
tASEMENi









HD28
.M414

«5-

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

/properties of successiit: sample moment estimators^

by

E. Barouch , S. Chow ,

G.M. Kaufman , and T. Wright

April 1985 #1648-85

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139





PROPERTIES OF SUCCESSI\^ SAMPLE MOMENT ESTIMATORS ',

by

E. Barouch , S. Chow ,

Jt.JL.JU .jU^ JL J.

G.M. Kaufman""' , and T. Wright

April 1985 //1648-85

This work was supported by Brookhaven National Laboratories,
Contract #119863-5, E. Kaplan, Technical Advisor.

^Department of Mathematics, Clarkson University
**Sloan School of Management

*""M.I.T. Energy Laboratory and Sloan School of Management
****Educational Resources Center, Clarkson University



y

U.U. UBRAR!€S

AUG 9 1985



Abstract

Moment type estimation of characteristics of a successively sampled

finite population requires finding a solution to a pair of transcendental

equations. Some global properties of two structurally distinct pairs —

a symmetric and an asymmetric pair — of such equations are presented.

Results of a monte carlo experiment designed to compare performance of

estimators computed by solving these transcendental equation pairs are

reported.





1. INTRODUCTION

Successive sampling models have recently been used to characterize

random phenomena as diverse as oil and gas field discovery and the

occurrence of software bugs (Barouch and Kaufman (1976), Littlewood, B. (1981),

Gordon (1981, 1983), Andreatta and Kaufman (1983)), and the draft lottery

(Du Mouchel (1970)). What distinguishes these applications from the usual

treatment of successive sampling in the sample survey literature is the

absence of information about the sample frame which allows a priori computation

of the probability that a generic element of a finite population with N

elements will be included in a sample of arbitrary size n < N.

Cordon (1983) has suggested use of a moment-like estimator for

parameters of a successively sampled finite population. The basic idea

is to split the sample into two parts and then set approximate Horvitz-

Thompson type estimators equal to one another in order to calculate

approximations of inclusion probabilities. Two moment matching alternatives

are outlined, each of which implies a pair of transcendental equations. The

equation pair studied in detail by Gordon (1983) is symmetric in form, while

the alternative is not. He shows that with probability one the symmetric

pair possesses a unique solution in the asymptotic limit N ->- «> with n/N

fixed.



\>niile intuitively one might expect the two alternative formulations

to be asymptotically equivalent, their behavior for finite samples is at

issue: In particular when N is finite, one questions the existence

and uniqueness of solutions of each pair. What are the finite sample

properties of an estimate of the number of elements in the population

or of an estimate of the sum of magnitudes of population elements generated

by these two alternatives?

It is the purpose of this paper to establish a sufficient condition

for existence of a solution of the asymmetric pair when sample size is

finite and to compare properties of estimators of population attributes

based on solutions to both pairs.



1.1 SUCCESSIVE SAMPLING

Consider a finite population of N elements with labels U = {1,2,...,N}

and associated magnitudes A = (A , . . . ,A,^^} ; i.e. the magnitude of element

j £ U is A. > 0, j = 1,2,...,N. A successive sampling scheme induces a

distribution on permutations of elements of U as follows: for any

permutation (i , ...,i ) of (1,2,...,N),

N

P{(i^,...,i^)lA} = n A /(A. + ... + A ). (1.1)
1 ^ j = l j ^j ^

An alternative representation of (1.1) can be given in terms of

exponential order statistics: let x , ...,x^ be independent, identically

distributed exponential random variables with means equal to one. Then

(Gordon (1983))

X. X. X.

p{(i i )|A} = P{^ < -^ < . . . < —}. (1-2)

h ^2 "n

This latter representation is an analytical lever for generation of moment-

type estimators of unobserved population magnitudes when sampling is incomplete.

Suppose that we observe an unordered sample s = {i^,...,i }^'^ n 1 n

consisting of the first n elements of (i ,...,i ), n<N, and that s is

the only information available about the sampling scheme. How might we

use s to estimate properties of A? In particular, we may wish to estimate

N

R = E A., the total sum of magnitudes in A, the number N of elements

in U, or the empirical frequency function of magnitudes in A.



1.2 MOMENT MATCHING ESTIM^\TORS

Gordon (1983) presents a moment type method for estimating finite

population properties. His method rests on three key ideas: first, if

one had access to all elements of A, then it is possible to compute the

probability P{k.£s} i ^i.^'^) that element k U appears in a sample s of

size n. Let g(A^) be a given function. Armed with tt (n) , k = 1,2,...,N,

N
an unbiased estimator of the sum E g(A.), is Z g(A^)/TT (n), an estimator

j=l kes

introduced by Horvitz and Thompson (1952) . If all elements of A were known

with certainty a priori there would be no estimation problem.

The second key idea is that when N is large and n/N = f is fixed,

N
there exists a unique solution t . to N-n = Z exp{-tA } for which

^ k=l ^

|1 - exp{-t A) - ^, (n)
I

= 0(N~''') (Gordon (1983), Theorem 2.2). Thus, if

A , . . . ,A,,^^ were known, t^ could be computed and 1 - exp{-t Ji } would closely

approximate tt (n) . Once t^ is obtained one can replace ''f, (n) with

1 - exp{-t^A, } to obtain an approximately unbiased Horwitz-Thompson estimator.

Again, the hitch is that, given a sample s , only A. ,.,.,A. are observed
1 n

and t , depends on all elements of A.

To overcome these difficulties Gordon proposes a third idea. If the

complete sample is s , split it into an "early" part s consisting of the

first m<n observations and a "late" part consisting of the remaining n-m

observations. In order to simplify notation and with no loss in generality,

relabel elements of s so that s = {l,2,...,n} and s = {l,2,.,.,m}.
n n m



N

Define h = ra/n, and let t, solve N-m = Z exp {-CA, }. Then
^

k=l ^

R^(6) = Z A^/(l - exp{-t^A^}) and R (6) = I \/(l - exp{l - exp{-t A 1)

N 5

are approximately unbiased estimators of the characteristic R(6) = E A, ,

<_ <5 <_ 1. For two distinct choices of 5, 5 and 5„, R^(5 ) = R^(5 )

d R^(6„) = R^(6„) constitute two equations in two unknowns, t, and t,.an

In particular for the case 6=6 and 6=1, one obtains the

symmetric pair of equations (with t = ct,t^ = a+3) .

k J

n A, m A,

(1. 3a)

1 - e -^ 1 - e

and

n A, m A

k=i^ -^^^^^\ ^
jii^ ^'

1 - e -^ 1 - e

A different estimator arises if one utilizes s and the "late"
n

portion of s in the following fashion: The "late" part (A .,,..., A 1 H s i

n ^ m+1 n n|m

of s is generated by successively sampling {A ,...,A^}. Define 5, = (n-ra)/N

N n

and let t be a solution to E exp {-t A^} = N-n. Then Z A. / (l-exp{-t A. })
^

k=Tirfl j=nrfl ^ ^

m
estimates R - Z A.. By the same logic that led to (1.3a) and (1.3b), with

= t we set



m A. m n A.

Z 13-— = Z A. + T ^3—- . (1.3c)

j = l , ^j j = l
J k=n^l ,

J--"l-e -^ 1-e-'

Together with (1.3a), (1.3c) is a pair of equations that can be solved for

a and S. We call (1.3a) and (1.3c) the asymmetric pair, and begin our

analysis with a study of properties of this pair.



2. PROPERTIES OF THE ASYMMETRIC PAIR

For easy reference we restate the asyminetric pair as

n m
Z A./(l-exp {-(a+6)A.}) - I A. /I- exp {-aA.}) (2.1a)

j=l J J j=l J J

and

m m n

E A. /(I- exp {-aA.})= I A + I A./(l-exp {-6A.}). (2.1b)

j=l J J
j = l J

j=:iH-l ^ J

Our first task is to find conditions that guarantee existence of •

a solution. Consider first the existence of a solution when 3-»-°°. As B -*•<»,

(2.1a) and (2.1b) are redundant; i.e. both take the form

(2.2)

n



n ^ m n . m
g(a) = Z A -- I

J
= L A. - - i: (1 + 4 ^A. + O(ci^))

j=l ^ '' j=l(l - i aA. + 0(a)^) j = l ^ ^ j=l ^ J

whereupon

n ^ m
g(a) = --+( I A. - y Z A.) + 0(a). (2. A)

""

2 = 1 ^ ^ 3=1 J

(iv) For a > and small, (iii) implies g(a) < 0.

The function g(a) is positive for large a, negative for small a

and continuous. Thus a zero a of g(a) = must exist.

o -aA.

. m A. e -^

(v) As -r°- = Z ^ > 0, 3g/3a at a = a is positive,
9a . T -aA. ~ c

^='
[1 - e J]2

so the solution (a , <=) is unique. I
c

Lemma 2 : No solution (a-., 6„) to (2.1a) and (2.1b) with a^ > a exists.

Proof : First consider a solution of the form (ct-^, 5), 8-^°°. Lemma 1

shows that (a , °°) with g(a ) = is a unique solution. In addition
c c

5g/3a > 0. For any a, g < °°, the left side of (2.1a) is greater than

n

Z A.. Consequently, there can be no solution (ct^, S_) with a^ > a .

j=l J

We next establish a sufficient condition for existence of a solution

(a-, B„) to (2.1a) and (2.1b) with < a^ < a .

U u U c



1 " - 1
"^

Theorem 1: Defining — l A. = A and — Z A. = A , a sufficient condition
n . , J n m . . J m'

for existence of a solution (a„, 6^) with 0<ci^<a is A >A. When
U U c m n

A > A the number of solutions is odd.
m n

We set the stage for proof of Theorem 1 with three propositions based

on consideration of two functions: the Implicit Function Theorem allows

us to define a function 6. (a) via (2.1a) and a function 6^'(a)

via (2.1b). A solution of (2.1a) and (2.1b) obtains when 6, (a) = 62(a).

It is evident that lim 6, (a) = lim 6- (a) = «> as a -^ a from below. We shall
1 / c

show that 6, (a) and S»(a) approach zero as a-»0, that when A > A ,

8-(a) > S, (a) for a in a neighborhood of zero and that S^(a) < 6^ (a) for a

in a neighborhood of a . These facts imply that 8, (a) and 6-(a) must

cross an odd number of times in the open interval (0, a ).

Proposition 1 : lim 6, (a) = lim 3^ia) = 0-

Proof ; Compute a Taylor expansion of B, (a) and B^i^) for a > and small.

Equation (2.1a) takes the form

+ 4 E A. = - + T E A.. (2.5)
a + B^(a) 2 j^^ j a 2 .^^ j

Since (2.5) possesses a singularity on both sides, equating singular

parts yields the leading term of the expansion of 6-, (a) • This is

6t (a) = ( )a. The second term of the expansion involves a constant
1 m

C, such that

6. (a) = (^^^)a[l + C^a],
1 ml
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so

a + 6, (a) s (^a)[l + (^)C,a]
1 m n X

This allows us to write

a + 8^(a) an 1

Substitution of this relation in the Taylor expansion of (2.1a) yields

1 2m(n-m) .^^^ J

Therefore,

Similarly

,

n
/ N - /n—m, r 1 , ^ I- A 1

2 m Zm ^^ J

Thus 6, (a) -^ and B.Cct) -> as ct -^ 0. |

Proposition 2 : For a > and a - and A^ > A^, &^(a.) > S^(a) .

Proof : Subtract the two Taylor expansions of 3^(a) and 62(a). The

leading term cancels and

= ,
"

, [A - A ] > 0.
2(n-m) m n



11

Proposition 3 : For a - a > and a - a^, B^{a) < e^(a).

Proof: In the vicinity of a^, B^(a) and 62(a) are unbounded and increase

indefinitely. Since a is finite and since m and n are finite, we can

neglect a in comparison with S^(a) in some terms on the left hand side

of (2.1a). The system (2.1a) and (2.1b) takes a slightly modified

form, valid for a - o ,

m A. n A^

.^^ -(a+i(a))A. "^
._l.i

-6,(a)A
j=l , _ ^ 1 J 2=^^

1 - e ^ ^

m A.

I - 1

(2.6a)

-aA.
3=^1

1 _ e
J

and

m A. m n A
,, ,

z
^ = I A. + I J-Tvrr- • ^2-^^^

J=l
1 . e 2 J=l 2=^^

1 - e ^ ^

Since at a = a we have a solution and since the left side of (2.6a)
c

equals the right side (2.6b), we equate them. Doing so yields,

^ 1 - ^ 1 - e 1 » ^2 ,,

The first term is positive. Thus the second term is negative

implying 6^(a) > 62(a) for a^ - a > and a - a^.
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Theorem 1 states that if A > A , then (2.1a) and (2.1b) have at least
m n

one solution in (0, a ) and the number of solutions is odd.
c

Proof ; A solution takes place when B,(a) = 62(a). Define 5(a) = 6A0.) - 62(a)

6(a) is continuous and differentiable in (0, a ). Proposition 2 implies
c

5(a) > for a > and a - 0, and Proposition 3 implies 6(a) < for

a - a > and a - a . This guarantees existence of at least one solution
c c

°

a^ to 5 (a-) = in the open interval to a and excludes an even number

of zeros of 6(a) in this interval. I

The theorem provides a simple, sample based sufficient condition for

existence of a solution; i.e. A and A are sample statistics.
m n

An alternative formulation of the problem of demonstrating existence

and uniqueness of a solution to the equations studied in the preceding

subsection is to study the character of solutions to

G(a) = F^(a + S^M.) - ¥^(a) (2.8)

where

n -xA.

F (x) = Z A./(l-e h, (2.9)

j=l J

m -xA.

F„(x) = Z A./(l-e ^), (2.10)
^ 3=1 J

and S„(a) is defined implicitly by (2.1b); i.e. with

n -xA.

F,(x) = Z A,/(i-e ^), (2.11)

^ j=Tir^l
^

6„(c() is the value of 6 satisfying

F^(a) = mA + F,(B)
2 m H

(2.12)
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The equivalence becomes transparent upon differentiating G and

both sides of (2.12) with respect to a. Then

^nf ^
dS-(a) 3F dF

G-Ca) =
^^^'^^

= (1 + —

^

)
-^ (2.13)

^ ^^'
da ^ da ' 3a da

and via the definition of 6, (a)

,

dS,(a) dF„ 3F-

1 + _J = —^/-^
,

(2.14)
^ da da ' 3a

'

so that

3F, d6_(a) d8.(a)

It has been sho^-n that G(0) = \ Tn[A^ - A ]. When A < A a solution^ n m n m

in (0, a ) exists (Theorem 1) , so demonstration that at any zero of G(a)

occurring in (0, a ) G'(a) > is sufficient to establish uniqueness of

the solution. (If G(0) < 0, G'(a) at the left-most a satisfying G(a) =

must be positive. If G'(a) > at any a e (0, a ) satisfying G(a) = 0,

then the solution is unique)

.
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3. PROPERTIES OF THE PAIR (1.3a) AND (1.3b)

We turn now to the sy-mmetric pair

n A^ m A.

,^. -(a+6)A, " .^^ -aA. ^^-^^
k=l Ic 1 = 1 , 11-e •' 1-e -*

and

n A^ m A.

T. . .gs
,

= Z ^—r- (3.2)
, ^

-(a+g)A,
. , -aA.

k=l , Tc -1 = 1 , J1-e -J 1-e -^

with <_ 6 < 1. In what follows we shall assume that A. > 0, j=l,2,.,.,n

and bounded.

Our first observation is that a solution to (3.1) and (3.2) for

unbounded B does not exist. If 6 -< o°, (3.1) and (3.2) become

n m A.

E A. = E ^—

—

(3.3)

and

n ~ m A.

E A. = Z ^. (3.4)

A necessary condition for a unique solution to (3.3) and

(3.4) is that they be redundant. Since (3.3) and (3.4) are in general not

redundant, the solution to (3.3) will in differ from that for (3.4), so no

unique value of a may solve both (3.3) and (3.4). Consequently, in general,

no solution to (3.1) and (3.2) of the form (a, 6) = (a ^o) exists.

In addition, the solution in a to (3.3) is bounded, so we conclude

that if a solution (a ,6„) to (3.1) and (3.2) exists, both a_ and g must be

bounded.
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We next examine the behavior of the symmetric pair in a neighborhood

of the origin for an illustrative value — of c . A Laurent expansion of the

right- and left-hand sides of (3.1) and (3.2) yields

n ~ m
a + g a

(3.5)

and

-1- z A' = i E A.% (3.6)
« + S

j=l J ^ j=l J

so that a solution at (a, 6) = (0,0) may exist only if

1
" _w 1 ™ -1-

— Y.A.^ = — ZA^^.a. very special constraint on values of A , . . . ,A .

"
j = l

J ™ k=l
^ in

By keeping one more term in the series expansion of the form (3.5)

and (3.6) and solving the resulting equations, a lower bound can be

established on possible solutions to the symmetric pair. However, the

approximate solution so obtained does not provide any information about

rates of convergence of numerical methods for computing solutions. To

this end define the averages

B = 7 I A'f a = m,n (3.7)

C. = 7 Z A.' I = m,n, (3.8)

j = l
-^

and approximate (3.1) and (3.2) by

_4_^+ 1 A ^ im + im A (3.9)
a + B2 n a 2 m

and

__n_
C +inB S^c+imB. (3.10)a+Sn2 n am2 m
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An approximate solution is then

2m(C - C )

^ = -B "^

_ _
—

-

(3.11)

n[A C - B ]
- in[A C - B ]

n n n m n m

and, as with B^(a) (cf, (2.5)),

n - m (3.12)a,
m
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4. COMPUTATION METHODS

Consider the system of transcendental equations

"
-1 " -1

F (a,6) i Z A.[l-exp(-{a+6}A.)] - Y. A. [ l-expC-aA. ) ] =0 (4.1)
j=l J ^ j=l J J

tn ^ m n ,

F (a,6) H E A.[l-exp(-aA.)]~ - Z A. - I A. [l-exp(-3A. )
]~ =

j = l
J ^ j=l J j=m+l -^ ^

(4.2)

" 1^ _i "^ 1, _1
F (a,B) = E A.^[l-exp(-{a+6}A.)] - Z A.^[l-exp(-aA.) ] =0 (4.3)

->
j = l J J 1=1-" -^

From (4.1), (4.2) and (4.3), one obtains two independent pairs. The

asymmetric pair (4.1) and (4.2) and the symmetric pair (4,1) and (4.3).

As pointed out earlier, each of the sums in (4.1), (4.2), and (4.3) has

a pole at the origin (a, 3) = (0,0), and lira F('i,3) = as ti, 6 ^ 0.

The range of possible solutions to FA~x,i) = and F^(a,3) = with _< S j^
°°

restricts the range of a to <^ oi <_ a = ACRIT . Furthermore, the fact that

3 can be unbounded opens up the possibility of exponential underflows.

Accounting for underflows may in turn give rise to inaccuracies in numerically

computed solutions, so care must be exercised in implementing a numerical

scheme to solve the pairs F (a,S) = 0, F (a,B) = 0, and F (a,S) = 0, F-(a,6) = 0.

n

Since we have an arbitrary choice of scale, we chose to set E A. = 1.

j=l J

The computer program for solving both symmetric and asymmetric pairs begins

by solving

n m
Z A. - Z A.[l-exp(-aA.) ]" = (4.4)

j = l ^ 3=1 ^ ^

for a = ACRIT. To avoid exponential underflows e is approximated

by zero. This protection is used throughout the entire numerical scheme.
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-12 -12
To eliminate poles at the origin, a lower limit of (10 ,10 ) is set

on (a, 8) and an upper limit of ACRIT-10 is set on a.

Once ACRIT is computed by the use of a modified regula falsi (MRF)

routine (GTRANS) , equation (4.2) is solved for a given a by a second MRF

routine (GMRF) to yield 6 as a function of a. This 6(a) is substituted

in equation (4.1) and GTRANS is used to find the desired oi=a , which is

then substituted back into (4.2) to yield 6(a). The range allowed for

-12 -10 -12 70
a is (10 , ACRIT-10 ) and for 6 is (10 ,10 ). Since this range is

large, the process is repeated with ae (a^-1, ot +1) , 6 e (6^.-1, S„+l) to

-14
narrow the range on which the regula falsi iteration takes place with 10

tolerance. As an accuracy check, a two-dimensional Newton-Raphson (N-R)

scheme is implemented utilizing (a ,6„) as the starting solution with a

-14
tolerance of 10 . \-n\en the results from both methods agree to desired

accuracy, the solution (o.~^, S> ) is accepted and estimates N of N and

R of R are computed.

This procedure was used to solve both symmetric and asymmetric

pairs for 400 Monte Carloed successive samples (cf. section 5). In

most cases it works well. However, there are cases for which the GMRF

and GTRANS equation solvers do not bracket the roots. Then an

initial guess of ACRIT/2 is used for a, GTRANS finds the corresponding 6,

and the 2-dimensional N-R scheme is utilized with this initial guess.

This procedure worked quite well for the asymmetric pair but failed several

times for the symmetric pair. In each such instance a solution was found bv

brute force: [0, a^] was divided into 30,000 subintervals and the initial root

bracketing interval found by identification of change of sign of values of

6-^(a) - B^(a) , 6^(a) a solution to F (a, 6) = for given a, and 6^(a) a

solution to F (a, 6) = •
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A unique solution to the asymmetric pair was found in each of six

cases where the sufficient conditon A > A is not satisfied.

The nature of the difficulties experienced in computing solutions is

reflected in the character of the graph of 6^(a) and Q^M vs. a. For many

cases,
I
6 (ct) - 8, (a)

|
is small in value on the interval (Oja^), but grows

rapidly as a -> a .

[Figure 4.1 Here]
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Figure 4.1.

1.25

g(a) .75

6i(a)
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5. MONTE CARLO STUDY OF SOLUTIONS

In order to study the comparative behavior of solutions to both

the symmetric and asymmetric equation pairs, a Monte Carlo simulation

consisting of 400 successive samples drawn from a fixed finite population

was performed. Samples were generated from a population of N=170 elements

and magnitudes A , ...,A _„, with A^ being the (k/N+l)st fractile of a

2
lognormal population with parameter iu,o ) = (.83, 1.62). This choice of

2
values for y , a , and N matches estimates provided by Meisner and Demirmen

(1980) for a segment of the North Sea, based on n=58 discoveries. These
^

particular values of N, y, and a~ correspond to R = T. A. = 818. For

j = l
J

each of 400 successive samples of size n=58, a solution to the symmetric

pair (1.3a) and (1.3b) and a solution to the asymmetric pair (1.3a) and

(1.3c) were computed by the methods described in section 4. Each sample

was split at m=38.

Tables and graphs describing properties of Monte Carloed sampling

distributions of N and R for this particular case are presented in section 5.1.



22

5.1 SAMPLING PROPERTIES OF R AND OF N

Summary displays are in the form of:

(1) Parallel boxplots of N and of R values generated by
symmetric pair and by asymmetric pair solutions.

(2) Quantile-quantile plot of R-R quantiles vs. unit
normal quantiles for the symmetric pair and for
the asymmetric pair.

(3) Quantile-quantile plot of N-M quantiles vs. unit
normal quantiles for the symmetric pair and for the
asymmetric pair.

(4) Measures of location and of spread for N and for
R values

.

(5) Scatterplot of N values generated by the symmetric
pair vs. N values generated by the asymmetric pair.

A similar scatterplot for R values.

Some tentative conclusions about the behavior of estimates generated

by moment matching as described in earlier sections emerge. When the

particular finite population used in this Monte Carlo experiment is

successively sampled with sample size n=58 and a split at m=38:

(I) Estimators of N and of R derived by solving either

the symmetric or the asymmetric pair of equations
are negatively biased.

The parallel boxplots for N and R values (Figures 5.1 and 5.2), the

quantile-quantile plots for N-N and R-R values (Figures 5.3 to 5.6),

and the summary statistics in Table 5.1 display this bias in different ways.

(II) The sampling distributions for both N and R values
generated by solving the symmetric pair exhibit
larger spreads and more (right tail) outliers than

the corresponding distributions generated by solving
the asymmetric pair.
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The quantile-quantile plots of Figures 5.3 and 5.4 for R-R values exhibit

fatter than normal right tails. Figure 5.4, in particular, is a display of

R-R values for the symmetric pair, which exhibits substantial right tail

skewedness. If, however, the eight largest of the four hundred values plotted

are disregarded, the graph defined by the remaining points appears very close

to a straight line.

(Ill) While extreme right tails (above .98 quantiles)

of distributions of R-R values are fatter than
normal, these distributions appear to be close to

normal in shape elsewhere.

In contrast, a visual examination of Figures 5.5 and 5.6 shows that:

(IV) Distributions of N-N generated by solving
either the asymmetric pair or the symmetric
pair are decisively not normal in shape.
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TABLE 5 .

1

SUMMARY MEASURES FOR MONTE CARLOED SAMPLING

DISTRIBUTIONS OF ESTIMATORS N AND R

SYMT^ETRIC PAIR ASYMMETRIC PAIR

Measures of Location N

Median
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5.2 SAMPLING PROPERTIES OF SOLUTIONS TO
ASYMMETRIC AND SYMMETRIC PAIRS

Properties of the sampling distribution of solutions to symmetric

and to asymmetric pairs are displayed in a fashion similar to that for

N and for R values. Table 5.2 presents some summary statistics.

Examination of parallel boxplots for a and for 6 values (Figures

5.7 and 5.8) shows that

(I) The distribution of 6 values for the symmetric
pair is spread over a much larger range than
corresponding B values for the asymmetric pair.

Iifhile, in accord with asymptotic theorv, auantiles of i values and

quantiles of B values plot as straight lines against unit normal quantiles

throughout a range of -2.0 to +2.5 (Figures 5.9 to 5.13),

(II) Extreme left tails (.02-. 025 fractiles and smaller)
of distributions of a and of 6 values clearly deviate
from normality.

This finding accords with deviations from normality seen in the right tails

of s£impling distributions for N and for R values. For ot values generated

by the asymmetric pair, a quantile transformation exp{a/40} of a (Figure 5.12)

appears slightly closer to normal than quantiles of a. (Figure 5.11).

Figure 5 . lA is a scatterplot for symmetric vs. asymmetric pair i values

and Figure 5 . 15 a similar scatterplot for B values. That a values generated

by symmetric and by asymmetric pairs are positively correlated (sample

correlation - .652) is obvious. The same is true for 6 values (sample

correlation = .751 ).

More interesting is the heteroscedasticity displayed by symmetric vs

asymmetric pair a values. This feature of Figure 5.14 can be captured by

fitting the ratio a^-' /a,-' of the j monte carloed sample symmetric pair a
b A
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value, a , to the corresponding asvnmietric pair a value, a , with
S A

a model of the form "constant plus error". To wit,

(J)

-(TJ = e + e^J\ j=l,2,...,400. (5.1)

We may interpret (5.1) as a variance stabilizing transformation of a

linear model of the form a = ga + q with observed values of error term r\ = ql z
b A A

exhibitinK increasing spread as the value of 'i. increases. The behavior
A

of the equation systems leads us to expect that 6 = 1.0.

and that when 6 = 1.0 the empirical distribution of e^"* values is

approximately normal with mean zero.

1 ^00 ,

Our expectations are borne out: the mean -—-- Z a "' /u -''^ = 6 = 1 004
400 .^-, S A

and the graph in Figure 5.16 of quant;iles of the empirical distribution of

residuals ; = [a /'^, ]
- 6 versus unit normal quantiles appears

S A

reasonablv close to a straight line.

A slight improvement is afforded by fitting a model

^(j)

-^ = Y + Y z'^J^ + w^j\ 1 = 1,2 400 (5.2)
(j) J- -

\
\

with a^ = 7-r— E 21. and Z = a - a.. Upon doing so we find
A 400 .^i A A A ' ^

Y^ = 1.004 and y = .00667 (t statistic = -7.2, standard error .00093), but

the addition of the linear term in Z explains only about 11.5% of the total

variance of observed values of the ratio of a values. A graph of quantities

of the empirical distribution of residuals w versus unit normal quantities

given in Figure 5.17 shows this slight improvement.
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TABLE 5.2

SUMMARY MEASURES FOR MONTE CARLOED SAMPLING

DISTRIBUTIONS OF ESTIMATORS a AND 3

SYMMETRIC PAIR ASYMMETRIC PAIR

Measures of Location a.
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