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Abstract

The correlation technique is applied experi-

mentally to determine the power density spectra

of the output of two nonlinear devices, the

linear and square-law rectifiers. Curves of

the autocorrelation function obtained experi-

mentally for inputs of filtered noise with

and without a sine wave are compared with the

theoretically calculated curves, and thus an

experimental check on some known theoretical

results is obtained.
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EXPERIMENTAL STUDY OF NONLINEAR DEVICES BY CORRELATION METHODS

Introduction

In the past decade much study has been directed to the mathematical

analysis of random noise in communication systems.* Theoretical contri-

butions pertinent to the work described in this report have been made by

many investigators, among them Rice (1,2) and Middleton (3,4). Rice's

papers present a unified view of the basic methods of noise analysis

for both linear and nonlinear circuits. Following his lead Middleton has

solved a large number of nonlinear problems of practical importance.

The mathematical analysis is exceedingly complex. There exists, as

a consequence, a considerable need for the development of experimental

techniques by means of which the important statistical characteristics

of random noise in electrical circuits can be determined. These tech-

niques, once developed, can be used for checking existing theoretical

results and for the solution of problems not yet susceptible to theoret-

ical analysis. A method that has proved extremely useful in theoretical

investigation is the correlation method. This method consists of first

finding the autocorrelation function and then by a Fourier transformation

of the function determining the power-density spectrum.

There are available in the Research Laboratory of Electronics, M.I.T.,

an electronic digital correlator (6) for the experimental determination of

correlation functions and machines like the electronic differential

analyzer (7) and the delay-line filter (8) for accomplishing a Fourier

transformation. The correlation method can thus be applied experiment-

ally. Work in this direction was done in 1949 by Knudtzon (9), whose

experimental study was confined to linear circuits.

This report extends the range of experimental investigation by the

correlation technique to include nonlinear devices, namely, the linear

and square-law rectifiers. The first part presents a summary of the per-

tinent mathematical theory, particular attention being paid to the demon-

stration of a method which is applicable to the solution of nonlinear

circuits. This is the characteristic function method, in which the auto-

* For a history of the study see Ref. 5.
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correlation function is found through the intermediary of the characteris-

tic function. The second part concerns itself with a discussion of the

circuits and experimental technique and a presentation of the results

obtained in the form of discrete points which are compared with the

theoretically calculated curves.

Part I. Pertinent Statistical Theory

A. Autocorrelation Function, Power Density Spectrum

An important statistical characteristic of a stationary random func-

tion such as a noise voltage is its autocorrelation function. If f(t)

represents the random function, the autocorrelation function (lP () of

f1(t) (10) is given by

1 T
l(~) = lir 2- f f(t)f1 (t + r)dt. (1)

2T -T
T co

It is often convenient in this report to make use of the normalized auto-

correlation function defined as

lim 1 T

( ) -l() ) T- 2- T f f (t) f1 (t + ()dtPIr= P1 ()=T-cT-T(2)

p11(0) lim 1 Tf
T -co2T fI(t)dt

-T

The following properties of p1 1 () are known:

a. P1 (0) = 1

b. p1 (0) - I1 ( )

c. P1 () is an even function

d. p(c) - 0 as X - X for noise without periodic component and

with zero average value.

An important use of the autocorrelation function resides in the fact

that the power density spectrum ;1~(,) can be directly obtained from it.

Wiener's Theorem relates the two as a Fourier cosine-transform pair. Thus

we may write

() = 2 f ( ) cosw d, (3)

and q11( () = f 1 ()coswu d. ()
co ~~~~~~~~~~~~~~~(4)
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It can be shown (10) that if f(t) represents the input to a linear

network and f2 (t) the output, as shown in Fig. 1, then

C 22 (W) = IH (W)12 1 1 () (5)

where 4p(,) and 22(6) are the power density spectra of f (t) and f2(t),

respectively, and H(w) represents the system function of the network. Of

course, no such simple relationship exists for a nonlinear network.

fl (t)n H(o) M f2(t)

Fig. 1 Representation of linear network.

B. Characteristic Function: Probability Distribution Density, Ergodic

Theorem, Moments

A statistical property that is extremely useful in the study of non-

linear circuits is the characteristic function. Preliminary to its

definition, some basic definitions must be established. If y(t) re-

presents a stationary random variable and p(y) dy is the probability that

y lies between y and y + dy, then p(y) is called the probability distri-

bution density of the variable y. The average value of y, Y is

= fyp(y) dy, (6)

the integral extending over the whole range of possible values of y. The

Ergodic Theorem states that the average with respect to the time t of the

stationary random variable y(t) is equal to , and thus another method is

provided for determining .

The average of a function of y is given in the same manner, so that

yn = ynp(y) dy. (7)

The averages evaluated by Eq. 7 are called the nth moments of the

distribution p(y).

Now the characteristic function can be defined. It is a particular

combination of the moments which gives the average value of eY, where

z is a real variable. Letting (z) represent the characteristic function,

-3-
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we have

t(z)) eiZY

:In l(zy) n

:0~o n!

l 1! 2! 3! 

(iz)2 -- (iz)3=1 + iz + ;7) 2 + (iZ 3 y2 yS+..2! 3!

co

- (iz)n --

n=0 n!

But the average of eY is also given by

e izy = feiZY p(y) dy (9)

where the integration is carried out for the complete range of values of

y, so that we may place infinite limits on the above integral. The right-

hand side of Eq. 9 we now recognize as an inverse Fourier transform;

thus p(y) is the Fourier transform of the characteristic function, and is

therefore determined uniquely by

P(Y) = f 7 (z)e-izY dz. (10)

Equation 10 represents the first important theorem on the characteristic

function. A second important theorem derives from the following: if the

characteristic functions of two independent random variables y and x are

respectively (Z) and (z), then the characteristic function (z) of the

distribution of the sum y + x is given by the product; thus

_(z) = ) g (z). (11)

C. Contour Integral Representation of a Nonlinear Device

A useful, often essential artifice for solution of nonlinear problems

is the representation of the transfer characteristic of the nonlinear por-

tion of the circuit by a complex integral. For example, if a voltage V is

*



applied to the input of a nonlinear device, the output current I(V) may be

written as an inverse Laplace transform,*

I(V)-- L E (s) -- f tF(s)esV ds (12)

where F(s) is the direct transform

0O

F(s) L[I(V)] I (V)esV dV (13)

and C' is a Bromwich path parallel to the imaginary axis and to the right

of all singularities.

The substitution s=iu in Eq. 12 gives

I (V) = - f F(iu)eiuV du (14)
2T c

and changes the path of integration to one along the real axis from - to

+- with a downward indentation at the origin to avoid a pole or branch point.

D. Fundamental Formula of Characteristic-Function Method

We are now able to demonstrate Ricets derivation** of the fundamental

formula of the characteristic-function method for obtaining the output

autocorrelation function of nonlinear circuits. Writing Eq. 1 for the out-

put current, we have

922(~) =lrn 1 12 (1)
22 (a) =Tx 2T lT I(t) I(t + ) dt. (15)

(P 2(t =T- 2 -T

Substituting Eq. 14 and rearranging give

1 1,mu~u/F~vdvlr 1 T [
T2 2 (1) =kf F(iu)du f F(iv)dv lr .T f exp[iuV(t) + ivV (t + )]dt. (16)

~C T-cc2 -T

The limit in the above equation is recognized as the characteristic func-

tion of the distribution of the sum of two random variables, V(t) and

V(t + T). Denote this characteristic function by g(u, v; ). Then,

1
T22 (t) = 2 f F(iu)du f F(iv)g(u, v; u) dv (17)4ltC C

* Ref. 1, Appendix 4A, p. 149. Other transforms ay be used.

* Ref. 1, p.136, Eq. 4.8-6.
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which is the fundamental formula of the characteristic-function method.

It remains to evaluate the above integral and its ourier cosine trans-

form,

4)22 = -- f 22 (U) coswt d-r, (18)

to obtain the power density spectrum of the output current I.

Part II. Experimental Study

A. Circuit Details

A block diagram of the essential components used in the experimental

procedure is shown in Fig. 2. White noise is by definition noise that has

a uniform power-density spectrum over a frequency range that is large com-

pared to the range of interest, which in this experiment is the filter

bandwidth. The source of white noise employed a 6D4 gas triode as the

primary noise generator.* Monitoring of the rectifier input and the

rectifier bias voltages was accomplished by use of the thermocouple and

d-c meters, respectively.

The band-pass filter, the amplifier, and the nonlinear element were

incorporated in one chassis. rom the circuit diagram in Fig. 3, it is

seen that the filter is a simple RIC parallel-tuned circuit, whose Q may be

varied in steps by use of the ganged switch. This switch varies both series

and parallel resistance, in order to provide approximately constant voltage

across the tuned circuit for the different Q's. Tapping the condenser of

the tuned circuit serves the dual purpose of impedance transformation and

voltage step-up.

After linear amplification of the filtered random noise by the first

three tubes, the noise is fed to a cathode follower, which serves as a low

internal resistance voltage source for the nonlinear element. The cathode

resistances in the amplifier stages are unby-passed for increased linearity

of amplification. When a noise plus a sine-wave input was desired, an

oscillator was connected through an appropriate RC-combination to the plate

of tube V-3.

The negative 150-volt connection to the resistance in the cathode-

follower circuit is used to cancel the positive direct voltage developed

*Equipment designed by C. A. Stutt. See Ref. 1ii for circuit diagram.
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across the cathode resistance. Thus the net direct voltage across the

nonlinear element can be adjusted to give zero bias. For the linear

rectifier a 9005 tube was found satisfactory. A series connection of

eight 1N48 diodes and a 100-ohm resistor was substituted for the 9005 and

its load resistance to provide an approximately square-law characteristic.

Fig. 4 shows a plot on log-log coordinates of the measured points of the

characteristic.

,TIFIER
JTPUT

Fig. 2 Block-diagram representation of circuit.

IK IK

9005

NPUT

R. 2700K R4 IOOOK

R2 1300K R5 240K

R3 750K

Fig. 3.

-7-

_�__��i��ll� I I_ _I _1 111_-�_.11� __ C-



B. Experimental Procedure

The resonant frequency of the band-pass filter was 23 kc/sec, and the

sine-wave generator was set to this frequency. Autocorrelation curves of

the rectifier input, with and without the sine-wave present, were obtained

for three Q-values (60,25,8.8) of the resonant circuit. Autocorrelation

curves of the rectifier output were obtained for each of the above inputs.

The two rectifiers, the linear 9005 tube and the square-law 1N48 crystal

diodes, were studied in this way.

In obtaining each point of the correlation curve, the digital corre-

lator obtains pairs of samples of the amplitude of the voltage waveform,

multiplies the members of each pair and sums many such products. Approxi-

mately 31,000 pairs of samples were obtained over a period of about one

minute of the signal for each point plotted on the short curves shown in

Fig. 8. Approximately 62,000 pairs of samples over a two-minute period

of signal were obtained for each point of the three long curves. The

s-range of the curves is 0-218 sec, or 0-436 Usec, as indicated on the

curves.

During the course of obtaining the correlation curves, it became

apparent that it was possible to alter the correlator itself to accomplish

the rectification function of the 9005 tube or of the N48 diodes. This

is done by causing the number-generating part of the digital correlator to

limit at the rectification level desired. In particular, the high speed

counter of the number generator was arranged so that it stopped at the

half full level. This corresponds to biasing the rectifiers at zero

voltage. The last curve on page 16 and the last three curves on page

17 were obtained in this manner. In the square-law case, the circuit

of Fig. 5 produced "squaring" of the filtered noise while the correlator

accomplished rectification.

C. Calculations from the Theory

As regards the symbolism used in this section, the subscript 1 and

subscript 2 will signify input and output, respectively, and when it is

necessary to separate the input into components, subscript n will refer to

-8-
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FILTERED NOISE

I 10 100

V-VOLTS

Fig. 4 Volt-ampere characteristic of Fig. 5 Circuit for squaring

square-law rectifier (log-log coordi- input voltage.

nates).

Fig. 6 Simplified circuit diagram with Vn = Vs(t)f

filtered random noise of center frequency o;

Vs = P cos (,o t. n(t)

noise and s to sinuisoidal signal. It is believed that no confusion should

result from the repeated use of the same symbol, e.g. P22 () for the

normalized autocorrelation function of different outputs, since it will be

clear from the context to which output reference is being made.

The basic circuit of this experiment can be reduced to the one shown

in Fig. 6. When the input is noise alone, switch "a" is closed.

First we will obtain the autocorrelation functions of the input to

the rectifier. The calculations require merely an application of linear

theory. The filtered noise input to the rectifier, n, is itself the out-

put of the RLC band-pass filter with a white noise input. Let the uniform

power spectrum of this input be ~1 (I)= a2 ; then, in accordance with Eq. 5

-9-
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~nn () = Iz ( 6w) I 2 ) ()

L2 ( 2 a 2

=1 ()2 ]2 2 (19)+ (~~~~~~~~~19
+Q22

where

Z() = impedance of the tuned circuit,

_ 1

and Q = R _ RPoC.
Wo L

The autocorrelation function is obtained by use of Eq. 4, ad is found

to be (11)

(,)O~
- (iJ FrTIP =nT 2 e cos (ot + Q (20)

- °O I!

na2L2 3Q 2Q0~~~~~~~~~~
;Z 2 e COS (oT

2

where the approximation holds for high-Q circuits. Hence the normalized

autocorrelation function is simply

- oolT

Pnn () = e 2Q cos OT- (21)

Since the autocorrelation function for the sinusoidal voltage,

Vs = P cos Wot, is

(PS (T) - COS W0 T (22)2(Pss () =-2 cos iol: (22)

the autocorrelation function for the total input, Vn + Vs, to the rectifier

and load is

I (T) = wnn () + ss ( )

- ('olt! 
2Q p2

2= Ae COsSo + 2 co 0 X. (23)

In Eq. 23 we have made use of the fact that the noise and sinusoidal

voltages are unrelated so that the cross-product terms are zero.

.10-
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Now, in turning our attention to the output, let us consider first

the more difficult case of determining the output autocorrelation function

for the noise plus sine-wave input. We know by Eq. 11 that the character-

istic function of V (t) is equal to the product of the characteristic

functions of its two components. Thus

g(u,v;r) = gs(u,V;T) gn(u,v;T). (24)

The evaluation of gs (u,v;t) proceeds more easily on the basis of the time

average, which by the Ergodic Theorem is equivalent to the average obtained

through the use of the probability distribution. The time average is

(ulim 1 exp [i P (u cos ot + v cos ot } )] (25)
T-.r T P

which Rice has shown yields

gs (u,v;) = Jo (P /u 2 + v2 + 2uv cos o). (26)

The characteristic function for the noise can be shown to be*

gn(u,v;r) = exp -nn (0)(u2 + v2) nn()uv] (27)

Therefore the output autocorrelation function, obtained by substitu-

tion of Eqs. 26 and 27 in Eq. 17 is

1nn( 2 Tnn(o) nn () uv

2 2 (T) = 2 f F(iu)e 2 du f F(iv)e 2
4 a C C

x J(P u 2 + v2 + 2uv os o0 T ) dv. (28)

We can now specify the nonlinear device so that the Fourier transform F(iu)

can be determined. For the linear rectifier, where the output current is

I JV V O (29)

o V < o

the Laplace transform F(s)** is A-, so that F(iu) = -
2 2

s u

*Ref. 1, p. 135, Eq. 4.8-3.

**Ref.12, Appendix A, Transform 2.101.
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Similarly, for a square-law rectifier with the characteristic

I =
0O

V < O

V<O

2a~i
the transform* is F(iu) = - .

U

Eq. 28 has not been evaluated in closed form, but by use of the

expansion
OO

Jo (P u2 + v 2 + 2uv cos W0oT )= em(-1 )m Jm(Pu)Jm(Pv) os mOt
m=o

in which e o=l, m=2 for m ! 1; and by expanding ep [- nn()uv] into the

infinite series for an exponential, Rice has obtained the following double

series

exp [- Wnn ( )uv] J (p u 2 + v 2 + 2uv cos o )

cO co

= 7; ( - 1) k
m=O k=O

[Pnn () uv] K
£m COs T0

%
,_, Jm (Pu) Jm (Pv).

This double summation separates the variables so that the integration is

somewhat simplified. With the aid of Eq. 32 the repeated integral in Eq. 28

reduces to the form

(P22 (T) = m=O k=O k! (Pnn ( ) hk m os mWo.

in which

im+k - Annm (°) U2)

hmk = 2 F(iu) uk Jm (Pu) e \ 2

Rice**has shown that for the linear rectifier

Rice**has shown that for the linear rectifier

(33)

du.

1-k2m
(mk: (O)) 2 2

mk = r(3-k-m) m!2 /

F k+-1 ; m+l; -

* Ref.12, Appendix A, Transform 2.102.

**Ref. 1, p.144, Eq. 4.10-5
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and for the square-law rectifier

/nn () 22k2\ 2 2 I~ -
sh = (() 2 km 2 1F1 (kn2 ; mr+l; - (35)=k ' (4-k-m) m 2

sine wave power p2

where x = =
noise power 2qnn (0)

and F is the confluent hypergeometric function. Values of x = - and x = 1

were used in the experiment.

When the input to the linear rectifier is filtered noise only, the

autocorrelation function for the output is*

2~~~~~

P22 () = nn jl - Pnn ) + Pnn(t) os [ Pnn(T)](36)
27i

where

() Pnn() = e 2Q cos( o + 2Q )

and the arc cosine is taken between. o and .

For the square-law rectifier with a filtered noise input, Niddleton

has shown that**

T2 2 () = 2 0nn) jcos [- Pnn()(1 + 2Pnn()) + 3Pnn()
2TT

x (i - Pnn(T)) (37)

D. Experimental Results

The autocorrelation function is recorded by the digital correlator in

two forms. A multiple pen Esterline-Angus Recorder records a number in

binary-digital form for each t-step. An example of such a record is shown

in Fig. 7. The second form of recording is made by a General Electric

Recording Microammeter; this record gives an immediate visual check on

* Ref. 1, p. 133, Eq. 4.7-5; Ref. 3, p. 793, Eq. 4-13 is equivalent.

** Ref. 4, p. 480, Eq. 78.

-13-

__�11_11^- -·-�- I I 1 1_�__·-··--(·---·111_I ----11 -- L_



I 4 FJ_~ I I I T -11tt , I._VN~f - I I II1 1 L L - [m11 1 r i l I i. I I I L T ' I I F i i M ' I

_,i L _ l i i5 _ ,, I~ _ , is m--!l til~i~lt~ltl li d|l~lFi b, ,I,,lLiJ[lll ,d llI,!,t~lilltitittll I ll li, |li 
lI~l, I, I~i Li, ,UI!, Ll, lL L L Lid L * ,IAL l L j A E I L ll;ii ,LIilil-,illl,l iI -i,! I,11 . Lll 1
T _ _ _ I _ _ I _ _ l _ i tt i I. T _ t i T ) I rl S L J ~ i fi.;Ei, a * i 3~ ]s |~ i i ,I il 
III Ir EE GIXltllilltll] !l lilll- l!T lJ[r lhT Flilllllllll11i[lillllill ]l hl7 1il,,i[!lT!&;l: !~2I~ PI/ i1!11!!1111111!!11 l'-ll!1II 14l

I it lil i il lliiI I I I I 11 IIi inlll

Fig. 7 Output autocorrelation function recorded in binary-digital form (Q=8.8,

linear rectifier, noise input).

results. Photographs of the autocorrelation curves for the different in-

puts and Q-values, as given in the second form of recording, are shown in

Fig. 8.

The theoretically determined autocorrelation curves identified in

Figs. 9 through 1 were plotted for a -range of 136jsec (,Jo-range of

1080°). For convenience each theoretical curve is normalized with respect

to its value at =0.

Presented on the same sheets with the theoretical plots are the dis-

crete points obtained from the experimental data. When two sets of experi-

mental data were obtained for one curve, the average was used. To plot the

experimental points from the binary-digital data, it was necessary to perform

a subtraction to obtain the zero level and a multiplication to obtain a good

fit, as determined by visual inspection. An illustration of this procedure

is the following: suppose we have obtained an exponentially damped cosine

autocorrelation curve for Q=60, hose digital data show that the =0 value

is 154, the next maximum is 150, and the first minimum occurs at the half

cycle and is 120. For the high-Q case the damping of the cosine is approx-

mately linear for the first cycle so that the envelope would decrease to 152

at the half-cycle point. The zero value can then be obtained as

(152 + 120)/2 = 136. This value is then subtracted from the number repre-

senting each point and the resulting values normalized for a good fit.

Suppose, after inspection, it is felt that allowing the T=0 value to be 1

gives a good fit to the theoretical curve. Then,

1
(154 - 136)X = 1, X- - 0.0556

18
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is the appropriate normalizing factor.

Figures 12 and 14 show output autocorrelation functions of rectified

noise plus sine wave which take on negative values. The reason for this is

that the d-c term in the series (m = o, k = o) of Eq. 33 has been omitted in

the computation.

A Fourier transformation of the curve shown in Fig. 15.1 was obtained

on the electronic differential analyzer; a photograph of the result is shown

in Fig. 15.2. A Fourier transform of the curve of Fig. 16.1 was obtained on

the delay-line filter; a plot of the resulting power density spectrum is

shown in Fig. 16.2.

An error is to be expected due to the finite number of samples measured

by the correlator. In general, such an error depends on the number of

samples, the statistical properties of the signal measured, and the large

d-c level inserted by the correlator. or the case of large , where the

samples are nearly independent, it can be shown that the ratio of the rms

error (ae) to the variance ( 2 ) of f(t), the signal under study,is

ae := [D + f(t)] (38)e+
o2 Nao2

where N = number of samples averaged

fl (t) = average of signal under study

D = constant added to f (t) by the correlator .

The quantities in the equation may be determined from the autocorrelation

curve itself. For example, the autocorrelation curve shown in Fig. 15.1

2was obtained; with the number of samples N = 31x21 1 , and the values of a2 and
[D + fl (t) may be obtained from the experimental data as

22 = 3.23 x 21

2

[D + f1 (t)] = 101.7 x 2

Therefore
°e 0. 032.

2a

Approximately one-third of the measured values might be expected to fall out-

side ± e which equals 0.02 on the normalized curve shown. This agrees

very well with the observed results.
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OUTPUT AUTOCORRELATION FUNCTIONS FOR SQUARE-LAW RECTIFIER
FILTERED NOISE INPUT
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Fig. 8 (cont'd) Autocorrelation functions as recorded by correlator.
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There are errors other than that due to the finite number of samples.

Causes of the most important errors seemed to be:

1. amplitude drift in the sampling circuits of the correlator

2. voltage drift in the power supplies used with the noise filtering

and amplifying devices

3. departure of the rectifiers from the idealized versions.

When a sine wave was added to the noise, additional errors are

caused by:

4. amplitude drift in sine-wave generator

5. synchronization of the sine-wave oscillator with the sampling

frequency of the correlator.

In order to reduce errors of measurement in the sampling circuits of

the correlator, a second compensator was added so that each channel of the

machine is now compensated separately (6). This was done after only a few

of the tests for this report, and all curves which had already been obtained

were discarded. The compensators act to keep the median value of the

measured samples at a constant level. That is, the compensators provide a

correction in the number-generating circuits which tends to stabilize the

median value of the binary numbers used in the digital parts of the machine.

The effectiveness of the compensators depends on the statistical properties

of the input signal; signals with a well defined median value are handled

best. For the results in this report, the effects of drift originally

present in the measuring portions of the correlator were reduced to negli-

gible values compared with errors due to other causes. Some of the curves,

when inspected closely, will indicate the magnitude of the drifts still

present.

Changes in the power supply voltages and the signal levels from the

noise and sine-wave generators were made small by constant monitoring and

manual adjustment. A few minor circuit modifications were made to reduce

the effects of such changes.

The departure of the rectifiers from ideal is an unavoidable part of

the experimental method. However, the use of the correlator itself to per-

form the rectifying function of the diodes, as mentioned above, is a way of

decreasing the errors introduced. Since results obtained using either the

diodes or the correlator agree well with the theoretical curves, such errors

do not seem to have been important.

-18-

11_ __ _ _ �



The effects of synchronization of the input voltage periodicities with

the sampling period of the correlator are of importance. The correlator

obtains samples of the input signal and multiplies each sample by a second

sample taken a time later. The products of a great number of sample pairs

are added together to obtain one value of the correlation curve before

shifting to a new value of T. If the sampling takes place in synchronism

with a periodic input signal, it can be seen that the first samples will

always have the same value (depending only on the phase of sampling). Like-

wise, the samples obtained T seconds later will be constant for any one

value of , and will depend on the phase of the input signal at which the

second sample is being taken. The result of multiplying the second sample

by the first and adding many such products is the average value of the second

sample multiplied by a large constant. As is changed, the average value

for each corresponding phase is obtained and the output curve of the corre-

lator then has the same shape as the periodic waveform at the input. This

difficulty can be met by setting the frequency of the input signal at a value

different from any integral multiple of the sampling frequency. This was

done during this experiment, and frequent observations made to correct the

oscillator frequency for drifts.

It has been suggested that the inherent difficulty present in the

correlator due to constant frequency of sampling may be avoided by sampling

at random intervals. This appears to be an excellent suggestion for corre-

lators designed for inputs of a periodic nature.

The compensators produce a further difficulty when the input signal fre-

quency is a harmonic of the sampling rate. Whenever the samples of input

voltage obtained by the correlator have constant magnitude, the compensators

will adjust the number-generating portions of the machine to produce the

constant median number for the constant magnitude of sample. If the input

samples change to another constant level, the compensators adjust again so

that the same median number results, and no change appears in the correlation

curve. Since the compensators make such an adjustment in a few seconds (time

constant ~ 4 sec), the input signal frequency should differ by a few cycles

per second from any harmonic of the sampling rate. This effect was detected

by observing the compensator voltages. When the signal frequency drifted

near a harmonic of the sampling rate, these voltages would oscillate as the

compensators followed the slow difference frequency.
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E. Conclusions

The autocorrelation method has been applied experimentally to the

determination of power density spectra for the output of some nonlinear

devices. The results for the autocorrelation functions have been compared

with the theoretically calculated curves. It may be stated that an experi-

mental check on some known theoretical results has been obtained, and it is

hoped that the technique will be extended to the investigation of nonlinear

problems that have not yet been solved analytically.
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Fig. 15 Normalized output autocorrelation function 2 2(WOT) for linear recti-

fier with filtered noise input; and its power density spectrum as obtained on

electronic differential analyzer.
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