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Abstract

The LPT rule is a heuristic method to distribute jobs among identical machines

so as to minimize the makespan of the resulting schedule. If the processing

times of the jobs are assumed to be independent identically distributed random

variables, then (under a mild condition on the distribution) the absolute

error of this heuristic is known to converge to almost surely. In this

note we analyse the asymptotic behaviour of the absolute error and its first

and higher moments to show that under quite general assumptions the speed of

convergence is proportional to appropriate powers of ( log log n)/n and 1/n.

Thus, we strengthen and extend earlier results obtained for the uniform

and exponential distribution.
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1. INTRODUCTION

Suppose that n jobs with processing times p, , . . . , p have to be distributed

among m uniform machines . Let s . be the speed of machine i (i = 1,..., m).

If the sum of the processing times assigned to machine i is denoted by

Z (i) (i = 1,..., m) , then a common objective is to minimize the makespan

Z = raax.{Z (i)/s.}. For this NP-hard problem many heuristics have been
n 1 n 1

proposed and analyzed; we refer to [Graham et al. 1979; Rinnooy Kan 1984]

for a survey. Among them, the LPT rule in which jobs are assigned to the

first available machine in order of decreasing p . is a particularly simple

and attractive one. The value Z (LPT) produced by this rule is related to

the optimal solution value Z (OPT) for the case that s • = 1 for all i by

[Graham 1969]

Z^-^^LPT) , .— < ^ - ^ . (1)

Z^'^^OPT) ^ ^"^

n

Computational evidence, however, suggests that this worst case analysis is

unnecessarily pessimistic in that problem instances for which (1) is satisfied

as an equality appear to occur only rarely.

To achieve a better understanding of this phenomenon, let us assume the

processing times p. (j = 1,..., n) to be independent, identically distributed

random variables. The relation between the random variables Z (OPT) and^—— -n

Z (LPT) can then be subjected to a probabilistic analysis . In [Frenk &

Rinnooy Kan 1984] it was shown that (under mild conditions on the distribution

of the p . ) the absolute error

Z^'")(LPT) - Z^™\oPT) (2)
-n -n

converges to almost surely as well as in expectation . Thus, the heuristic

is asymptotically optimal in a strong ( absolute rather than relative ) sense,

which provides an explanation for its excellent computational behaviour.
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In iFrenk c. Rinnoov Kan 1984 1 , the speed at -.vhich the absolute error converges

to was analyzed for the special oases of the uniform and exponential

distribution respectively. Here we extend and creneralize the results tor

almost sure convergence and convergence in expectation bv showing that for

a large class of distributions Cessentiallv those with F(:<) = x' (0 _ ^ •_ '^

,

Q . a . .:))^ this speed is proportional to an appropriate power of (log log n)/n

and l/n respectively. This implies that, although the

ontimalitv of the LPT rule could only be established asymotot ically

,

the convergence of the absolute error to at least occurs reasonably fast.

In some sense, to be explained later, these results are the best possible

ones obtainable for this heuristic.

The main result for the case of almost sure converi',ence , is described and

proved in Section 2. The case of convergence in expectation is dealt with

in Section 3, where we btiund first and higher moments of the expected absolute

error. Some extensions and conjectures are briefly examined in Section 4.

2. AiMOST SURE CONVERGENCE

In [Frenk & Rinnooy Kan 1984], it is shown that the absolute error of the

LPT rule (2) is bounded (up to a multiplicative constant) by

D (a) = max^ ,, , ''p
,

- — Z'._, p . 1 (3)
-n I'-ki^n - k:n a ]-l ^

] :n

where o < p ^ < ... < P are the order statistics of the processing
'-l:n "^2^1 '-n:n —

times and a = 1 + (m - l)s,/s . Let us assume that the distribution function
1 m

T.

of the processing times is given by

F(x) = x'"^ (0 ^ X < 1, < a < =°) (^)

In that case, n , 1 L'!^ , where U, (k = 1 n) are the order
^ k: :n ~ -K :n -k :n

statistics of n independent random variables uniformly distributed on (0, 1|,

-and b= 1/a.
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To studv the asymptotic behaviour of D (a), let us define the random variable

T to be the index p k {1,..., n} for which the maximum in (3) is actually
-n

achieved. Hence, T = p implies that

U^ -izP^U*? > uj -iz^,u'? (k = 1,..., p - 1) (5)
-p:n a j=l j :n k:n a j=l j :n

i.e., that

a ul" + S^'^^T U^ - (a - 1) U^ < (k' = 1, . . . , p - 1) (6)
-k:n j=k+l -j :n -p:n

so that (by addition of these inequalities)

if'} (a + k - 1) u!" < (a - l)(p - 1) U*" (7)
k=l -k:n -p:n

Thus, Pr (T = p} is bounded (from above) by the probability of (7).

Now, it is easily verified that

Pr Hy^.p_^(y''))^ < x^ (k = 1,..., p - 1)} (8)

where, for any z e [0, 1], U (z) (k = 1 , . . .
, p - 1) are the order

statistics of p - 1 independent random variables, uniformly distributed on

[0, z] [Karlin & Taylor 1981, p. 103].

Let F (v) = ?v{\]^ < y} . Then (7) and (8) imply that
p ' -p:n ^

Pr {T^ = p} <

1 _, ,

J ?riLf_Ua + k - 1)(U,
.
_Ay^)) < (a - l)(p - l)y} F (dy) (9)

Since (U,. , (y^) )^/y £ u[^ , (9) is bounded by

Pr{zf"J- (a + k - 1) ul" , < (a - 1) (p - 1) 1 (10)" K.= i -K :p-i

Now Lemma 1 in the Appendix implies that for certain constants C=c(ct), c=c(a)

-cp

To derive our main result from the Bovel-Cantelli lemma, we now use (11)

to bound

P

PriT = p} < C e
"-^^

(11)
-n

ma
[d log2n 1

.

'r{D^(a) >| ^^ I

i (12)
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(where D is a constant to be chosen later and iog.-,n = log log n) by

Pr{T ^ log n} +
-n

, n^r ,,b 1 „k. ,.b ,D log.,n ,b+ Pr{max ,-U i. , L. , > (
^-'

) . (±2)Ilk ^ log n i-k:n a j=l -j :n I n } ^ ^

The first term in (13) is 0(n *") from (II). We again condition (in the value

U, corresponding to the largest order statistic being greater or

smaller rhanCidog n)/n) , to bound the second term bv ^ "' ' •'
'-

-log n :n n • ^ ^ ...

(2 log n/n)'' .. .
.

l-_k : log n -k:n a j = l -j:n n '

I

U^ = V- F, (dv) (14) '^ .
' -log n :n - log n •

'

The first term in (14) is (Un *) (cr [de Haan & Taconis 1979j). To bound the

second term, we observe that the term within the integral is bounded for

every y : (0, l) :>y (c" (8))

D /
r,,b 1 _k .,b , . l.D log^n b,

Pr'.max.^,
, ^ i U,

^ ,
- — ^ . , U. , ^ -( :^_) ;

l::k •_ logn - 1 k: logn - 1 a 1=1 -j : logn - 1 y n

(15)

D log^n\b

+ Pr' (1 - h - - ^"^"^" " H-^ > i (
^ ^"g2" ^b,

a 'it ".1 = 1 -
j y n

so that the intesr-.l itself is bounded by

T. - 'T,'3 1 „k ,,b

Ilk 1 logn - 1 k:logn- I a j=l -j:iogn-l \- logn

J. j = i -j t (lo; .•

The second probabiiity in (lb) converges exponentially to (in log n)

.

We again bound the first probability bv conditioning on the index T(log n - 1)

(where the maximum is attained) being greater or smaller tiian d log^n, for

a constant d still to be chosen. From (11), the probabilitv of the former

-Cdv
event is O((log n) ;. The remaining conditional probability is bounded by



Pr{U^
^ ^

> (l^^^)h (17)
-d logon :logn- 1 2 log n

For d = D/4, this term is O((log n)"^'''" ) (cf [de Haan & Taconis 1979]).

Collecting all our upper bounds on (12), we conclude that, if

D = 2 max {16, 4/c}

Pr{D^(a) >
(

" ^°g2" )b}
= O(l/(logn)^) (18)

Define k^^ = e . The Borel-Cantelli lemma implies immediately that

k ,

lim sup ( ,
"

, y D (a) < - (a.s.) (19)
n ^ °° log2 k^ -kn

We show in the Appendix (Lemma 2) that D (a) is almost surely nonincreasing

in n. It follows that

lim sup (~—)^ D (a) < c» (a.s.) (20)
n -> °° log9n -n

and we have proved the main result of this section.

Theorem 1 . If the distribution function of the processing times equals

F(x) = x^ (0 < X < 1, < a < «=), then

lim sup^^ ^ ^L^)^^"" (Z^^'^LPT) - Z^™\oPT)) < - (a.s.)

This speed of convergence result is the best possible one that can be

derived from the upper bound (3) , as can be seen from the fact that

Pr^U, > ^"§2'^ i.o.} = 1 (21)
-l:n n

It can be shown [Karp 1983] that the speed of convergence to optimality for

the LPT rule is at least 1/n for the case that a = 1. In the next section,

we shall see that this lower bound is also an upper bound when we consider

convergence in expectation.
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3. CONVERGENCE IN EXPECTATION

Again, we assume that F(x) =x (0<x<l, 0<a<«'). With T as- - -n

defined before,

E(D (x)^) < Pr IT = nl +
-n - -n

+ E(max- ^ , ^ . (uj - ;^ Z^ , U^ })'' (22)
1 < k < n - 1 -k:n a j = l -j:n

As before we condition on the value of the largest order statistic to bound

the second term by

E(E(max-
^ ^ ^ „ . (uj - - e'^ . U^ }

)'!
|
U )

=
1 < k < n - 1 -k:n a j=l -j:n ' -n:n

ECu''^ E(max, . ^ A -k:n 1 ^k -j :n ^ ])'^\ U ) '

-n:n 1 < k < n - 1 r; - — E. ^
-7^ ' -n:n =

- - U a J = l U
-n:n -n:n

ECU"!^ ) E(max^ ^ , ^ . (ul" ^
- 1 z'f , U^ J)'^ ,„,-n:n 1 < k < n - 1 k:n - 1 — i=l i:n-l (23)- - a

Hence, for n sufficiently large, (11) and (23) together imply that

E(D (x)^) <- e
^" + "

^ E(D A^V)
'

(24)-n - n + qb -n - 1

Let h = (n + 1)'^^E(D (a)*^) . Then (24) implies that
-n

2
u ^ ( J. ^^^^ "•="

_i_
(qb/n) (25)h<(n+l)e +e h,

n - n-1

This implies that h is bounded by a constant and we have proved the main
n

result of this section.

Theorem 2 . If the distribution function of the processing times

F(x) = x^ (0 < X < 1, < a < °°), then

lim sup (n^/'^((Z^"'^LPT) - Z^'^VoPT) )'') < «
n -> °° n n

Identical results for the case that s. = 1 for all i are derived in a
1

different fashion in fBoxma 1984], Again, they are the sharpest possible

ones in the sense of the previous section. It is worth noting that this is

the first time that bounds on higher moments have been derived for a heuristic

of this nature.
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4. EXTENSIONS AND lONCLlDTNG RE>L\RKS

Theorems 1 and 2 can boch be extended Co Che case chat

F(y.) = -"(x ), i.e., there exisc posicive consCancs :. , L and U such that

Lx"^ < F(x) < [Jx"^ (26)

for X e [0,;)

.

In the case of almost sure convergence, this is done ^y showing that

one mav restrict oneself in the maximization (3) to ke ^l,...,[cn]}

Cas in [Frenk ti Rinnoov Kan 1984 1). This maximization involves only

the smaller order statistics and For those we are essentially in the

situation analyzed in Section 2.

In the case of convergence in expectation, our technique requires that

„ q (1 + b)+ 1 ^ .„^.

for the extension of Theorem 3 to hold. We strongly suspect, however.

that this condition is not essential. Details of the oroofs for thes2 results

are available from the authors.

These unusually strong results, as v;ell as other recent ones in this irea (;BoxTTia

1984]), confirm the remarkable amenability of the LPT rule to a probabilistic

analysis. Extensions to other prioritv rules involving order scatistizs

of processing times seem feasible and interesting.
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APPENDIX

Lenrnia 1. For every S > 1 there are positive constants C = C(S)

and c = c(g) such that

Pr {I^_, (6 + k) \j}{^ < Sm} i C . e"^'"

Proof. If a > 1, then U, > U, a.s.
- -k:m - -k:m

Also, if a < 1, we obtain from Holder's inequality [Goffman & Pedrick

1965, p. 2] that (take p = 1/a, q = l/(l-a), y^ = (6 + k)"^ U^.^, x^ = 1)
•

e" (S + k)^ U, < m^"^ (Z"'
,

(B + k) uy^ )^ a.s. (A. 1)
k=l -k:m - k=l -k:in

This implies that

Pr {Zf , (6 + k) uy^" '. em}
k=l -k:m -

= Pr [ill ^
(B + k) uy^ )" < oV)

k=l -k.:m -

.
•.•{''"

< Pr {e"
,

(6 + k)^ U, < S^'m}. (A. 2)
- k=i -k:in -

Hence we consider the distribution of

rJl . (B + k)"" U, ^ (a < 1)
k= 1 - k :m

Since (U, , U )'^ = (S^/S ... ,S /S ) with
-l:m -m,m -1 -m+i -m -m+i

S = y""" V and V independent exponentially distributed random
-i j=l -j -J

variables with parameter X = 1 ( j = 1 , . .
. , m) ( [Karlin & Taylor 1981,

p. 103]), w3 can rewrite the right hand side of (A. 2) as



Now for every e > 0, there exists some m = mo(e) such that, for every

m > m„(e), the above probability is bounded from above- by

,m+l , , . , . „ , a+1 „ . . , ^ s a+1
Pr {I^^^ (1 + e + 6) V^ > ((1 - e)m) S^

,
,

/

= P^^=I=i ^.,m+l Y, > 0}

i%rith

a+1
= ((I + '! 4- K)/(l - r)m:

-£,m+lc„ _,, = ((1 + 2 + B)/(l - £)ni) - 1 (A. 4)

p+1
Clearly -1 < c„ ^, < ( (m + 2 + 6)/(l - Om)'' ^ - 1 (£ = 1,..., m + 1)

£ , m+1 -

a+1
and this implies for .\e[0, 1/2 . (2(1 - e)/3) ]

and m > max(m (e), 2(B + 2)) that

From the Taylor expansion of log ( 1 + x) around x = 0, we then show

that the above term is bounded by

,-„m+l , ,2 ^m+1 2 ,

^^P('^i=l "^^m+l + ^ ^1=1 "i,m+l^ •

Since

and

lim aT] <^o
4.,)/in = l/((a + 1)(1 - i)''"^^) (A. 6)

m-'<» P.=l P. ,m+I

-2/((a + 2)(l - O^-^') + 1.
'^-^

the desired result follows from the appropriate choice of positive

values for X and e.
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Lemma 2

Z'° , ?r -U
, ( ) > D ( J} < '°.

n= L -n+i -n

Proof. It is easy to verifv that ,,(')•' D (2) unless (perhaps) if

the new processing time is larger than all the previous ones.

Hence,

Pr {d ,( ') > D ( ')] •- Pr •'ji ^,
^'?' '

P-.
" 0> ''.

r-

1

-n+1 -n - n+1 '. 1=1
]

00 n*
= r F ((a-l)y) F(dv) " (A. 8)

so that

Z"" , Pr {d ^Ai) - D (Ol < 7 U((x-Uy)F(dv) (A. 9)
n=l -n+1 -n - '

:
- •.

with 'J(x)=Z^ , f" (x)the renewal function ([Feller 1971; Van Dulst ^'

n=l

Frank 1984]). The result now follows from

Un -ii^ =7 X F.(dx) ^-
. V-'l (A. 10)

an d the local boundedness of U(x) on (0, ^)
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