


/ ••







WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

M.I.T. Working Paper No. 1127-80

OPTIMAL LONG-TERM INVESTMENT TOEN

PRICE DEPENDS ON OUTPUT

Carliss Baldwin
Massachusetts Institute of Technology

Sloan School of Management
May, 1980

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139





M.I.T. Working Paper No. 1127-80

OPTIMAL LONG-TERM INVESTMENT l^riEN

PRICE DEPENDS ON OUTPUT

Carliss Baldwin
Massachusetts Institute of Technology

Sloan School of Management
May, 1980





ABSTRACT

In some industries (e.g., mining), major capital investments

are necessary to develop resource supplies. Once a commitment has been

made, however, low operating costs may make it uneconomic to shut down an

old facility before the end of its productive life. Under these circumstances,

a new investment will have an impact on total industry supply (and thus on the

prevailing price of the product) which will be difficult to reverse in the

short run. This "total supply effect" is shown to result in optimal

investment criteria which differ substantially from the standard net presert

value rule. This paper develops optimal investment rules for (a) monopolistic,

(b) oligopolistic and (c) competitive industry participants and considers the

effect of industry structure on prices and output assuming optimal investment

rules are followed.



Dewey

<;;;^%. INST, r"?^

DEC 21 ir83



Optimal LoDR-Term Investment when Price Depend:; on Output

1. Introduction.

In evaluations of new capital Investment projects, the standard financial

decision criterion is the net present value rule: a firm seeking to maximize

shareholder wealth should accept any and all projects with NPV > . It is

generally recognized that the net present value criterion is not always

appropriate: for example, if capital is rationed or if a given project produces

significant economies (diseconomies) in other sectors, analysis of hte project

may have to be expanded to take additional constraints and/or opportunities into

account (see, for example, Chenery [1959]). However, when projects are undertaken

in developed economies with large capital markets, the effects of capital

rationing and intersectoral economies are assumed to be small. Within a firm,

the effect of one project on other projects undertaken by the same firm can (it

is generally supposed) be accounted for by adjusting the expected future cash flows

attributable to the project. As long as all cash flows are counted properly, the

net present value rule will always be consistent with the firm's value maximization

objective.

This paper seeks to demonstrate that when firms compete in an imperfect

product market, naive application of the NPV rule (i.e., estimation and

evaluation of direct cash flows only) is not in general consistent with value

maximization. At the same time, an extensive NPV analysis, while correct, may

not be computationally feasible. A preferable approach is to modify the

acceptance criterion to be "accept Project Z if the direct cash flows have

NPV > z " whera z is determined via optimization of an investment decision

model which is developed in this paper. The value of z (after optimization)

is affected by characteristics of industry demand, competition, opportunity,

and the longevity of assets.

Given the diversity of the literature on imperfect product markets,
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it is useful, before proceeding, to clarify what type of market this analysis

seeks to address. Imperfect markets are frequently defined in opposition to

perfectly competitive markets which are characterized in two ways:

(Perfect Competition)

1. All sellers face a horizontal demand curve for the product, or

2. The number of sellers is very large. (Usually (2) implies

that (1) "effectively" holds for all participants).

The imperfect market treated in this paper is one in which the industry

total demand curve is downward sloping: the impact of different numbers

of market participants on optimal investment decisions will be examined in

the course of the analysis.

The basic situation addressed in this paper is as follows: a firm

operates in an industry which produces 2 homogeneous commodity. The price of

the commodity is determined by total industry output: as output increases the

price will fall. The total supply of output is determined by firms' investment

decisions; however, once an investment has been made, the supply thereby created

cannot be revoked or eliminated in the short run. The value of an investment

Is established by the interaction of output price and the costs associated with

the individual project.

Uncertainty enters the model in a number of ways. In general, firms are

uncertain about (1) rhe lifetimes remaining to e.cisting productive

assets, and (2) the occurrence of and costs associated with future investment

opportunities. In the model, these outcomes are governed by exogeneous

probability distributions: filtered through the optimal investment rule

these probabilistic events ultimately determine (1) the output of individual



- 3 -

firms, (2) total industry output, and (3) prices at future points in time.

The basic model may be thought of as applying to a number of different

Industries. A particular example developed in the paper is that of a

mining company, which produces metal for sale at world conmiodity prices. The

opportunities the company faces are new potential mine sites; total output and

price are determined by the number of productive mines operating at any time.

The question addressed is: what criterion should the firm use to decide whether

to develop a new mine site?

The model can also be applied to an industry like chemicals: here

technological innovations and/or new refinery configurations can suddenly make

new supplies of feedstock available. New technologies or new sources of supply

create investment opportunities, which, if taken, will affect the total

supply of a chemical product and its price.

In a slightly different vein, a transformation of variables would allow

model to encompass innovation in the form of new product development. In

this case, the output prices associated with different projects would be

essentially independent (reflecting product dissimilarity and differentiation)

,

but the cost of inputs would be an increasing function of total usage.

Examples of industries to which this type or economic structure is relevant

Include (1) food products (those based on a common raw material like

chocolate)), (2) metals and plastic fabrication, and (3) paper products (the

common raw material is pulp).

Previous Literature. The model presented here is a model of investment strategy

applicable to particular types of firms and industries. It may be contrasted with

a model of a different type of industry developed by Spcnco [1979]. Spence considered

interaction among firms in a grov±n^^*vfSft^tt (one where demand exceeds
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supply providing firms with the opportunity to grow). An essential feature of

his model was the firms' exploitation of a transient growth opportunity;

investments in the groi.'th phase were tey determinants of firms' relative

position (value) when the industry readied a static maturity.

This paper considers optimal investment policies in a mature,

dynamic industry. Demand for product is essentially fixed and stationary

(although it depends on price). On the other hand, output, as well as the

relative position and value of firms, varies based on (1) the opportunities

which are found and (2) the investment decisions i^ade by the firms. Investments

are considered to be not permanent (as in Spence) , but transitory (although

irreversible in the short run). Finally, consistent with the notion of a

company's free access to a frictionless capital market, the model places no

limit (as does Spence) on firms' ability to fund profitable investment opportunities;

limitations on investment (and deviations from the net present value rule)

arise solely because of limitations of the product market and of the cost

structure of opportunities.

In addition to Spence' s work on investment strategy, there is a small but

significant literature which treats the relationship between the rate of return

required by stockholders and the marginal (i.e., minimum) rate of return

on new investment opportunities in an intertemporal context. Elton and

Gruber [1976] demonstrated that the optimal m.arginal rate of return depends

on the evolution of the investment path over time. Aivasian and Callen [1979]

considered the effect of. market structure on optimal investment and the

cost of capital over rime. Tliey showed that a monopolist or (Cournot)

oligopolist will optimally sot the marginal rate of return higher (lower)
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than the cost of capital if future investment opportunities are a decreasing

(increasing) function of current investment.

This paper extends this previous research in two ways. First, it develops

a model of the dynamics of the opportunity set which is based on industry and

firm parameters. Second, it explicitly relates investment decisions to the

demand curve for output as well as the cost structure of opportunities.

Finally, Leland [1972] made an important contribution to the theory of

firm behavior under uncertainty by analyzing a firm facing uncertain demand.

Leland considered optimal price and/or quantity setting by a utility-maximizing

(risk neutral or risk averse) firm over a single period. The model presented

below differs from Leland in that it is dynamic: price and output are fixed

and known this period but will fluctuate randomly (as output changes)

in future periods. A further difference in this model is that in the short run neither

price nor quantity are directly controllable by firms: in the long run, however,

firms exercise indirect control over both price and quantity via investment

decisions. Finally, it should be noted that the present model assumes firms are value

(rather than utility) maximizers: the investment opportunities a firm accepts are

presumed to be instantaneously capitalized in a frictionless capital market.

For convenience, key variables for the industry are assumed uncorrelatod with

the rest of the market, thus, in effect, firms behave as risk-neutral decision-

makers.

Section 2 describes the formulation of the basic model.
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In it, an important assumption is made to simplify the analysis: firms

a.-fc assumed to use long-term contracts to "lock in a spread" on new investment

opportunities. Tlie investments can thus be valued as riskless assets (albeit

with uncertain termination dates). Extension of the model to consider the

sale of output at spot prices (i.e., without long-term fixed price contracts)

is the subject of ongoing; research. Section 3 characterizes a firm's optimal

Investment decision rule. Section A presents a numerical example, which

Is then used to illustrate the effect of concentration on industry value and the

price of outpuc. Section 5 presents conclusions and discusses how the model

could be implemented for an actual firm.
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2. Model Formulation.

Demand. Consider a company which extracts metal (say copper)

from mines in different locations. The company sells its output in the

world copper market. Prices prevailing in the market at any point in time

are determined by the total quantity Q being produced at that time;-^

p = p(Q) (1)

Total output Q at time t depends on the number of mines open at that time.

All mines are assumed to be the same size and indivisible, thus total output

may be scaled by the output of one mine:

Q = 0, 1. 2 (2)

Q = implies no mines are open: we assume p(0) is finite. (More generally, Q = may

be taken to represent a minimum level of output which is always achievable

at constant cost ( < p )• This minimum level might be sustained in the
o

absense of new mine openings by (1) scrap reprocessing and (2) secondary

2
recovery techniques.)

We assume that copper is a normal good, thus price declines as industry

output increases :

p(0) > p(l) > p(2) • (3)

Objective. The copper company seeks to maximize its value in the capital
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market. Equivalently (assuming frictionless capital markets and fully informed

investors) it seeks to maximize the present value of its future stream of

output.

Investments. The company's investment process is as follows: from time

to time company geologists identify a new mine opportunity. We approximate the

arrival of new opportunities by means of a Poisson process with frequency X

(average interarrival time x = 1/A ).

A new mine opportunity if_ undertaken will produce 1 unit of copper per

year at a cost c per year. The cost c is affected by factors

such as ore richness, location, required capital investment, etc., and is

variable across opportunities. The costs related to a specific mine become

known at the time the mine opportunity is identified (not before). Character-

istic costs for successive mine opportunities are drawn independently

from a distribution f(c) which is known to the company.

When a new mine opportunity is identified, the company may choose to open

the mine or not. We assume that, at the time a mine is opened, the company

may also enter into a long-term fixed-price contractual sale of the output from

the mine: it is this price which is given by the price function p(Q) •

It is assumed that the company, if it decides to open a mine, always sells

the associated contract, tlius from the company's point of view, the mine

represents a riskless stream of returns for as long as it remains open.

We assume that a rejected mine opportunity disappears, i.e., the company

cannot recall previously rejected opportunities when economic conditions change.

This assumption is made in order to simplify the problem to make it analytically

and computationally tractable. Tlie assumption is partly offset by the
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steady-state assumption than the opportunity set distribution f(c) is not

deteriorating over time. Even though past opportunities cannot be

recalled at will, they or their equivalents may be encountered by the company

again as it continues to search. Operationally, the situation might be

represented as follows: initially, the company doesn't own a mine site but

only holds a development option (with a positive exercise price). If the

immediate decision is against developing the mine, the option expires

unexercised and the site reverts to the general pool of opportunities.

Subsequent review of the same site' would require a new development option (with

a new exercise price); costs associated with the site would thus be changed,

making it in effect a new opportunity-

Mines differ in the total extent of their ore bodies, thus with identical

extraction rates, will last different lengths of time. The duration of a

mine's productivity is uncertain. It is assumed to be determined by a

Poisson process having characteristic frequency p . At any point in time, all

open mines have expected productive lives of T years remaining where T = l/y .

Cost Structure of Opportunities. We liave said that if the company reviews

a mine opportunity and accepts it, output for the duration of the mine's

natural life will be sold at the contractual price p(Q) (where Q is the

number of mines open at the time the opportunity is found). So far, however,

we have not characterized the costs of production (except to associate them with

a distribution f(c) ). We shall see below chat the

breakdown of costs plays an important role in the determination of a company's

responses to new developments in the industry (chan);es in Q )•

In general, costs associated with any given production technology may be
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classified as: (1) capital costs which are incurred before, and as a condition

to production, and (2) operating costs which are contemporaneous with production.

Let us denote costs in these categories as k and o , respectively.

To these two traditional categories we add a third: let s denote

the shutdown cost associated with closing a mine prematurely. Shutdown costs

s can be thought of as the lump sum settlement for all costs which would

continue after production was prematurely halted. Shutdown costs include items

such as (1) the loss of value on downstream facilities, (2) bonuses and/or

pensions paid to terminated employees, (3) remaining debt service, (A) compensatory

damages paid on violated contracts, (5) fines or taxes levied as a result of

3
closing. Note that if s < , the mine has a positive net salvage value.

Present Value of an Opportunity . Consider a mine opportunity at the time industry

output Q = i (p(Q) = p.). .Assume the mine will stay open T years and that shutdown

costs are forecast to be zero. By the standard formula, the net present value

of the opportunity is:

~cts
NPV = -k +

I

(p. - o)e ds (A)

O-' ^

vhere a is an appropriate discount rate. Since the stream p. - o is

by assumption riskless, a should be the rate obtc-ined on risk-free securities

of maturity T in the capital markets.

However, we have assumed that the duration of the asset T is
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uncertain; expiration is governed by a Poisson process, thus the

opportunity's NPV is:

r" f^
NPV = -k + ( p. - o )e ds iJe dt (5)

-k +
y + a

This NPV is known at the time a mine opportunity arises; in a frictionless

capital market the opportunity, if accepted, could be immediately capitalized

and sold off for this amount. (Alternatively, the company's value would be

immediately increased by the NPV of the opportunity).

Eq. (5) may be rewritten:

NPV =
Pi - o - kCp + a)

(6)

y + a

We are thus justified in equating c , the flow of costs associated with a

mine opportunity, with a linear combination of the operatinj', and capital

costs of the mine

o + k(u + a) (7)

The density function f(c) naturally reflects the underlying joint

distribution of the [bair ( o , k ).
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Cost and Irreversibility. In this section we shall impose three

constraints on prices and costs prevailing in the industry.

It will be shown that these constraints limit the ecQiom.ic alternatives open

to the firm and thus decrease its flexibility in response to changes in

the industry environment. The main purpose of the model will then be

to analyze optimal investment decisions when future actions are known to be so

constrained in this manner.

The first condition is straightforward and appealing: it is thac there

exists a finite level of output Q such that :

< p(Q) < rain c = niinC o + k(v + a)). (8)

(Min c signifies the lowest value of c to which a positive probability

weight is attached.)

Eq. (8) is in part a condition of no^ free production ; it bounds the

cost of bringing new output onstream strictly away from zero. Eq. (8)

is also a statement about the satiability of demand; it indicates that at some

level of production, the price paid for new output will be so low that any

new opportunity will have a negative present value. This in turn places

an upper bound on total industry output. (This last is an outcome of

optimization and not an assumption: it will be proved below. However, the

linkage between the two statements should be intuitively quite clear.)

If searching for new opportunities is a costly activity, then (8) is a

sufficient condition for there to be an upper bound on production but is

actually stronger than necessary. If search is costly (and controllable by
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the corporation), search activity will stop when the expected value of

encountering an opportunity falls belcw the search cost. If search stops at

production level Q = m then the probability of the production level reaching

Q = m + 1 is zero (even if pCm) > min c ).

It is important to recall that the production limit is not an

exogenous constraint on a firm's ability to undertake new investments, but is

the result of Che interaction of dcrraand with technological factors determining

the supply of new opportunities. Limitations on neu' investment do not arise

because of capital rationing or the scarcity of intangible managerial

resources (cf . Spence) ; but are instead a natural result of the product

market's structure.

The second and third conditions imposed on the opportunity set relate to

the irreversibility of a mine investment once it is undertaken. Recall that,

by assumption, all output from a mine is sold off at a fixed price when

the investment is made. The firm is thereby able to "lock in a spread" and

thus has no incentive to reduce its own production in response to changes

in total industry output. However, the company might in some cases seek to
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replace an existing mine with a new and better opportunity or with purcb.ased

output. The second and third constraints are designed to exclude such

circumstances from consideration (which is not to imply that these circumstances

are uninteresting: they are an important area of future research).

Consider the proposed replacement of mine A (currently productive) with

mine B (a new opportunity). Replacement of A by B does not change either

industry output or the company's revenues; both mines have the same expected

lifespan as of the date of the proposal. A decision may thus be made on the

basis of cost alone.

The present value cost of keepins mine A open is:

°A

U + a

The present value cost of opening B is

... °«
B \i + a

In addition, if mine A is closed prematurely, shutdown costs s will be

incurred. The option to keep mine A open will be preferred if

o o

< s + k„ + 7 . (10)
U + a A B u+a

(Assume equality is resolved in favor of the status quo.

)

From (10) a sufflcifnC condition for the replacement alternative
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never to be elected is

max (
; ) - min (

; ) < min (k + s) (11)
y + a y + a —

(11) says that the combined cost of shutting dovm an old mine and constructing

a new one always exceeds the present value of the net difference in

operating costs achieved by the change.

Now, let us consider the replacement of mine A with a long-terra

purchase contract at price p(Q) . (It is assumed that a firm can

purchase output on the same contractual terms as it sells it.) The firm will

chooae to keep mine A open as long as

p + a— A ti + a

A sufficient condition for the purchase alternative never to be chosen is

o ... p(Q) fi-i\max ; — < mm s + min ^
; (13)

y + a — (J + a

Eq. (13) requires that the purchase price of output plus shutdown cost always

exceeds operating cost savings obtained from closing down a facility.^

If Eqs. (11) and (13) hold, then an industry's options with respect

to new investn-.ent opportunities are only two: (1) to reject the opportunity

(so that total output remains the same) or (2) accept the opportunity and have

output increase by one nine's production. All options which involve the

replacement of old (but productive) investments by superior new ones are
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excluded by the boundary conditions.

Tlie conditions on o, k, s, and p , ^'iposed by Eqs. (11) and (13)

are undoubtedly too strict to be realistic. Sometimes it does pay a firm to shutdown a

facility and replace its output by output purchased in the market or by

output from a new and more efficient facility. On the other hand, the

importance of such alternatives in the determination of optimal investment

policy will be directly proportional to the probability of their turning out

to be attractive. That is, as long as the probability of the replacement

option being chosen is low, excluding such options from the formulation is

not likely to have a severe impact on the optimal decision rule.

Eqs. (11) and (13) are interesting in that they indicate which types

of technology tend to limit flexibility and impose constraints on

investment behavior. Industries most likely to be inflexible in their

response to new developments and/or opportunities are those with high capital

costs or high shutdown costs relative to the fixed and variable costs of

production.

The mechanism whereby high capital cost (capital intensiveness) tends

to limit flexibility can be traced as follows: When new opportunities arise

or prices change, the capital costs of previous investments are sunk costs.

If capital costs are high in general, it then becomes very unlikely that the

replacement of old lacilities with new (before the end of their

productive life) be economically justified. If replacement alternatives

are not attractive, that implies that every newly accepted opportunity (a good)

necessarily brings about a price decrease with respect to the output of

future opportunities (a bad). The analysis below indicates that this

inherent dilemma (realizing one opportunity makes the environment for
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future opportunities less good) may have serious consequences for firms' investment

decisions.

Competition . Before we can completely specify a given firm's investment

decision problem, it is necessary to characterize the nature of the competi-

tion the firm faces. Given that (by our previous assumptions) companies cannot

directly control prices or output, the most important dimension of competition

among firms lies in investment and the generation of new opportunities.

We assume that competing firms all engage in basically the same investment

process. Let the company whose decision problem we are modeling be designated

Firm A, other firms designated B, C, D, etc. By previous assumption Firm A

encounters and reviews A opportunities per year. Let 6 be the

number of opportunities encountered by all other firms; the arrival rate of new

opportunities for the entire industry is then X + 6 .

To solve its own optimization problem. Firm A must model the behavior

of its competitors with respect to the opportunities they will review.

Although in general this would be a difficult task (involving joint optimization

of all firms decision problems), two cases of particular interest may be

solved directly. Thus, with respect to its competitors, Firm A might assume:

(1) that all (other) firms apply the standard NPV criterion

accepting all opportunities with NPV > (equivalently

p^ > c ), or

(2) (Nash equilibrium) that all other firms

apply the same optimization criterion as itself.

Assumption (1) best approx imat e.i the case of a ];:rc- f i rni c-o:;H'(in- vith many

small firms. Assumption (2) is descriptive of behavier in industries
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in which several firms of aboun equal size participate. To avoid parallel

formulations, the functional equations below are developed, under the

assumption of symmetric industry structure and behavior. Effects of the

alternative assumption will be considered in Section 3 below.

Decision Rule. We shall formulate the firm's decision problem as a .dynamic opti-

mization problem in continuous time. We assume the industry is in a steady state (real

demand and real costs are not changing over time), and that the firm's

planning horizon is unbounded.

The firm then faces a stationary investment problem. For such problems,

it is well known that the optimal decision rule takes the form "accept (the

next opportunity) if its reward exceeds z " where the value of z is the

outcome of optimization. In the investment decision problem, rewards take the

form of value added to shareholder wealth by the acceptance of an opportunity.

The standard NPV criterion is then a special case of the general rule for which

the hurdle criterion z is zero.

Note that the NPV formula (see Eqs. 5 and 6) permits the hurdle

criterion to be expressed in three equivalent ways. These are:

(1) Accept (an opportunity) if NPV > z

(2) Accept if p(Q) -c > y (Net profit criterion)

(3) Accept if c < X (Cost criterion)

Because we shall be working with functions of the distribution of c , the
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problem is most naturally formulated in terms of c (alternative (3)).

We shall therefore solve for optimal x (x*) ; optimal y and z can be obtained

(from X by substitution into the net profit and present value formulas.

Functional Equations. Let Q , the total output of the copper industry

be indexed by i : (Q = 0, 1, — i, ... ) and let i be known as the

"state of the industry". Consider Firm A when the industry is in

state 1 and there are t years left until the horizon. Define v.(t) as

the value of Firm A at time t assuming it follov/s an optim.al investment

policy between t and the horizon. The horizon is called "time 0" and we

assume that values of terminating in any state are identically :

v^(0) =0 V i (14)

At the same time, we assume that Firm A has already realized the values of

previous investments through the capital markets; values of its "assets

in place" thus are not counted in the fon^/ard looking valuation v.(t).

Now consider Firm A at time t + dt (one instant before time t ). In

the transitional interval dt , the following events might occur:

(1) The company encounters a nev; opportunity,

accepts it, and opens a new mine;

(2) The company encounters a new opportunity and

rejects it
;

(3) Another company opens a new mine;

(4) Some company closes a mine;

(5) Nothing happens.
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Events (1) - (4) are all governed in part by Poisson processes, thus the

probability that two events occur simultaneously in the interval dt is

negligible.

Expressing v.(t + dt) in terms of v. (t) and the parameters and

variables previously defined, we have:

7^(t + dt) = Max { [1 - XF^dt - 6F^t - viidtj[e ""^'^v.Ct)] (15)

+ AF.dt [ ly
"^;

+ e-^'^^.^At)]
1 F. (p + a) x+1^

+ 6F.gdt e ""^V^^Ct) + Pidt e~°"^^v^_^(t)} ,

where

p = the output price prevailing when Q = i ,

r^
F = F(x ) =

J

f(c)dc = the probability that c drawn from f(c) is

a

less than or equal to x ; equivalently the probability that a new

opportunity will clear the cutoff x. • (Note: a is the lower

bound of c's distribution. The subscript B'CF.^) indicates that x. is
iB 1

determined by other firms in the industry, i.e., the quantity is not

under the control of Firm A.)
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X,

c f(c) dc ':'- the contribution to the total expectation of c

a

obtained from points lying below (to the left of) the x cutoff.

From these definitions (p-f. - L. )/F. (\i + a) is the ex ante conditional

expectation of the net present value of an opportunity, conditioned on the

event that the opportunity satisfies the cutoff x. and thus is

accepted by Firm A.

Substituting the expansion (1 - adt. . . ) for e in (15) and

2
ignoring terms of dt or higher, subtracting v. (t) from both sides.

dividing through by dt and taking the limit as dt -• gives:

dv (t)
^_i__ = Max ( -^^^^ (p.p. - L. ) - av. (t)

- (XF^ + <5F.g) (v.(t) - v^^^(t)) (16)

+ pi(v^_^(t) - v^(t))}

If the system has reached steady state dv./dt = , and

«^ - "^^ ^ -vh- (Pi^ - h^

- (^^i ^ ^^ib) ^\ - \^l^
^''^

+ Pi(v^_^ - v^)}
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where V = v. (") . Note that if Q= 1 = , the final term in (17) disappears,
i 1

(] 7; describes a system of n + 1 equations where n is the highest

level of output achievable by the industry (i.e., consistent with optimal

behavior). Investment policies which maximize value for firms operating in

the environment described by (17) are derived in the following section.

3. Optimal Decision Rule

10
The partial derivative of the maximand in (17) (w.r.t. x. ) is:

Thr ^^i'^\^ - \ f^^i)^ - ''^\^(\ - vi>

*
Setting this quantity equal to zero we have that (optimal) x. satisfies:

*
P. - X
^ "• = v, - V.,, (18)
M + a i i+1

Second-order conditions ensure that this is a maximum.

Eq . (18) indicates that Firm A should set its cutoff x. at the

point where the net present value of an accepted Tpportunity just equals the

change in the value of A's future opportunities resulting from a higher

level of industry total output. The optimal decision rule thus hinges

on the relative values of v, and v.,, .

i 1+1

In Appendix A, it is proved that for the decision problem we have

described:
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^ -
''i+1 ^ ° V i (19)

and, for i £ n where n is the minimum level of output such that p < min c
n

^ - ^i+1 > ° • (20)

(subject to X > and p >. p for some i - see Proposition 1 below.)

Several interesting propositions follow from this result. We shall

state the propositions and their proofs first, then briefly discuss

their Implications:

ft

Proposition 1. Optimally, for all 1 £ n (defined above), p . - x. > , unless
i i

(1) X = or (2) p = p = ... = p. = . . .(no upper bound) in which case p - x =
u i 1 ^ ^

^roof. The statement follows immediately from Eq. (18) and the

fact that v^ - v^^^ > , for i >_ n . The exceptions arise from the functional

equation for v^ - v._^ (see Eq. A-3) .

Proposition 2. The standard net present value rule (accept an opportunity if

NPV •
) is optimal if and only if (1) Firm A anticipates it will receive

no future opportunities or (2) the industry demand curve is horizontal and

unbounded.

^T^ooi- As was previously indicated, the standard NPV criterion is

equivalent to setting x^ = p^ . Proposition 2 then follows from the

exceptions to Proposition 1.
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Proposition 3. n is an upper bound on production-

Proof. Recall that n was defined as the minimum level of output

*
liuch that p ^ min c . Proposition 1 implie.s x ;f. p , thus:

n n n

X < p "^ min c (21)
n — n

*
Eq. (21) implies that no opportunity can clear the cutoff x , thus a

n

transition from n to n + 1 can never take place. Total industry production

is thus bounded by n . Note: in the case where competition is assumed

to be following the standard NPV rule, the propostion still holds (because

p serves as the cutoff for transitions not controlled by Firm A).

Discussion. Propositions 1 and 2 are important because they indicate

that in industries where initial capital commitments to now

projects are high (relative to the operating cost of existing facilities) and

the standard NPV criterion for capital investment is likely to be incorrect;

application of the criterion will bias decision-making in the direction of

accepting projects which should be rejected.

It is interesting to consider when, according to the model, the

standard NPV rule is a valid criterion. This occurs v;hen the firm in question

sees itself as having no further growth opportunities in the industry or

when industry demand is elastic over an unbounded range. Demand elasticity

over a limited range of output is not a sufficient condition for the NPV >

criterion to be valid. Rather the industry must exhibit something akin to

"supply creating its own demand" so that implicitly any level of output can be
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absorbed at the given price.

Finally, Proposition 3 may appear intuitively obvious and theoretically

uninteresting. It is important, however, because it bounds the size of the

problem of estimating an optimal decision rule (optimal cutoff points) for an

actual industry. Given Proposition 3, an iterative algorithm to calculate optimal

cutoff points for a given demand curve and characteristic opportunity set is

feasible. Such an algorithm will be developed in a subsequent paper.

For analytic purposes, hwv'ever, it is more

interesting to consider hov; investment decisions may be affected by changes in

industry demand, compet-ix.ion , and opportunities. To do this,

is necessary to reduce the problem to a tractable sizei In what follows

we shall assume p < min c , thus the maximum number of mines open at

any one time is two. (Note: This assumption does not necessarily imply that

only t^«/o firms operate in the industry. The key to industry participation is

the ability to review a stream of opportunities: although at most two firms will

actually be producing at any one time, a much larger number might participate

In the opportunity search and review process.)

Writing down functional equations for Firm A (after substitution for

V - V in Eq. (17)) we have a 3-state system:

*

av„ = (p F - L ) - (AF + i5F^ )
(—^ —) (21a)

VJ + a ^^0 OB VI + ct -•

X Pi - "l Pfl - "o

av- = 2m( ^
,

^
) (21c)

2 M + a '



- 26 -

Subtracting (21c) from (211>) and (21b) from (21a), substituting for v - v and
i i+1

rearranging terms yields:

* *
(a + dF^g + ,) (Pq - Xq) - 6F^g(p^ - x^) = X(0^ - 6^) (22a)

- w(Pq - X*) + (a + 6F^ + 2u) (p^ - X*) = XQ

^

(22b)

where 6. E x.F. - L. . Eq. (22) is a system of two equations in two1111
* * *

unknowns (x , x ) which is linear in p - x and . Adding (22b) to

(22a) simplifies the system:

(a + 6FQg) (pp - x*) + (a + 2u) (p^ - x*) = Xe^ (23a)

-h(Pq - X*) + (a + 6F^g + 2p) (p^ - x*) = XQ^ (23b)

Solving for p - x and p - x by Cramer's Rule, we have:

. Xe„(a + 6F + 2u) - Xe fa + 2m)" _ U ID _1 ^„, ^

Pq ~
""O

" (a + 6FQg) (a + 6F^^ 4- 2u) + u(a + 2u) ^ ^^

* A 9j,(« + 6Fq^) + XuB^

Pi ""l
'

{a + 6FQg) (a + &F^^ + 2y) + u(a + 2p) ^^^^^

In Eqs. (24a) and (24b'* note that x^ and x, appear on the left and (because

6. - e(x.)) right hand sides of each expression. Optimal (x , x ) are thus

implicitly defined by (24a) and (24b).
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Interdependencies amonc x , ©(^^q) > ^^ . and e(x ) make direct analysis

oi the impact of parameter changes on (24a) and (24b) generally inconclusive. However,

looking at the equation system, it is apparent (1) that for large values

* *
of X , the r.h.s. quantities will be large, thus x , x necessarily

quite small, and (2) tliat large values of a , 6 and \i will tend

* *
to make the r.h.s. quantities small, thereby causing x , x to approach

p and p respectively. Extreme value analysis thus suggests that the

optimal cutoff points x , x are (1) declining functions of A and

(2) increasing functions of a , & and
ij (subject to the overall require-

ment that p - X. > ).

X measures the arrival rate of new opportunities for review by the firm:

as X increases the firm expects to see more opportunities in a given time

span. It seems reasonable that as the number of opportunities reviewed

.per year, goes up, the firm would be more selective in its acceptance criteria:

* *
this, in fact, is what is implied by higher p - x (lower x ).

On the other hand, a high value of p implies that accepted opportunities

don't last very long; any given investment then will not have a very large

Impact on prices prevailing in the future. In this case, the opportunity loss

from accepting an opportunity now is. not vi^.ry great; one then would^expe.ct

that the acceptance criterion would no-t- be very different from the standard net

present value rule.

a represents the discount rate applied to future anticipated cash

flows: as a increases the value of money received in the future declines.

If a is high, the opportunity loss on accepting a present opportunity will

tend to be low; a lower opportunity loss would then favor a laxer acceptance
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criterion (lower p - x. ).

Finally 6 measures the degree of competition present in the industry:

as & increases the number of opportunities (drawn from the same distribution

f(c) ) reviewed per year by competitors of Firm A goes up. If a competitor

makes an investment, Firm A (1) will realize no positive benefit from the

Investment but (2) will suffer from the price reduction brought about by tlie

increase in total industry output. Turning the situation around, if Firm A

makes an investment, it creates a negative externality in the form of a price

reduction. The externality is borne only in part by Firm A: other firms

also share in the impact because the expected value of their future opportunities

has been reduced. Naturally as competition increases, less of the impact of a

price reduction bears on Firm A directly : Firm A's willingness to initiate a

price reduction by undertaking an investment will then increase (equivalently

,

*
p - X will fall).

Although the behavior of p. - x. appears to be

explainable in rational economic terms, it is impossible

to assess whether the magnitudes of p. - x. are significant given "reasonable"

values for the parameters p. , a , X , u , and 6 and the distribution

f(c) . In order to gain some idea of how far the optimal decision rate deviates

from the NPV > criterion a numerical example (based on a three state

investment process) is developed in the following section.
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A. Numerical Exair.ple.

To completely specify the dynamic investment process which Firm A

seeks to optimize we need to give values to P^ > Pt ' ^ » 1^ » '^ « ct ,

and to characterize the distribution f(c) . For purposes of the example, let

us assume:

(1) p^ =2; P, = 1-5. Recall that p , p represent the price of

1 years output from 1 mine. In terms of real world mining projects, it would

be reasonable to consider units of account for p_ and p to be

hundreds of millions of dollars.

(2) X=l; p=.05; 6=9. Firm A encounters and reviews 1 mine

opportunity per year on average. A mine investment has an expected life of

20 years. There are 9 other firms in the industry (thus Firm A encounters

about 10% of all available opportunities).

(3) a = .01; the riskless rate of interest is approximately 1% per annum.

(4) the distribution f(c) is uniform on the interval (1,2). Costs

are denominated in the same units of account as prices, thus the cost (including

capital cost) of one year's production can range from 100 to 200 million dollars.

(Note: it might be r-ore realistic to suppose that better minds, i.e. those with low cost

are scarcer. In this case, the uniform distribution would not be appropriate.

It is used purely for "i llus trati^e purposes here.)

From the above assumption, and the definitions of F , L , and 6 we have:
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F(x) = (x - 1) ,

X

L(x)

1

=
j

cf(c)dc = .5(x^ - 1) ,

e = xF(x) - L(x) = .5 x^ - X + .5

Substituting from the assumptions into Eqs. (23a) and (23b) obtains'

(asterisks have been suppressed)

:

(.01 + 9(Xq - D) (2 - x^) + (.01 + .1) (1.5 - x^) - .5x2 + x^ - .5 = (25a)

-.05(2 - x^) + (.01 + 9(x^ - 1) + .1) (1.5 - x^) - .5x2'+ X - .50' ' ^-"^ ^
^^'^l

- ^> ^ '^) UO - X,) - .5x7 + x, - .5 =

(25b)

Note: we are here assuniing the other firms in the industry behave symmetrically

to Firm A, thus F^^ = F(xq) and F^^ = F(x^) . If we assumed the other

firms applied the standard NPV criterion F^^ and F^^^ would simply have

been constants (equal to 1 and .5 respectively).

Simplifying the above yields: .

9.5xp - 27.99xg + 18.48 - .11(1.5 - x^) = (26a)

2
9.5x^ - 23.99x^ + 13.835 + .05(2 - x ) = (26b)

The reader may verify that x^ = 1.9A77 and x^ = 1.474 solve Eqs. (26)

(to within an accuracy of .002).

Tlius to satisfy the optimal investment criterion when p = 2, a project
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ir.ust earn profits (after annualized capital costs) of something over $5 million

per year. If p = 1.5, required net profits after capital charges are about

$2.6 million per year. The profitability criteria may be translated into

net present value terms (using the standard formula) : to be acceptable a

project must have a minimum net present value of $83 million when p = 2

12
or $43 million when p = 1.5 .

These standards imply that approximately

5% of the projects which would be accepted given the standard NPV criterion

would be rejected under the optimal decision rule. Although a 5%

rejection rate does not appear high, recall that the competitive assumptions

that went into the example make it possible for a firm which rejects an

opportunity to be shut out of the industry for perhaps 10 years. The effect

of strengthening a firm's market power and weakening the degree of

competition (by reducing the number of firms in the industry) will be

examined next.

Effect of Concentration. To see the impact concentration has on

investment decisions when the product market is imperfect, we shall calculate

optimal cutoff points and profit margins for (1) a monopoly, (2) a two firm

industry, and (3) a four firm industry. In each case, we assume that the

total number of opportunities reviewed by all industry participants is the

same, that is A + 5 = constant . Given the assumptions previously outlined

for the 10 firm industry, this implies:

1 Firm: A = in ;
a =

2 Firms: A = 5 ; 6 = 5

A Firms: A=2.5; 6 = 7. 5.
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Equations for each industry structure are obtained by substitution into

* *
Eqs. (23a) and (23b) above. Solutions for x and x for 1, 2, 4,

and 10 firms are given in Table 1:

TABLE 1

Optimal Cutoffs and Required Profit Margins for Differing

Concentrations
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V Conclusion

This paper has shown that in cases where (1) the industry demanJ curve

is downward sloping and (2) capital costs are high, relative to operating

costs (so that the replacement of old capacity before the end of its

productive life is uneconomic) , the standard NPV > criterion applied

to direct cash flows from an investment opportunity is not in general

optimal. An extensive NPV analysis would be correct but would involve

direct estimation of a complicated dynamic program.

We have shown that an alternative to direct estimation

of probable future cash flows (conditioned on the proposed investment

project) is to modify the NPV rule to be: accept Project Z if its

NPV > z , where z > (equivalently : accept if Net Profit > y or

* A *
Cost < X ). Optimal cutoffs z (or y or x ) are determined

endogenously and depend on characteristics of industry demand ( p )
1

competition (6,, F ), the pace and cost structure of new opportunities
Id

( A, f(c) ) and the longetivity of assets (v) Extreme value analysis as well as the

analysis of a numerical example indicated that deviations from the standard NPV

rule are most serious when assets are long-lived ( u -^ ) , when the arrival

rate of new opportunities (X) is high, and/or when the industry is highly

concentrated.

Operationalizlng the Model. Although it incorporates a rather complex

dynamic model of industry structure and performance (and can therefore handle

a wide range of industries/ technologies within the basic specification), the

model shows promising signs of being applicable to investment problems

actually encountered by firms. In particular, the recursive



- 34

structure of the gi^neral fquation system (17) and the fact that the problem

can be bounded (see Proposition 3) indicate that an iterative algorithm

•k

for calculating optimal x. for reasonably large n may be feasible.

Thus, the model presented here offers an alternative to scenario

planning (which is currently the most popular method of taking risk

into account in major investment decisions). Rather than forecasting alter-

native scenarios and then simulating outcomes, the model specifies a structural

relationship between prices and output and dynamic rules governing

technology (new opportunities) and competition. This structural approach is

particularly useful for evaluating investment decisions in industries where the

price of output is difficult to forecast accurately because

it depends heavily on the firm's own future actions or those of its

competitors.

Extensions. Several extensions of the model would improve its

Generality and usefulness in investment evaluations. First, the

model may be extended to situations in which spot pricing prevailed

(i.e., no futures contracts are available). Second, decisions to replace or

shut doxrm old capacity need to be examined in more detail and, if

feasible, these options should be incorporated into the model formulation.

Third, demand may be a function of other variables besides current output:

for example, price may depend on levels of activity in other

industries or in the economy as a whole. For both normative and descriptive

purposes, it would be interesting to examine the effect of denand linkages

(across industries or sectors) on the investment behavior of value maximizing

firms operating in imperfect product markets.
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FOOTNOTES

(1) Actually the demand curve could be more complicated. For example, p

might depend on inventories ( p = p(Q,I) ) or on levels of activity in

other industries (for which copper is an input). In this model, we assume

that these other factors are not relevant and that price is a deterministic

function of output.

(2) The level of output at Q = may be thought of as a base level of

output to which mine production would be added: defining 6 as the

base level, actual tonnage produced would be <5 in state 0, 6 + 1

in state 1 and 6+2 in state 2. This assumption would be consistent

with the existence of a cheap technology (like scrap reprocessing) which

Is In permanent but limited supply.

Alternatively, output at Q = might be made possible by a

technology (like secondary recovery) so expensive that any

new discovery would cause it to be put on the shelf.

In this case, actual tonnage would be 6 in state 0, 1 in state 1 and

2 in state 2.

Obviously > combination systems are possible: the key point for the

model is to have p(Q) indexed to whatever total output is if 0, 1, 2,

or more mines are open.

(3) I t is interesting to note that several New England states Iiave recently

considered ordinances providing for penalties to be paid by corporations
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seeking to shut down local plants.

(4) Forraally, let q be the per period discretionary cost associated with searching for

opportunities, a , the lower bound of c and X the probability of

encountering an opportunity in the next interval. Obviously, the

company will stop searching if

q > A —J-- f(c)dc
M + a

Other formulations of search cost structure are of course possible.

The impact of search cost on both asset selection and on activities

leading to the generation of opportunities is an important area of future

research.

(5) Eq. (13) may be combined with Eq. (8) to give:

max( ; ) < min s + min (
—— ) + min k ,

Vj + a M + a

which condition is identical to Eq. (11). Eq. (13) is thus a slightly

more restrictive condition than Eq. (11).

(6) Different assumptions about X and f' may reflect different aspects of

reality. One possible assumption is that X + 6 = constant: in this

case, all firr.is In an Industrv basically y'nare access to a fixed

stream of opportunities.. Another possibility would be X = constant:

)
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here each firm would create its own opportunities.

(7) Size here reflects the firms' share of the total opportunity steam.

The observed size of firms (in terms of total output) would of course

depend on realized opportunities and could vary over time.

(8) Alternatively, the demand function and opportunity set could be moving

in parallel. In this case, opportunities might be eroding and

prices increasing to compensate for the higher cost.)

(9) Note that

L.
1

r"i
c f(c) dc

X .

f 1

- E(clc < X.)

f(c) dc

a'

is the conditional expectation of cost given that it satisfies the cutoff

criterion x . The result then follows from the definition of
i

present value (Eqs. (6) and (7)).

(10) Note that we assume F
iB

F(x ) is not under Firm A's control and rlius is
iB

not subject to opti^iizat ion. F may be set equal to F after the
Id ^

optimal X have been determined: in this case. Firm A assumes that
i

Firms B, C, etc. are each solvjn;-; an opt iuii zat i on problem identical to

its own and acting on the basis of the resultant decision rules. In
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general, even for an assymmetr ic industry consistent optimal decision

rules would exist: these could be solved for by numerical methods.

If we assijme F controllable by Firm A (necessarily implying collusion

or agreement betv/een industry participants), the partial derivative of

the maxiraand becomes:

^
[ p. f(x.) - X. f(x.) ]

- (A + 6) f(x.) (v. - v._^,)
y +aii ii ii i+1'

*
and optimal x. satisfies:

= v_. - v_.^, (1)
X + 6 y + a i i+1

If fims' are assumed to be symmetric, the value of Firm A's opportunities

(v.) equals of the total value of the industry (V.)
X A ' X

V = -^V
i A + 6 i M

Substitution for v and v. , in terms of V. , V. , in (1) shows
1 1+1 1 1+1

Firm A's rule to be identical to that of a monopolist. A

symmetric industry can thus achieve joint value maximization witliout

side payments if implicit contracts on investment criteria (the x ) are

generally honored. ;\n assymmetric industry, on the other hand, would

have conflicts of interest over the x. whi'cli would have to be
1

reconciled via side payments (or not at all).
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(11) The second derivative of the maximand is:

Xf'(x.) [
^

,

^ - (v. - V.)] - \x.
i u + a 1 1+1 X

*
At X. = X. , the term in brackets is zero, and the entire quantity is11

*
negative. x. = x. thus obtains a maximum.11

(12) From the net present value formula:

„ - o .
5.3 _ 5.3 5,_

p - 2 :
—— = 83

Vi + a .06

1 r 2.6 , _

P = 1.5 : -7^=43
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APPENDIX A

Theorem. v. (t + dt) - v.
,

, ( t + dt) > , all i , t . For i £n ,
where

1 1+1 —

n is the minimum level of output such that p < min c , v. (t + dt) - v (t + dt) >

all t .

The first part of the proof is by induction. We will show that

(1) if for all i , v.(t) - v._^ (t) >_ , then v^(t + dt) - v^^^(t + dt) ^

(2) V. (dt) - v.^^(dt) ;^ 0, V i .

By definition: v.(t + dt) = max {r.. + E p..v.(t)}
1 ij ij J

X. J1

= r*.+ ^ p*.v. (t)

where r , = the reward earned in a transition from i to j ,

and p.. = the (instantaneous) probability of a transition from i to j .

( r^ , , p.. are functions of x. ).
ij '^ij 1

Let us define x.* = arc v. (t + dt) , that is x* _ is the optimal
1 1 1+1

value of X when the system starts in state i + 1 . Define ^ ~ F(x* ,) ,

^i+1 = ^^^^1> •

Necessarily

v,(t + dt) > v.(t + dt) H r..(x* ,) + ^ p. .(x* -)v.(t) . (A-1)
i — 1 ij i+1 ^ ij i+i J

The proof consists of showing that

V. (t + dt) - V.
,

, (t + dt) >
1 1+1 —
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2

Then, from (A-1), the first statemont in the theorem necessarily folloi-;s'.

From the definitions of v. (t + dt) and the v. process (see

Eq. (15) of the text)

:

V (t + dt) = [AF dt] Pj^i+l ^i+1
' ^-"^

F.^^(. + a) (A-2)

+ e""'''' {v^(t) - [^F.^^dt + 6F.gdt][v.(t) - v._^^(t) ]

+ [Midt][v._^(t) - v.(t)]}

Subtracting v.^ (t + dt) from v.(t + dt) , we have;

v^(t + dt) - v.^^(t + dt) = [AF.^^dt] Pj - Pj+l

+ e °"^^
{[1 - AF^_^^dt - 5F.gdt - u(i - l)dt][v.(t) - v._^^(t)]

+ [AF^^^dt4-6F.^^^^dt][v.^^(t) - ..^^U)]

+ [pidt][v._^(t) - v.(t)]}

The first term in (A-3) is positive given our assumption that p. > p. , .

1 1+1

The whole expression is positive as long as the (v.(t) - v. (t)) terr.s

are all positive. This completes the first half of the induction proof.

To see that tlie second half of the induction proof is true, we consider

the process as it approaches tlio horiz(5n. At t = , v.(0) = v.(0) = .



A-

3

Thus, at dt (one inr.tant left to go)

v,(dt) = max {XF(x.)dt
^Pj^Cx.) L(x

.

) ] ,

^ x^ ' 'F(x.)(u+a) ^^ ^^

C'^-rrying out the maximization we have

X* = p^ ,
V i . (A-5)

By the definitions of F and L

F(x*) = F(p.) if p. ^ min c (A-5)

= If p. < min c
i

and, similarly;

L(x*) = L(p.) if p^ > min c

= if P . < niin c
1

By assumption, there exists n such that p < min c .

Substituting from (A-6) and (A-7) into (A-4) , we then have

/Jv^ I\A^^ P.F(P.) - L(p )
v^(dt) = [AdtJ 1 ^1

,

1
^ ^ ^_-j^

u + a • —

(A-7)

(A- 8)

i :; n-1
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From the definition of v

v.(dt) = [Adt] Pi^(Pi+i) - LCp.^p i , ^_2

Ij + a

VI + a
>

(A-9)

i > n-2

From (A-8) and (A-9) :

v.(dt) - v._^^(dt) = AF(p.^^)dt[p. - p.^^] ^ ^ ^_2

(A-10)

=0 i > n-2

The first statement in the theorem is thus proved.

To see that strict inequality holds given i ^ n ; note from

Eq. (A-3) that a sufficient condition for v.(t + dt) - v (t + dt) to be

strictly positive is that v._ (t) -v.(t) , v. (t) - v (t) o£

^i+l^^)
~ ^.')^^^ ^^ strictly greater than . From (A-10) and by t\s?o-step

induction, this condition is satisfied for all i £ n (as long as X is

positive and p. > p.,. for some i, i+1)

.

1 1+1
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