

-^^^

PROPERTIES OF STORAGE HIERARCHY

SYSTEMS WITH MULTIPLE PAGE SIZES

AND REDUNDANT DATA

Chat-Yu Lam

Stuart E. Madnick

April 10, 1979

Revised

CISR //A2

Sloan WP No. 1047-79

This material is based upon v;ork

supported, in part, by the

National Science Foundation
under Grant No. MCS77-20829.

Center for Information Systems Research
Massachusetts Institute of Technology

Sloan School of Management
77 Massachusetts Avenue

Cambridge, Massachusetts, 02139

PROPERTIES OF STORAGE HIERARCHY

SYSTEMS WITH MULTIPLE PAGE SIZES

AND REDUNDANT DATA

Chat-Yu Lam

Stuart E. Madnick

April 10, 1979

Revised

CISR //42

Sloan WP No. 1047-79

This material is based upon work
supported, In part, by Mie

National Science Foundation
under Grant No. MCS77-20829.

Center for Information Systems Research

Massachusetts Institute of Technology

Alfred P. Sloan School of Manaciement

50 Memorial Drive
Cambridge, Massachusetts, 02139

617 2!)3-10nO

PREFACE

The Center for Information Systems Research (CISR) is a research

center of the M.I.T. Sloan School of Management; it consists of a

group of Management Information Systems specialists, including faculty

members, full -time research staf^, and student research assistants.

The Center's general research thrust is to devise better means of

designing, generating and maintaining application software, information

systems and decision support systems.

Within the context of the research effort sponsored by the National

Science Foundation under Grant No. MCS77-20829, CISR proposes to

investigate the architecture oT the INFOPLEX Data Base Computer which

is particularly designed for large-scale information management.

INFOPLEX applies the theory of hierarchical decomposition in its design

and makes use of multiple microprocessors in its implementation to

obtain high performance, high reliability, and large storage capacity.

Research issues to be addressed include optimal decomposition of

information management functions into a functional hierarchy to be

implemented by a hierarchy of microprocessors, and optimal physical

decomposition of a data storage hierarchy to support the memory

requirements of the information management functions.

In Technical Report No. 1, we discussed the INFOPLEX concept and its

research directions. This I'eport focuses on the study of a generalized

data storage system for very large databases which can be used to support

the memory requirements of INFOPLEX. This data storage system makes use of

multiple page sizes in a hierarchy of storage levels and maintains multiple

copies of the same information across the storage levels. Important properties

of such a data storage system are derived here.

q^nnn
\

ABSTRACT

The need for high performance, highly reliable storage for very large

on-line databases, coupled with rapid advances in storage device

technology, has made the study of generalized storage hierarchies an

important area of research.

This paper analyzes properties of a data storage hierarchy system

specifically designed for handling very large on-line databases. To

attain high performance and high reliability, the data storage hierarchy

makes use of multiple page sizes in different storage levels and

maintains multiple copies of the same information across the storage levels.

Such a storage hierarchy system is currently being designed as part of

the INFOPLEX database computer project. Previous studies of storage

hierarchies have primarily focused on virtual memories for program

storage and hierarchies with a single page size across all storage levels

and/or a single copy of information in the hierarchy.

In the INFOPLEX design, extensions to the Least Recently Used (LRU)

algorithm are used to manage the storage levels. The Read-Through

technique is used to initially load a referenced page, of the appropriate

size, into all storage levels above the one in which the page is found.

Since each storage level is viewed as an extension of the immediate

higher level, an overflow page from level 'i' is always placed in level 'i+1

Important properties of these algorithms are derived. It is shown that,

depending upon the types of algorithms used and the relative sizes of the

storage levels, it is not always possible to guarantee that the contents

of a given storage level 'i' is always a superset of the contents of

its immediate higher storage level 'i-l'. The necessary and sufficient

conditions for this property to hold are identified and proved.

Furthemore, it is possible that increasing the size of intermediate

storage levels may actually increase the number of references to lower

storage levels, resulting in reduced performance. Conditions necessary

to avoid such an anomaly are also identified and proved.

Key Words and Phrases : database computer, very large databases,

data storage hierarchy, storage management algorithms,

inclusion properties, modelling, performance and

reliability analysis.

CR Categories : 4.3 Supervisory Systems,
4.33 Data Base

5.2 Metii theory
6.22 Special -Pui'pose Computers

6.34 Storage Units

TABLE OF CONTENTS

I. Introduction 1

II. Model of a Data Storage Hierarchy 4

11.1 Storage Management Algorithms 4

11.

2

Basic Model of Data Storage Hierarchy 9

1 1.

3

Formal Definitions of Storage Management Algorithms 9

III. Properties of Data Storage Hierarchy 13

111.1 Summary of Properties ,
16

1 11.

2

Derivation of Properties 19

IV. Conclusions . . . 37

V. Acknowledgment 38

VI. References and Bibliography 39

1 . Introduction

Two and three-level memory hierarchies have been used in practical

computer systems [5, 9, 13].

However, there is relatively little experience with general hierarchical

storage systems. Rapid advances in storage technology coupled with the

need for high performance, highly reliable on-line databases makes the

idea of using a generalized storage hierarchy as the repository for

very large shared data bases very attractive.

One major area of theoretic study of storage hierarchy systems in

the past has been the optimal placement of information in a storage

hierarchy system. Three approaches to this problem have been used:

(1) Static placement [1. 4, 22] - this

approach determines the optimal placement strategy statically, at the

initiation of the system; (2) Dynamic placement

[7, 16]
- this approach attempts to optimally place

information in the hierarchy, taking into account the dynamically

changing nature of access to information; (3) Information structuring

r 11 14 "1 - this
approach manipulates

the internal structure of information so that information items that are

frequently used together are placed adjacent to each other.

Another major area of theoretic study of storage hierarchy systems

has been the study of storage management algorithms

[2, 3, 8, 10, 17, 21]. Here

the study of storage hierarchy and the study

of virtual memory systems for program storage have overlapped

considerably. This is largely due to the fact that most of the studies

-2-

of storage hierarchies in the past have been aimed at providing a

virtual memory for program storage. These studies usually do not

consider the effects of mjltiple page sizes across storage levels,

nor the problem of providing redundant data across storage levels.

These considerations are of great importance for a storage hierarchy

designed specifically for very large data bases.

Madnick [15, 18, 19] proposed the design

of a generalized storage hierarchy for large data bases that makes use

of multiple data redundancy against failure and multiple page sizes

in different storage levels for high performance. Such a storage

hierarchy system is to be used in the INFOPLEX database computer

[12, 20].

Conceptually, the INFOPLEX database computer consists of a

functional hierarchy and a physical (storage) hierarchy (See figure 1)

functional
hierarchy

virtual storage
Interface

storage
hierarchy

FIGURE 1 INFOPLfl Ddta Basi" Computer Conceptual

Ortenlzatlon

-3-

The functional hierarchy implements all the information management

functions of a database manager, such as query language interpretation,

security verification, and data path accessing, etc. In INFOPLEX,

the functional hierarchy is implemented using multiple microprocessors.

Both pipeline and parallel processing are exploited to realize high

performance and high reliability. To support the storage requirements

of the functional hierarchy, INFOPLEX makes use of a generalized

data storage hierarchy system.

In this paper, we extend this work by developing a model of the

data storage hierarchy, proposing extensions to the Least Recently Used

(LRU) algorithm for managing the storage hierarchy, and deriving

important properties of the data storage hierarchy.

-4-

2 . Model Of A Data Storage Hierarchy

A Data Storage Hierarchy consists of h levels of storage devices,

m\ M^,, M . The page size of M^ is Q^. and the size of M^ is

m. pages each of size Q. . Q^- is always an integral multiple of Q^_-|. for i = 2,3

. . ., h. The unit of information transfer between M and M is a

page, of size Q. . Figure 2 illustrates this model of the Data

Storage Hierarchy.

All references are directed to M . The storage management

algorithms automatically transfer information among storage levels. As

a result, the Data Storage Hierarchy appears to the reference source as

a M^ storage device with the size of M .

As a result of the storage management algorithms (to be discussed next),

multiple copies of the same information may exist in different storage

levels.

2.1. Storage Management Algorithms

, We shall focus our attentions on the basic algorithms to support

the read- through [18] operation. Algorithms to support other

operations can be derived from these basic algorithms.

In a read- through , the highest storage level that contains the

addressed information broadcaststhe information to all upper storage

levels, each of which simultaneously extracts the page (of the appropriate

size) that contains the information from the broadcast. If the addressed

information is found in the Fiighest storage level, the read - through

reduces to a simple reference to the addressed information in that level.

Figure 3 illustrates the read- through operation.

-5-

Common

data

path

REFERENJES

I

I

A

J...

L. ..l^"*' '^ <**** transfer
'1" between . ,

y//////71 m' and M^

/sue O,//

--I

j
JUnlt of data transfer

between -, ,

H^ and M-"

Y//PAgc of size Q ., |

Figure 2 Kodel of « data storage hierarchy system

Reference to page P
1

Page P,

READ-
THROUGHV\^Y^

Page containing P
ya

f^^/XTcverflow from h'

>>.

t -..,

v^r.^>y///AL

' p'

•„ X , , iy7y77!/,"!overflow from M
• Page containing ''y////A

[,1

i
X

'/^(Overflow from H'^

RFAO-TIIROUGri (RT) OVER'LOW-HAflDLING (OH)

^t 't- 't+1
t

1''^
REPfRINCt CVr.Lt

~~~

figure 3 IlluUralloii of the Rfftt)- THROUGH

operation





-6-

Note that in order to load a new page into a storage level an existing

page may have to be displaced from that storage level- We refer to this

phenoinonon as overflow . Hence, the basic reference cycle consists of two

sub-cycles, the read-through cycle (RT), and the overflow handling cycle

(OH), with RTpreceeding OH.

For example. Figure 3 illustrates the basic reference cycle to

handle a reference to the page P,,^ . During the Read-Through (RT) subcycle,
ya

Y 1

the highest storage level (M ) that contains P broadcasts the page con-

taining P to all upper storage levels, each of which extracts the page of

appropriate size that contains P from the broadcast. As result of the

Read-Through, there may be overflow from the storage levels. These are

handled in the Overflow-Handling (OH) subcycle.

It is necessary to consider overflow handling because it is desirable

to have information overflowed from a storage level to be in the immediate

lower storage level, which can then be viewed as an extension to the higher

storage level

.

One strategy of handling overflow to meet this objective is to treat

overflows from M as references to M . We refer to algorithms that in-

corporate this strategy as having dynamic -overflow- placement (DOP).

Another possible overflow handling strategy is to treat an overflow

from M as a reference to M only when the overflow information is not already

i +1 i +1
in M .If the overflow information is already in M , no overflow

handling is necessary. We refer to algorith-ns that incorporate this

strategy as having static -overflow - placement (SOP).





-7-

Lct us consider the algorithms at each storage level for seli-cting

the page to be overflowed. Since the Least Recently Used (LRU) .ilgorithm [^> ^^3

serves as the basis for most current .algorithms, we shall consider natural

extensions to LRU for managing the storage levels in the Data Storage

Hierarchy system.

Consider the following two strategies for handling the Read-Through

Cycle. First, let every storage level above and including the level

containing the addressed information be updated according to the LRU

strategy. Thu., all storage levels lower than the addressed information

do not know ab)ut the reference. This class of algorithms is called

LOCAL-LRU algori thm. This is illustrated in Figure 4.

The other class of algorithms that we shall consider is called

GLOBAL -LRU algorithm. In this case, all storage levels are updated

according to the LRU strategy whether or not that level actually participates

in the read-through. This is illustrated in Figure 5.

Although tlie read-through operation leaves supersets of the page P^^ in all

levels, the future handling of each of these pages depends upon the replacement

'algorithms used and the effects of the overflow handling. We would like to

guarantee that the contents of each storage level, m\ is always a superset of its

immediately higher level, \^''\ This property is called MullH^ve^ InclusionjML,:!.

Conditions to guarantee MLI will be derived in a later section.

It is not difficult to demonstrate situations where handling overflows generates

references which produce overflows, which generate yet more references. Hence

another important question to resolve is to determine the conditions under which an

overflow from M^ is always found to already exist in M^"^ , i.e., no reference to

storage levels lower than m'^^ is generated as a result of the overflow. This

property is called MvmiJ^eJ_Ove^rllow_IiKjiJsioi^^ Conditions to guarantee MLOI

will be derived in a later section.

We shall consider these important properties in light of four basic algorithm

alternatives based on local or global LRU and static or dynamic overflow. Formal

definitions for these algorithms will be provided af'.er the basic model of the
"

Data Storage Hiei.irthy system is introduced.





RIFERFNCE to P

-c:

i

Read- !

through

L

A)l these

levels ers

not affected

-{'

H Is the highest

level where P Is found

,xtl

::j

€Z

Figure 4 LOCAL-LRU

REFERENCE to P

Read-
Through

l^

These level s\

are also
updated as

If rcfererxe
to P were
made to then





-9-

2.2 Basic Model of Data Storage Hi erarchy
*

For the purposes of this paper, the basic model illustrated in

Figure 6 is sufficient to model the Data Storage Hierarchy. As far as

the Read-Through and Overflow-Handling operations are concerned, this basic

model is general izable to a h-level storage hierarchy system.

M*" can be viewed as a reservoir which contains all the information.

M^ is the top level. It has m^ pages each of size Q^. M^ (j=^i+l) is

the next level. It has m. pages each of size nQ. where n is an integer
•J

greater than 1

.

References

__:.,.$

M^

Common

Data

Path

M'

m. pages of size Q.

„j |m. pages of size nQ.

J reservoir

Figure 6 Basic model of a data storage hierarchy

2 . 3 Formal Definitions of S tora ge Management A l gori thms

Denote a reference string by r - "r, , rn^^...v ," where r. (If^t^n)

is the page being referenced at the t-th reference cycle. Let S. be the

stack for M at the beginning of the t-th reference cycle, ordered according

to LRU. That is,
SJ.

= (sj.(l), sj.(2), ..., sJ.(K)), where sj.(l) is the

most recently referenced page and S.(K) is the least recently referenced

page. Note that Kim. (m. = capacity of M in terms of the number of
1 1

pages). The number of pages in S is denoted as S

By convention, S, -
, ls,|-

, hence





10-

S^ IS an ordered set. Define M as the contents of S. without any

ordering. Similarly, we can define S;: and \V for M .

Let us denote the pages in M'^ by P:j , P2 , • • • Each page, P:J , in M^,

consists of an equivalent of n smaller pages, each of size Q. = Q./n.

pi pi pi ^

yl ' y2 ' • • ' ' ynDenote this set of pages by (P^)\ i.e., (P:J)^
- ''

In general, (M^)^ is the set of pages, each of size Q^, obtained by

. . X . •

" breaking down " the pages in mJ . Formally, (M:J)^ = U (sj(k))^
t t 1^^^ t

where x = (P )^ is called the family from the parent page P .

J -J

Any pair of pages, P^ and p\ from (P'^)^ are said to be family equivalent ,

ya yo y

denoted by P^ f p\ . Furthermore, a parent page P and a page P (for liZ^n)
ya - yu y yz

^

from its family are said to be corresponding pages , denoted by p""
g P;^ .

yz Y

S. and S^ are said to be in corresponding order , denoted by

S[ = sj, if Sj,(k) = sj(k) for k = 1, 2, 3, ... w, where

w = min (| S^l , |S::| ). Intuitively, two stacks are in corresponding

order if, for each element of the shorter stack, there is a corresponding

page in the other stack at the same stack distance (The stack distance

for page S. (k) is defined to be k.).

M and M^ are said to be correspondingly equivalent , denoted by
p . . . .

mJ.
='

mJ il"
I

Mj.|=|Mj|and for any k = 1, 2, . . .,|mJ. there exists x,

such that sj. (k) -
S:J (x) and sj (x) ^ sj. (y) for all y f k. Intuitively,

the two memories are correspondingly equivalent when each page in one

memory corresponds to exactly one page in the other memory.

A
reduced stack , S^, of S is defined to be S' (k) = S' (j.)The

for k - 1 , . . .,|s|| where
j^^

is the minimum
jj^

where J|^>j\_i (jg = 0)

and s], (k) j<
sJ. (j) for j<j|^. Intuitively,

sJ.
is obtained from sj^

by collecting one page from each family existing in sJ , such that the

page being collected from each family is the page that has the smallest

stack distance within the family.





11-

In the following, we define the storage management algorithms

In each case, assume that the page referenced at time t is P

LRU (S; , P^ ) = sl., is defined as follows:
L ya t+

I

ya

Case 1 : P^ e s! , P^ = sl(k) :

ya t ' ya t'
'

si.id) = pL . Si,,(x)

ya t ' ya f '
( S (x-1 ) , 1 < x <' k

't.r--^;a' 't.l(^)=J3i(,)
^ k<x<(s;|

si^^d) = P^g , sj^^(x) = sj.(x-l) , 1 < x^min(m., |sj|+l)

If \s]{ = m. then P^ = sl(m.) is the overflow, else
I t' 1 oa t 1

there is no overflow.

LOCAL-LRU-SOP (sj. , sj , P^^ ) = (sj.^^ , sj^^ ) is defined as follows:

Case 1 : P^ e s!
ya t

^Ul ^ LRUu (sl , pM , sj- ^ t ya t't+1

Case 2 P^ i sl , P^ e sl :

ya t '

y_ t_
_ _

.

sj.. = LRU (S^ , P^g) , S^, = LRU (sj , P^

,

If there is no overflow from S.

then si^^ = S\, and S^^ - sj.

If overflow from S. is the page P„,
t ^ ^ oa

then (S^^^ , sj^^) = SOP {s[, , sj. , P^^) defined as

4+1 = 4- '
^^ ''o ^ i' ^^^" 4+1 = 4- '

if pj i sj. then sj^^ = LRU (sJ. , pj)

Case 3

LOCAL-LRU- POP

Case 1 :

P^ i S^^ and P^ ^ S:j :

ya t y ^ t

(handled as in Case 2)

S^I ) is defined as

p' 6 s:
ya t

4.1 = iM (4 .
' 'U - 4ya

Case 2 : P^ ^ S^ and P-^ 6 s{ :

ya t y t

y
S[. = IPM {S\ , P^g) , sJ. = LRU (sJ

If no overflow from S then S^^.^ = S^.. and S:J^i
= S'^.





-12-

If overflow from S. is P then
t oa

^^t+1 ' ^t+1^
" — ^^t" ' ^t' • ''oa^

^^^^^ ""^ defined as:

^li = 4' ^"d
i.^ - LRU (sj.

,

pJ)

Case 3 : P^ ^ sl and P^ i sl :

ya t y t

(handled as in Case 2 above)

• • • • •

GLOBAL-LRU-SOP (S^^ , sj , P^^ ) = (s|^^ , sj^^ ) is defined as follows:

S^, = LRU (S[ , P^g) and sj. = LRU (sj , pj) ,

If no overflow from S. then S.^, = S , and S^ , = S"^

,

If overflow from s! is p'!^ then (sj , , sj^J = SOP (sI, , S^
, ,

p""
)

L Oa L+l L+l L X, oa

GLOBAL-LRU-DOP (s} , S^ , p\) = (sl^, , S^ , ) is defined as:
t t ya t+i t+i

S].. = LRU (S[ , P]^) and sj. = LRU (sj , P^)

If no overflow from S. then s|^, = s|, and S^ , =
5;^,

If overflow from sj is P^^ then (sj.^^ , sj^^ ) = OOP (sj. , sj, , P^^)





-13-

3 , Properties of Data Storage Hierarchy

One of the properties of a Read-Through operation is that it

leaves a "shadow" of the referenced page (i.e., the corresponding

pages) in all storage levels. This provides multiple redundancy

for the page. Does this multiple redundancy exist at all times?

That is, if a page exists in storage level M , will its corresponding

pages always be in all storage levels lower than K ? We refer to

this as the Multi-Level Inclusion (MLI) property. As illustrated

in Figure 7 for the LOCAL-LRU algorithms and in Figure 8

for the GLOBAL-LRU algorithms, it is not always possible to guarantee

that the MLI property holds. For example, after the reference to P_,

in Figure ^(a) the page P-,-, exists in M but its corresponding page P-i

is not found in M"^. In this paper we shall derive the necessary and

sufficient conditions for the MLI property to hold at all times.

Another desirable property of the Date. Storage Hierarchy is to

avoid generating references due to overflows. That is, under what

conditions will overflow pages from M find their corresponding pages

already existing in the storage level M^"*" ? We refer to this as the

Multi-Level Overflow Inclusion (MLOI) property. We shall investigate the

conditions that make this property true at all times.

Refering to the basic model of a data storage hierarchy in Figure 6,

for high performance it is desirable to minimize the number of references

r i

to M (the reservoir). If we increased the number of pages in M ,

i
"^

or in H , or in both, we might expect the number of references to M

to decrease. As illustrated in Figure 9 for the LOCAL-LRU-SOP

algorithm, this is not always so, i.e., for the same reference string,

the number of references to the reservoir actually increased from 4 to 5





-14-

reference to M

reference to M

reference to M

contents of H

overflow from H
r

reference to H

contents of M

reference to M

(a) LCCAL-LRU-SOP (b) LOCAL-LRU-DOP

Figure 7 Examples of MLI violations for

Local-LRU algorithms

reference to M

contents of H

pi
1
pi

I p1 I
pi I pi

•^11
I 21

I

31 ' Ul 1*^51

1
'

J

pi i
pi ],0\ V\

^11 I 21 '/31 \ 1/^41 \ rsi

I

I

i

—

I

overflow from M

reference to M"*

contents of H

(.j=2)

reference to M*"

pj I pJ I pJ pJ
I

pJ ?J I pj
^

I
2 ! 3 ^}

\ A 2
I

5

I p, I p-' V P'' f P'^ \ p-' i p-'

1
I

2 \J.'\ 1 \Jy] 2

*
I *

(a) GLOBAL-LRU-SOP

reference to M

contents of M

(m^ = 2)

overflow from M

pi
I

p1 I pi

^11 ^21
I

"^31

p), ! p1, '/P

; Trom M 1

reference to M'
J

cor^tents of M'

(m. ' 2)"j

reference to M

(b) GLOBAL-LRU-DOP

Figure 8 Examples of MLI violations for

Global -LRU algorithms





15-

(a) .n.=2

(b) m.-3

reference to M
i''ii!''ii

contents of M

(m^ = 2)

M1 21
I

11 I
'31

'")
;

pi Tpi -pi
I

pi ' pi

mi] ^21
I

^11 ^31 jMlj'^Al

overflow from H

reference to H^

I 1 ' 1 ' 1
P IP ' P

>
*^11 21 i 11

J_
!
"31

1 ''ll

T'
'1.!

contents of H-

(.J
= 2)

p\ I pI ^ i

-4
31

'
pJ

I

*^3 * <* /i

pj I pj
I

pj I pj

1
,

2

r I

reference to M

2
I

'3

I

I

• 1 1
i

i

,

pJ pJ . r>J

1 ^—

p| Ip^

'\\'Z ,•3
.1 PJ

; i

number^ of references to M

1

reference to M P^ [p^
•^lll

'^21

contents of H

(m, - 3)

overflow from H

reference to H"'

contents of M

(mj » 2)

,J

reference to M

'11

_l.

pJ
I

pJ
M I 2

oJ . OJ

p^ ;7Tp''
•^11

'
*^31

,

*^11

-
\

pi ' pi
*^31 I 11

'.'

•^1
I *.l

I *
1
t

.^\ L,_.

p
number of references to M = 5

Figure MLPA for LOCAL-LRU-SOP

after M is ncreased by 1 page in size. We refer to this phenomona

as a Multi-Level feging Anomaly (MLPA) . One can easily find

situations where MLPA occurs for the other three algorithms. Since

occurrenceof MLPA reduces performance in spite of the costs of

increasing memory sizes, we would like to investigate the conditions

to guarantee that MLPA does not exist.





-16-

3 . 1 Summary of Properties

The MLI, MLOI, and MLPA properties of the Data Storage Hierarchy have been

derived in the form of eight theorems. These theorems are briefly explained

and summarized below and formally proven in the following section.

Multi-Level Inclusion ( MLI ) : It is shown in Theorem 1 that if the number

of pages in M is greater than the number of pages in M (note M pages are

larger than those of M ) , then it is not possible to guarantee MLI for all

reference strings at all times. It turns out that using LOCAL-LRU-SOP, or

LOCAL-LRU-DOP, no matter how many pages are in M-" or m\ one can always find

a reference string that violates the MLI property (Theorem 2). Using the

GLOBAL-LRU algorithms, however, conditions to guarantee MLI exist. For

the GLOBAL-LRU-SOP algorithm, a necessary and sufficient condition to

guarantee that MLI holds at all times for any reference string is that the

number of pages in M be greater than the number of pages in M (Theorem 3).

For the 6L0BAL-LRU-D0P algorithm, a necessary and sufficient condition to

guarantee MLI is that the number of pages in M be greater than or equal to

twice the number of pages in M (Theorem 4).

Multi-Level Overflow Inclusion ( MLOI ) : It is obvious that if MLI cannot

be guaranteed then MLOI cannot be guaranteed. Thus, the LOCAL-LRU algorithms

cannot guarantee MLOI. For the GLOBAL-LRU-SOP algorithm, a necessary and

sufficient condition to guarantee MLOI is the same condition as that to

guarantee MLI (Theorem 5). For the GLOBAL-LRU-DOP algorithm, a necessary

and sufficient condition to guarantee MLOI is that the number of pages in M'^

is strictly greater than twice the number of pages in M^ (Theorem 6).

Thus, for the GLOBAL-LRU-DOP algorithm, guaranteeing that MLOI holds

will also guarantee that MLI will hold, but not vice versa.





17-

Multi-Level Paging Anomaly (MLPA) : We have identified and proved

sufficiency conditions to avoid MLPA for the GLOBAL-LRU algorithms.

For the GLOBAL-LRU-SOP algorithm, this condition is that the number of pages

in M must be greater than the number of pages in M before and after any

increase in the sizes of the levels (Theorem 7). For the GL08AL-LRU-D0P

algorithm, this condition is that the number of pages in M"^ must be greater than

twice the number of pages in M before and after any increase in the sizes

of the levels (Theorem 8).

In summary, we have shown that for the LOCAL-LRU algorithms, no choice

of sizes for the storage levels can guarantee that a lower storage level always

contains all the information in the higher storage levels. For the

GLOBAL-LRU algorithms, by choosing appropriate sizes for the storage levels,

we can (1) ensure that the above inclusion property holds at all times for all

reference strings, (2) guarantee that no extra page references to lower storage

levels are generated as a result of handling overflows, and (3) guarantee that

increasing the sizes of the storage levels does not increase the number of

references to lower storage levels. These results are formally stated as

the following eight Theorems. Formal proofs of these Theorems are presented

in the following section.





18-

THEOREM 1

Under LOCAL-LRU-SOP, or LOCAL-LRU-OOP, or GLOBAL-LRU-SOP,

or GLOBAL-LRU-DOP, for any m^. > 2, m £ m^ implies^ r,t, (M:^)^^ MJ.

THEOREM 2

Under LOCAL-LRU-SOP, or LOCAL-LRU-DOP, for any m^ > 2, and any m . ,

3 r,t. (MJ)'' ^ M^

THEOREM 3

Under GLOBAL-LRU-SOP, for any m. > 2,'Vr,t, (mJ)^ 3 mJ.
iff m . > m.

THEOREM 4

Under GLOBAL-LRU-DOP, for any m. > 2,\f-r,t, (mJ)"" 2 M^ iff m > 2m

THEOREM 5

Under GLOBAL-LRU-SOP, for any m^ > 2, V'r,t, an overflow from M^

finds its corresponding page in M"^ iff m.>m.

THEOREM 6

Under GLOBAL-LRU-DOP, for any m. > 2, V r,t, an overflow from K

finds its corresponding page in M iff m. > 2m.

THEOREM 7

Let M^ (with m. pages), M"^ (with m. pages) and M be System A.

Let M'^ (with m.' pages), M'"^ (with m.' pages) and m' be System B.

Let m.' > m. and m.' > m. . Under GLOBAL-LRU-SOP, for any m. > 2,

no MLPA can exist if m. > m. and m.' > m.'
J 1 J 1

THEOREM 8

Let System A and System B be defined as in THEOREM 7.

Let m.' > m. and m.' > m. . Under GLOBAL-LRU-DOP, for any m. > 2,

no MLPA can exist if m. "" 2m. and ni
.

' > 2m.'





19-

3.2 Derivation of Properties

THEOREM 1

Under LOCAL-LRU-SOP, or LOCAL-LRU-DOP, or GLOBAL-LRU-SOP,

or GLOBAL-LRU-DOP, for any m. > 2, m. <.m. implies B r,t, (mJ)^ ^ mJ,

PROOF

Case 1 : m. < m.

* ' i

Consider the reference string r=" P, , P^ , . . . , P/ ^-j \
".

vJ

Using any one of the algorithms, the following stacks are

obtained at t=m.+2 :

J .

\ " ^ ^m.+l)a ' ""m-a ' • • • ' ^2a ' ''la
^

^t
" ^ ^m +1) ' ""m , . . . , P^ . P^ )

Thus, Pj^ e
mJ.

but p]^ i (mJ)"" , i.e., (mJ)^^ M^ .

Case 2 : m. = m. = w

Consider the reference string r = " P^ , P2g , . . . , P(y^+-i )3
"

Using any one of the above algorithms, the following

stacks are obtained at t=w+2 :

\ ^
^ ^(w+l)a ' ^/a ' • ' • ' ^3a ' ''2a

^

^t ^ n ' '^(w+1) ' ^w ' • • • ' M ' ^3 '

Thus, P^g 6 m], but P^g i (MJ)^ , i.e., (mJ)^^ mJ.
.

Q.E.D.





-20-

THEOREM 2

Under LOCAL-LRU-SOP, or LOCAL-LRU-DOP, for any m. > 2, and any m. ,

PROOF (For LOCAL-LRU-SOP)

For m.;^m. the result follows directly from THEOREM 1.

For m.> m. , using the reference string

r = " P^ P^ P^ P^ P^ P^ "
^ ^za ' ^la ' ^za ' ^2a ' • • • ' za ' m.a '

the following stacks will be produced at t=2m.+l :

J

^t
"

^ ^m.a ' ^a ' ^(m.-l)a ' • • • ' P{m -m +2)a ^

J J J '

rj _ / pJ pJ pJ pJ ^

^t ^ m. ' m.-l ' • • • ' 2 ' 1 ^

. J . J
.

Thus P^ 6 mI but P^, i (M^)^ , i.e., (MJ)^i M^ . Q.E.D.

PROOF (For LOCAL-LRU-DOP)

For m . < m. the result follows directly from THEOREM 1.

For m.> m. , using the following reference string

„ _ II pi pi pi pi p"" p"" "

^ ~ ^za ' ^la ^za ' *^2a ' • • • ' ^za ' ma '

The following stacks will be produced at t=2m.+l :

Where for 1 < i < m. . a. 6
|

P^ , P^ , • . . , P3 , P^ , P^ C

since P is the only overflow from M .

z
-^

Thus, P^^ 6 M^ but P^g ^ (MJ)' , i.e., (mJ)^^ mJ

Q.E.D,





-21-

THEOREM 3

Under GLOBAL-LRU-SOP, for any ni.> 2, V r,t, (M^)^ 3 m! iff m . > m. .

PROOF

This proof has two parts. Part (a) to prove v r.t, (M;^) 3 m!. =^ m.>m

or equivalently, m . £ m. =v 3 r,t, (M;^)^ ^ hI

Part (b) to prove m.>m.^. V r,t, (M;?)^ ^ m!
J I C L

PROOF of Part (a) : m . £ m . => 3 r,t, (mJ)"" ^ mJ.

This follows directly from THEOREM 1.

Q.E.D.

To prove Part (b), we need the following results.

LEMMA 3.1

"v/" >". t such that M:^ - m. , if m .
= m. + 1 , then

(a) (MJ)'2Mi . and (b) sj ? sj

PROOF of LEMMA 3.1

For t=2 (i.e., after the first reference), (a) and (b) are true.

Suppose (a) and (b) are true for t, such that JM^^j^m.

Consider the next reference :

Cas e 1 : It is a reference to M :

There is no overflow from M or M , so (a) is still true.

Since Global-LRU is used, (b) is still true.

Case 2 : It is a reference to M"^ :

There is no overflow from M'^. If no overflow from M , the same

arguement as Case 1 applies. If there is overflow from M , the

overflow page finds its corresponding page in M . Since SOP is used,

this overflow can be treated as a "no-op". Thus (a) and (b) are preserved.

Case 3 : It is a reference to m"^ :

There is no overflow from M'^ since
|
M'?^iK m^ • Thus the same reasoning

as in Case 2 applies.
Q.E.D.





-22-

LEMMA 3.2

V r, t, such that M;: = m. , if m.=m.+l then

(a) (MJ)S MJ , (b) $1 "= SJ ,
and (c) (sj(nij))^ f] 4 ^ «*

Let us denote the conditions (a) (b) and (c) jointly as Z(t).

PROOF of LEMMA 3 .2

Suppose the first time S^(m.) is filled is by the t*-th reference.

That is, S:?'(m.) = ^ for all t<t* and sj(m.) f for all t> t*.

From LEMMA 3.1 we know that (a) and (b) are true for all t ^t*.

Let t t* + 1. t^ = t* + 2, , etc. Vie shall show, by

First we showinduction on t, starting at t, , that Z(t) is true

that Z(t, ) is true as follows:

Case 1 : mJ^ § m].^

S^^ Q SJ^ and MJ^ e m[^ =>sj^(nK-l) g sj^(m.)

As a result of the reference at t* (to m'), S'J^^i(m.) = S:^^(m.-1)

and S,^(m.) overflows from M . This overflow page finds its

corresponding page in Vr becau:ie there is no overflow from M and (a).

Since SOP is used, the overflow from M can be treated as a "no-op".

Furthermore, since Global-LRU is used, (b) is true after the t*- th

reference, (b) and [sj^^J >|s[.^^J =»(a) and (c). Thus Z(t^) is true.

Case 2 : (mJ^)^ 3 M^^ and mJ^ e mJ^

(mJJ'3 mJ^ and mJ^ i MJ^=> ^ sj^(k) such that (sj^(k) )''n mJ* =

SJ* Q Sj^ and (sJ^(k))VlMJ^ = ^k>rsj.J| and (sj^(x))'"n mJ^ =

for all X, where m. , > x ^ k. Thus (S:J^(m. ,
))^ fl s!+ =

J-

1

f J- 1 ' ' t*

(i.e., the last page of S:J^ is not in s|,J

S^(m^) overflows from M . Th^^re is no overflow from M'^. Thus the overflov.

page from M finds its corresponding page in M . For the same reasons as in

Case 1, (b) is still preserved, (b) and

true. Thus, Z(t^ ) is true.

t*+l
S^*+J->(a) and (c) are





Assume that Z(t|^) is true; to show that Z(t ) is true, we consider

the next reference, at time t, ,, :

k+1

i ' 1
Imagine that the last page of S"! does not exist, i.e., S'i (m.) =

h
i i

k
J

If the reference at t. , is to a page in M or M; , then (a) and (b)
•^

'

^k h
still hold because Global -LRU is us 3d and because overflow from M^ finds

its corresponding page in M"^ (See tne proof of LEMMA 3.1).

If tfie reference at t,-, is to a pa le not in M^ , then we can apply
^k

the argument as that used in considering the reference at time t, above

to show that Z(t. -,) is still true.

Q.E.D.

LEMMA 3.3

"V r,t, if m.-m.+l then (a) (nj)^ 3 K ^"^ (^) (S^Cm ))^ fl sl =

PROOF of LEMMA 3.3

For t such that lM:^|<m. (a) follows directly from LEMMA 3.1 and

(b) is true because S^(m.) =

For t such that [mJU m. (a) and (b) follows directly from LEMMA 3.2

Q.E.D.

LEMMA 3.4

•Vr,t, if m, >m. then (a) (M'M^D m1 and (b) (sj{m.))^ sl =

PROOF of LEMMA 3.4

Let m. = m.+k . We shall provi? this lemma by induction on k.
J 1

For k=l (a) and (b) are true from LEMMA 3.3.

Suppose that (a) and (b) Are true for k.

Consider m.^m.+(k+l). That is consider the effects of increasing M'^ by

1 page in size :





-24-

Since M is unchanged, M (with m.+k+l pages) sees the same

reference string as M (with m.+k pages). Applying the stack

inclusion property (Mattson.et al., 70), we have

M"^(with m.+k+l pages ) D M"^ (with m.+k pages). Thus (a) is still true.

Suppose (S^(m.+k+l)) f] S. f ^ then there is a page in M that

corresponds to this page. But S^(m.+k+l) is not in M (with

m.+k pages). This contradicts the property that (mJ)^ 3
mJ.

.

This shows that (b) is still true.

Q.E.D.

PROOF of Part(b) : m. > m. .-> V r,t, (mJ)^ 3 mJ.
:

J

This follows directly from LEMMA 3.4,

Q.E.D.





25-

THEOREM 4

Under GLOBAL-LRU-DOP, for any m > 2, Vr,t, (M^)^3 mJ iff m. >2in.

PROOF

This proof has two parts:

Part (a) : m^ < 2m.=>3r,t, (mJ)^* M^

Part (b) : m. > 2ni.^ V r,t, (mJ)^3.mJ^

PROOF of Part (a) : m.< 2m.-=^ 3 r,t, (mJ)^^ m].

For m. < in. the result follows from THEOREM 1,

Consider the cas.e for 2m. > m. > m. :

The reference string r = " p] , pj, , p], , . . . , p]„ v
"

la 2a 3a (2m.} a

will produce the following stacks:

^t "
^ ^2m.)a ' ''(2m.-l)a ' • • • ' P(m.-fl)a ^'

si = ( a, , a„ , a. , . . . , a ) where a.'s are picked from L, and L^

alternatively, starting from L, . L, =
( P^ , P-^ i \ , . • . . P, )•^

1 1 m. (m,.-l ) 1

^''"^ 4 ^
^ ^2m. ' ^^2m.-l)' " ' ' ' ^m,+l^

1

... h'

If m. is even, then (a, , a_ , . . . a J corresponds to the first m./2

elements of L, and (a„ , a. , . . . a ) corresponds to the first m./2
1 2 4

_ m.' _

^
J

i T i

elements in L„. We see that P, ^t. is in S^ but its corresponding page
2 (m. + l }a t

r :^ r z,

i i "i

is not in S:: {P. ,.\ is not in Si since m./2 <m.).
t Mm. + l) t J r

If m. is odd, then (a, , a.^ , . . . $ ) corresponds to the first

(m.+l)/2 elements in L, and (a^, , a^, .... a , ) corresponds to the

i i

first (m.-l)/2 elements in L^. We see that the page P/ ,
•, >, is in S.

J c " im.+ I ;a L

but its corresponding page is not in S^ because max{ (m.-l)/2 ) = m.-l,

thus, a- _ix is at most the (m.-l)-th element of Lp.Pop,
_(g, ."D+i^'P,^ +2 •

In both ca?es, (M"J)'i^fi]^

Q.E.D.





-26-

To prove Part (b), we need the following preliminary results,

LEMMA 4.1

Under GLOBAL-LRU-DOP, for ni. > 2, m. >.2ni. , a page found at stack

distance k in M implies its corresponding page can be found within

stack distance 2k in M": .

PROOF of LEMMA 4.1

We prove by induction on t.

At t=l, the statement is trivially true. At t=2 (i.e., after

the first reference) s|^(l) and its corresponding page are both at

the beginning of the stack, hence the induction statement is still true.

Suppose the induction statement is true at time t, i.e.,

P^ = sl(k) =^ P"^ can be found within stack distance 2k within S'J .

za t -^ z t

Suppose the next reference is to P,^, • There are three cases :

'^ "^ Wa

Case 1 : P^^^ 6 mJ (P^ = si(x) )
wa L wa t

From the induction statement, P'' is found within stack distance 2k
w

in S^ as illustrated in Figure 10.

M'

-stack distance—
=^

"
w^- '<''W^I

M

2x ""'
p/^

"

--^

I

I

A'

Figure 10.

Consider the page movem,ents in the two stacks as a result of handling

the reference to P :

wa

(1) p\ and P are both moved to the top of their stack, the inductionWa V/
'





(2) Each page in A increases its stack distance by 1, but its

corresponding page is in A', each page of which can at most

increase its stack distance by 1. Thus the induction statement

holds for all pages in A.

(3) None of the pages in B are moved. None of the pages in B' are

moved. (See previous diagram) If a page in B has its corresponding

page in B', the induction statement is not violated. Suppose a

page in B, P, = S.(k) (k>x), has its corresponding page, P? =
^t^^^

in A'. Then P^ can at most increase its stack distance by 1.

But w<2x because P^ e A' . Since 2k>2x, the induction statement

is not violated.

Case 2 : P^ 4. M^ , P"^ ^ M-j
wa ^ t w ^ t

Each page in M increases its stack distance by 1. Each corresponding

uepage in M'^ can at most increase its stack distance by 2, one d

to the reference and one due to an overflow from M . Hence if

P\ = slik), k<m. , then P^ = sl,^(k^l), and P^ can be found

within stack distance 2(k+l) in M"^ at time t+1

.

Case 3 : P^ ^ M^ , P"^ 4 mJ
wa t w t

r • i

As a result of the read-through from M , each page in M

is increased by a stack distance of 1. That is, for k <, m^ ,

Each page in H'^ can at most increase its stack distance by 2,

one due to loading the referenced page and one due to an cverfl

from M . Hence, the page P is found within stack distance of

2k+2 in M^. Since max(2k+2) = 2m. «c m. , P'^ is still in M"^1— J z

Q.E.D.

ow





-28-

COROLLARY to LEMMA 4.1

m.
J I L J X,

PROOF of COROLLARY

For any P^^ in S , its corresponding page can be found within

stack distance 2m. in S. , and since pages in S'J are unique,

j A

the information in the last page of S' is not found in S' ,

i.e.. (sJ(m^.))'* n si = .

PROOF of Part (b) : m.>2m.^Vr.t. (M'j)^O M^

This follows directly from LEMMA 4.1.

Q.E.D.





-29-

THFOREM 5

Under GLOBAL-LRU-SOP, for any m. > 2, V r,t, an overflow from m""

o loj v,wii(;j|_ii_iiiuiii^ (jayc III t^
'"

COROLLARY

finds its corresponding page in M'^ iff m.> m.

Under GLOBAL-LRU-SOP, for any m. > 2, V r,t, an overflow from M^

finds its corresponding page in M"^ iff \' r,t, (M:j[)^p M^

PROOF

This Proof has two parts as shown below.

PROOF of Par t (a) : m.>m. =^ v r,t, an overflow from M finds its corresponding

page in M

From LEMMA 3.4 m. > m . =^ V r,t, (m|)Sm|. and (sj(m.))^n sj. = <i

Suppose the overflow from m\ P^^ is caused by a reference to f>v\

Then just before P is overflowed, P^ exists in M'^
oa

After the overflow, P finds its corresponding page still existing in M"^
03

Suppose the overflow, p'!^
, is caused by a reference to m"^.Oa

Then just before the overflow from m\ P^ exists in M"^ and (S:^(m.)) f]S. = ^

i.e., the information in the last page of M'^ is not in M . This

means that the last page of 1-1 is not P , thus, the overflow page P

finds its corresponding page still in M"-^ after an overflow from M'^ occurs.

PROOF of Part (b) : m.j<m.^ 3 '"'t, such that an overflow from M does not

find its corresponding page in M"^

From THEOREM 1, m. < m.=^3 r,t, (M^)''^mJ^ , then there exists

P^ G M^ and P~^ ^ M-^ , Wo can find a reference string Such that
za t z ^ t

at the time of the overflow of P^ from M^ , P'^ is still not in M"^.
za z

A string of references to M will produce this condition.

Then at the time of overflow of P^ , it will not find its corresponding
za

page it M

Q.E.D.





-30-

THEOREM 6

Under GLOBAL-LRU-DOP. for m. > 2, V r,t, an overflow from M^

finds its corresponding page in M iff m. > 2in.

COROLLARY

Under GLOBAL-LRU-DOP, for m. > 2, V r,t, an overflow from M^'

finds its corresponding page in M-" implies that V" r,t, (M'J)^^M^

PROOF

This Proof has two parts as shown below.

PROOF of Part (a) : m.> 2m. ^\/r,t, an overflow from M^ finds its

corresponding page it M

THEOREM 4 ensures that m.>2m.^Vr,t, (M'j)^o m]. and LEMMA 4.1

ensures that (S'J(m.))^ sl =
, we then use the same argument as

in Part (a) of THEOREM 5.

PROOF of Part (b) : m.< 2m.^3 r,t, such that an overflow from M^^—^ J— 1
-"

_
.

does not find its corresponding page in M

Case 1 : m. < 2m.

m.^ 2m. =^ 3 r,t, (m|)^^ M]. (from the proof of part(a) of THEOREM 4)

We then use the same argument as in Part (b) of THEOREM 5.

Case 2 : in. = 2m.
J 1

The reference string r - "
p\^ , Pj^ , . . . , p'^^^_^^ , P(2m. + l)a

"

will produce the following stacks (at t=2m.+l):

^t
" ^^2m.)a ' ^(2m.-l)a • • • ' P(m. + l)a^

c3 _ /pJ pJ pJ pJ pJ pJ \

^t ^ m. 2m. ' ni.-l ' ^2m.-1 ' • • • • ^] ' ^^.+i^

In handling the next reference, to page P/p ^,\^ » the pages ?, ^-j \

i

and P ,1 overflow at the same time, hence the overflow page
m.+l ^ ^

P/ ^-.s from M does not find its corresponding page in M^

"i

Q.E.D.





-31- .

THEOREM 7

i i Y*

Let M (with m. pages), M'^ (with m. pages) and M be System A.

Let M' (with m.' pages), M'"^ (with m
.

' pages) and M*" be System B.

Let m.' > m. and m.' > m. . Under GLOBAL-LRU-SOP, for any m. > 2,

no MLPA can exist if m. > m. and m.' > m.'

PROOF

We Shan show that V"r,t, (mJ U (M'j)
" ) ^ (M'

J
U(M'j)M

This will ensure that no MLPA can exist.

Since m.'>m. and LRU is used in M and M' , we can apply the LRU

stack inclusion property to obtain M c M' .

i i
From THEOREM 5, we know that overflows from M or from M' always

find their corresponding pages in M^ and M respectively. Since

SOP is used, these overflows can be treated as "no-ops".

Thus, M and M''^ see the same reference string and we can apply

the LRU stack inclusion property to obtain \A. '£ \A . (since m.'> m.

and LRU is used).

m].C Mj.^ and M^CM'I =^ (M^ U (M^j)^') CL (f^'j LJ(M'-J)^')

Q.E.D.





-32-

TIOREM 8

Let System A and System B be defined as in THEOREM 7.

Let m/ > m. and m.' m . . Under GLOBAL-LRU-DOP, for any m. > 2,

no KiLPA can exist if m. > 2m. and m.' > 2m. ' .

J 1 J 1

PROOF

We need the following preliminary results for this proof.

LEMMA 8.1

Let S'J be partitioned into two disjoint stacks, W and V defined as

follows: W (k) = S:^(j. ) for k=l ,..., |wj where JrfO, and j is the

minimum J|^>J|^_-| such that 3 P^^ 6 sj. and P^^ g ^t^^k^'

V|.(k) =
^t^Ji,;)

^'^^ k=l,...,|V J where jr^=0, and j, is the minimum

j^ > j^_^ such that V P^g 6 Sj , P^^
p ^^(j^). (Intuitively, W^

is the stack obtained from S^ by collecting those pages that have

their corresponding pages in M. such that the order of these pages

in S. is preserved. V is what is left of S. after W. is formed.)

Then, i/ r,t, (a) W g sj^ and (b) V C where is the set of

pages corresponding to all the pages that ever overflowed from M ,

up to time t.

PROOF of LEMMA 8.1

From THEOREM 4, m. / 2m. :^ Vr,t, (M"J)\o M^ . Thus, for each page

in M , its corresponding page is in M;? . This set of pages in

M^ is exactly H , and W e s], by definition. Since the conditions

for V and W are mutually exclusive and collectively exhaustive,

the other pnges in M't that are not in W are by definition in V .

Since a page in V does not have a corresponding page in M , its

corresponding page must have once been in M^ because of Read-Through,

and later overflowed from M . Thus a page in V, is a page in 0. .

Q.E.D.





-33-

LEMMA 8.??

Any overflow page from M;^ is a page in V

PROOF of LEMMA 8 .2

From THEOREM 4. m. > 2m. ^V r.t, (m|)^ ^ mJ

From THEOREM 6, m. > 2m.t^'V' r,t, an overflow from M always finds its

corresponding page in M"^

i r
An overflow from Mt. is caused by a reference to M . An overflow from

M^ also implies that there is an overflow from M .

Suppose the overflow page from 11;^ is P^ . Also suppose P^ e W. , i.e.,

p-^^ V. . We shall show that this leads to a contradiction.

The overflow page from M. is either P^, or P ,^ (y/o).
L oa ya

If P^ c P"^ is overflowed from m! , THEOREM 6 is violated since
oa = t

P^ and P-^ overflow at the same time so p"!^ will not find its corresponding
oa oa

page in M"^

.

If P^ c P'^ is overflowed from m! , THEOREM 4 is violated since
ya f t ....

after the overflow handling, there exists a page P^j^ g Pj in M^ (since pj 6 W^)

but P is no longer in M .^

Q.E.D.

LEMMA 8.3

If there is no overflow from either M or M then X/"r,t, V. and V'

have the same reverse ordering.

Two stacks S and S are in the same reverse ordering, S CQ S ,

,

if rS^(k) = rS-^Ck) for 1 ^ ki min( (s^) ,\s^ \ ), where rS denotes

the stack obtained from S by re/ersing its ordering. By convention,

S^ rg S'^ if S^= or S"^ =





34-

PROOr of LEMMA 8.3

To facilitate the proof, we introduce the following definitions.

(1) The ordered paren t stack , (S^)"^, of the stack S^ is the stack of

parent pages corresponding to, and in the same ordering as, the

pages in the reduced stack, S , of S . Formally, (S ) g S

and (s"")-^ S^

(2) Define a new binary operator, concatenation (||)» between two stacks,

1 2
S and S , to produce a new stack, S,as follows;

S = S^
II S^, where S{k) - ( s\k) for k-1 ,2, . . .

. , ] S^|

S^k) for k- ls^l+1, ...,}|s^| + Is^lS

(3) Define a new binary operator, ordere d di fference (o), between a stack

S and a set T, to produce a new stack, S,as follows:

S = S^ T, where S(k)=S^(j|^) for k=l,2,...,( |s^| - Is^OtI),

such that Jq=0, j, is the minimum J|.>Jk_i such that S (j. )n"l' = 0-

Intuitively, S is obtained from S by taking away those elements of

S which are also in T.

Figure 11 illustrates the LRU ordering of all Level i pages

ever referenced up to time t. Since there is no overflow from either

M"^ or M' , the length of this LRU stack is less than or equal to min(m. ,

Recently
Referenced^!

^
t' Figure 11

.

By the definition of VJ. , VJ.
= (Y^)"^' o (S'|)^^

But (S'j)J = (SJ)J
II (

(X^)J {s\)^ ),

hence V; ^ (Y^)^' o ( (s[)^^
|| ( (X^.)^ o (S^)^ ) )

= (Y^^ o ((S^)JU(Xt)^')

Similarly, by the definition of V , V = {Z )^ c (sM^

But (Z^)J = (X.)J
II

((Y^)J' (XjJ'),

hence V^ = ((X^j^o (sj)^)
||

({(Y^J^ o (X^)^) o (si)^)

= ((x^)\ (sj.)J)
1

1 (
(Y^)J {(s[)JU(x^)^'))={(x^.)Jo(s^)^^')

II
v;

Thus, the two stacks ai'e in the same reverse ordering. Q.E.D.

..)

_t_..

Least Recently
erenced

[Lea
_r^Ref





LEMMA 8.4

y'r.t, (a) ^'^.z> M^ , (b) V. and V' are either in the same reverse

ordering or the last element of V' is not an element of V.

PROOF of LEMMA 8.4

- (a) and (t)) are true for any time before there is any overflow from

either M'^ or M'"^. (a) is true because any page ever referenced is in

Level j , so a page found in M is also found in M''^. (b) is true

because of the result from LEMMA 8.3.

Assume that (a) and (b) is true for t. Consider the next reference at t+1

.

Suppose this reference does not produce any overflow from either M or M' ,

then (a) still holds because M'J^f^t ^^^ M't"? ^l
(See THEOREM 7).

(b) still holds because overflows from M and M are taken from

the end of stacks V. and V! respectively, and since there is no

overflow from Level j, (b)'s validity is not disturbed.

Suppose this reference does produce overflow(s) from Level j.

Case 1 : overflow from M , no overflow from M :

1 I'*

This cannot happen since overflow from M implies reference to M

which in turn implies overflow from M also.

.
Case 2 : overflow from M , no overflow from M :

t Suppose the last element in V' is not an element of V, . Then

starting from the end of VI , if we eliminate those elements not in

V , the two stacks will be in the same reverse ordering. This

follows from LEMMA 8.3 and is illustrated in Figure 12.

.... x9 xsl x7 x6 x5 x4 x3 x2 xl
|

j_
i X 1*"^^^^J. x7 x^J x5_x4 _x3 x2 xi;

Figure 12. VJ.





-36-

Thus we see that overflow from M'^ , i.e., overflowing the last page

of V , will not violate (a) since this page is still in V' .

(b) is still preserved since the last page in V! is still not in V .

Suppose V! and V are in the same reverse ordering. Then overflowing

the last page of V does not violate (a) and results in the last

page of VI not in V .

Case 3 : overflow from \r and overflow from M :

a Suppose the last element in V! is not in V . Refering to the diagram

in Case 2, we see the result of overflowing the last element of V!

and the last element of V. does not violate (a) and still preserves

the condition that the last element of V| is not in V

6 Suppose V! and V. are in the same reverse ordering. Then

overflowing the last elements of V! and V leaves V| and V still

in the same reverse ordering, (a) is not violated since the same

page is overflowed from M and M .

Q.E.D.

PROOF of THEOREM 8

M' 2 M for the same reasons as those used in THEOREM 7.

From LEMMA 8.4 M'^ ^ M"^

Hence, (mJuImJ)') ^ (^'j U(M'^)'')

Q.E.D.





-37-

4 . Conclusions

We have developed a model of i\ data storage hierarchy system specifically

designed for ^ery large databases. This data storage hierarchy makes

use of different page sizes across storage levels and maintains

multiple copies of the same informition in the hierarchy.

Four algorithms obtained from natural extensions to the LRU

algorithm are studied in detail anc key properties of these algorithms

that affect performance and reliability of the data storage hierarchy

are derived, .

It is found that for the LOCAl -LRU algorithms, no choice of sizes

for the storage levels can guarantee that a lower storage level

always contains all the information in the higher storage levels.

For the GLOBAL-LRU algorithms, by choosing appropriate sizes for the

storage levels, we can (1) ensure the above inclusion property to

hold at all times, (2) guarantee tliat no extra page references to

lower storage levels are generated as a result of handling overflows,

and (3) guarantee that no multi-le\el paging anomaly can exist.

Several areas of further study emerge from this investigation.

These include the study of store-behind algorithms [ 18 ] and

the study of extensions to other known storage management algorithms.

We hope that this study motivates further work in the area of

generalized data storage hierarchy systems for very large databases.





-30-

Acknowledgment

The authors would like to thank Mike Abraham, Sid Huff, and Ken Yip

for reviewing an earlier version of this paper; and the referees for

their editorial comments.





-39-

References

1. Arora, S.R., and Gallo, A. Optimal sizing loading and reloading in a

multi-level memory hierarchy system. Proc. AFIPS 1971 SJCC 38, 337-344.

2. Belady, L.A. A study of replacement algorithms for a virtual -storacie

computer. IBM Systems Journal 5, 2 (1966), 78-101.

3. Belady, L.A., Nelson, R.A., and Shedler, G.S. An anomaly in space-time
characteristics of certain programs running in a paging machine.
Comm. ACM 12, 6 (June 1969), 349-353.

4. Chen, P.P. Optimal file allocation in multi-level storage systems.
Proc. AFIPS 1973 NCC, 277-282.

5. Conti , C.J. Concepts for buffer storage. IEEE Computer Group News,
March 1969, 6-13.

6. Denning, P.J. Virtual memory. ACM Computing Surveys 2, 3 (November 1974),
153-190.

7. Frenaszek, P. A., and Bennett, B.T. Adaptive variation of the transfer
unit in a storage hierarchy. IBM Journal of Research and Development 22, 4

(March 1978), 405-412.

8. Franklin, M.A., Graham, G.S., and Gupta, R.K. Anomalies with variable
partition paging algorithms. Comm. ACM 21, 3 (March 1978), 232-235.

9. Greenberg, B.S., and Webber, S.H. MULTICS multilevel paging hierarchy.
IEEE INTERCON 75.

10. Hatfield, D.J. Experiments on page size, program access patterns, and
virtual memory. IBM Journal of Research and Development 16, 1 (January 1972),
58-66.

11. Hatfield, D.J., and Gerald, J. Program restructuring for virtual memory.
IBM Systems Journal 10, 3 (1971), 168-192.

12. Hsiao, D.K., and Madnick, S.E. Data base machine architecture in the
context of information technology evolution. Proc. "^evy Large Data Base Conf.,
Tokyo, Japan, Oct. 1977. 63-84.

13. Johnson, C. IBM 3850 - mass storage system. IEEE INTERCON, 1975.





-AO-

14. Johnson, J. Proqram restructuring for virtual moniory systems.
MIT Project MAC TR-14a (March 1975).

15. Lam, C.Y., and Maclnick, S.E. INFCPLEX data base computer architecture -

concepts and directions. MIT Sloan School of Management Working Paper
No. 1046-79 (1979).

16. Lum, V.Y., Senko, M.E., Wong, C.P., and Ling, H. A cost oriented
algorithm for data set allocation in storage hierarchies. Comm ACM 18, 6

(June 1975), 318-322.

17. Madnick, S.E. Storage hierarchy systems. MIT Project MAC TR-105
(1973).

18. Madnick, S.E. INFOPLEX - hierarchical decomposition of a large information
management system using a inicroprocessor complex. Proc. NCC 44

(May 1975), 581-587.

19. Madnick, S.E. Design of a general hierarchical storage system. IEEE INTERCON
75.

20. Madnick, S.E. The INFOPLEX database computer : concepts and directions.
Proc. IEEE Computer Conference, February 26, 1979, 168-176.

21. Mattson, R.L., Gecsei , J., Slutz, D.R., and Traiger, I.L.

Evaluation techniques for storage hierarchies. IBM Systems Journal 9, 2

(1970), 78-117.

22. Ramamoorthy, C.V., and Chandy, K.M. Optimization of memory hierarchies in

multi programmed systems. Journal of the ACM 17, 3 (July 1970), 426-445.








