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Abstract

Bartholdi and Platzman [3] proposed the spacefilling curve heuristic for the

Euclidean Traveling Salesman Problem and proved that their heuristic returns

a tour within an O(lgn) factor of optimal length. They conjectured that the

worst-case ratio is in fact 0(1). In this note we exhibit a counterexample

showing the O(lgn) upper bound is tight.
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1 Introduction

Bartholdi and Platzman [3] proposed a heuristic for the Euclidean Traveling Sales-

man Problem (ETSP) based on a spacefilling curve. Their curve is a uniformly

continuous map from the unit interval to the unit square. For our purposes we define

<f>
as a total linear ordering <$ on the points of the unit square [0, l]

2
. This ordering

may be defined by a recursive procedure; for any two distinct points (x, y) and (x
1

,
y')

the procedure will eventually decide which point comes first in the order.

In the unit square, if x — y < < x' — y', then (x,y) <4> (x',y'). In figure 1(a),

this means all points from the lower right triangle precede points from the upper left

triangle. Otherwise, both points fall in the same triangle, and we apply a recursive

ordering on points in such a triangle. First rotate and enlarge the triangle into

standard position with vertices at (0.0), (1,0), and (1,1) (for this transformation to

be uniquely defined, we have to orient the triangles; in our figures this orientation is

denoted by an arrow). In the following we refer to this triangle as the 'unit triangle".

If x + y < 1 < x' + y' in the unit triangle, then (x,y) <^ (x',y'). In figure 1(b) this

means all points from the lower left subtriangle precede points from the upper right

subtriangle. Otherwise, both points fall in the same subtriangle. Now this (oriented)

subtriangle is similar to the original unit triangle, so we may recurse. After t iterations

of taking subtriangles, the subtriangle we are considering has a hypotenuse of length

20 -0/2
(jn the scale of the original unit square), hence the process is guaranteed to

halt after 0(\og(l/d)) iterations, where d is the Euclidean distance between the two

input points (x, y) and (x',y').

Now we describe the heuristic of [3]: given a set S of n points in the unit square,

visit the points in the order $ defined above, and finish the tour by returning to the

first point. As remarked in [4], this heuristic is very fast. Given point (x, y) input as a

pair of k-bit fractions, a 2fc-bit sorting key t may be computed in O(fc) bit operations

(t is really an inverse 4>~ l (x,y) where
<f>

is defined as a continuous map from the unit

interval onto the unit square). Given n such points, all the keys may be computed

and then sorted (by radix-sort [1]) in O(kn) bit operations, i.e. in time linear in the

input size.

Let L^(5) be the length of the tour produced by this heuristic, and let L'(S) be

the length of the optimal tour. In [5] they proved that L 4'(S)/L
m
{S) = O(lgn). They

further conjecture that the worst case ratio is in fact 0(1). We refute this conjecture

by exhibiting a simple set Sn of n points with L <i'(Sn)/L"(Sn ) = 0(lgn).



2 A 0(lgn) Example

Consider n points uniformly spaced along the line from (1/3,1/3) to (1,1/3). Pre

cisely, define the set of points

2 2i_-

3
'

2n
Sn = l(xit yi) = I- +

-J
for 1 <i <n\ (1)

This definition of Sn is convenient for our proof, but in fact any reasonably uniform

distribution on the line y — 1/3 would suffice. The optimal tour on Sn visits the

points in the order of increasing i, and has length L*(S„) < 4/3. It now suffices to

show:

Theorem 2.1 For n = 2 k
, traversing Sn in the order of curve o produces a tour of

length L*{Sn ) > 2k 19.

Proof: The basic idea is to recursively decompose the order that the spacefilling curve

visits Sn , and observe that at each level there are significantly long 'jumps'.

Let Ok be the length of the path produced by traversing Sn in the order of curve

<f>
(note at < //(Sn) since i*(5n ) counts the extra edge used to close the path into

a cycle). Let bk be the length of the path traversed by the heuristic on the following

similar set of 7? = 2
k
points:

5H^H3 + 3-^'3J for ^^"l (2)

(a) (b)

Figure 1: In both the square (a) and the triangle (b), points of subtriangle 1 precede

points of subtriangle 2.



By the recursive definition of <p. the points of S'n are visited in the same order as those

in 5„; hence bk = a k /2.

We now derive a recursion for a k . In figure 2, let T denote the entire unit triangle,

and let 7\, T2l J3, T4 denote the subtriangles in the order visited by
<f>.

The points

of Sn lie in subtriangles 7\, T2 , and T3 . Hence a k is the sum of the path lengths

within each subtriangle, together with the lengths of the jumps between consecutive

subtriangles.

The n/4 points of Sn f] T\ form a half-scale image of S'n ,
4 , contributing bk_ 2 /2 to

a k . Similarly the n/A points of Sn f]T2 form a reversed half-scale image of S'n ,
4

. Since

4> is reversible (i.e. 'reversing the arrow' of a triangle exactly reverses the order of

points within that triangle), the length of their path is the same as the path in T\.

contributing another term of bk _ 2 /2 to a k . Finally the n/2 points of Sn f)T3 form a

half-scale reversed image of Sn/2 , contributing a k_i/2 to a k . Hence

a A bk _ 2 +a fc_i/2 + J12 +J23 = (afc_2 + a*-i)/2 + .7i2 + j 2A

where j 12 is the length of the jump from the last point in T] to the first point in T2 .

and j23 is the length of the jump from the last point in T2 to the first point in T3 . To

estimate these jump lengths we need to know the first and last points of S'n visited

in each subtriangle.

Lemma 2.2 For n = 2k , k > 1, the first point in Sn (and by similarity S'n) under

order
<f>

is (xi,yi), and the last point is (xp ,yp ) where p = (n/2) + 1.

Figure 2: The set 5i 6 in the unit triangle T decomposes into a copy of S'
4

in 7\, a

reversed copy of S'4 in T2 , and a reversed copy of Sg in T3 . Curve <j> visits the leftmost

point first and the ninth point last (marked by arrowheads).



Proof: Let the points of Sn be indexed as in the definition (1). By inspection for

k < 2. For k > 3, we again use figure 2. The first point of Sn in T is the first point

in T\. The points in Sn f] Ji are {(z t , ?/,), 1 < i < n/4}, with identical indices. They

form a half-scale image of S'n ,4 , and inductively the first point among them is {x
1 ,y l ).

The last point of Sn in T is the last point in T3 . The points in Sn (~)T3 are a half-

scale reversed image of Sn/2 , label them {(-r^y-) = (x(n/2)+i>y(n/2)+i), 1 < * < n
/2J-

Since the order is reversed, the last point visited in T3 corresponds to the first point

in Sn /2
- Inductively the first point visited in 5n /2

would be (x'
1 .y[); this is point

(Z(n/2)+l,y(n/2)+l) of Sn .

Now we find the jumps distances ju and j'23- For & > 3, we may apply the lemma

to the find the first and last points of Sn in T]5 T2, and T3 . The last point in T\ has

index i — n/8 + 1, and the first point in T2 (since it is reversed) has index 3n/8.

Similarly the last point in Ti has index i = n/2, and the first point in T3 has index

3?>/4 + 1. Hence j12 = (n/4 - l)(2/3n) = 1/6 - 2/3??, j 23 = {n/4 + l)(2/3n) =

1/6 + 2/3n, so for k > 3 we have the simple recurrence:

a* = -(«i-i +0A-2J + g-

From the base cases a ! = 1/3, a2 = 2/3 follows that ak = 2fc/9+(4/27)(-l/2)*+5/27.

Finally we have I*
,

(5ri ) = a k + 1/3 > 2fc/9 as claimed.

3 Application to the PTSP

Bertsimas [2] applies the spacefilling curve heuristic to the Euclidean Probabalistic

Traveling Salesman Problem which is defined as follows: we are given a set 5 of n

points and a probability p, for each point (i„j/,) G S. A random instance X C S is

then generated by including each point (x
t , ?/,) in X independently with probability

Pi. For a tour r on S, let L T (X) be the length of the tour generated by visiting the

points of X in the order followed in r. Suppose tour a minimizes E[L"(X)}\ the goal

is to choose tour r to get E[LT(X)] close to E[L° (X)). Let L*{X) be the length when

r was chosen by the spacefilling heuristic. Then by a similar analysis as in section 2

we may show that in the worst case, E[L+(X)]/E[L"(X)] = 0(lgn).



4 Concluding Remarks

Similar examples hold for other curves in the unit square, in particular the Hilbert

curve (figure 3(a)) and 'zig-zag' curve (figure 3(b)) mentioned in [4]. For the Hilbert

curve, take n points along the diagonal line x + y = 2/3. For the zig-zag curve, take

points uniformly along the horizontal line y = 1/2. Numerical experiments with the

curve
<f>

strongly suggest that n points uniformly spaced on a 'random' line across the

unit square have expected tour length £'[£'*] = 0(lgn).

(a)

(b)
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