

HD28
.M414

no

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

On-line Maintenance ofOptimal Schedules for a

Sin^e Machine

Amril Aman
Anantaram Balakrishnan

Vijaya Chandru

SSM#3327-91-MSA August 1991

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

On-Line Maintenance ofOptimal Schedules for a

Single Machine

Amril Aman
Anantaram Balakrishnan

Vijaya Chandru

SSM#3327-91-MSA August 1991

On-Line Maintenance of Optimal Schedules
for a Single Machine

Amril Aman*

School of Industrial Engineering

Purdue University

West Lafayette, IN 47907

Anantaram Balakrishnan '

Sloan School of Management
M. I. T.

Cambridge, MA 02139

Vijaya Chandru*

School of Industrial Engineering

Purdue University

West Ufayette, IN 47907

August 1991

Supported in part by the NSF Engineering Research Center for Intelligent Manufacturing

Systems, Purdue University.

Supported in part by M.I.T.'s Leaders for Manufacturing program.

Supported in part by ONR Grant N00014-86-K-0689 and by NSF-ERC Intelligent

Manufacturing Systems at Purdue University

Abstract

Effective and efficient scheduling in a dynamically changing environment is

important for real-time control of manufacturing, computer, and

telecommunication systems. This paper illustrates the algorithmic and

analytical issues associated with developing efficient and effective methods to

update schedules on-line. We consider the problem of dynannically

scheduling precedence-constrained jobs on a single processor to minimize

the maximum completion time penalty. We first develop an efficient

technique to reoptimize a rolling schedule when new jobs arrive. The

effectiveness of reoptimizing the current schedule as a long-term on-line

strategy is measured by bounding its performance relative to oracles that have

perfect information about future job arrivals.

Keywords: Scheduling, design and analysis of algorithms, heuristics

1. Introduction

Planning and scheduling dynamic systems with random job arrivals,

failures, and preemption is a very challenging task. Typically, since future

events cannot be forecast with enough detail and accuracy, planners often use

on-line scheduling strategies. Consider, for instance, a production system

with random job arrivals. On-line methods apply when detailed information

regarding a job's processing requirement is revealed only at its release time.

Thus, each release time represents an epoch at which the existing schedule is

revised to reflect the new information. One on-line scheduling strategy

consists of reoptimizing the current "rolling" schedule at each job arrival

epoch using a deterministic scheduling algorithm that only uses information

about the current system and workload status. We refer to this scheduling

strategy as On-line reoptimization. This strategy of reacting to changes in

system status (job arrival or completion, processor failure, etc.) by

reoptimizing and updating the current schedule raises two issues.

First, given an optimal schedule of n tasks, can we devise an efficient

method to revise this schedule, say, when a new task enters the system?

Intuitively, since the existing n-job schedule contains useful information,

exploiting this information to adjust the schedule is likely to be more efficient

compared to reconstructing the optimal (n+l)-job schedule from scratch. We
refer to the latter method as a zero-base algorithm, while a method that

exploits current schedule information is an updating algorithm. Computer

scientists have emphasized this issue of relative efficiency of updating

methods in the context of certain geometric and graph problems by

developing specialized data structures and updating algorithms (see, for

example, Spira and Pan [1975], Chin and Houck [1978], Even and Shiloach

[1981], Overmars and van Leeuwen [1981], Frederickson and Sriixivas [1984],

and Frederickson [1985]). In contrast, the research on deterministic resource

scheduling (see, for example, Graham et al. [1979]) focuses primarily on zero-

base algorithms. In this paper, we illustrate the algorithmic issues in dynamic

reoptimization by developing an efficient updating method for one class of

single-machine scheduling problems.

-1

Efficient schedule updating methods are esp)ecially important for real-

time planning and control. Consider, for instance, the following "bidding"

scheme for assigning tasks in a distributed processing system (see, for

example, Ramamritham and Stankovic [1984], Zhao and Ramamritham

[1985], Malone et al. [1988]). Jobs with varying processing requirements and

due dates arrive randomly at different processor locations. Each processor

maintains and updates its own local schedule. When a new job enters the

system (or when a processor fails), the source node (or a central coordinator)

queries the other processors to determine their expected completion time

before deciding where to dispatch the job. To formulate its response, each

target processor must adjust its current schedule to accomodate the new job

and determine its tentative completion time. Subsequently, when the job is

awarded to a processor, the selected processor must again update its schedule.

Given the possibly large volume of job announcements and reassignments,

devising efficient updating algorithms to accomodate new jobs is dearly

critical for this type of real-time control mechanism.

In addition to updating efficiency, we are also interested in the

effectiveness of the on-line reoptimization strategy. In particular, what is the

relative performance (i.e., closeness to optimality) of schedules obtained

through on-line reoptimization compared to an "optimal" off-line decision

procedure that has perfect infonnation about the future? Recently, computer

scientists have developed a standardized approach to study this performance

characteristic of on-line methods. The approach seeks a worst-case measure

called competitiveness to evaluate solution effectiveness. We illustrate this

mode of analyzing effectiveness using our single machine scheduling

example.

Studying efficiency and effectiveness issues for on-line reoptimization

required a judicious choice of the scheduling context. In particular, both the

structure and performance of on-line updating methods depend strongly on

the scheduling objective. Consider, for instance, the problem of scheduling a

single machine to minimize maximum tardiness for unrelated jobs with

identical release times. The earliest due-date rule finds the optimal schedule

for this problem (Jackson [1955]). Given an earliest due-date (EDD) schedule

for n jobs, the updating problem consists of constructing a new EDD schedule

-2

(by adjusting the current schedule) to accomodate a new job. If n denotes the

number of currently scheduled jobs, re-sorting the (n+1) jobs to construct the

new EDD schedule requires 0(n log n) operations. However, updating can be

performed much more efficiently if we use a heap structure (see, for example,

Tarjan [1983], Aho, Hopcroft and Ullman [1974]) to store the current schedule.

Updating the heap when a new job arrives merely involves inserting the new

item and rebalancing the heap, which requires 0(log n) effort. For other

scheduling objectives, the updating method is not so obvious, and the n-fold

computational improvement may not be possible. And, of course, for NP-

hard scheduling problems (e.g., minimizing sum of completion times for jobs

with arbitrary release dates) the updating problem is not likely to be

polynomially solvable either.

In this paper we develop and analyze the worst-case performance of an

on-line updating method for a single machine scheduling problem with

precedence-constrained jobs, where the objective consists of minimizing the

maximum completion time penalty over all jobs. In the classification scheme

proposed by Graham et al. [1979], we consider the Vpredij^j^ problem.

Lawler [1973] proposed an O(n^) zero-base algorithm to construct an optimal

n-job schedule for this problem. Subsequently, Baker et al. [1982] generalized

this algorithm to the case where jobs have arbitrary but known release dates,

and preemption is permitted. For the l/prec/f^^^^ problem, we focus on a

special class of penalty functions that satisfy a consistency property defined in

Section 2. Several penalty functions such as linear completion time and

tardiness penalties satisfy this property. For this class of scheduling problems.

Section 3 first describes a new zero-base algorithm called the Forward

algorithm (unlike Lawler's algorithm, this method schedules jobs from front

to back) with 0(m + n log n) worst-case time-complexity, where m denotes

the number of arcs in the precedence graph. Subsequently, we develop an

updating version of the Forward algorithm that uses information about the

cvurent n-job optimal schedule to optimally add a new job. If the new job has

n' (< n) ancestors, and the precedence subgraph induced by these ancestors has

m' (< m) arcs, the computational complexity of the Forward updating

algorithm is 0(m' + n'). Results of computer simulations reported in Section

4 confirm that, in practice, the Forward updating procedure requires

significantly lower computational time than applying the zero-base algorithm

-3-

to construct the (n+l)-job optimal schedule. Section 5 analyzes the

competitiveness of on-line reoptimization for selected penalty structures.

We show that the method is 2-competitive (i.e., its worst-case performance

ratio relative to the optimal, perfect information schedule is bounded above

by a factor of 2) for a delivery-time version of the scheduling problem

(without preemption), and when the penalty function is subadditive (with

preemption).

This paper makes several specific contributions for the 1/prec/fj^^^

problem with consistent penalty functions. In particular, we: (i) propose a

new FORWARD algorithm; (ii) develop an updating (on-line) version of the

FORWARD algorithm; (iii) empirically demonstrate the computational

benefits of using updating algorithms (instead of zero-base algorithms) to

perform schedule adjustments; and, (iv) analyze the competitiveness of on-

line reoptimization for some special cases. However, our broader purpose

is to use the 1/prec/f,,^^ problem as an example to motivate the need for

further work in the general area of efficient and effective schedule updating

methods, and to illustrate the issues that arise in developing such methods.

2. Problem description and notation

The 1/prec/fj^^ problem consists of scheduling n jobs on a single

machine, subject to precedence constraints on the jobs. Let pj denote the

processing time required for job j. The job precedence constraints are

specified via a directed, acyclic precedence graph G whose nodes correspond to

the jobs; the graph contains a directed arc (i,j) from node i to node j if job i is

an immediate predecessor of job j. For convenience, assume that jobs are

indexed from 1 to n, with i < j if job i precedes job j. Let m denote the number

of arcs in the precedence graph. We assume that the precedence graph is

stored as a linked list requiring 0(m) storage, with pointers from every job to

each of its immediate predecessors. Let B • denote the set of all immediate

predecessors of job j. Job i is said to be an ancestor of job j if the precedence

graph contair\s a directed path from i to j. Let A • 2 B: denote the set of all

ancestors of job j. Each job j carries a penalty function fAtJ that depends on its

completion time t:. The scheduling objective is to minimize fmax = Max [iXtd :

j
= l,2,...n}.

Lawler [1973] developed the following O(n^) zero-base algorithm to

solve the l/prec/f^^^ problem. The method iteratively builds an optimal

sequence by scheduling jobs in reverse order, i.e., it first identifies the job to be

processed last (i.e., in position n of the schedule), then the job in position

(n-1), and so on. At stage k, let Qj^ denote the set of k currently unscheduled

jobs, and let Tj^ denote the cumulative processing time for all jobs in Q^, i.e.,

T,^ = E {pj : j e Q^}. Also, let Rj. be the subset of jobs in Qj^ whose successors, if

any, have all been already scheduled; we refer to jobs in Rj^ as the set of

eligible jobs at stage k. During stage k, the algorithm assigns to position k the

eligible job j* € Rj^ with minimum penalty at time Tj^, i.e., fj»(Tjj) =

Min { fj(Tjj) : j e Rj^ }. The procedure terminates at the end of stage 1. Since

each step requires 0(n) operations to identify the eligible job with minimum

penalty, the overall complexity of the algorithm is 0(n).

While Lawler's algorithm applies to arbitrary penalty functions, we

will focus on a special class of penalty ftmctions that satisfy the following

consistency condition:

A set of functions f|(.), f2(.), , f^C.) is said to be consistent if, for

every pair of indices i, j e {1, 2, ..., n}, either fj(t) < f:(t) or fj(t) > fj(t)

for all values of completion time t.

As Figure 1(a) shows, consistent functions do not intersect; Figure 1(b) shows

two penalty functions that are not consistent.

Several natural penalty functions satisfy the consistency property.

Examples, shown in Figure 2, include (i) the weighted (linear and quadratic)

completion time criteria fj(t) = W: t or fj(t) = W: t^ (ii) the lateness penalty Ut) =

t - dj, where d; is the due date for job j, and (iii) the tardiness penalty iXt) =

max {0, t - d:}. Jobs with consistent penalty fvmctions have the same relative

rarUdng (say, increasing order of penalties) for all completion time values.

Hence, we will sometimes omit the completion time argument, and denote

-5-

as fj > fj the fact that job i has a higher penalty than job j (for all completion

time values).

For convenience, we will assume that the penalty functions for the

different jobs are distinct, i.e., either fj > fj or fj < fj. Thus, the job with the

maximum f)enalty will always be unique. Our Forward algorithm requires

only the relative order of jobs with respect to the penalty functions rather

than the exact penalty values for different completion times. Hence, ranking

the jobs in order of penalties is sufficient.

3. The Forward Algorithm for Vpiedfj^^^ problem with Consistent

Penalty Functions

This section first describes a new zero-base procedure called the

FORWARD algorithm to find the optimal n-job schedule for the 1/prec/fmax

problem with consistent penalty functions. Unlike Lawler's algorithm, the

new method schedules jobs from front to back (i.e., it assigns jobs to earlier

positions first). We prove the correctness of this algorithm, and demonstrate

how it facilitates updating the schedule when a new job enters the system.

3.1 The FORWARD Zero-Base Algorithm

The Forward algorithm is motivated by the following intuitive

argument. Recall that, for consistent penalty functions, the relative ordering

of jobs (in terms of their penalties) does not vary with time. Hence, if jobs are

not constrained by precedence restrictions, we can minimize fj^^^ by

scheduling the jobs in decreasing order of penalty. However, this decreasing-

penalty order may violate some precedence constraints. To satisfy the

precedence constraints, consider the following 'natural' scheme to selectively

(and parsimoniously) advance jobs: Start with the decreasing-p>enalty order as

the candidate sequence; examine jobs from front to back in this sequence, and

ensure precedence feasibility for each job j by advancing (i.e., scheduling

immediately before job j) every ancestor that is currently scheduled after job j.

This procedure effectively attempts to deviate as little as possible from the

decreasing-penalty order by advancing orUy the essential low-penalty jobs that

-6-

must precede the high-penalty jobs. As we demonstrate next, this principle

forms the basis for the Forward algorithm, and gives the optimal n-job

schedule.

To describe and prove the validity of the Forward algorithm, we use

some additional notation. For any subset of jobs S, let Bj(S) be the set of all

immediate predecessors of job j belonging to subset S, i.e., Bj(S) = B: n S.

Similarly, Aj(S) = A^ n S denotes the set of ancestors of job j in subset S. The

Forward algorithm relies on the following result. Recall that we have

indexed jobs such that i < j if job i precedes job j.

Proposition 1:

For any subset of jobs S, let j* be the job in this subset with the maximum

penalty. Then, subset S has an optimal schedule, denoted as n(S), that assigns

job j* to position { I A^»(S) 1+1), and all its ancestors to the first I Aj»(S) I

positions in increasing order of job indices (where I A I denotes the number of

elements of the set A).

Proof:

The first part of the proposition states that the subset S must have an

optimal schedule that processes the maximum-penalty job j* as soon as

possible, i.e., this schedule first processes all ancestors of job j*, followed

immediately by j*. We prove this result using an interchange argument.

Consider an alternative optimal schedule 11" that does not satisfy this

property. Let job j* be scheduled in position k > I Aj»(S) I +1, and let job j' «

Aj»(S) be a non-ancestor that is scheduled closest to, but before, job j*. Let k'

denote the position of job j' in schedule R", k' < k. By our choice of k', all

jobs in positions (k'+l) to (k-1) must be ancestors of j*. Also, job j' is not an

ancestor for any of these jobs; otherwise, j' would be j*'s ancestor as well.

Finally, since job j* has the maximum penalty in the set S, fj»(t) > fj.(t), where t

is the current completion time of job j*. Consider now the new schedule

obtained by postponing job j' to position k, and advancing all jobs in positions

k'+l to k by one position. By our previous observations, the new schedule

must be feasible; furthermore, since job j* has a higher penalty than job j', the

-7-

new schedule does not increase the maximum penalty of the schedule. By

repeating this process until all non-ancestors of job j* are postponed beyond

j*, we get an optimal schedule that satisfies the condition of the proposition.

Now, job j* has the maximum penalty among all jobs in S. Thus, the

penalty incurred for j* must exceed the penalty for each of its ancestors (since

these are completed earlier and have lower f)enalty functions), regardless of

their relative order in positions 1 to I Aj»(S) I . To be feasible, however, the

assignment of these ancestors must satisfy the precedence constraints. Since

jobs are numbered in order of their precedence, scheduling the ancestors in

increasing index order gives a feasible schedule.

Proposition 1 suggests the following iterative scheduling procedure:

first, identify the job j* with maximum penalty, schedule it in position

(I Aj,(S) I +1), and assign all its predecessors to positions 1 through I Aj»(S) I

.

Let S' c S denote the remaining set of jobs (which are not ancestors of j*). In

the optimal schedule n(S), these remaining jobs must be scheduled optimally

in positions (I A.»(S) I +2) to I S I . In effect, we can consider a new scheduling

problem for the subset of jobs S', and apply Proposition 1 to this new subset,

and so on. Our method implements this iterative procedure. We formally

describe the algorithm next. In this description, r is the iteration counter, l^ is

the pointer to the last position in the schedule that is filled in the r*^

iteration, and S^ is the set of remaining unscheduled jobs at the beginning of

iteration r.

The FORWARD Zero-Base Algorithm

Step 0: Initialization

Set r *- 1; iteration counter

Sj <- {1,2,.. .,n); set of unscheduled jobs at iteration r

/j.
.J

= 0. last position scheduled in previous iteration

Step 1: Iterative step

(a) Find the job j*(r) with maximum penalty in set S^;

8-

Aj»(j)(Sr) := Set of all ancestors of j*{r) in S^.

(b) Set
/r
<-

/r.i
+ IAj»(r)(Sr)l +1;

Assign j*(r) to position /^

(c) Assign jobs of the set A:.(r)(Sr) to positions (/r-i+D through

/j.
- 1 in increasing order of job indices.

(d) Set S,^i <r- S^- Aj.(,)(Sr) - {j*(r))

(e) If Sj^i is empty. Stop. The current schedule is optimal;

Else, set r f- r+1, and return to Step 1(a).

Observe that the iterative step is performed at most n times. We refer

to the job j*(r) with the maximum penalty at the r'^ step as the r'" Bottleneck

Job. As r increases, the corresponding bottleneck jobs have successively lower

penalties.

3.1.1 Example

To illustrate the Forward algorithm, cor^ider the precedence graph and

the relative ordering of 6 jobs (in decreasing order of penalties) shown in

Figure 3. Initially, all jobs are unscheduled, and the job with the largest

penalty is job 5 (i.e., j*(l) = 5). This job has two unscheduled ancestors, jobs 1

and 2, i.e., A5(S^) = {1,2}. The first iteration schedules the ancestors in

positions 1 and 2, and schedules job 5 in position /^ = 3. At the second

iteration, job 6 has the largest penalty among all remaining jobs. Its

unscheduled ancestor, job 3, is assigned to position 4, while job 6 is scheduled

in position 5. In the final iteration, the orUy remaining job (job 4) is

scheduled in the last position. Table 1 summarizes these computations.

3.1.2 Data Structures and Computational Complexity

To perform the Forward algorithm's computations efficiently, we

maintain a special data structure, and make some minor algorithnuc changes.

Our implementation first sorts the jobs in decreasing order of penalties prior

to initiating the main algorithm. This sorting operation requires 0(n log n)

effort, and will facilitate the process of identifying the bottleneck job at each

iteration of the main procedure. Also, our implementation does not

determine the exact positions for the unscheduled ancestors in the set

Aj»(y)(Sr) (i.e., it does not perform step 1(c)) immediately after at each iteration.

Instead, we reindex these jobs tempwrarily, and determine the actual final

schedule at the end of the main algorithm by performing an overall sorting

op)eration. Initially, all jobs have a temporary index of 0. At iteration r, we
assign the temporary index (ru- + j) to each job j € A|,(^)(Sp that is scheduled

during that iteration, and job j*(r) is assigned the index (nr + j*(r)). Thus, all

jobs that must be scheduled in the r* iteration (between positions (/r.i+D and

(/^-D) have temporary indices in the range (nr+1) to n(r+l). After the main

algorithm terminates, we sort the jobs in increasing order of their temporary

indices (0(n log n) effort) to obtain the final optimal schedule. Observe that

the largest possible value of a temporary index is n(n+l). Also, at

intermediate iterations, all the jobs that have not yet been scheduled are easy

to identify since they have temporary indices of 0.

Let us now analyze the computational complexity of the Forward

algorithm. First, identifying the successive bottleneck jobs involves

sequentially scanning the sorted list of jobs, which requires 0(n) effort in

total. (At step r, the r*^ bottleneck job j*(r) is the first job following j*(r-l) in

the sorted list with a temporary index of 0.) Now, consider the effort required

to identify the unscheduled ancestors of job j*(r) (in step 1(a)). Starting with

job j*(r), we trace back all unscheduled ancestors using the pointers to the

immediate predecessors in the linked list representation of the precedence

graph. If we encounter a previously scheduled job, we need not explore its

ancestors since these ancestors must all be scheduled previously. Thus, the

total effort required to identify the members of the set A|»(r)(Sr) is 0(m) over

all iterations (since we examine each edge in the precedence graph exactly

once). Combined with the initial and final sorting operations, we get an

overall complexity of 0(m + n log n). In general, the number of arcs m in the

precedence graph is O(n^); hence, the Forward algorithm is no better than

Lawler's original algorithm in the worst-case. However, for problems with

sparse precedence graphs, we expect the Forward algorithm to perform better.

-10

The Forward algorithm also extends to the more ger\eral

1/prec, Tj, pmtn/fj^^ problem where jobs have different release times r: that

are known in advance, and preemption is permitted. App)endix 1 describes

this extension. Later (in Section 5), we use the schedule generated by this

enhanced method as the benchmark to evaluate the effectiveness of on-Une

reoptimization when job release times are not known in advance.

3.13 Adapting Lawler's algorithm for consistent penalty functions

Note that when the jjenalty functions are consistent, we can also adapt

Lawler's original O(n^) algorithm for 1/prec/f,^^^ to run in 0(m + n log n)

time. Recall that, at each stage k, for k = n, n-1, ..., 1, Lawler's algorithm selects

the eligible job j e R^ with the smallest penalty at the current completion

time Tj^. For general penalty functions, the order of eligible jobs (arranged in

increasing order of penalty values at Tj^) might change from stage to stage.

However, writh consistent penalty functions, the order is invariant. To

exploit this property we use a heap structure to store the currently eligible jobs

in sorted order (increasing penalties) at each stage. At stage k, we: (i) schedule

the job that is currently at the root of the heap, (ii) delete this job from the

heap, and (iii) insert in the heap all its immediate predecessors that just

became eligible. Inserting and removing each job from the heap entails

0(n log n) total effort; and, checking the eligibility of jobs at each stage

requires 0(m) effort (since each arc of the precedence graph must be examined

once). Hence, the overall complexity of the heap implementation of Lawler's

static algorithm is 0(m + n log n), which is the same as the computational

complexity of our Forward algorithm. However, as we show next, the

Forward algorithm is more amenable to updating existing schedules.

3^ The FORWARD Updating Algorithm

For the updating problem, we are given an optimal n-job schedule, and

a new job, indexed as (n+1), with prespedfied immediate predecessors B^^|,

arrives. We initially assume that job (n+1) does not have any successors in

the current set of n jobs; later, we indicate how to apply the updating method

when the new job also has successors among currently scheduled jobs. Let n

11

= {j|, J2, J3,
•— , Jn)

denote the current optimal n-job schedule where
jj^

denotes

the index of the job that is scheduled in the k'*^ position. The updating

problem consists of constructing a new optimal schedule W =
[i\, j'2/ ... , ']\,

J n+l^ that includes the new job (n+1).

The updating procedure uses information on the bottleneck jobs

corresponding to the current schedule. As we mentioned in Section 3.1, the

successive bottleneck jobs must have successively lower penalties; hence, the

current sequence n already lists the bottleneck jobs in order of decreasing

penalties. Consider now the position for job (n+1) in the (n+l)-job optimal

schedule IT, assuming we applied the Forward zero-base algorithm. Since job

(n+1) does not precede any current jobs, its position in the schedule is

determined solely by its p>enalty function relative to the current bottleneck

jobs. In particular, suppose U»(r.\) < i^+l ^ V(r)'
^'^' *^^ ^^^ job's penalty lies

between the penalties for the (r-1)*' and r* bottleneck jobs. Since the current

sequence schedules existing bottleneck jobs in decreasing penalty order, we

can identify the index r in linear time. And, the updating procedure must

merely insert job (n+1) and all its previously unscheduled ancestors (i.e.,

ancestors that are not scheduled in positions 1 to /^.j) immediately after the (r-

1)*' bottleneck job j*(r-l).

Assuming that we are initially given only the immediate predecessors

B^^-f of job (n+1), finding the members of A^^|(Sp (the set of unscheduled

ancestors for job (n+1)) requires O(m') operations, where m' is the number of

edges in the precedence subgraph induced by job (n+1) and its ancestors. We
must then assign these ancestors to consecutive positions, starting with

position (/^.|+1). Observe that the current schedule satisfies the precedence

constraints among all ancestors of job (n+1). Hence, the jobs in Aj^^^(Sr) need

not be re-sorted to satisfy precedence constraints; instead, we get a feasible

schedule by merely scheduling these ancestors in the order in which they

occur in the current schedule. Adjusting the current schedule in this manner

requires at most O(n') effort, where n' is the number of ancestors of job (n+1).

Thus, the overall complexity of the Forward updating procedure is 0(m'+n')

compared with 0(m + n log n) for the Forward zero-base algorithm. Finally,

note that the updating procedure can easily accommodate new jobs that must

-12

precede existing jobs. Let jg be the immediate successor of job (n+1) that is

scheduled earliest in the current schedule, and let l^ denote its position in the

current schedule. In the new schedule, the jobs that are currently scheduled

in positions ig and beyond will retain their relative order. Therefore, we need

to apply the updating procedure only to jobs that are currently scheduled in

positions 1 to /g-1.

3.2.1 Example

For the example shown in Figxire 3, Figure 4 illustrates the updating

calculations when a new job (job 7) enters the system. This job has two

immediate predecessors, jobs 4 and 5, and its penalty value Ues between those

of jobs 1 and 6. Job 7 must, therefore, be scheduled between the two

consecutive bottleneck jobs 5 and 6. Job 7 has two ancestors, jobs 3 and 4, that

are not scheduled prior to job 5. Hence, we assign these two jobs to positions

4 and 5, respectively (preserving their relative order in the current schedule);

job 7 occupies position 6, followed by job 6. Figure 4 shows the updated

schedule.

4. Computational results

Section 3 showed that the updating algorithm has better worst-case

complexity than the zero-base algorithm. To verify this computational

superiority in practice, we compared the computation times using the

Forward zero-base algorithm and the updating procedure for an extensive set

of random test problems ranging in size from 100 jobs to 400 jobs. We first

describe the random problem generating procedure before presenting the

computational results.

4.1 Random Problem Generation

Our random problem generator requires two user-spedfied parameters:

the number of jobs (n), and the density 5 of the precedence graph (0 < 5 < 1).

Initially, we attempted to generate precedence graphs with random topologies

by independently selecting arcs (i,j), for any pair of nodes i and j, with

probability S. We discovered, however, that the resulting precedence graphs

contained many redundant arcs. For example, if the graph contains arcs (i,j),

-13-

(j,k), and (i,k), then arc (i,k) can be deleted since this precedence order (i.e., i

preceding k) is implied by the other two arcs. Consequently, the reduced

graph (with redundant arcs eliminated) was often much sparser than the

desired density values. To overcome this problem and to avoid checking for

redundancies, we decided to use layered precedence graphs that contain only

arcs between successive layers; hence, none of the arcs are redundant.

To generate a random layered graph containing n nodes and with

density parameter 5, the problem generator:

• randomly selects the number of layers (L) in the graph (0 < L < n);

• equally divides the number of nodes among the layers; and,

• for each pair of nodes i and j in successive layers, selects arc (i,j) with

probability 5.

For the updating problem, the random generator assigns the new job (n+1) to

a new layer, and connects node (n+1) to nodes in the previous layer with

probability 5.

We implemented the zero-base and updating versions of the Forward

algorithm in PASCAL on a Sun 4/390 workstation. For our computational

tests, we considered four networks sizes, with number of nodes n = 100, 200,

300, and 400, and five values of the density parameter 5 = 0.10, 0.25, 0.50, 0.75,

and 0.90. For each combination (n,5), we generated 100 random problem

instances. Table 2 summarizes the mean (over 100 random instances) and

standard deviation of CPU times (to add the (n+1)*' job to the current

schedule) for the zero-base and updating versions of the Forward algorithm

for all the (n,5) combinations. As Table 2 shows, the updating algorithm is

faster than the zero-base version by a factor ranging from 2 to 5. Thus, for

scheduling contexts that require numerous frequent updates, the magnitude

of computational savings using the updating method can be substantial. For

the 100-job problems, the CPU time for individual problem instances varies

widely as indicated by the large standard deviation (relative to the mean). As

the problem size increases, the CPU time for updating relative to 2^ro-base

scheduling appears to increase. The density parameter does not seem to have

a significant or consistent effect on this ratio.

14-

5. Competitiveness of On-line Reoptimization

Having demonstrated the relative efficiency of using tailored updating

methods instead of zero-base algorithms to accomodate new jobs, we now

examine the effectiveness of on-line reoptimization as a heuristic strategy to

schedule dynamic systems. One approach to evaluate this effectiveness is to

assume a tractable stochastic model for job arrivals, processing times, and

precedence relationships, and analyze the expected performance of on-line

reoptimization (or other dispatch rules) in this framework. However, this

mode of analysis is often sensitive to the choice of the stochastic model

governing the occurrence of random events.

Recently several researchers in theoretical computer science (e.g.,

Borodin et al. [1987], Chung et al. [1989], Manasse et al. [1988]) have developed

an alternate approach to study on-line effectiveness using the notion of

competitiveness. The approach involves characterizing the worst-case

performance of the on-line method compared to an optimal off-line

procedure that has perfect information about the future. In particular, for

problems with a minimization objective, an on-line algorithm A is said to be

c-competitive if the inequality

Ca ^ c Co + a

holds for any instance of the on-line problem. Here, C^ denotes the "cost"

incurred by the on-line algorithm A, and Cg is the cost for the optimal off-line

solution with clairvoyance. Thus, competitiveness is a useful measure for

performance analysis of incremental algorithms. Researchers have started

applying this measure to scheduling problems only recently; Shmoys, Wein

and Williamson [1991] address competitiveness issues related to on-line

scheduling of parallel machines to minimize makespan.

This section demonstrates the underlying principles and techniques of

competitiveness analysis applied to our single machine scheduling problem.

Developing bounds on the relative difference between the on-line and off-

line optimal objective values for general penalty functions f:() is difficult since

we cannot exploit any special properties of the solutions. We, therefore, need

to separately study various specializations of f:0- We consider two types of

-15-

p>enalty functions - subadditive functions and lateness. For subadditive

penalty functions, we shov^ that on-line reoptimization is 2-competitive

when we perniit preemptions, and (p+2)-competitive for non-preemptive

scheduling, where p is the Aspect ratio (defined later). We then prove 2-

competitiveness of on-line reoptimization for the lateness penalty case

(delivery time version).

Before describing and proving the competitiveness results, let us clarify

the context and the mechanics of on-line reoptimization. Jobs arrive

randomly at various release times t-. Assume that jobs are indexed in the

order in which they arrive. We study effectiveness for both preemptive and

non-preemptive scheduling problems. First, consider the case when
preemptions are permitted, i.e., at each arrival epoch r^, the job that is

currently in process, say, job u can be interrupted and resumed later without

any additional setup or reprocessing effort. In this case, applying the updating

method involves: (i) determining the rank, say, r* (in decreasing pjenalty

order) of the new job j relative to all the currently available jobs (including

the current in-process job u), and (ii) inserting job j and its unscheduled

ancestors immediately after the (r*-l)*' bottleneck job in the current schedule.

Notice that the current job u is preempted only if job j has a higher penalty

than all other available jobs. In the non-preemptive case, job u must

necessarily be completed first, and only the remaining jobs can be

rescheduled. Hence, job j is ranked only relative to these remaining jobs.

This on-line updating algorithm is a heuristic method that does not

guarantee long-run optimality of the schedules. The benchmark for

comparing the performance of the on-line method is an optimal off-line

schedule that has prior knowledge (at time 0) about the exact arrival times n

for all jobs j. In Graham et al.'s [1979] nomenclature, the off-line schedule is

the optimal solution to either the 1/prec, rj, pmtn/f^^ or 1/prec, rji^^^

problem depending on whether or not preemption is permitted. Note that

the 1/prec/fj^^^ problem (with preemption) is polynomially solvable using,

say, the enhanced Forward algorithm described in Appendix 1, while the

1/prec, T:/ fjj^^ problem (without preemption) is known to be NP-hard.

Indeed, the non-preemptive problem remains NP-hard even if we restrict the

16-

penalty f^^^^ to maximum lateness L^^^, and relax the precedence constraints

(i.e., for the l/n/Lj^^ problem).

5.1 Subadditive Penalty functions

A penalty function f:() is said to be subadditive if it satisfies the

condition:

fj(ti + tj) < fj(ti) + fj(t2)

for all t|, t2 ^ 0. Interesting special cases of subadditive functions include

concave penalty functions, and linear completion time pjenalties (i.e., f:(t) =

Pj t). We denote the maximum subadditive penalty as f^ax- ^^^ section

studies the competitiveness of on-line reoptimLzation, with and without

preemption, when all jobs have consistent, subadditive penalty functions.

When preemptions are permitted, we show that the on-line reoptimization

strategy is 2-competitive, i.e., the objective value of the on-line schedule is at

most twice the optimal off-line value. When preemption is prohibited, the

worst-case ratio increases to (p+2), where p is a specified ratio of job processing

times.

5.1.1 Scheduling with Preemptions

We now show that, for any k-job problem, the preemptive schedule

obtained using on-line reoptimization (without anticipating future job

arrivals) has a worst-case performance ratio of 2 relative to the optimal off-

line schedule for the l/r^ prec, pmtn/f^^^ problem constructed by the

enhanced Forward algorithm (Appendix 1).

Theorem 1:

For the 1/prec, r^ pmtn/f^^^ problem, on-line reoptimization is 2-

competitive.

-17-

Proof:

Let n be the preemptive schedule obtained using on-line reoptiniization for a

k-job problem. Let 4>j^ be the (maximum) completion time penalty for this

schedule, and let j' denote the critical job, i.e.,

(t)k
= fj.(tj.) = max {fj(tj): 1 <

j
< k},

where t: is the completion time for job j in the schedule n. First, we note

several characteristics of the schedule n. Since j' is the critical job, all jobs

following job j' in schedule n must have lower penalty functions (otherwise,

a job with higher penalty function that is scheduled later than j' would be the

critical job). Consider now the interval of time [n., t:.] between the arrival of

job j' and its completion. Let J' denote the set of all jobs j that are completed

in this interval and having equal or higher penalty functions (
J' also includes

job j). Let A(J') denote the set of ancestors j € J' of all jobs in the set J.

Clearly, every job that the on-line schedule completes in the interval [r:., t.]

must either be a member of the set J' or an ancestor of some job j e J'. Also,

the completion time t:. for job j' in schedule n has the following upper

bound:

t:. < r:. + I pj + I Pj. (1)

Now consider the optimal off-line schedule n* which uses prior information

on job release times. Let <\>^^ be the (maximum) completion time penalty for

this schedule, and let Tj be the completion time for job j in 11*. Among all the

jobs belonging to the set J', let j" be the job that is scheduled last in n*.

Observe that

i^ > fj.(Tj-) > fj.(Tj-), (2)

T:- > Z Pi + Z Pi , and (3)
'

jej- ' jeA(J') '

Tjn > rp (4)

Inequality (2) follows from the definition of ^, and because job j" € J' has an

equal or higher penalty function than job j'. Inequalities (3) and (4) hold

because both j' and j" belong to the set J', and job j" is completed last in n*.

From (1), (3), and (4), we have

tj. ^ Tj. + Tj- = 2Tj.. (5)

Inequalities (2) and (5) imply that

(Dk = fj.(tj.)

18

< fj.(2Tj..) from (5)

<, 2 fj.(Tjn) from subadditivity, and

< 2
(tj;

from (2). (6)

Hence, the on-line reoptimization strategy is 2-competitive.

Claim : The worst-case bound of 2 (proved in Theorem 1) is tight.

The following example justifies this claim. Consider a 3-job problem instance

with linear completion time f)enalties f:(t) = P: t. Job 1 is unrelated, while job 2

precedes job 3. Jobs 1 and 2 arrive at time 0, each requiring 10 imits of

processing time, and job 3 arrives at time 10 with a very small processing

time. The jobs have the following ordering in terms of penalty functions: i^ >

i-[> ^2- ^ o^^ notation, the following parameters describe this problem

instance: r^ = 0, r2 = 0, and r3 = 10; p| = 10, P2 = 10, and P3 = e; B3 = (2); and p| =

1, P2 = 0, and P3 = 100.

At time 0, both jobs 1 and 2 are available, but job 1 has higher penalty.

Hence, the on-line method processes it first. The next epoch is at time 10,

when job 3 arrives (and job 1 completes). At this time, the on-line method

starts job 2 (to satisfy job 3's precedence constraint), and finally completes job 3

at time (20 + e). Job 3 is the critical job, with a completion time penalty of

100*(20+e). On the other hand, the optimal off-line scheduling method

anticipates job 3's higher penalty and delayed arrival at t = 10. Hence, the

optimal off-line sequence is 2-3-1. Job 3, completed at (10+e), is again the

critical job, with a penalty of 100*(10+e). Thus, the ratio of on-line to off-line

penalty values is (20+e)/(10+e) which approaches 2 as e approaches 0. Hence,

the worst-case ratio of 2 is tight. Next, we show that, for the non-preemptive

case, the worst-case ratio is higher.

5.1.2 Scheduling without preemptions

As we noted earlier, finding the optimal off-line schedule with no

preemption is computationally intractable. Hence, unlike the preemptive

case, we do not have a convenient characterization of the optimal off-line

schedule. To evaluate the competitiveness of on-line reoptimization for the

-19-

non-preemptive case, we use the following strategy. We know that the

optimal off-line preemptive schedule has a lower penalty than the optimal

off-line non-preemptive schedule. Hence, if we can derive a worst-case ratio

for the on-line, non-preemptive schedule with respect to the optimal, off-line

preemptive schedule, this ratio should also hold for the off-line non-

preemptive solution. Let p denote the maximum, over all job pairs i and j, of

the ratio of processing time for job j to the sum of processing times for job i

and all its ancestors, i.e.,

p = max {pj/{pi + ^ p,} : 1 < i,j < k, i ?t
j}.

' /e Ai

We refer to p as the Aspect ratio. Note that the denominator in the above

expression is a lower bound on the earliest possible completion time of job i.

Indeed, our competitiveness result applies even if replace the denominator of

p with a tighter lower bound (on job i's completion time) involving, say, the

release times of job i and its ancestors.

Theorem 2:

For the 1/prec, rj/f^^^ problem, the on-line reoptimization method is

(p+2)-competitive.

Proof:

This proof is very similar to the proof for Theorem 1. Let Ilj^ be the on-line,

non-preemptive schedule for a k-job problem. Let ^^ be the (maximum)

penalty of this schedule, defined by the critical job j'. Consider the interval of

time [r:., t:.] between the arrival of job j' and its completion in schedule Ilj^ .

Let u be the job that is currently in process in n„ when job j' arrives, and let

J' be the set of all jobs vdth higher jjenalties than j' that are completed in the

time interval [r:., t.]. Except for the in-process job u, all other jobs that are

completed in this interval either belong to J' or are ancestors of one or more

jobs in J'. Let A(J') be the set of all ancestors j € J' for jobs in J'. As before, let

n* be the optimal, off-line preemptive schedule; job j" e J' is scheduled last in

n* among all jobs of J'. T: denotes the completion time for job j in n*, and (^

is the shcedule's penalty value. The job completion times in the on-line and

off-line schedules must satisfy the following inequalities:

-20-

tj. < rj. + p^+ X pj+lpj; (7)
' ')eA(J) ' jef '

Tjn > max {fj., Z pj + Z pj); and (8)
J ' jeA(J') ' JGj' '

> V(TjO

> U max {r., Z p; + I Pj })• (9)

These inequalities imply that:

(0? = fj.(tj.)

< Un,) + Vp Pj.)
+ £;.(Z Pj+Zpj)

J ' J '^J J j6A(j') ' j€r
'

using subadditivity and (7)

<
<t>jj+ p <)>k

+
<t>k

using subadditivity and (9)

(p+2) ^.

Thus, the worst-case ratio for the on-line, non-preemptive schedule is at most

(p+2) relative to the optimal off-line, preemptive schedule. Hence, the on-

line reoptimization strategy is at least (p+2)-competitive for the

1/Ty prec, pmtn/f^gj^ problem.

Claim : The worst-case bound of (p+2) for non-preemptive schedules is tight.

To prove this claim, consider the following augmented version of the

previous worst-case problem instance (described after Theorem 1). In

addition to the 3 jobs in that example, we have a fourth job that arrives at

time r4 = 0, with penalty coefficient P4 = 1, and a processing time of P4 = 20.

Also, job 3 arrives at r3 = 10 + 5, for some small 5 > 0. Note that the Aspect

ratio p for this problem instance is P4/P1 = 2. Consider, first, the schedule

obtained using on-line reoptimization. Job 1 (or job 4) is scheduled first and

completes at time 10. Since job 3 is not yet available, the method schedules

job 4, followed by job 2 and tinally job 3. Job 3 completes at time (40 + e); it is

the critical job with a penalty of 100*(40 + e). Contrast this on-line schedule

with the following optimal, non-preemptive schedule: Job 2 starts at time

and completes at time 10; the processor is idle from time 10 to time (10 + 6);

Job 3 starts at time (10+5), and completes at time (10+&+e), followed by jobs 1

and 4. Again, job 3 is the critical job, with a completion time penalty value of

21

100*(10+5+e). Thus, the ratio of the on-line penalty and the optimal, off-line

(non-preemptive) penalty approaches (p + 2) = 4 as 5 and e tend to zero.

5.2 The Lateness Penalty function

We now consider the Lateness objective L^^gx' ^•^•' ^^^ penalty for job
j

is fj(t:) = b - dj, where t: and d. are, respectively, the completion time and due

date for job j, and Lj^^^ = Max { fj(tj): j
= l,2,...,n}. Our discussions focus on

non-preemptive, precedence-constrained scheduling for this problem. The
best off-line approximation algorithm for the 1/t-/Lj^^ problem was

developed by Hall and Shmoys [1991]. They show that, for the delivery-time

formulation of this model (described later), a 4/3 approximation algorithm is

possible using an enhanced version of Jackson's earliest due date rule.

Although Jackson's rule can be applied on-line, the approximation

techniques used by Hall and Shmoys sacrifice the on-line characteristic to

achieve the tighter bounds.

To study on-line competitiveness, we cannot work directly with the

maximum lateness objective Lj^g^ since some problem instances may have

zero or negative optimal off-line Lj^^^ values. (If the off-line L^^^^ is zero, the

worst-case competitiveness becomes unbounded for any on-line algorithm

that is even slightly suboptimal.) Instead of redefining competitiveness, we
transform the Lj^^^ problem to the following equivalent delivery time

version (Potts [1980]) which has a positive optimal value for all problem

instances.

5.2.1 The Delivery Time Formulation

Let (dj) denote the job due dates, and let K be a value greater than the

largest due date. Now define the tail a of job j as

We interpret the tail q: as the time to deliver the job j after it is completed.

Thus, the delivery time of job j is L + q:, where t is the completion time of job

j. The objective of the scheduling problem now consists of minimizing the

maximum delivery time over all jobs. The optimal schedule for this delivery

-22-

time version also minimizes maximum lateness. Observe that the penalty

function f(t|) = t + K - d: implied by the delivery time objective function is

consistent (according to our definition in Section 2), with jobs that are due

earlier having higher penalty functions. Thus, at each job arrival epoch, on-

line reoptimization for the delivery time problem (without preemptions)

involves adjusting the current schedule to process the available job with the

earliest due date as soon as possible (subject to completing the current in-

process job and all unfinished ancestors of the EDD job).

5.2.2 2-competitiveness of On-line Reoptimization

For any given k-job instance of the non-preemptive delivery time

problem, let n be the schedule obtained using on-line reoptimization. Let

DT; be the delivery time of job j in this schedule; ^^^ is the maximum delivery

time value over all jobs j. Denote the (maximum) delivery time of the

optimal, off-line schedule n* sls^.

Theorem 3:

On-line reoptimization is 2-competitive for the non-preemptive

delivery time problem, i.e., (t)jj
< 2 (()|^ for all k.

Proof:

We prove this result by induction. Assume that jobs are indexed in the order

in which they arrive, and first consider k = 2. Since delivery time for a job

equals the sum of its start time, processing time, and tail, the optimal off-line

value <^ must be greater than or equal to the maximum processing time over

the k jobs. In the two-job case, if both jobs arrive simultaneously, then the

on-line updating method also constructs the optimal schedule. When the

release times are different, say, job 1 arrives before job 2, the on-line method

schedules job 1 before job 2. Suppose the optimal off-line solution consists of

processing job 2 before job 1. Relative to this optimal schedule, the on-line

schedule delays job 2 by at most p|. Hence, job 2 incurs an incremental

delivery time penalty of at most p| relative to its penalty in the optimal off-

line schedule n*. Furthermore, job 2's penalty in O* is a lower bound on the

optimal off-line objective function value ^. Hence,

-23-

<t>2 ^ <>2 + Pi ^ 4>2 + n^ax {pj, P2}

< 2
<t)J.

Thus, the on-line method is 2-competitive for 2 jobs. Now suppose the

method is 2-competitive for all k' < (k - 1) jobs. We show that it must also be

2-competitive for k jobs.

Let job j' < k be the critical job in the on-line schedule, i.e.,

<t>k
= DTj. = Sj. + pj. + qj.,

where S: is the start time for job j in the on-line schedule.

Case 1: S:. < s^ .

In this case, job j' starts earlier than the new job k but also has the

highest delivery time. Hence, job j' must have a higher penalty

function (i.e., earlier due date) than job k. Since the Forward algorithm

leaves all higher penalty jobs unaffected when job k arrives, job j' must

start at S;. even in the (k-1) job on-line schedule. Hence,

<t>k-i ^ Sj. +
Pj.

+ qj. =
<t)k

.

But,
(t)j^*|

< (^ , and

(}>j^.l
< 2

<t>i^.|
by the induction hypothesis.

Hence,
(f)!^

< 2
<t)j^.

Case 2: S|. > Sj^

.

In this case,

K ^ i-j' + Pj- + qj-

= (Sj. +
Pj.

+ qj.)
- (Sj. - rj.)

=
(t)k

- (Sj. - rj.).

Note however that

Sj - rj < 2 Pj for all jobs j.

Otherwise, the interval of time between the arrival and start of job
j

contains some idle time which is impossible using the on-line method

(since job j is waiting in the queue). Therefore,

k

K ^ <t)k-.^Pi'
1=1

which implies that
(t)j^

^ 2 (j)|^.

-24-

Thus, on-line reoptimization is 2-competitive.

As before, we can show that the worst-case ratio of 2 (proved in

Theorem 3) for on-line reoptimization is tight. Indeed, for the non-

preemptive delivery time problem, the foUov^ng example (Kise and Uno

[1978], Potts [1980]) shows that any on-line scheduling algorithm that does not

introduce forced idleness (i.e., does not keep the machine idle when the job

queue is not empty) must have a worst-case ratio of at least 2 . Consider a

problem instance with two jobs that are released respectively at r| = and rj =

1, having processing times p^ = (P - 1) and P2 = 1/ arid due dates d^ = P and d2 =

1 (hence, the tails are q^ = and q2 = (P - D). With no precedence constraints,

the best strategy consists of keeping the machine idle for the first time period,

and scheduling job 2 before job 1. The maximum delivery time for this

solution is (P + 1). On the other hand, any on-line method that does not

anticipate future job arrivals or introduce forced idleness will schedule job 1

at time (since it is the only available job). Since jobs cannot be preempted,

job 2 begins processing only at time (P - 1), and its delivery time is (2P - 1). As

P becomes arbitrarily large, the ratio of on-line to optimal off-line delivery

time approaches 2. And, on-line reoptimization achieves this lowest possible

worst-case ratio.

In retrospect, the 2-competitiveness of on-Une reoptimization is not

surprising in view of the worst-case bound of 2 for Schrage's heuristic (Potts

[1980]). For the l/r:/DT,^j^ delivery time problem (without preemption or

precedence constraints), Schrage's heuristic consists of applying Jackson's

earliest due date rule on-line (with a longest processing time tie-breaking

rule), i.e., whenever a job completes, the method dispatches the currently

available job with the earliest due date. Note that, without precedence

constraints, on-hne reoptinuzation also chooses this "current" HDD job

sequence. Potts [1980] used a characterization of Schrage's heuristic schedule

(in terms of an interference job) to prove that the method has a worst-case

bound of 2. When jobs have precedence constraints, we can transform the

delivery time problem l/r|, prec/DT^^^ to an equivalent unconstrained

version by revising the job release times and tails as follows: if job i must

25-

precede job j, set t- <- max {rj, r:} and qj <- max {qj, a+Pj}- Potts' result implies

that Schrage's heuristic applied to this transformed problem is 2-comp)etitive.

Note that, when a new job arrives, updating the tails (to account for its

precedence constraints) involves examining every currently available

ancestor of the new job. In contrast, our on-line updating algorithm

(Appendix 1) is more efficient since it first locates the new job relative to the

current bottleneck jobs, and only examines ancestors that are scheduled later.

6. Conclusions

In this paper we have developed a new Forward algorithm and an

updating version for one class of scheduling problems. The updating

procedure reduces the computational effort to accomodate a new job into an

existing schedule by using information from the current schedule. In

contrast, applying a zero-base algorithm to reschedule all the jobs from scratch

would entail significantly higher computational effort, as illustrated by our

computational results of Section 4. Section 5 gives partial results

characterizing the effectiveness of using deterministic reoptimization for on-

line scheduling.

Our broader purpose in this paper is to demonstrate the scope, and

efficiency and effectiveness issues in developing on-line updating algorithms

for dynamic scheduling problems. In spite of their practical importance in

contexts such as real-time control of distributed processors, updating

algorithms have not been adequately studied in the scheduling literature. For

illustrative purposes, we studied a single machine scheduling problem that

can be solved efficiently. Exploring similar updating methods for other

scheduling objectives and contexts is an important research direction that

merits further investigation.

26-

Appendix 1

FORWARD Algorithm for the

1/prec, Fj, pmtn/fj^ax problem with Consistent Penalties

The Forward algorithm described in Section 3 assumes that all jobs are

simultaneously available at time 0. This Apf>endix describes an extension to

handle arbitrary, but known, job release times; job preemption is permitted.

First, we review the notation. We are given n jobs, and a precedence

graph G:(N,A) contairung m arcs. B. and A represent, respectively, the set of

immediate predecessors and ancestors of job j. Each job has a "consistent"

non-decreasing penalty function fit), i.e., either fj(t) < fjCt) or fj(t) > fj(t) for all

completion times t, and f:(t) > fj(t') if t > t'. Let pj and rj denote, respectively,

the processing time and release time for job j.

Without loss of generality, we assume that all ancestors of any job
j

arrive at or before job j; otherwise, we can set r: = Max {r^ + p^: i 6 B:}. Also,

for convenience, assume that jobs are indexed in order of release dates;

consequently, i < j if job i precedes job j. We require a preemptive schedule

that minimizes f,^^ = Max (fXtj): j
= l,2,...,n} while satisfying the precedence

constraints and release times, where tj is the completion time for job j
in the

chosen schedule.

Scheduling Principle:

As before, ti\e Forward algorithm identifies successive bottleneck jobs,

and schedules each bottleneck job as early as possible. As before, we first sort

all jobs in decreasing order of penalties. The method starts with an empty

schedule, and progressively assigns jobs to appropriate "free" time intervals

in the current schedule. At iteration r, the method has scheduled the first (r-

1) bottleneck jobs and all their ancestors. Let I"" denote the set of available free

time intervals in the current schedule at the start of iteration r. The

following steps are performed at iteration r:

Step 1: Identify the r*^ bottleneck job j*(r), i.e, job j*(r) has the largest penalty

among all the currently unscheduled jobs;

Step 2: Consider each unscheduled ancestor j of job j*(r) in increasing index

order: allocate to job j the first available Pj time units after the release time r|.

Update the available free intervals.

Step 3: Allocate to job j*(r) the first available Pj.^^)
time uiuts after the

release time r-.^^).

-1-

The algorithm iteratively repeats this process—finding the next bottleneck

job, and scheduling this job and all its ancestors as early as possible in

increasing index order. Note that as we identify and schedule more
bottleneck jobs, the schedule becomes fragmented, i.e., it has "holes" due to

delayed releases for certain jobs. These holes are filled whenever possible in

subsequent steps; filling the holes might introduce preemptions, i.e., the total

processing time of a job may be distributed over several intervals.

Let n be the final schedule constructed by the Forward algorithm, and
denote the set of bottleneck jobs as Jg

Lemma:
In the final schedule constructed by the Forward algorithm,

Wx = Max { fj(tj) : j
e Jb }.

Note that this property also holds for the original model when all jobs are

simultaneously available at time 0.

Proof of correctness of the Forward Algorithm:

Suppose the schedule n constructed by the Forward algorithm is not optimal.

Let j* be the critical job that determines the penalty of this schedule, i.e., f^^^^ =

fj»(tj»), and suppose j* is the r* bottleneck job, i.e., j* = j*(r*). Let IT be an

optimal schedule; let f'^^gx '^^ *
j
denote, respectively, the maximum penalty

and the completion time for each job j in this schedule.

By tlie hypothesis, f'max < ^ max ~ fj»(tf)• Since penalty fvmctior\s are non-

decreasing, this inequality implies that job j* must be scheduled earlier in 11',

i.e., t'j. < tj,. Since the Forward algorithm schedules all bottleneck jobs as

early as possible in order of decreasing penalties, ty can be less than tj» only if

the schedule 11' completes some previous bottleneck job (i.e., a bottleneck job

with a higher penalty than job j* and scheduled before tj» in the Forward

schedule n) on or after tj». Let j'*(r) for some r < r* denote this bottleneck job.

Since t'j,(j) > tj», we must have f'^^^ > fj.(j)(tj,). However, since the job j*(r)

has a higher penalty than j*, fj»(r)(tj») > i:»(tj») = f^^^^ contradicting the

optimality of schedule IT.

2-

References

Aho, A. v., J. E. Hopcroft, and J. D. Ullman (1974) The Design and Analysis of

Computer Algorithms, Addison-Wesley, Reading, Massachusetts.

Baker, K. R., E. L. Lawler, J. K. Lenstra, and A. H. G. Rinncx)y Kan (1983)

"Preemptive scheduling of a single machine to minimrze maximum cost

subject to release dates and precedence constraints". Operations Research,

31, pp. 381-386.

Borodin, A., N. Linial, and M. Saks (1987) "An optimal on-line algoirthm for

metrical task systems", Proc. of 19th ACM Symposium on Theory of

Computing, pp. 373-382.

Chin, P., and D. Houck (1978) "Algorithms for updating mirumum spanning
trees". Journal of Computing Systems Sciences, 16, pp. 333-344.

Chung, P. R. K., R. L. Graham, and M. E. Saks (1989) "A dynamic location

problem for graphs", Combinatorica,9, pp. 111-131.

Even, S., and Y. Shiloach (1981) "An on-line edge deletion problem". Journal

of the Association of Computing Machinery, 28, pp. 1-4.

Frederickson, G. N. (1985) "Data structures for on-line updating of minimum
spanning trees with applications",S/AM Journal on Computing, 14, pp.
781-798.

Prederickson, G. N., and M. A. Srinivas (1984) "On-line updating of degree-

constrained minimum spanning trees". Proceedings of the 22nd Allerton

Conference on Communication, Control, and Computing, October 1984.

Hall, L. A., and D. Shmoys (1991) "Jackson's rule: Making a good heuristic

better", to appear in Mathematics of Operations Research.

Jackson, J. R. (1955) "Scheduling a production line to miiumize maximum
tardiness". Research report 43, Management Science Research Project,

University of California, Los Angeles.

Kise, H., and M. Uno (1978) "One-machine scheduling problems with earliest

start and due time constraints", Mem. Kyoto Tech. Univ. Sci. Tech., 27, pp.

25-34.

Lawler, E. L. (1973) "Optimal sequencing of a single machine subject to

precedence constraints". Operations Research, 26, pp. 544-546.

-Rl

Lawler, E. L., J. K. Lenstra, and A. H. G. Rinnooy Kan (1982) "Recent

developments in deterministic sequencing and scheduling: A survey", in

Deterministic and Stochastic Scheduling, M. A. H. Dempster, J. K. Lenstra,

and A. H. G. Rinnooy Kan (eds.), Riedel, Dordrecht.

Malone, T. W., R. E. Pikes, K. R. Grant, and M. T. Howard (1988) "Enterprise:

A market-like task scheduler for distributed computing environments", in

The Ecology of Computation, B. A. Huberman (ed.), Elsevier Science

Publishers B. V., Amsterdam, Holland, pp. 177-205.

Manasse, M. S., L. A. McGeoch, and D. D. Sleator (1988) "Competitive

algorithms for on-line problems", Proc. 20th ACM Symposium on Theory

of Computing, pp. 322-333.

Overmars, M. H., and J. van Leeuwen (1981) "Maintenance of configurations

in the plane", Journal of Computing System Sciences, 23, pp. 166-204

Potts, C. N. (1980) "Analysis of a heuristic for one machine sequencing with

release dates and delivery times". Operations Research, pp. 1436-1441.

Ramamritham, K., and J. A. Stankovic (1984) "Dynamic task scheduling in

distributed hard real-time systems", IEEE Software, 1, 96-107.

Sahni, S., and Y. Cho (1979) "Nearly on line scheduling of a uniform

processor system with release times", SIAM Journal on Computing, 8, pp.
275-285.

Shmoys, D., J. Wein, and Williamson (1991) "On-line scheduling of parallel

machines", preprint.

Spira, P. M., and A. Pan (1975) "On finding and updating spanning trees and
shortest paths", SIAM Journal on Computing, 4, pp. 215-225.

Tarjan, R. E. (1983) Data Structures ami Network Algorithms, Society for

Industrial and Applied Mathematics, Philadelphia, Pennsylvania.

Zhao, W., and K. Ramamritham (1985) "Distributed scheduling using bidding

and focused addressing". Proceedings of the Symposium on Reat-time

Systems, December 1985, pp. 103-111.

-R2

Figure 1

Consistent and Non-consistent Penalty Functions

(a)

Consistent

Penalty

Functions

(b)

i

Figure 2
Special Consistent Penalty Functions

^c
Weighted Linear

Completion

Time Penalty

Weighted Quadratic

Completion

Time Penalty

f(Q
f(Q

/
/

Lateness

Penalty

\ Job

Tardiness ^'^'^

Penalty

Figure 3

Example for Forward Zero-Base Algorithm

Ranking ofjobs in order 515324
of decreasing penalties : > - » > >

n = number ofjobs = 6
m = number of arcs in precedence graph = 7

Figure 4
Example for Forward Updating Algorithm

Ranking of jobs in order

of decreasing penalties

:

5,1,7,6,3,2,4

Updated optimal schedule: 1-2-5-3-4-7-6

Table 1

Forward Zero-Base Algorithm:

Iterations for 6-node example

Iteration

k

s

(job

Date Duef'^-^^

Lib-26-67

Mil lIBRABiES

3 TOflD DD7S1EE5 fl

