions $(v-|) and 0(vp) of

the disturbances v-j_ and V£ have the following properties.

/
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Since the capacity Z is chosen before the value of

the random disturbances v^ ail<* v 2 are known, "the actual

demands D^ and Dg could be greater than or less than Z

depending on the size of the disturbance terms. Thus,

the actual sales in the two periods M. and M« are
i;
.iven

by

1 2 ;

,* /» *

The sales in a particular period will be given by D^ (or D? )

if it is less than the capacity Z. If the disturbance v^_

(or v^) results in a demand D-,(or D2) which is greater than

Z only Z will be sold.

As in the case of the riskless model, it is assumed

that the total costs are separable into fixed (capacity

costs) per unit ^ and variable (operating) costs per
/

unit b. The only change is that the capacity costs are

known with certainty to bepz while the operating costs

are d ependent on the probability distribution of the
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stochastic demand. The maximand in the risky model is

similar to that in the riskless case with the difference

that expected values are used instead of certain benefits

and costs. Thus net social welfare is given by

W = 5( Consumer 1 s Willingness to Pay)

- E( Sales) .Operating Costs per Unit

- E( Capacity Costs)

This equation assumes that expected values of social

benefits and costs are equivalent to their respective

expected utilities to society. This assumption is valid in

cases such as the present analysis, where the objective Is

the prescription of optimal social policy and the risk

of system ruin due to the failure of a particular enterprise

is negligible. Further, it is also assumed that society's

portfolio of projects is suitably diversified so that

explicit allowance for risk is unnecessaryt-

If it can be assumed that the demand Ls always less

than capacity in both periods, the consumer's surplus in

the riskiest case with interdependent d emaids will be

r
<fM

rid

11. For a discussion see Samuel son, Vickrey.
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where P* and P£ are the prices charged for off-peak and peak

loads respectively; P-j and PA are th e maximum prices of the

off-peak and peak-loads respectively; Q-^P-^Pp) and QoCP-ijPp)

are the off-peak and peak-demands respectively (as functions

of prices P-, and P~ in the off-peak and peak periods

respectively. )

.

When the stochastic variations in the demands are

introduced into the analysis, the consumer's sur.lus becomes

where the demand terms include the stochastic elemeats v,

ajid Vp and are integrated over toe range of prices and then

over the entire range of variation of the stochastic

terms. The upper limit of integration is given by the prices

in the two periods corresponding to zero demands in the

whole cycle,

$,(?/>'*') + Pi = °

09) q.c'jO + "2 -
°

I

As indicated earlier, the line integral can be written as

the sum of two definite integrals when the cross derivatives
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iBi. and 2_£ are eaual. Further, since the stochastic terms

in the two periods are uncon elated by assumption, the

consumer's willingness to pay can be written as

4-rC r
4

Ca-O

<(-^)

However, there are cases when the demands D-, and Dp in

the two periods are greater than capacity Z and consequently,

a reduction in the consumer's willingness to pay takes place.

This occurs for large positive values of v and v . If the

analysis vjere restricted to a

single period's demand and

price, the reduction in

consumer's willingness to

pay would be as shown in Pig.

4. When D^ = q 1 ( P ) +- v-, is

greater than the capacity Z,
fy

'(2-°0

the reduction in willingness

to pay is given by the sum

of the two areas A-j_ and B-, .

Tn this case, the areas A-,

and B-. are given by the following integrals.

s>
\ \
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(jp. f
co +^-z)*t/"

f^
zW «*

*-«/*-;

The assumption made here is that in the event of a shortage,

consumers with a higher willingness to pay are serviced

first. Only then will the total willingness to pay be equal

to the area under the demand curve upto the capacity

constraint. If an alternative assumption is made regarding

the distribution of output in the event of a shortage, the

value of consumer's surplus will have to be adjusted

accordingly; the shadow price of an extra unit of output

obtained through additional capacity would be higher and would

yield an even larger vain e of Z. In the above integrals,

the lower limit of integration of the error termsis obtained

from the fact that the above adjustments arise only when

the error term more than makes up the difference between

the capacity Z and the riskless demand Q^(Pl) ie. v1= Z - Qi(?i)

Thus the integration of v^ proceeds between Z -
°-i(

?
-i)

sai<̂ i

infinity. The limits of integration of the price in the

equation for A-, are from the price actually charged P^ to

the price at which the demand including the stochastic

term just becomes e^ual to tie capacity Z, by setting

^
V

-l 1
Q 1(P1 ) +- v

1
- 7. and solving for Pq_ = 1 (Z-v ).
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The notion of losses in consumer's surplus can now

be extended to the two good case. It is clear that as in

the definition of consumer's surplus for interdependent goods,

the losses A and B will be line integrals which can be

written as the sum of two definite integrals when the cross

derivates are equal and the stochastic elements in the two

periods are not correlated. Thus the areas A and B are

given by ,* -

r tf

O-O

The distinction between these areas and the single price-demand

case in equation U- is that the quantity variables n
j_

and

o are functions o r both FJ and P£ in the two-good case.

Further, the upper limits of integration of the erroi terms

are obtained by setting the demands in both oeriods (including

the sto chaotic elements) equal to the capacity Z.

Ci3)
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The expected sales in the whole planning cycle is given

by the expected values of the demands in the two periods

weight ed by the fraction of the total period for which each

period occurs after subtracting the range when actual demand

exceeds capacity.

C?-4)

J

The expected costs are obtained by multiplying the expected

sales by b, the marginal operating costs per unit and adding

the capacity costs G Z . The net social welfare is written as

G-*>) ?,
s

,

+ <*«*

O-O

ft" r*
"*

Z-«i

2-V

- j"
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Diff erentiating this expression l2 with respect to the prices

in the two periods ?J and P*>, and the capacity Z, the first

order conditions for a welfare maximum are obtained as

follows.

*-«*

12. In the above a:^d later equations, the demands <">

n
and

are evaluated at the '-rices P|[ anO P*>, unless otherwise
specified.
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The term K in the expression for ^-. can be rewritten as
2* r

Q?->^

(w)

But since 0] and 0^ are the off oeak and peak demands
respectively, Qi < or (Z-0-|) > ( Z-Q^) . Assuming that
the distributions of 2the stocliastic elements in the "two periods
are similar, &&.<$> (a,\ =. S^) > v;t have

*

- «* [ $ u-o] [>cp.
-1

,
-«*c** **g

e i -f r; ~ -/ . -c P
4

_ <c ''^-^z-^k °<7

13. This can be done when fr - */ L'^/'^J ' *
J

for then the respective integrals will converge. In this case,

Similarly, /
'

d* (
cr,.'>* ) df _ fe f//,0 - ^'(>/V* *>7
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V/hen w<i , we can write

Here *?'^?/ since P,'-^~fe- "vf and P,
M
- -V L ^"^ '

£~^

Hence ^ Cf,',4*) ? $XC* '}'/; since ^ ^ o . Similarly,

^''Vi-i^ *^ /'* ^^ Since *«>«/, <£(>-«0 -°
and J ^c£-) ds- -? o

as <o -t<o > K is positive when w < h.

v/hen w>tj?., K can be writ i en as

By an argument similar to that in the previous case, K is
negative when w? j

1

;-. Thus, we an distinguish thro-' cases
a) w<-y b) w^--

1

c) w «-?>', for which the value of K is
positive, negative ad zero respectively,
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When K£0, we can write the simultaneous equations for P]_

and P2 as folio ws1^

Q-O

Thus, Pq_ and Pp can be written as-*-

5

6 +
*>«<<£

b +- k.

fe.9)
3«t.0— * ?, -3A3 b * *,

where k]_ and kp have the same sign as K. Hence, when

w<-| (case a), P^ b and P > b, while for w>i (case b),

P]_<-b and P2 ^ b
/5<v

14.$, and £ refer to # />-Gj and &[&-&*]
respectively.

15. Since the own price effects §77* and ~^p are
negative and the cross price ef i ects

gffi.
a^oi ^^

are _.ositive, but the own .-rice * * 7<
*

effects have a greater absolute magnitude, the determinant

D. -
aft̂ a77 T*

a<S^

2>ft
If

is positive.

13 ( contd . ) Otherwise, the convergence of the integrals will
depend on the s ecific demand function used.
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15a It is easily demoustrat ed that these results are not dependent
on the particular path of integration chosen.
Instead of integrating along A'BC, we uow
proceed along ADC ie. from. (, 'i-V* ) to

( f*,K x

) and then to (P,,£). In oide.:

not to complicate the notation, I interchange «.*_

the peak a.:d off-peak demands - w becomes
the period of off peak demand and (1-w) the
peak period, 0] the peak demand and Op the
off peak demand.

J.

Equations (28) now becomes

— k

t
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The simultaneous enuations can be solved in Case c) when

w=§, so that K- 0, to write

(3°)

which on solution yield10

60 <>' - b
>

''* "
h

Thus, the optimum conditio is i.dciate that the prices in

both periods should bo set oual to the marf i.nal o Derating

costs per .unit, b. This is in contrast to trie results

obtained in the riskless case when the optimal off-peak

and peak prices P¥ = b and P|- b 4- }/v; respectively. The

implication of this result is that in the presence of risk,

the enterprise should bear the capacity costs for an

optimal welfare solution. It is important to note that

that the Brown and Johnson results do not carry over to

the casp of interdependent demands, except for the

case when the off-peak and peak periods occur for equal

durations in the total cycle.

;

16. In the context of optimal pricing o" two close substitutes
produced by •• upli'c enterprise usinr the sr.. .o capacity but
with different . . j k Lai operatic; costs per unit bl a q b

thv result wo.u.d be similar except that tap prices would enUal

tiie respective marginal ooeratiiig costs.
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The I'ulti ..'licat ive Case

In the multiplicative case, the stochastic eleme.ts of

the demands in the off-peak and peak-periods enter in a

multiclicative fashion.

(J P( * a, cC t*>A , K - &> c ?«', p. *;
.

^

The assumptions regarding the random element made in the

additive case carry over ie. variances arc finite and

there is no correlation between the disturbances in the

two periods, but the expected values, v(v±) and E(v 2 ) are

nov; equal to 1.

The .welfare function is obtained along lines similar

to the additive case. The total willingness to pay,

without considering the effects of demand exceeding capacity

1 7
is given by

(30
r,

The losses of willingness to pay due to the constraints

17. P-j and P' are obtained from Qi( P^,P£) .V]_ -
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imposed by capacity are

CS4J)

A,
+- I/O

p. eg) = 0-^)

\ V

1 fecyv) P» ^v *
v/O

The lower limits of integration of vi and V2 are given by

setting Q1
(P^,P|).v

1
= Z and Q 2(P|[ f P*) •v' =* Z' , so that the

limits are Z/Q-, and Z/Qp respectively. The upper limits

of inta^fation of the prices are obtained from the

intersection of the demand curves and the capacity

constraints.

and 0p( P' ,P') ,v = 0. This happens only when v and v 2 are
zero, since o-,

c
and ^p are ~> 0. Hence,

P;[^q~ x (0,0) and P^*0.2 1(0,0).
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The expected value of sales is given as before by the

expectation of the respective demands weighted by the fraction;

of the total planning cycle, after subtracting the range

when demands exceed capacity in the two periods.

&J<\,

+ vO

The net social welfare function is given by

r* f

-* f* .

z
/«f
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By differentiating with respect to the two prices and the

capacity, and simplifying, results similar to -ftie additive

case are obtained1^.

where19

dvJ
= Ci_^) r^c^) cft

M-^ 4*4

3 2- ^
- [fee*-" ^ ~^ &0

As before, K is positive, negative or zero accordi:ig as w

is less than, greater than or equal to one half.

18. Here <§
i

and <§> stand for
(J)

( Z/Q]_) and $(Z/Q 2 )

respectively.

19. Pi = 0-1(0,0) and P^ _ Q^
1(Z/v 1 ,Z/v 2 ).
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Henc e Pi and P2 can be solved from the above quations to

obtain

(39) P-j= b -t- k, and P2 =- b + kp

where k-j_ and 1^ have the same sign as K and are equal to

zero when K is equal to zero (ie. w=|r). The conclusion

is that even in the case when the stochastic elemeit in the

demand enters multiplicatively, prices in both periods

are greater than (less than) marginal operating costs

when the peak period arises less tha^ (more than) half

the time. Only in the case when both peak and off-peak

periods occur for equal duratiors in the planning cycle is

marginal cost pricing called for.

An Example

The conditions for optimality derived in the additive

and multiplicative cases cannot be solved to obtain a

general solution for the optimal capacity z* , since the

expressions involve integrals that depend on the

probability dens'.ty functions of the error terms ^i(vi)

and $2^v ) as well as the demand functions Q-,(P]_.P2) and

Qp(P-i,P2)« In order to arrive at specific conclusions

in an illustrative case, certain simplifying assumptions

regarding the demand functions and the probability density '
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functions of the disturbance terms have to be made.

a) The off-peak and peak periods occur for equal halves of the

total cycle so that w = § which implies that the price in both

periods is equal to the marginal operating costs per unit b.

b) The demand curves in the off-peak and peak periods are linear

and are given by2°

Q-] = An + BnP-i »- C PP

Q2= A2+ CP1+ B
2
P
2

It will be noticed that in the above formulation, the cross

derivatives L^i and $®± are enual so that the integrability

conditio is are satisfied.

c) The disturbances in the two periods are independent,

identically distributed random variables with rectangular

distributions ie. $i(v]_) = 2^2^ — 1 / 2^*
21

The necessary condition for optimality in eauation

specifies that

*°> a*
z-a, *-<^

20. It is assumed that the stochastic element enters
additively.

21. To ensure that demand is always positive, X < A]_+ (B]_ +- C)b
and A •< A + (B

2
+ C)b, for then, when T1 - P2 - b

,

;

3>L
= 0]( P]_ , P2 ) + v-^ and D

2 - a£ P]_,P2) + v
2 are { rpater than or

eaual to zero.
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which can be written as

r

GO

Mil l?
J f

-°

(Noting that P" and P" are the prices at which the respective

demand schedules cut the capacity constraint, we can write

C4<*-)

so that

where D* B1B2*- C 2 )

This can be simplified as follows

z O /^ |_

ws -

- <?4 ^

if]

q
Z-CA*H***«-cO

J"
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which on substituting yields

- gj («-*».-** b -co* 1 -if -

Let

A,+ 6, b + Cb - M

which leads to

(45)

Solving for Z and simplifying, the solution for Z is

written as
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where Z is the value of the output in the riskless case

and is given by

C4*) or,
A, +- 6z Cb + *$0 4- cb

and E •= '

5 + g _ ^ C

Thus? 2

Multiplying both sides by X which is ?» 0,

£*) A (**"*) -'.£ - *JC-^EjO J

Since the right hand sWp is ^ 0, and A 7/ 0, either

Z*-Z = or Z*>Z . Z*-Z=0 implies that \ =-[{-2T?

f)
.

In general, the output under conditio .s of risk is greater

than in tie riskless case, if the de-and functions are linear

and the disturbances are identically distributed and

follow a rectangular distribution, with the peak and

off-peak periods occuring for equal portions of the planning

cycle.

22. The negative root ie chosen for examination since if

output in this Is cns< is greater than In the rinkless model,
it follows that the rositive root \o .Id yield a:: outn.it

that is even greater. Hence the conclusion, applies to

both roots.
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Conclusion

The peak load pricing problem - optimum pricing with

a varying demand over the day, typically a peak and off

peak period - has been extensively studied by several

authors including Hirshleifer, Steiner, Williamson and

Brown and Johnson amongst others. In the context of a

riskles? world, maximization of welfare yields a solution

where net revenue is identically enual to ^ero. In the

context of a two period problem, of J peak period customers

are charged only marginal operating costs per unit while

peak period customers incur both operating costs as well

as the entire capacity costs spread over the peak period

output.

However, in the context of stochastic demand,

Brown and Johnson concluded that welfare maximization

implies marginal cost pricing throughout. They further

showed that when thr demand is li ear a d the stochastic

term follows a recta.gulai distribution, the optimal

capacity is greater than in the riskless case. This

result was shown to be valid in a mor> general setting by

Littlechild using the state-preference approach. Thus,

in this situation, short run operating costs are cohered but

capacity costs are not and the public enterprise will have to

be subsidized .





33 -

The incorporation of stochastic eleme-ts in the demand

in both the off-peak and peak periods with an interdependence

in the demands calls for different recommendations. The

fraction of the total cycle for which the peak load occurs,

becomes a critical element in the analysis and the present

results coincide with the Brown and Johnson conclusions

of marginal cost pricing only when the peak and off-peak

periods occur for equal durations. In the case wh en

the peak-load oc curs less tha n half the time , both the

of

f

- peak-load and peak-load prices a

r

e_r reater than the

marginal operating costs. Thus, at least a part of the

capacity costs are recovered in this case. When the Peak-

load occurs for a major Part of the total cyci e, pricing -

below the marginal operating cost s Ln both Periods is called

for . Hence, not even the variable operating osts are covered,

not to speak of the capacity costs, i 1 this Case.

The results stated above are quite unusual and deserve

further intuitive explanation. In ;
eneral, it can be stated

that if the de.a d is relatively, high, the demand curve

23»» In their reply to critics, Biown and Johnson concede
that their analysis implicitly assumed that there was a
probability, however small of the d e. a :d function 'v'.th the
stochastic ter intersect! g the SK:IC on the hoi ;..-o ". tal section,
which as in the riskle.-js case :

L; plies i.ar^i .al cost pricl .g

.
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intersects the SP' T in its vertical section a^.d pricing abo/e

the marginal o ; erating costs is called for. Tn ail intermediate,

range, pricing at the marginal operating costs is optimal

and at a low enough value of demand, pricing below marginal

costs may be .justified, in the case of interdependent demands.

The setting of the optical capacity is dependent on the fraction

of the total
:

,eriod for which the peak occurs. The greater

this fraction, the greater is the weightage in favour of a

higher optical capacity, subject of course to tin tradeoff

betwee-- the incremental capacity costs aid the gain in surplus.

If the peak-load occurs less than half the time, the

optimal ca.acity is set relatively low. The off peak and

peak load curves in this situation are more likely to

intersect the SE'-T C on its vertical sectio i i ivolv ng pricing

above the marginal operating costs b. Pbwever, when w> -*-

the oeak ca acity is set at a relatively 'Lr > levelj -*m,

the peak and off-peak load cuives intersect the SR:?C oh its

horizontal segment. Further the tradeoff between consumer's

surplus and revenue is such that a price below the marginal

operating cost is warranted in both periods. A reduction

of price in one period not only raises consumer's surplus

in that period but also draws demand away from the other

period and consequently raises that oart of the consumer's

surplus as well. Pricing at the marginal operating cost in

both Periods should be resorted to only w^-c;-. , f-c "g-'.k a- 'd off- -
<=

•
>
!'

^r^o/r r' 1 ^ 1 Id r -- y^ ^-
'
r^—to only when the .Tea": a-doff-p ak

loads occur for rnual duratlo s.
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