

HD28
.M414

V ZoSo-
DEWEY

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

Projective Transformations for Interior Point

Methods, Part II: Analysis of An Algorithm

for finding the Weighted Center

of a Polyhedral System

Robert M. Freund

Sloan W.P. No. 2050-88 October 1988

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 1 3 2000

LIBRARIES

Projective Transformations for Interior Point

Methods, Part II: Analysis of An Algorithm

for finding the Weighted Center

of a Polyhedral System

Robert M. Freund

Sloan W.P. No. 205U-88 October 1988

Projective Transformations for Interior Point Methods, Part II:

Analysis of An Algorithm for finding the

Weighted Center of a Polyhedral System

Abstract

In Part II of this study, the basic theory of Part I is applied to the

problem of finding the w-center of a polyhedral system X . We present a

projective transformation algorithm, analagous but more general than

Karmarkar's algorithm, for finding the w-center of X . The algorithm

exhibits superlinear convergence. At each iteration, the algorithm either

improves the objective function (the weighted logarithmic barrier function)

by a fixed amount, or at a linear rate of improvement. This linear rate of

improvement increases to unity, and so the algorithm is superlinearly

convergent. The algorithm also updates an upper bound on the optimal

objective value of the weighted logarithmic barrier function at each iteration.

The direction chosen at each iteration is shown to be positively proportional

to the projected Newton direction. This has two consequences. On the

theoretical side, this broadens a result of Bayer and Lagarias regarding the

connection between projective transformation methods and Newton's
method. In terms of algorithms it means that our algorithm specializes to

Vaidya's algorithm if it is used with a line search, and so we see that Vaidya's

algorithm is superlinearly convergent as well. Finally, we show how to use

the algorithm to construct well-scaled containing and contained ellipsoids

centered at near-optimal solutions to the w-center problem. After a fixed

number of iterations, the current iterate of the algorithm can be used as an
approximate w-center, and one can easily construct well-scaled containing

and contained ellipsoids centered at the current iterate, whose scale factor is of

the same order as for the w-center itself.

Keywords: analytic center, w-center, projective transformation,

Newton method, ellipsoid, linear program.

Author: Robert M. Freund, Sloan School of Management, M.I.T.,

50 Memorial Drive, Cambridge, Mass. 02139.

Abbreviated Title: Projective Transformations, Part II.

L Introduction

Part II of this study uses the projective-centering and the local improvement

methodologies developed in Part I [3] , to develop an algorithm for finding the

A
w-center of a polyhedral system, which is the solution x to the problem

m
Pw : maximize F(x) = V w

4
In (bj - AjX)

i=l

subject to Ax + s = b (1.1)

s>0

Mx = g

m
where w = (wj, . .

.
, wm) are positive weights that are normalized to V w

4

= 1,

i=l

and F(-) is a (weighted) logarithmic barrier function. Problem Pw is a

generalization of the analytic center problem defined by Sonnevend [11], [12] , for

nonuniform positive weights on all constraints. This problem has had numerous

applications in mathematical programming, see Renegar [10], Gonzaga [5], and

Monteiro and Adler [8], [9], among others.

If there exists a point x e X = {x e Rn
| Ax < b, Mx = g) for which Ax < b,

A
and if X is bounded , then Pw will have a unique solution x , called the w-center

A
of X . To be more precise, we should say that x is the w-center of X (A, b, M, g),

since the solution to Pw is dependent on the particular polyhedral representation of

A
X . However, as in Part I of this study, we will refer to x as the w-center of X ,

where it is understood that X represents a specific intersection of half-space and

hyperplanes.

For the case when all weights w
4
are identical, there are two other

algorithms known to this author that have been developed for the w-center

problem. Vaidya [14] has developed an algorithm that constructs the

Newton-direction from the current iterate and then performs an inexact line search

in this direction. He shows that at each iteration, there is either constant

improvement in F(x) or a linear rate of improvement in F(x), and so his algorithm

exhibits linear convergence. Censor and Lent [2] present a primal-dual algorithm
A

for finding the center, that is convergent to x , but not necessarily in any strong

sense.

The algorithm developed in this paper is based on the use of projective

transformation methods to w-center a given point, as in Section rV of Part I. At each

iteration the polyhedron X = (x e Rn | Ax < b, Mx = g] is projectively transformed

to a polyhedron Z so that the current point x is the w-center of Z . A search

direction d is then determined. This direction is used first to test if Pw is bounded

or unbounded. If it is bounded, it will then produce an (updated) upper bound on
A

the value of F(x) . A steplength a is then computed.

The algorithm can be run with a steplength a determined analytically at each

iteration, or by the use of a line search. The new point xNEW is then determined by

projectively transforming the point x + a d back from Z to X . At each

iteration, there is either a constant improvement in F(x) , or a linear rate of

improvement in F(x). However, because the linear rate of improvement approaches

one in the limit, the algorithm exhibits superlinear convergence. The search

direction determined at each iteration of the algorithm is positively proportional to

the projected Newton direction. If the steplength is chosen at each iteration by a line

search, the algorithm specializes to Vaidya's algorithm (with equal weights), and this

shows (obliquely) that Vaidya's algorithm exhibits superlinear convergence, verifying

a conjecture of Vaidya [15] that his algorithm might exhibit stronger convergence

properties.

A
As was shown in Section II of Part I, at the w-center x of X one can construct

an inner ellipsoid E1N
and an outer ellipsoid EOUT with property that

A A

EIN c X c EOUT , x is the center of EIN and EOUT , and (EOUT - x)
=

— — A —
((1 - w)/ w)(EIN

- x), where w = min [wj] . This ratio is (m - 1) when all

i

A
weights are identical. Thus x is in a sense a w-balanced point of X . Although the

A
algorithm we present converges to the w-center x of X , it may never reach the

w-center. However, after a fixed number of iterations it will exhibit a point x "close

enough" to the w-center, in the following sense: at the point x , one can easily

construct ellipsoids FIN and FOUT , with the property that FIN c X c FOUT , and

(FOUT - x) = (1.75/w + 5) (FIN
- x) . When all weights are identical, then this ratio

is (1.75m + 5) which is O(m). In general, the order of this ratio is 0(1/w) , which is

the same as for E IN and EQut •

The paper is organized as follows: Section II presents the projective

transformation algorithm for solving the w-center problem Pw . In Section III, we

prove that the optimality tests and unboundedness tests in the algorithm are valid.

In Section IV, we prove that the objective value bounds produced by the algorithm at

each iteration are valid, and prove that the algorithm is linearly convergent in F(x).

In Section V, we show that the algorithm exhibits superlinear convergence. In

Section VI we show the relationship between the algorithm and Vaidya's algorithm

[14] , by showing that the direction d determined at each step is positively

proportional to a projected Newton direction. In SectionVH, we show that after a

fixed number of iterations, one can easily construct ellipsoids FIN and FOUT about

the current iterate x with the property that F1N c X c FOUT , and (FOUT - x) =

(1.75/w + 5) (FIN
- x) . Section VEQ contains closing remarks.

EL A Projective Transformation Algorithm for Finding the w-center of X .

The notation and conventions used here are exactly the same as in Part I of

this study [3] . We assume the reader is familiar with these notation and

conventions. We also will cite many of the results presented in Part I.

Let the given data (A, b, M, g) define the polyhedral system

X = {x e Rn
| Ax < b, Mx = g] . Let w e Rm be a given vector of weights satisfying

w > and normalized so that eTw = 1, where e = (1, . . . , 1)
T

. Our interest lies in

solving the w-center problem Pw given in (1.1). We make the following

assumptions regarding the data:

(2.1a) The matrix A is m x n and has rank n.

(2.1)

(2.1b) The matrix M is k x n and has rank k.

These assumptions are for convenience, and if A or M lacks full rank, then

one can either eliminate variables or constraints, or one can replace certain matrix

inverse operations with pseudoinverse operations in the analysis.

Exactly in the spirit of Karmarkar's algorithm and consistent with the local

improvement algorithm of Section V of Part I, we have the following algorithm for

solving Pw . Let the data for the problem be [w, A, b, M, g, x, e] . Here w is the

vector of weights satisfying w>0 and eTw = 1, (A, b, M, g) are the data for the

polyhedral system X , x is the starting point, which must satisfy s = b-A x>0 and

M x = g , and e > is the optimality tolerance.

Let w = min/w
1 J.

Because we will use the quantity w/(l - w) extensively
i

throughout the description of the algorithm and the subsequent analysis, we define

the constant k = w/(l - w) for convenience. Also, in the algorithm, F* is an upper

bound on the optimal objective value of Pw .

Algorithm for the W-Center Problem

StepO Set w=min{Wi }. Set k = (w/(l - w)) . Set F* = +°° .

i

Step 1 Set s~= b - A x , y = AT S
_1w .

Step 2 (Projective Transformation of constraints) A = A - syT

Step 3 (Compute direction in Z space)

Let d be the solution to the problem (P3) : maximize - y
Td

d

subject to dT A S^W S' 1 Ad < k

Md =

If this problem is unbounded, then stop. Pw is unbounded.

If y
T d = 0, stop, x solves Pw .

Step 4 (Perform Boundedness Tests and Update Upper Bound).

Set y = (-yT d) /k

If y £ l/k,stop. Problem Pw is unbounded, and d is a ray of X.

If Y < 1 then set F* = min {F*, F(x) + y + Y
2
/(2(l-Y))}

If Y < .08567 then set F* = min {f*, F(x) + .669kY
2
}

Step 5 (Compute Steplength)

Set cc= 1 -
;

Vl+2Y

Set zNEW = x + a d.

Step 6 (Transform back to original space X)

- znew ~ x

XNEW = X +
1 + y^NEW" *>

Step 7 (Stopping Criterion) Set x <- xNEW . If F* - F(x) < e , stop.

Otherwise go to Step 1.

This algorithm has the following straightforward explanation. Note first that

Pw is an instance of the canonical optimization problem (5.1) of Part I, namely

m
P : minimize F

q p
(x) = ln(q-pTx) - £ w

t
ln(bj - AjX)

x,s i=1

subject to: Ax + s = b

s > (2.2)

Mx = g

p
Tx < q

where q =1 , and p = (0, . . . , 0)
T

, and hence F(x) = -F (x) = -Fj (x) . Thus we

can proceed with the local improvement algorithm presented in Section V of Part I.

Let x e int X be given, let s = b - A x , and let y = AT S
_1w . Then we can

projectively transform X to

Z = {z e Rn | (A - syT)z < b - TyT x , Mz = g}

X — X
with the function z = g(x) = x + ~ =-

, as in (3.2), (3.3) and (3.4) of Part I.

1 -y l (x- x

)

Problem P = P
1

is transformed to

[l_ y
T x]_[_y

T] z) _ £ w . lnt .

subject to (A - syT)z + t = b - syT x (2.3)

t >

Uz = g

-yTz < 1 - y
T x

which is equivalent to (2.2) (and, of course (1.1)) according to Lemma 3.2 (ii) of

Parti. Note that (2.3) is also an instance of problem (5.1) of Part I with A replaced

by A = A - syT , p replaced -y , q replaced by 1 - y
T x , etc. Because x is the

w-center of Z , then the direction d given by the solution to (5.3) of Part I (with

A and p replaced by A and -y) has the property that x + d maximizes -yTz

over

ze EIN
= {zg Rn |Mz = g,(z- x)T AT S- !W S" 1 A(z- x)< w/(l - w)} .

Let y = -yT d (1 - w)/ w as in (5.6) of Part I (note that q - p
T x = 1). This is

precisely the quantity y defined in Step 4 of the algorithm. Let a = 1 -1/\1 + 2y ,

as in Step 5 of the algorithm, and zNEW = x + a d. Then by Corollary 5.1 of Part I,

G(zNEW) = G(x + a d) < G(x) - (w/(l - w)) (l + y- V^+2y) if

a = 1 - 1/\ 1 + 2y . Projectively transforming back to X space using the inverse of

z — x
g(-), namely x = h(z) = x + = =- (see (3.4) of Part I) , we obtain

1 + yUz- x)

— ^NEW
— x

xnew = x + — =- as in Step 6 of the algorithm, and
1 + y (znew ~ x '

F(xNEW) - F(x) = F
1#

(x) - F^ (xNEW) > (w/(l - w)) (l + y - Vl+2y) , (2.4)

from Lemma 3.2 (ii) of Part I.

In particular, whenever y is greater than or equal to a given constant, and we

will use y ^ -08567, then we have

F(xNEW) - F(x) > (w/(l - w)) (.0033) (2.5)

Before proceeding with the analysis and verification of the algorithm, we make

the following remarks.

Remark 2.1. Use of a line search. Steps 5 and 6 of the algorithm can be replaced by a

line search. Because the projective transformation g(-) ((3.3) of Part I) preserves

directions relative to x, the line search can be performed in the space X directly.

Specifically, one needs to find a value of 8 that nearly maximizes F(x + 5 d) over

8 > and x + 8 d feasible. Because F(x) is strictly concave over x e X , then

there will be at most one maximizer of F(x + 8 d) over the feasible range of 8 . One

could start the line search with 8 = zr-= , where a = l-l/"Vl+2v which
1 + ay 1 d

corresponds to a step of size a = 1 - l/*\ 1 + 2y in the projectively transformed space

Z .

Remark 2.2. Efficient Computation of d in Step 3. As in the linear programming

algorithm of Part I, one can compute d without working with the possible very

dense matrices A = A - syT or Q = A S'^W S" 1 A . The discussion of this

procedure is deferred to Section VI, where we show that d is proportional to the

projected Newton direction.

IIL Optimality Test and Unboundedness Test

In this section, we show that the optimality test of Step 3 of the algorithm is

valid, and that the unboundedness tests of Steps 3 and 4 are valid.

Proposition 3.1. If the algorithm terminates in Step 3 because optimization problem

(P3) is unbounded, then Pw is unbounded.w

Proof: Suppose that at Step 3, that (P3) is unbounded. That means there exists a ray

r e Rn such that y
T
r = -1 , Mr = 0, and Ar = 0. But Ar = implies Ar = syTr =

m
- s < 0. Thus r is a ray of X , and F(x + 6r) = V Wj In (s, (1 + 6)) -> +°° as

i=l

-»oo.

Proposition 3.2. If the algorithm terminates at Step 3 with y
T d =0, then x solves

IV

Proof: The solution d will satisfy the following optimality conditions:

-y = 2 pAT S"
1W S"

1 A d - t^M , where p > and p(k - cFa1 S^W S'
1 A d) =

0. We also obtain (3 cFa7 S' 1W S" 1 A d = (1/2) (-yT d + t^M d) = (1/2) (-yT d) =

0, so that P = or A d = . In either case, y = j^M , i.e. wT S
_1A = t^M

Thus from (2.1) of Part I, x solves Pw .

Proposition 3.3. If the optimization problem (P3) in Step 3 has a solution with a

nonzero optimal value, then that solution is unique.

Proof: If not, then let r = d 1 - d2 where d 1
, d2 solve the optimization problem.

Then it is straightforward to show that Ar = and Mr = 0. Because A = A - syT ,

then Ar = syTr , and y
T
r * 0, for otherwise A would not have rank n. However,

y
T
r = y^d 1 - y

Td2 = because d 1 and d2 are both optimal solutions, which is a

contradiction.

Proposition 3.4. If Algorithm 3 stops in Step 4, then Pw is unbounded, and d is a

ray of X .

10

Proof: From Theorem 4.1 of Part I, x is the w-center of Z as defined in (3.2) of

Part I, and x + d lies in the inner ellipsoid EIN for Z as given by Theorem 2.1 of

Parti. Thus x+adeZ for all a e [-1,1]. In particular, let ct = l/(ky). Then if

Algorithm 3 stops in Step 4, a < 1 and a > 0, whereby z = x + adeZ.

Because z e Z , (A - syT)z < b - syT x , so that

Az < syTz + b - syT x .

vT d
However, we also have y

1 z = y
1 x + ay i d=y 1 x + *-— = y 1 x -1. Thus

ky

Az < s (y
T x - 1) + b - syT x =b-s = Ax.

Thus A(z - x) < . But z - x is a positive scalar multiple of d , so that A d < 0.

Furthermore d * , for otherwise the algorithm would have stopped in Step 3 (see

Proposition 3.2). Next, observe that M d = 0, so that d is a ray of X . Because A

has full rank , (see (2.1)), Ad<0 and A d * 0. Thus F(x + d) -> +~ as 6 -> <«

and Pw is unbounded.

Section IV. Linear Convergence and Improved Optimal Objective Value Bounds

The purpose of this section is to establish the following three results regarding

the algorithm for the w-center problem:

1

1

Lemma 4.1. (Optimal Objective Value Bounds) At Step 4 of the algorithm ,

A

(i) if y<1, then Pw has a unique optimal solution x , and

F(x) < F(xj + y +
2 (1 - y)

Y < .08567, then F(x) < F(xj + .669 kY^

A
->

Note that Lemma 4.1 validates the upper bounding procedure presented in Step 4 of

the algorithm.

Lemma 4.2 (Local Improvement). At Step 6 of the algorithm,

(i) if y > .08567, F(xNEW) > F(xj + (.0033) k .

(ii) if y < .08567, F(xNEW) - F(x) > .4612 kY2 .

Lemma 4.3 (Linear Convergence). At each iteration, at least one of the following is

true:

(i) F(xNEW) > F(x) + (.0033) k .

A A _ A
(ii) F(x) - F(xNEW) < .32 (F(x) - F(x)), where x is the w-center of X .

In SectionV, we will show a result that is stronger than Lemma 4.3, namely
_ A

that as the iterates x converge to x , that the constant .32 in Lemma 4.3 (ii) will go

to zero, thus establishing superlinear convergence.

1 2

Note that Lemma 4.3 is an immediate consequence of Lemma 4.1 and 4.2.

Lemma 4.3(i) is a restatement of Lemma 4.2(i). To prove Lemma 4.3(11), note that if y

< .08567, then from Lemma 4.1 (ii) and 4.2(H),

F(xNEW) - F(x) .4612
KJF = > -T7g- > -68,

F(x) - F(x)
-bby

and so

F(x) - F(xNEW) F(xNEW) - F(x)

A Z— = 1 - * ~ ^ 1 - .68 = .32 .

F(x) - F(x) F(x) - F(x)

We thus need to prove Lemmas 4.1 and 4.2. We start by asserting some elementary

inequalities.

Proposition 4.1. (Inequalities)

f(h - ln(l + h)h
a) In (1 + x) < x -

» 2
x2 whenever -1 < x < h.

b) In (1 + x) < x - .378 x2 whenever -1 < x < .5 .

c) 1 + y - V 1 + 2y > I VI + 8 - Vl +29)/Q 2
\y

2 whenever 0<y<9.

d) 1 + y -^1 +2y ^ -4612 y
2 whenever 0<y^ .08567.

Proof: (a) follows from the fact that [h - ln(l + h)] / h2
is decreasing in h for

h > -1. (b) follows from (a) by substituting h = .5. (c) follows from the fact that

\1 + - Vl +26) / 6 2
is decreasing in 6 for > 0. (d) follows from (c) by

substituting 9 = .08567 .

We now will prove Lemma 4.2, followed by Lemma 4.1(i) and Lemma 4.1 (11).

13

Proof of Lemma 4.2.: Statement (i) is a restatement of inequality (2.5). According to

(2.4), F(xNEW) - F(xj > k (l + y - "^ + 2y) . Let 6 = .08567. Then according to

Proposition 4.1(d), l+y~Vl+2y > .4612 y
2 for < y < .08567 , which proves

statement (ii).

Proof of Lemma 4.1. (i): Let x be the current point, and let y = AT S_1w . For any

x e X , let z = g(x) where g(-) is the projective transformation given in (3.3) of Part I,

and let Z be given in (3.2) of Part I. Then Pw is equivalent to the problem (2.3):

m
minimize G(z) = In (1 - y

T x + yTz) - V w
t
In tj

i=l

subject to (A - syT)z + t = b - syT x

t >

Mz = g

-yTz < 1 - y
T x

and by the remarks following (2.2) and (2.3), and lemma 3.2(h) of Part I, F(x) =

-F} (x) = -G(z) . It thus suffices to show that if y < 1, then G(z) >

G(x) - y - y
2

/ (2 (1 - y)) . By construction of y, from Theorem 4.1 of Part I we know
m

that x is the w-center of Z . Thus for any z € Z , -Y w
4
In tj >

i=l

m
- V Wj In s

i
= G(x) , where t is the slack corresponding to z in Z .

i=l

We now must show ln(l - y
T x + yTz) > -y- y

2
/ (2 (1 - y)) . To see this, note

that because x + d maximizes -yTz over z € E1N , then x + d/k maximizes

-yTz over ze EOUT , and so for any ze Z c EOUT ,-yTz < y
T x -yT d/k =

-yT x + y . Thus ln(l - y
T x + yTz) > ln(l -y) > -y- y

2
/ (2 (1 - y)) , from

Proposition 2.5 of Part I. This proves statement (i) of Lemma 4.1 .

14

The proof statement (ii) of Lemma 4.1 is very involved, and follows from the

following sequence of lemmas:

Lemma 4.4. Let h > be a given parameter. Let x be the w-center of X , let

_ _ A
s = b - A x, and suppose x e X satisfies

(x- x)T AT S^W S^AC x- x) = p
2

.

Then

m ^ m
V Wj In (b, - A, x) - V Wj In Sj < *

i=l i=l

Proof: First we observe that

h-ln(l + hL, r-± i>
2

if (3 <hVk

h-ln(l + h) r- ,-
-2 h^kp if p> hVk

m ^ m m
V Wj In (b, - AjX) - ^ Wj In (Sj) = X w

i
^n ^ + r

i^ ' wnere
i=l i=l i=l

r = -S" 1A(x- x). Then note that wTr = -wT S
_1A(x- x) = nTM(x- x) =

for some k = Rk , from (2. Id) of Part I. Also, r
TWr = p

2
. Then

(n/k / p)
T W(rVk / p) = k , and by Proposition 2.2 of Part I, | r

4
1
< p / Vk , i = 1, . .

.
, m.

We now prove the two cases of the Lemma.

Casel. (p<hVk). Then |rj|<h. From Proposition 4.1(a), ln(l + ^) <

(h-ln(l+h))
2

™
, M

Tj - ~2 rf , i = 1, .
.

. m . Thus 2^ w
i

^n ^ + r
i)

-

i=l

T (h-lnO +h)) Tt r
(h-lnO+h)) -

w'r n r'Wr = r? P^ .

h2 « r»i - -
h2

1 5

Case 2. (P > hp/k) . Because
|
r

;
|

< P y[k, then r
{
Vk h/p < h, and so again by

r— r- (h - ln(l + h)) , - ,„ n
Proposition 4.1(a), ln(l + r, Vk h/p) < r, Vk h/p ^ r

i
kh2

/p
2

,

™
r- (h-ln(l+h» ,

i = 1, . .
.

, m. Thus ^ w
i
In (1 + ryvk h/p)

< r^ kh^ , because

i=l

wT
r = and r

TWr = p
2

. However by the concavity of the log function,mm m
(Vk h/p) X w. In (1 + r

t
) = (Vkh/P) X w. In (1 + q) + (1 - Vk h/p) £ In (1)

i=l i=l i=l

m m
< £ WjlnaVkh/pXl+rj) + (1-Vkh/P))= X w

4
In (1 + rjVkh/P)

i=l i=l

(h-ln(l + h))
,

- ^< -5 kh2
. Thus

h

£ , r,
(h-ln(l + h)) r- _^ Wj In (1 +t

{
) < - ——-2 Vk hp .

i=l

Lemma 4.5. Let x be the current point in the w-center algorithm, let

Q = AT S
_1W S" 1 A , where A = A - syT is defined in Step 2, and y is defined as

A A A
in Step 4. Suppose x is the optimal solution to Pw and z=g(x), where g(-) is the

a _ _ A _
projective transformation given by (3.3) of Part I, and that (z - x) Q(z - x) = P

2
.

If Y < 1, and h > is a given parameter, then

'- (h "^ + h))

P
2 + pVky + P

2ky2 /(2(1- Y)) if p < hVk

F(x) - F(x) <<\

' — hVkp + pVky + p
2ky2 /(2(l-Y)) if P > hVk

h2

A _ _ A
Proof: According to Lemma 3.2(h) of Part I, F(x) - F(x) = G(x) - G(z) , where

m
G(z) = ln(l-yT x + yTz) - j w

;
In (b

i

- A
;
z)

i=l

1 6

where A is defined in Step 2 of the algorithm, and b = b - syT x . Noting that

m
G(x) = -F(x) = - j£ Wj In Sj, then

i=l

a _ m _ a m
G(x)- G(z) = -ln(l+yT(z- x)) + £ Wj In (bj - A

t
z) - £ v?. In s, .(4.1)

i=l i=l

However, because x is the w-center of Z (defined in (3.2) of Part I), then by

Lemma 4.4,

m ~ A m _
£ Wj ln(bj -Ajz) - X w

i
ln s

i
s '

i=l i=l

((h-ln(l +h)) , p-
--

^ P if MhVk

(h - ln(l + h)) j-n r-^ h^P if (3 > hVk

T a _ p2ky2

It thus remains to show that -ln(l + yUz- x))< p\ky +
2(1 -y)

A A _ _
Let d = (z - x). The vector d in Step 3 of the algorithm is that vector that

maximizes -yT (x + z) over all z e EIN , as discussed in SectionV of Part I, where

EIN = {ze Rn |Mz = g, (z- x)T Q(z- x) < k) . Thus

-yT(x + d) > -yT(x+ d Vk /p),andso yTd > py
T d/Vk . However,

because y= -yT d/k then y
Td > -pyVk . Also, because

Z c Eom ={z e Rn | Mz = g, (z - x)
T Q(z - x) < 1/k) from Theorem 2.1 of Part I,

we must have P
2 <l/k , and so pVk < 1. Thus yp Vk < y <1 . This then

implies
p..*>i

ta p- j- p-^k
-ln(l + y

1 d) < -ln(l - Pyvk) < +py\k + — , the last inequality being an
2(1 - y)

instance of Proposition 2.5 of Part I, with e = -yp Vk and a = y .

17

Lemma 4.6. Under the hypothesis of Lemma 4.5, if

12

Y< 1 -
ln(l + h)

2h
- 1/2V

ln(l +hV ln(l + hhr In 1 •

(4.2)

then (3 < hVk

Proof: Suppose p > hyfk . Then from Lemma 4.5,

F(x)-F(x) < f(y,p) , where

(h-ln(l +h))
f(Y,P) = -

h 2
hVkp + pVkY +

2(1 -y)

Note f(Y,P) increases in y for P>0 and 0<y<1- Straightforward calculation

reveals that f(y, p) = if

2-ln(l+h)/h- V(ln(l + h)/h)2 + 2pVk (1 - ln(l + h)/h)
Y= F (4-3)

2-pVk

Thus if y is less man me above quantity, then f(y , p) < , contradicting the

A
optimality of x . Thus y must be greater than or equal to the expression in (4.3).

Next, borrowing the observation in the proof of Lemma 4.5 that < pVk < 1, then

the expression in (4.3) is greater than or equal to

2 - ln(l + h)/h - Vdnd +h)/h) 2 + 2(1 - ln(l + h)/h)

, , ,
lnd + h)

which equals 1 -—~r 1/2V
ln(l +h)1 ~¥^]

r- ln(l+h) , /rin(l + h)"|2 f lnd +
Thus,if p>hVk,then yil—-^ - 1/2 "\[h J

+ I 1 "
h~

KT

1 8

Proof of Statement (ii) of Lemma 4.1. : Let us set h = .5. Then the expression on the

RHS of (4.2) is then greater than .08567. Thus if y < .08567, then from Lemma 4.6 and

Lemma 4.5, (3 < 5^jk , and

F(x)-F(x) <-.3781p2 + pVky + P
2
k*r / (2(1 - y)) . Let us define

f(p) = -.3781 p
2 + Vkyp + P

2ky2 / (2(1 - y)) . The function f(P) is quadratic in p,

and because k < 1 and y < .08567, then ky2 / (2(1 - y)) < .3781 , so that f(p) is

— \ky
concave. Thus the largest value of f(p) is given by P

=

.7562-'
ky2 '

with f(p) < f(p) =
ky2 ky2

(l-y)

2ky2 2-f
1.5124- — 1.5124-

5- < .669ky2 for y<. 08567.

(l-y)

This completes the proof of Lemma 4.1

d-y)

V. Superlinear Convergence

In the previous section, we showed linear convergence of the algorithm, with

a linear convergence rate of .32, by choosing the value h = .5 and applying

Lemmas 4.4, 4.5, and 4.6. In this section we show that as we choose h > and

arbitrarily close to zero, then the linear convergence rate goes to zero in the limit,

thus showing that the algorithm is superlinearly convergent.

We first present some elementary facts about three particular functions.

Proposition 5.1.

Let f(h) = 1 -i^S - 1/2

Let j(0) = Ll + 6 - Vl+26 J /6 2

ln(l +h)l3"

£-
ln(l + hV

for 6 >

for h > 0. (5.1)

(5.2)

19

, ,
(h-ln(l +h))

Let p(h) =
^2

for h>0 (5 -3)

Then lim f(h) = , lim j(0) = .5 , and lim p(h) = .5 .

h->0 0->O h->0

We then prove the following three propositions, after which the proof of superlinear

convergence easily follows.

Proposition 5.2. For any h > 0, at Step 6 of the algorithm, if y < f(h) , then

"1 + f(h) - Vl + 2f(W
f (xnfw) - F(X) > ky2

(f(h))^

Proof: F(xNEW)-F(x) > k\l + y- V 1 + 2Y / from (2.4). Now substituting

f(h) for 6 in Proposition 4.1(c), we obtain the desired result.

Proposition 5.3. Suppose h > and sufficiently small and f(h) and p(h) are defined

as in Proposition 5.1. At Step 6 of the algorithm, if y < f(h), then

a _ ky2
F(x) - F(x) <

/f/v 2 ,

2k(f(h))-
4P (h)

"(l-f(h))

A
where x is the optimal solution to Pw

Proof: Because f(h) is just the expression of the RHS of (4.2), we have by Lemma 4.6

and Lemma 4.5 that if y < f(h), then

F(x)-F(x) < -p(h)[3 2 + (3VkY + (3
2kY2/(2(l-7)). (5.4)

If h is sufficiently small p(h) is approximately .5 from Proposition 5.1 and

ky2 /(2(1 - y)) < (f(h))2 /(2(1 - y)) < (f(h))
2 /(2(1 - f(h)) is approximately zero. Thus

the RHS of (5.4) is quadratic and concave in p. Its maximal value occurs at

P =
Vk'

2p(h) - kT2

(1-Y)

and the maximum value of the RHS in (5.4) is therefore

k^

4p(h) -
2k?2

(1-7)

However y < f(h) , so we have

F(x) - F(x) <
kY2

A fM 2k(«h»2

4P (h) " (l-f(h))

Proposition 5.4. For h > and sufficiently small, if x is the optimal solution to

Pw , then

i) if y ^ f(h) , then F(xNEW) - F(x) > (l + f(h) - >/l + 2f(h)) k

ii) if y < f(h), then

F(x) - F(xNEW)

F(x) -F(x)
1-

1 + f(h) - Vl + 2f(h)

(f(h))^

2k(f(h))2
'

4P (h) " (1 - f(h))

Proof: If y> f(h), then from (2.4), we know that F(xNEW) - F(x) > \1 + y-V 1 + 2y)k

> (l + f(h) - Vl + 2f(h)) k since 1 + 6 - ^l +29 is an increasing function of 9 > 0.

Statement (ii) follows directly by combining Propositions 5.2 and 5.3. We have that if y

< f(h) , then

21

F(x)- F(xNEW)

F(x) -F(x)
= 1-

F(xNEW) - F(x)

F(x) - F(x)

(

< 1-

1 + f(h)- Vl + 2f(h)

(f(h))'

\

ky

\

1

4p(h) -
2k(f(h))

(l-f(h))

Cancelling out ky2 and rearranging yields the desired result.

Lemma 5.1. The algorithm for solving Pw exhibits superlinear convergence in F(x).

Proof: It suffices to show that as h -» 0, then the RHS of (5.5) goes to zero. As

h -» , f(h) -» from Propostion 5.1. Then note that

i + e-Vi + 29
with 6 = f(h), 9 -> as h -> and 5 = j(9) -> .5 as 9 -» , by

9

Proposition 5.1. The last term of (5.5) is 4p(h) - 2k(f(h))2 /(l - f(h)) . As h -»

p(h) -> .5 and f(h) —> by Proposition 5.1. Thus the entire expression (5.5)

approaches 1 - (.5) (4(.5) - 0) =
.

VI. Analysis and Computation of the Improving Direction

In this section, we show that the direction d of Step 3 of the algorithm is a

positively scaled projected Newton direction. As a byproduct of this result, the

computation of d can be carried out without solving equations involving the

matrix Q = AT S^W S"
1 A, which will typically be extremely dense. Vaidya's

algorithm for the center problem [14] corresponds to computing the Newton

direction and performing an inexact line search. Thus, our algorithm specializes to

Vaidya's algorithm when our algorithm is implemented with a line search.

? ")

Furthermore, this establishes that Vaidya's algorithm then will exhibit superlinear

convergence.

Let x be the current iterate of the algorithm, let s = b - A x, and y = AT S'Hv

and A = A - syT as in Steps 1 and 2 of the algorithm, and let Q = AT S"
TW S"

TA
,

and Q = AT S
_1W S'^A . From (2.1a), A has full rank, so that Q is nonsingular and

positive definite. Let F(x) be the weighted logarithmic barrier function of Pw given in

(1.1). Then the gradient of F(-) at x is given by -y , i.e., VF(x) = -y, and the Hessian

of F(-) at x is given by -Q, i.e., V2 F(x) = -Q.

Thus the projected Newton direction dN is the optimal solution to

maximize -yTd - (1/2) dTQd

subject to Md =

and the Newton direction dN together with Lagrange multipliers JtN is the unique

solution to

QdN - Mtkn = -y (6.1)

MdN =

Because Q has rank n and M has rank k, we can write the solution to (6.1) as

dN = -Q_1
y + Q_1mtkn

(6.2)

where jcn = (MQ^M^MQ^y

It is our aim to show the following

23

Lemma 6.1. Let dN be the Newton direction given by the solution (6.1) or (6.2).

Then 1 + y
TdN > , and

(i) if 1 + y
TdN > 0, and dN * , d = dNVk / (^/dNQdN) is the

direction of Step 3 of the algorithm.

(ii) If 1 + y
TdN > 0, and dN = , then d = dN = is the direction of

Step 3 of the algorithm, and the current iterate x solves Pw .

(iii) if 1 + y
TdN = 0, then the optimization problem (P3) of Step 3 is

unbounded, and Pw is unbounded.

Remark 6.1. Simplified Computation of d. Lemma 6.1 (i) shows that d is just a

positive scale of the Newton direction dN . Thus in order to solve for d, one need

not solve a system involving the possibly-very-dense matrix Q . Rather one need

only solve the equations (6.1) for dN and then compute d = dNVk / y dNQdN .

Remark 6.2. Relation of Algorithm to Vaidya's algorithm. Lemma 6.1(i) shows

that d is just a positive scale of the Newton direction dN . Suppose the algorithm

is implemented with a line search replacing Steps 5 and 6 , as suggested in Remark

2.1. Then because the projective transformations g(x) and h(z) given by (3.3) and

(3.4) of Part I preserve directions from x, the algorithm direction in the space X
will be dN . Therefore, when using a line search, the algorithm is just searching in

the Newton direction. This is precisely Vaidya's algorithm [14], when all weights

Wj are identical. And because the complexity analysis of Sections rv and V carries

through with or without a line search, we see that Vaidya's algorithm exhibits

superlinear convergence.

2 4

Remark 6.3. An Extension of a Theorem of Bayer and Lagarias. In [1] , Bayer and

Lagarias have shown the following structural equivalence between Karmarkar's

algorithm for linear programming and Newton's method: First one can

projectively transform the problem of minimizing Karmarkar's potential function

over a polyhedron X to finding the (unbounded) center of an unbounded

polyhedron Z , where Z is the image of X under a projective transformation that

sends the set of optimal solutions to the linear program to the hyperplane at

infinity. Then the image of Karmarkar's algorithm (with a line search) in the space

Z corresponds to performing a line search in the Newton direction in the

transformed space Z . Lemma 6.1 is in fact a generalization of this result. It states

that if one is trying to find the center of any polyhedron X (bounded or not), then

the direction generated at any iteration of the projective transformation method

(i.e., the algorithm of Section II) is a positive scale of the Newton direction. Thus, if

one determines steplengths by a line search of the objective function, then the

projective tranformation method corresponds to Newton's method with a line

search.

Another important relationship between directions generated by projective

transformation methods and Newton's method can be found in Gill et al. [4].

We now prove Lemma 6.1 by a sequence of three propositions.

Proposition 6.1. If (dN , rcN) solve (6.1), then 1 + y
TdN > 0.

Proof: Note that from (6.2), we have

1 + y
Td

N = i _ yTQ^y + y
TQ-1MT(MQ-1MTr1MQ- 1

y > 1 - y
TQ_1

y .

We thus must show that yTQ_1
y < 1. Note that Q = AT S

_1W S" 1 A is positive

semi-definite, and that Q = Q - yy
T

. Thus < y
TQ_1QQ-1

y = y
TQ~1(Q-yyT)Cr 1

y =

y
TQ-1

y(l - y
TQ-1

y)- Therefore y
TQ-1

y < 1, completing the proof.

25

Proposition 6.2. If (dN , 7tN) solve (6.1) and 1+ y
TdN = 0, then the optimization

problem (P3) of Step 3 is unbounded, and Pw has no solution.

Proof: From the proof of Proposition 6.1, we see that if 1 + y
TdN = 0, then

1 - yTQ-V = (6.3)

and y^^M^MQ^M^MQ-V = 0. (6.4)

Let r = -Q^y . From (6.4) we have ^M^MQ^M1)'^: = 0, whereby Mr = 0.

Also r
TQr = r

T(Q-yyT)r= y
TQ_1

y (1 -yTQ_1
y) = ° from (6.3). Finally, from

(6.3) we have -yTr = y
TQ_1

y = 1 > 0. Thus r satisfies Mr = 0, r
TQr = 0, and -yTr >

, whereby the optimization problem (P3) of Step 3 is unbounded. From

Proposition 3.1, Pw is unbounded.

Proposition 6.3. If (dN , 7iN) solve (6.1), and 1 + y
TdN > 0, then either dN = 0, or

dNQdN > 0.

Proof: Because Q = Q - yy
T

,

dNQdN = dN
TQdN - (y

TdN)
2

, (6.5)

and from (6.2) we obtain dN
TQdN = - y

TdN . Substituting in (6.5) yields

dNQdN = - y
TdN - (y

TdN)
2

. Since Q is positive semi-definite,

dNQdN > 0. If dNQdN = , then we must have y
TdN = -1, or yTdN = 0.

If yTdN = -1, then this contradicts the hypothesis that 1 + y
TdN > 0. Thus

y
TdN = 0, which implies from (6.1) that dN =0.

Proof of Lemma 6.1.: From Proposition 6.1, we have 1 + y
TdN > . Suppose

l+yTdN >0and dN *0. Then d = dNVk / V dNQdN ' n = :rN / (1 + y
TdN) , and

26

P = '\/dNQdN / (2>[k (1 + y
TdN)) , are all well-defined (by Proposition 6.3) and

satisfy the optimality conditions dQ d = k, M d = 0, -y = 2 (JQ d - MT k
, (5 > 0,

for the optimization problem (P3) of Step 3. Thus d is the direction of Step 3 of

the algorithm.

Next suppose 1 + y
TdN > and that dN = 0. Then -MT 7CN = -y , and

d = 0, 71 = kn satisfy the optimality conditions for the optimization problem (P3)

in Step 3. By Proposition 3.2, the current iterate x solves Pw .

Finally, suppose 1 + y
TdN = 0. Then from Proposition 6.2, we conclude that

the optimization problem (P3) of Step 3 is unbounded and Pw is unbounded.

VII. Inner and Outer Ellipsoids at an approximate w-center point x

A
One of the special features of the w-center x of a polyhedral system X is the

A
fact that there exist ellipsoids EIN and EOUT , with center at x , such that

EIN c "X, c EOUT and EIN =(w/(l - w)) EOUT , see Theorem 2.1 of Part I.

A
Although the iterates of the algorithm of Section II will converge to x , there may not

A
be finite termination, and in fact the solution x may involve irrational data. A

natural question is whether one can construct good ellipsoids F]N and FOUT about
A

points near x , with the property that FIN c "X a FOUT , and FOUT = c FIN ,

where c = 0(1 / w). The main result of this section answers this question in the

affirmative:

27

Theorem 7.1. (Inner and Outer Ellipsoids at an approximate w-center point.) Let x

be the current iterate of the algorithm, let s = b - A x , and let y be as defined in

Step 4 of the algorithm. Then if y < .08567, the ellipsoids

FIN = {x € Rn
| Mx = g, (x- x)

TAT S
_1W S

_1A(x- x) < wj

and

TaT c-lw c-lFOUT = Sxe Rn
| Mx = g, (x- x)] A' S

_1W S_1A(x- x) <
>f-

12
- W
w 5^ w

satisfy FIN c X c F,OUT

Remark 7.1. Note that (FOUT - x) = 1.75-V/-^- + 5
I
(FIN

- x) . Thus the

ratio of the scale of FOUT to F1N is less than 1.75/w + 5. If w = (l/m)e,

w = 1/m, and this ratio is less than 1.75m + 5, which is O(m).

Remark 7.2. The number of iterations of the algorithm needed to produce y < .08567
A

is bounded if Pw is bounded. Let x be the optimal solution to Pw . Then if x°

is the initial value of x in the algorithm, we must have y < .08567 after at most

(1-w] / f(x)-F(x A

(w) \ -0033 I
iterations . This follows from Lemma 4.2(i). If F* is any

A
finite upper bound on the value of F(x) produced at Step 4 of the algorithm, then

y < .08567 after at most

(l- w)/F*-F(x c

w .0033
iterations.

The proof of Theorem 7.1 is a consequence of the following sequence of

propositions and lemmas.

28

Proposition 7.1. Suppose x € int X is given, and let s = b - A x. Let x e Rn

satisfy Mx = g and (x - x)
TAT S

_1W S^AC x - x) < 52 w , where 6<1.

Then x e intX, and if s=b-Ax, (x- xjWWS'U (x - x) S

52 w/(l-5)2
.

Proof: By supposition, Mx = g. Let s = b - Ax . We first must show that s > 0,

which will imply x e intX . By supposition above , (s - s) S^W S"^ s - s)

m
< 62 w , so that V Wj

i=l

;i-si>

V. i J

< 52 w . Because w < w
4

, i = 1, . .
.

, m, we

have \J£
v< u

< 5 < 1, so that Sj > , i = 1, . .
.

, m. This shows that x e int X.

1s
i

s
i

Furthermore, we obtain -= > 1-5 , so that — <
s

i sj 1-8

Next, note that

m
(x- x)TATS-1WS-1A(x- x) = £ W;

rsjY

i = l

I S: ~ S- V

,2 m~
j a

Wi
SJ- Si

v
62

V "i J
(1-6) 2

^
s iy

w .

1 1

v. i y

29

_ A
Lemma 7.1. Let x e int X be given , and let x be the w-center of X , and

suppose that

(x- x)TAT S-
!W S

_1A(x- x) < 52 w for some 6<1.

Let FIN = {xe Rn | Mx = g, (x - x)TAT S
_1W S

_1A(x- x) < wj and

FOUT = xe Rn
| Mx = g, (x- x)TAT S^W S

_1A(x- x) < (1 + 5)
2 A/ ~-W + W^~

I ^ \ w 1 - 8
^

Then FIN c X c FOUT .

Proof of Lemma 7.1.: Let x be an element of FIN . Then by the same argument as

A
in Proposition 7.1, we have x e X , so that FIN c X . Because x is the

w-center of X , then

(x - x)
TAT S' lVJ S-

!A(x - x) < (1 - w)/w for any xe X , (7.1)

A A
where s = b - Ax , from Theorem 2.1 of Part I.

_ A
Also, by Proposition 7.1, with x = x , we have

_ A A A A
(x-x)TAT S- 1WS- 1A(x-x) < 62 w/(l-8)2 - <7 -2 >-

Taking the square-roots of (7.1) and (7.2) and noting the triangle inequality for

norms, we have
^2

(x- x)TAT S-
1WS- 1A(x- x) <

- w 5*V w=— +N1
w 1-8

for every x e X . (7.3)

A A
s

i
s

i

Next, note that from the hypothesis of the lemma, -= - 1 < 8 , and so -= < 1 + 8

,

s
i

s <

i = 1 , . . . , m. Now let x e X be given, and let s = b - Ax. Then

m
(x - x)

TAT
S-

]W S^ACx - x) = £ w
s

rt.*VV
i=l V °\) (s,)

:

A A (

(l + 6)
2 (x- x)TAT S-

1WS- 1A(x- x) < (1+5)2 <-
- w 8-=— +
w 1-84 w

completing the proof.

30

Lemma 7.2. If x is the current iterate of the algorithm and if y < .08567 at Step 4,

a a _ — — a _ _
and if x is the w-center of X , then (x- x)

TAT S_1W S"'A(x- x) < .55 w.

A A _
Proof: Let z = g(x) where g(x) is given in (3.3) of Part I. Let Q be as given in

A — t ~ A —
Step 2 of the algorithm, and let P

2 = (z - x)
T Q (z - x) . Then substituting h = .5

in expression (4.2) , we obtain from Lemmas 4.5 and 4.6 that if y < .08567, then

P < hVk = .5^Jk . Let d be the direction defined in Step 3 of the algorithm and let

a a _ _ _
d = z - x . Then because x + d maximizes -yTz over

ze E1N = (ze Rn | Mz = g, (z- x)T Q (z - x) < k} then -yT(x + ((3/Vk) d) >

-yT(x± d). Thus ±yT d < (-p/Vk)yT d . But y = -yT d/k, so ±yTd < pyVk .

Therefore,

(7.4)(yTd
)
2 < p^k •

Next, note that since Q = Q - yy
T

, where Q = AT S'^W S"
]A , we have

a _ A _ a _ a _ f a _ T 1 . „A
(z - x)

TQ (z - x) = (z - x)
TQ (z - x) + L (z - x)

T
yJ

2 = p
2 + (y

Td)
2 <

A _ A _
p
2 + P

2kr from (7.4) . Also, (x- x)= (z- x)/(l+yT (z- x)) from (3.4) of

Part I, so that

A _
(x - x)

TQ (x - x) < (p
2 + p

2k72)/(l + y
T d)

2 < (p
2 + p

2k^)/(l - pVky)2

^ h 2k + h2kV k(h2 + h2
-/
2

) 2 w(h2 + h2
-/
2
)

(1 - hky) :

(1 - hy) : (l-hy) :

< .55 w.

3 1

Proof of Theorem 7.1. : We first show that FIN c X . Let x e FIN and let

s = b - Ax . It suffices to show that s > 0. Because x e FIN , then

m
fti T -\ Wj -= - 1 < w. Therefore, because w

i
^ w , i = 1, . .

. , m,

i=l ^
s

i

1- -== < l,i = l,...,m , so that s, > 0, i = l,...,m. Thus F1N cX
S:

i

To show that X c FOUT , we apply Lemma 7.2, which shows that if

A

Y < .08567, then the w-center x of X must satisfy

(x - x)
TAT S

_1W S' 1A(x - x) < 52 w , where 8 = V^55 . Next, applying 6 = V^55

in Lemma 7.1, we obtain the conclusion that

n f/ 1 - w ; —
, thus showing(1+6)2 k/^-=^-+ -

—

^f^~ < 1.75A/^-=^ +5"V

that X c FOUT .

VIII. Concluding Remarks

Alternative Convergence Constants. Lemma 4.3 asserts that at each iterate of

the algorithm that we obtain a constant improvement of at least .0033k or a linear

convergence to the optimal objective value, with convergence constant .32. The

constants .0033 and .32 are derived in Section IV by using the value h= .5 in

Lemmas 4.4, 4.5, and 4.6. If instead of choosing h = .5, one chooses h = 2, for

example, then by parallelling the methodology in Section 4, one obtains Lemma 4.3

with a constant improvement of at least .0133k or a linear convergence rate with

convergence constant .64. The choice of h = .5 was fairly arbitrary. Similar results

can be had by choosing a different value of h to obtain different constants for the

threshold value of y and the relative sizes of FOUT and FIN in Theorem 7.1.

32

Stronger Convergence. Vaidya [14] has shown that his Newton direction

algorithm is linearly convergent. Here, we have extended his result and have shown

that the algorithm of Section II (and Vaidya's algorithm) exhibit superlinear

convergence. A natural question for future study is whether one can show the

algorithm here to be quadratically convergent.

The behavior of y. In Step 3 of the algorithm, the search direction d is

computed. In Step 4, the parameter y , as a function of x is computed, and we can

write y = yi x) . The value of y(x) is then used to derive upper bounds, a step length,

and a guaranteed improvement in the objective value. From Lemma 4.3, it is

_ _ A
obvious that y(x) goes to zero as x approaches x , the optimal solution to Pw .

Concerning the behavior of y(x) , it is natural to ask if the level sets of yix) are

convex, if y(x) decreases at each iteration, etc. The author has demonstrated examples

where a level set of y(x) is not convex, and where y{x) increases at a particular

iteration. Thus y(x) is not as well-behaved as one would hope for.

A
No Finite Termination. As pointed out in Section VII, the solution x to the

w-center problem can have irrational components and so the algorithm will not

stop after finitely many iterations. Even if the problem Pw is unbounded, the

algorithm may never detect unboundedness, and so may not stop after finitely

many iterations. This is shown by the example of Section 4 of Bayer and Lagarias

[1] . In that example, the iterates of a Newton method with a line search are traced

for the w-center problem, where w = (1/3, 1/3, 1/3) , and

X € {x € R2
| Xj 2 -1, x

1
< 1, x

2
> oj , and the starting point is x = (1 /3, 2/3). The

(Newton) direction defined by each iterate is never a ray of X , and so the

algorithm will never stop.

References

[1] Bayer, D. A., and J.C. Lagarias. 1987. Karmarkar's linear programming
algorithm and Newton's algorithm, AT&T Bell Laboratories, Murray Hill,

New Jersey.

[2] Censor, Y. , and A. Lent. 1987. Optimization of 'log x' entropy over

linear equality constraints, SIAM Journal of Control and Optimization 25,

921-933.

[3] Freund, R. 1988. Projective transformations for interior point methods,

part I: basic theory and linear programming, M.I.T. Operations Research

Center working paper OR 179-88.

[4] P. Gill, W. Murray, M. Saunders, J. Tomlin, and M. Wright. 1986. On
projected Newton barrier methods for linear programming and an
equivalence to Karmarkar's projective method, Mathematical Programming
36 183-209.

[5] Gonzaga, C.C. 1987. An algorithm for solving linear programming

problems in 0(n3L) operations. Memorandum UCB/ERL M87/10.
Electronics Research Laboratory, University of California, Berkeley,

California.

[6] N. Karmarkar. 1984. A new polynomial time algorithm for linear

programming, Combinatorica 4, 373-395.

[7] Lagarias, J.C. 1987. The nonlinear geometry of linear programming ITJ.

Projective Legendre transform coordinates and Hilbert Geometry. AT&T Bell

Laboratories, Murray Hill, N.J.

[8] Monteiro, R.C., and I. Adler. 1987. An 0(n3L) primal-dual interior point

algorithm for linear programming, Dept. of Industrial Engineering and
Operations Research, University of California, Berkeley.

[9] Monteiro, R.C., and I. Adler. 1987. An 0(n3L) interior point algorithm

for convex quadratic programming, Dept. of Industrial Engineering and
Operations Research, University of California, Berkeley.

[10] Renegar, J. 1988. A polynomial time algorithm, based on Newton's
method, for linear programming. Mathematical Programming 40 , 59-94.

[11] G. Sonnevend. 1985. An 'analytical centre' for polyhedrons and new
classes of global algorithms for linear (smooth, convex) programming,
preprint, Dept. of Numerical Analysis, Institute of Mathematics Eotvos

University, 1088, Budapest, Muzeum Korut, 6-8.

[12] G. Sonnevend. 1985. A new method for solving a set of linear (convex)

inequalitites and its applications for identification and optimization,

preprint, Dept. of Numerical Analysis, Institute of Mathematics Eotvos

University, 1088, Budapest, Muzeum Korut, 6-8.

[13] M.J. Todd, and B. Burrell. 1986. An extension of Karmarkar's

algorithm for linear programming using dual variables, Algorithmica 1

409-424.

[14] Vaidya, P. 1987. A locally well-behaved potential function and a simple

Newton-type method for finding the center of a polytope, AT&T Bell

Laboratories, Murray Hill, N.J.

[15] Vaidya, P. 1988. private communication.

MAR

Date Due
200?

Lib-26-67

MIT LIBRARIES

3 9080 02237 3671

