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Abstract

We consider the product design problem of allocating the chip sites on a semiconduc-

tor wafer to various types of chips. The manufacturing facility sells chips to its customers

in sets (a specified number of several different types of chips), and the objective of the

facility is to maximize the average production rate of sets. Variabilitj' in the wafer fab-

rication process, in particular random yield, poses a major obstacle in producing sets in

a reliable fashion. A stochastic analysis is employed to develop an effective wafer de-

sign, and to measure the improvement in performance of the multi-type wafer over the

traditional single-type wcifer. The analysis reveals that multi-type wafers regularize the

production flow of non-defective chips of each type and cause these flows to be positively

correlated, both of which help to improve performance. A numerical example is provided

that illustrates the analysis and demonstrates the design's effectiveness.
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Florin Avrani

Department of Mathematics, Northeastern University

and

Lawrence M. Wein

Sloan School of Management, M.I.T.

It is well-known that reducing variability in production systems will increase perfor-

mance. Some of the conventional waj's to reduce variability include the reduction of set-up

times, greater use of preventive maintenance in lieu of lengthy machine breakdowns, the

regulation of job releases, the cross-training of personnel, and the use of statistical pro-

cess control. This paper provides an example from the semiconductor industry where the

design of the product can also reduce variability, and hence improve performance.

The key step in semiconductor manufacturing is wafer fabrication, which consists of

the production of disc-like wafers about four to six inches in diameter. The surface of

the wafer is partitioned into chip sites in a grid-like fashion, and each wafer typically has

between 20 and several hundred chips. Traditionally, all chips on a given wafer are of

the same type. Such wafers will be referred to as single-type wafers. However, recent

technological developments now permit different types of chips to be produced on the

same wafer. This development is the catalyst for the wafer design problem: how does one

allocate the chip sites on a wafer to the various types of chips. The resulting wafer will be

referred to as a multi-type wafer.

This paper addresses two issues concerning the wafer design problem. The first issue

is to find an effective design for a multi-type wafer, and the second is to assess how much

improvement in performance a multi-type wafer offers over a single-type wafer. In order to
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define the performance measure used in this paper, we will first describe the manufacturing

environment of the particular facility that motivated this study; however, we believe that

this environment is typical of large semiconductor manufacturers. Moreover, although the

analysis is stimulated by a specific industry, some of our results apply to more genreal

production settings.

Because of the complexity of the technology and the fast-changing nature of the semi-

conductor industry, the yield of non-defective chips in wafer fabrication can be low and

very erratic. Average yield rates can vary from several percent up to eighty or ninety

percent, dependiivj; r,poT; ^lie m.'3t'tnty and complexity of <:he product. Chio'^ pvc made

on wafers, and wafers are produced in lots, where the lot size is typically between five

and fifty. In this paper, three different possibihties for producing defective chips will be

explicitly considered: an entire lot can be defective, an entire wafer in a non-defective lot

can be defective, and finally an individual chip on a non-defective wafer can be defective.

As will be described in Section 1, the yield of a particular chip type in a particular chip

site depends upon both the location of the chip site on the wafer and on the type of chip.

In the manufacturing environment under study, customers order chips in sets, where

a set of chips consists of a specified number of chips for each of several chip types. In

our particular application, a set of chips are required to build a circuit board, and thus

the customers are unable to assemble a circuit board until they receive a set of chips.

The variability in yield described in the previous paragraph makes it difficult for the chip

manufacturer to provide reliable delivery performance to its customers.

The wafer fabrication facihty, or fab, is modeled here as a network of quasi-reversible

queues (see Kelly [4]), and the ol>jective of the design problem is to maximize the long-run

expected average number of non-defective sets produced by the wafer fab. This objective

will get the sets of chips to the customers faster and will hence increase customer service,

which is an overriding objective in the semiconductor industry. The particular manufac-

turing facility under consideration makes chips for several types of boards; however, in
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order to gain insight into the natvire of the problem, we restrict our analysis to designing

one multi-type wafer for use in assembling one type of board.

In order to produce a wafer of a particular design using traditional photolithographic

equipment, a mask set must first be produced that dictates the circuitry design that will

appear on the wafer. A mask set costs on the order of $20,000, and thus once a mask set

for a particular design is produced, it is desirable to produce many wafers with that mask

set. Therefore, the chip site allocation problem described earlier is truly a static design

problem, as opposed to a dynamic control problem. K electron beam machines are used in

the lithographic process, then mask sets ar-r not necessary for wafer production. However,

there is still the need in this case for a simple and effective mechanism to design the wafers.

The design decision has been described as one of allocating the chip sites on a wafer

to the various chip types. Currently, the problem being considered by the designers is to

allocate the rows of a wafer to a particular chip site. The main constraint that restricts the

design in this way is not technological in nature, but informational. To keep track of which

chip type is in each of several hundred sites on a wafer (and then to use this information

in a constructive way, such as for process control) is considered too large an informational

burden. Instead, it is more desirable to just keep track of which chip type is in each of

ten or twenty rows on a wafer. Our analysis remains essentially unchanged whether one

allocates chip sites or rows to the chip types, and we will continue to refer to the design

problem as one of allocating chip sites. To summarize, the problem considered in this paper

is to allocate the chip sites (to various chip types) on a wafer that is to be mass-produced

in a highly stochastic environment (a network of queues with three manners of defects)

with the objective of maximizing the long-run expected average number of non-defective

sets produced.

This appears to be the first study that has related the design of a product to the

process flow of finished goods. The only paper related to the wafer design problem to

our knowledge is Singh et al. [5]. They allocate the chip sites of a single wafer among
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cliip types in order to maximize the probability that a non-defective set can be produced

from one wafer. Unlike our study, they assume that the yield of a chip type in a chip site

is a Bernoulli random variable that depends only on the chip type and not on the site

location. They also determine how the probability of completing a set increases as the

number of wafers produced is increased. Although the design derived there may maximize

the probability of obtaining a single set from a single (or several) wafers, the resulting

wafer, if mass-produced, may not be effective in the long-run because each chip type may

not be produced (after accounting for defectives) in the same proportions a^ the demand.

Consic'^ifir^ the cost involving ir making a mask ^et. and the fac; that the lnne-n.ir; demand

for the computer boards appears to be steady, the long-term view is more appropriate for

our setting.

A deterministic analysis that considers only long-run averages is employed in Section

2 to address the wafer design problem. There are two cases to analyze, depending upon the

assumption made with regard to yield of wafers on a chip. Let fi^k equal the probability

that a type k chip allocated to site 5 on a non-defective wafer will be non-defective. H

there exists positive numbers Cg and ^i^ such that //jj. = Cgfj^ for all sites 5 and types

k. then the yield will be called multiplicative; otherwise, the yield will be referred to as

non-multiplicative. Although the yield was thought to be multiplicative in our setting, we

know of no published data analysis that addresses this issue.

The wafer design problem is formulated as a hnear program in Section 2; the decision

variable Xgk is the fraction of site s devoted to type k chips; thus, the integrality constraint

that each site consists of a single chip that is of a single type is ignored in our formulation.

The zero-one constrained version of the proposed LP will lead to an effective and feasible

wafer design; however, ignoring this integrality constraint allows for a tractable stochastic

analysis. Since there are typically many more sites than chip types, very few of the optimal

Xak variables will have values other than zero or one. Thus, the performance of the integer

and non-integer solutions will be very close, and the LP solution could be implemented
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directly for the row allocation problem currently under consideration, without the fear of

causing an information "explosion".

The results of the deterministic analysis are the following: under multiplicative yield

(non-multiplicative, respectively) the multi-type wafer will perform the same as (better

than, respectively) the traditional single-type case (under the appropriate mix of wafers

entering the fab). Furthermore, imder multiplicative yield, there are many possible opti-

mal designs. Thus, under the multiplicative yield assumption that is believed to hold in

practice, the naive deterministic analysis cannot distinguish among many possible wafer

designs, or between the best iriulti-type wafer and the singlf'-type wafer.

A stochastic analysis is employed in Section 3 that takes into account the variability

inherent in the queueing network and in the random yield. We derive the point process

that counts the number of non-defective sets completed up to time i for an arbitrarily-

designed multi-type wafer and for the single-type wafer. In each case, the central Hmit

theorem for renewal processes is used to reduce the asymptotic (as t -^ oo) analysis of the

point process to the analysis of the minimum of a multivariate normal random variable.

A Slepian inequality (see Slepian [6]) is then employed to show that a particular multi-

type wafer will perform better than the single-type wafer, and to give sufficient conditions

under wliich one multi-type wafer design will dominate another design. This dominance

condition is used to develop a surrogate objective function for the LP in Section 2 that

will identify an effective wafer design. We also show that the difference in cumulative set

production up to time t between a multi-type policy and the single type policy is directly

proportional to \/i.

The stochastic analysis shows that if one wants to maximize the number of sets pro-

duced, and hence to maximize the minimum of a multivariate normal, it is desirable to

have the covariance matrix of the multivariate normal contain large off-diagonal elements

(that is, positive correlation among the elements) and small diagonal elements. Under the

traditional single-type wafer policy, the resulting departure streams of non-defective chips
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of each type are independent and thus the covariance matrix has zeroes on the ofF-diagonal,

whereas the muUi-type wafer leads to a covariance matrix that has positive ofF-diagonal

elements. The reason for the positive correlation is that entire wafers and entire lots of

wafers can be defective. Furthermore, the single-type wafer policy leads to much lumpier

departure streams of non-defective chips of each type (departures of a particular type occur

whenever a non-defective lot of wafers of that type exits the fab) than under the multi-

type wafer pohcy (where each non-defective wafer of each non-defective lot may contain

some non-defective chips of each type), and hence the corresponding covariance matrix has

larger diagona' elements.

In addition to offering an effective multi-type wafer design, the stochastic analysis

developed in Section 3 can also be used to plan production. In particular, one can use

the algorithm of Clark [2] to approximate the mean of the minimum of a set of (possibly

correlated) normal random variables. This will allow the production planner to predict the

cumulative production of sets as a function of the rate at which lots of wafers are released

into the fab. Thus, a simple one-dimensional search can be used to find the appropriate rate

of lot releases that will attain a specified average output rate of sets. A naive deterministic

analysis of the production rate, which uses only average yields, ignores the time that

completed cliips wait to form sets, and hence overestimates the production rate of sets for

a given input rate, thereby leading to poor customer service. This production planning

tool is not specific to the problem at hand. For any stochastic production system with

variable yield that can be modeled as a quasi-reversible network of queues, we can estimate

the cumulative production of sets as a fiuiction of the start rate of individual units that

make up the set.

In Section 4. a numerical study is undertaken to assess the effectiveness of the proposed

multi-type wafer design and meas\ire its relative advantage over the single-type wafer.

The numerical example assimies that yield is multiphcative, and a simulation model is

used to measure the production rate of sets for the single-type policy and several multi-
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type policies. The numerical results show that, after roughly 70,000 sets were completed,

the single-type policy had only produced SS.7% of the naive deterministic estimate of

the production rate, whereas the proposed multi-type design had produced 98.6% of the

deterministic production rate. Other multi-type policies produced at over 96% of the

deterministic production rate, axid thus choosing among the solutions to the LP via the

Slepian inequality has only a marginal effect on performance. However, the stochastic

analysis did provide an accurate estimate (typically within 2 — 3% of the simulated values)

of the observed cumulative production in the single-type and multi-type cases. Thus the

stochastic analysis is a useful tool to assess the relative impact of a multi-type wafer design

and to plan production under any wafer design.

It is interesting to contrast the results of the detenninistic and stochastic analysis.

Although the naive deterministic analysis offers an effective design in the non-multiplicative

yield case, it is not detailed enough to distinguish among many competing designs in the

multiplicative yield case and, more importantly, is imable to detect the large difference in

performance that exists between the single-type and multi-type wafers. Thus, although

the deterministic analysis of yields can be useful, it is our hope that the stochastic analysis

performed here will urge rest archers and practitioners to delve deeper into the problems of

remdom yields in manufacturing, as opposed to only analyzing yields in terms of long-run

averages.

1. The Model

A wafer consists of S chip sites, indexed by 5 = 1, ..., S, and a set of chips is composed

of n-i type 1 chips, 772 type 2 chips,..., and rtj^- type A' chips. As mentioned earlier, the

wafer fab is being modeled as an open network of quasi-reversible queues. We assume

that the network possesses a stationary distribution (which amounts to assuming that the

network is not loaded up to or beyond its capacity), and that it is initialized with its

stationary distribution. The individual customers in the queueing system represent a lot
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of wafers, and the nodes of the queueing network represent the workcenters in the fab. In

particular, tiiis assumes that, under a multi-type policy, lots of multi-type wafers (all of

which have the same design) arrive to the queueing system according to a Poisson process

with rate A. For the single-type pohcy, type k lots (i.e., lots consisting of wafers that have

only type k chips on them) arrive according to independent Poisson processes with rate

fk\, for k = 1, ..., A', where fk is the fraction of lots that are of type k. In the next section

we derive the fraction fk that causes the average number of non-defective type k chips

produced to be in the same relative proportions as ni,...,n/\-. This mix of entering lots

will be assumed f-'^r the basis of comparison, and the resulting production policy Vv-ill be

referred to as the single- type policy.

Readers are referred to Chapter 3 of Kelly [4] for a definition and examples of net-

works of quasi-reversible queues. One possible scenario is that each workcenter consists of a

number of identical machines, the machines at each workcenter have the same exponential

processing time distribution, and individual lots are served FCFS (first-come first-served)

at each workcenter. For the single-type policy, type k lots have their own arbitrary de-

terministic route through the workcenters of the fab, and for the multi-type wafer policy,

all lots have the same arbitrary deterministic route through the fab. As will be seen in

Section 3, the only performance measures of the queueing network that are required in our

study are the various departure processes.

For both the single-type and multi-type policies, it will be assumed that each lot of

wafers is defective with probability 5, independent of all other lots, and of the arrival,

service, and routing information. This type of defect can occur at a batch operation, such

s£ an oven, where the entire lot is processed at once. Each lot consists of L identical

wafers, and a wafer in a non-defective lot is defective with probability p, independent of

all other wafers in the lot. Tliis type of defect can occur when wafer-by-wafer operations

are performed.

Let Y'ak be a random variable that takes on the value of one if a type k chip allocated



to site s of a non-defective wafer is non-defective, and takes on the value of zero otherwise.

(When considering the problem of allocating rows of wafers, the variable 1\,^ can take on

values larger than one.) Then the expected value and variance of Y^i; will be given by

Hsk and (7^1^, respectively. It will be assumed that the random variables Ysk are mutually

independent for 5 = 1,...,S and k = 1,..., A'. Let Y^ = 5Z,=i ^sk be the number of non-

defective chips on a non-defective type k wafer (a wafer consisting only of type k chips).

The random variable Yk has expected value and variance given by ^k and cr^, respectively,

where fik = X]^_j //»*: and al = X^,=i ^Ik- Many studies (see Stapper [8] and Albin and

Friedman [1], for example) have verified that the defects generated in wafer fabricaLion

tend to cluster, causing the variance of the random variable Y'k to be very high, sometimes

n:iuch larger than the mean.

The assumption of independence across sites of a wafer is not crucial to our stochastic

analysis; however, it does allow for a convenient comparison between the single-type and

multi-type policies. Moreover, this does not appear to be an overly stringent assump-

tion, especially considering that the effect of an entirely defective wafer has already been

captured.

Recall that the decision variable for the wafer design problem is Xgk, which is the

fraction of site .s allocated to type k chips. Let N{t) (respectively, F{t)) be the number

of sets of non-defective chips that have departed from the fab during the time interval

[0,t] under the single-type (respectively, multi-type) policy. The process F{t) is design-

dependent, and the wafer design problem is to choose x^t to maximize hm,_oc t~^ E[F{t)].

Our goal is to solve the wafer design problem, and to compare lim^-^oo i~^F[F{t)] under an

optimal design with ]init^oo t~^ F[N{t)], which is the corresponding performance measure

under the single-type policy.

2. Deterministic Analysis

In this section, a deterministic analysis is undertaken that ignores any variablility
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in the production process and in the yield process, and looks only at long-run average

values. We begin with the single-type case, and then proceed to the multi-type case. The

single-type case is considered primarily as a basis for comparison against the multi-type

case.

In the single-type case, each lot of wafers consists of only a single chip type. In order

to analyze the performance of tliis case, a product mix must be specified; that is, the

proportion of lots that are released into the fab that are of a given chip type. Recall

that nic non-defective type k chips are required to form a set, and the average number

of non-defpclive chips on a non-def?ctive type k wafer is Uk for /: = 1 K. Therefore,

on average, it takes n^/ fik non-defective type k chips to form a set, and thus the average

fraction fk of starting lots that are of type k should be

/. = ^.i^^- (2.1)

Notice that the average total number of non-defective wafers of all types that it takes to

form a set is Ylk=ii^^k/ fJk)-

In the multi-type case, the product design problem can be formulated as the linear

program (LP)

1 ^
max min {

—

"S^ Hsk^sk} (2.2)
T,k l<k<h 771- '^—

'

K

subject to /^ ^ai = 1 for .s = 1,...,5, (2.3)

*. = i

xsk > 0, (2.4)

where Xsk denotes the fraction of site 5 that is allocated to type k chips.

The multi-type case will be further distinguished between the multiplicative case and

the non-multiplicative case. The expected yields /j^jt will be called multiplicative if there

exists a set of 5 nonnegative constants Cs summing to one such that

Hsk = c^fjk for all .<! = 1, ..., S]k = 1, ..., A'. (2.5)
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If condition (2.5) does not hold, then the yields will be referred to as non-multiplicative.

Since X^g_i Cg = 1, it follows that the term /Vjt appearing in (2.5) is the expected yield for

a non-defective type k wafer, which was defined in Section 1.

The two factors that affect the expected yield ^sk are the circuit density of type A-

chips and the location of site s on the wafer. As the circuitry of a chip becomes more

dense, it becomes more difficult to rehably produce the chip. Also, for all chip types, there

are certain parts of the wafer that are more apt to yield non-defective chips. The yield

versus location surface is donut-shaped, with the lowest probability of success occuring in

the middle and at the periphery of the wafer. This yield surface tells us that some sites

achieve inherentlj- higher yields than other sites, regardless of the chip type. Condition

(2.5) effectively assumes that these two factors, circuit density and location, behave in an

independent fashion in determining the resulting yield of a type k chip in site s. Although

this condition was thought to hold in our setting, it is clear that one wants to collect data

and test this assumption when possible. See Stapper [7] and references therein for more

on the complicated relationship between yield and location.

When (2.5) holds, then LP (2.2)-(2.4) can be rewritten as

max y (2-G)
y,i,k

s

subject to y \ Cg^sk < for k = 1, ...,.

s— 1

K

^x,, = 1 for.s = l,...,S, (2.S)

*r=l

:csk > 0. (2.9)

Let TT = (tti, ..., TT/^) and ') = (71, ...,7s) be the dual variables corresponding to constraints

(2.7) and (2.8), respectively. Then the dual LP is

S

mmin 5^7. (2-10)

3=\

subject to 7, >
^'^^^""^

iov s = l,...,S;k = l,...,K, (2.11)
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Y.^k = h (2.12)

it=i

^k > 0. (2.13)

If the constraints (2.11) are summed over s = 1, ..., S, then we obtain the relaxed dual LP

s

minVi, (2.14)

s=l

S

subject to y"7^ > ^^^ for k = 1,...,A', (2.15)

3=1 *

K

Y.^k = l. (2.16)

TT, >0, (2.17)

which can be rewritten as

The solution n* to this LP is

mm max (2.18)
ni, i<k<K nk

K
subject to J^TTjt = 1, (2.19)

k=\

TTjt > 0. (2.20)

K
"''^"'^~'forJl- = l,...,7^, (2.21)<. = -(E-

and thus the optimal objective function value to the relaxed dual LP is {^k=i[nk/^ik))

Therefore, an optimal solution to the original dual LP (2.10)-(2.13) is tt* and

A'

i: = Cs{V'^)~'iovs = \,...,S. (2.22)

Since tt^ > for h = 1, ....A', the A' primal constraints (2.7) are all binding in the optimal

solution. Since the set of equations

^Vc.x., = (V^)-^forA- = l,...,A, (2.23)

s=\ k=\

K

^x,;. = Ifor .s = 1,...,5, (2.24)

k= \
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are rediiiidaiit. there aiT, in general many solutions to the primal LP. Thus we have proven

the following.

Proposition 1. Under condition (2.5),

(a) the optimal objective function value of the LP (2.2)-(2.4) is (X^t=i(^*;//u )) ,'

(b) all the constraints in (2.7) are binding; and

(c) the solution to (2.2)-(2.4) is not unique.

Notice that (a) tells us that the optimal number of sets from a non-defective wafer

is equal to (X^;t=i("*//^'^')) • Recall that under the single-type policy under prod-

uct mix (2.1), the average number of non-defectiv? wafers rf^qr.ired to obtain a =:pt wa?

^;._j(njt//-'A)- Thus, under the multiplicative yield assumption, there appears to be no

advantage in using multi-type wafers. This is because the relative expected yields of the

various chip types behave similarly across sites. However, this deterministic analysis ig-

nores the variabilij' in the production process and the queueing of chips that takes place

before they are assembled into sets. The next section will take a closer look at this prob-

lem, and will indeed show that there is a significant difference between the single-type and

multi-type policies. Furthermore, the analysis in the next section will aid us in choosing

which of the many solutions to the LP (2.2)-(2.4) will yield the best design.

Before finishing this section, let us return to the original LP under the non-multiplica-

tive assumption that (2.5) does not hold. In this case, certain chip types can perform

better in some sites than other sites relative to other chip types. Observe that

a-,;. = /^=
"^^'"^

for .>. = l,...,S-k = 1,...,A', (2.25)

is feasible for LP (2.2)-(2.4) and achieves the objective function value (X^,=i("j/^'j )) '

which is the same performance as the single-type case. Thus,

Proposition 2. The optimal objective function value of LP (2.2)-(2.4) under the

non-multiplicative case is greater than or equal to the corresponding performance measure

under the single-type policy.
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3. Stochastic Analysis

The stochastic analysis in this section assumes that the multipUcative assumption

(2.5) holds. However, in the non-multiplicative case, a similar analysis can be used to

compare the performance of the optimal multi-type policy (i.e., the solution to (2.2)-(2.4))

to the single type policy. If there happens to be multiple solutions to the LP in the non-

multiplicative case, then the analysis can also be used to help decide which solution will

lead to better performance.

3.1 Single-Type Poiic;,'. We bf>gin this :>ection by cmalyzing the single-type policy.

Recall that under this policy, lots of type k — 1,...,A' enter the fab according to inde-

pendent Poisson processes with rate /^A, where fk was defined in (2.1). Since the fab is

an open network of quasi-reversible queues, it follows that the departure stream Ak{t) of

non-defective type k lots from the fab is Poisson with rate (1 — q)fk^- Our assumptions

in Section 2 also imply that the departure process of non-defective type k wafers is a com-

pound Poisson process Dk{t) = ^,=i Wi, where Wi,i = 1, ...,Ak{t), aie independent and

identically distributed (iid) binomial random variables with parameters £, the lot size, and

1 — p, the probability of a non-defective wafer. Let Nk{t) be defined by

Nk(t) = ^^^ ^—J > 0, for k = 1 A', (3.1)
no-

where y\ ,i = !,...,!?<..(/), are iid random variables having the same distribution as Yk-

For k = 1,...,A', it follows that E[Nk(t)] = at and Var[A'jt(/)] = sit, where

{l-q)\Lil-p)

and

'1 =
11k-

^^\ \Lil- Pyi + ^^iL{\ - P)P + L'{1 - pYf,i
I

. (3,3)

Furthermore, notice that the A' processes {Nk{t),t > 0},k = 1,...,A", are mutually inde-

pendent.
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Recalling that njt type k chips are required to form a set, it follows that the number

of sets produced by time t is mini<t</v- [A''jt(/)J , where [x\ denotes the integer part of x.

For simplicity, we choose to analyze the process N*(t) — mini<j.</^- Nkit), which will lead

to a negligible error since

I

min \Nk{t)\-N*(t)\<liovallt>0. (3.4)

It follows by the central limit theorem for renewal processes that, for k = 1, ..., A',

Nkit) - at ^,
^ ^

j: => Ajt as < —> cx), (3.5)
y/t

where A't ~ ^'(0. si), i.e.. A';, is normally distributed with mean zero and vaiicince ^^., aiivi

=> denotes convergence in distribution. Thus,

lim Pr{N*(t) < x\fi + ai) = \ - hm TT Pr{Nk{i) > xVi + at) :3.6)

k= \

= (i-n('-*(^)))- (S'-)

where $ is the cumulative distribution function of the standard normal. Thus we can

analyze the asymptotic performance of the single-type policy by studying the minimum of

A' independent normal random variables; this point will be pursued further in Section 3.4.

Notice that s^. in (3.3) decreases as 77;- increases, and thus the chip types that have

relatively few chips in a set will tend to cause the burstier, or more variable, departure

streams, since these chip types will not be produced very frequently.

3.2. Multi-Type Policy. A similar analysis will now be apphed to the multi-

type policy. By the quasi-reversibility assumption, the departure process of non-defective

lots from the queueing network is a Poisson process A{t) with rate A(l — q). Therefore,

the departure process of non-defective wafers is given by the compound Poisson process

D{t) = ^,=1 W'j, where H',, ? = l,...,A{t), are again binomially distributed iid random

variables with parameters L and I — p. Thus,

E[D{t)] = X{1 - q)L{l - p)t (3.8)
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and

Var[I>(<)] = HI - q)t[L{l - p)p + L^l - P?]. (3.9)

Recall that the wafer design is defined by the decisions Xgk,s = 1,...,5, and k =

1 A", where x^k is the fraction of site 5 allocated to type k chips. Define the random

variables Vgk by

Vsk = il^ for 5 = 1, ..., S;k = \, ..., K. (3.10)
nk

Then these mutually independent random variables, which are dependent upon the design,

have

E[V,k] - ^-^^^-^ and Var[F,,] = ^^^. (3.11)
rik nj^

Define Tk = Yjs=i
^

'«'-' ^^ *^^*^

s s 2 ^2

E[Tk] = 5]:^ and Var[r,] = J]
:i^. (3.12)

Let F(t) = (Fi(/),...,FA.(f)) be defined by Fk{t) = EJ^i^^I''' ^^^ere T^.'' are iid random

variables distributed as Tk- Then mini<jt<A' [•f"fc(OJ is the number of sets produced by time

/. It follows that E[Fk{t)] = bkt, Var[F^.(f )] = Eu-^ for k = 1, ..., A', and Cov[F,(/), Fkit)] =

Sji-f for j ^ k, where
s

bk = A(l - q)L{l-p){y f:iMiliL), (3.13)^ "'^

S 2 2

+ A(l - q)[Lil-p)p + L'{l-p)']{J2 ^^^^^)\ (3.14)

and
S S

^^k-Hl-q)[L(l-p)p + LHl-p?]{Y.^){Y.-^^ (3.15)
Ik

Recall that one of the goals of this section is to choose, for the multiplicative yield

case (2.5), an effective design x^k from among the many optimal solutions to the dual LP
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(2.2)-(2.4). In the rest of this section, we will restrict ourselves to designs i^jt that solve

LP (2.2)-(2.4) under condition (2.5). However, as noted earlier, a similar analysis can be

performed under the non-multiplicative yield case.

Proposition 3. Ifx^k solves LP (2.2)-(2.4), then bk deHned in (3.13) satisEes bk = a

for k — 1, ..., A', where a is defined in (3.2).

Proof. This follows directly from Proposition 1(a), (2.1), (3.2), and (3.13). |

Let 6 = (fej , ..., 6fc ), which equals (a, ..., a) by Proposition 3, and we have, by the central

limit theorem for renewal processes,

F(i) -bt
^ ' =» Z as < -^ oo, (3.1G)

where Z ~ A^(0, T.), which is a multivariate normal random variable with mean zero and

covariance matrix S, where S is defined in (3.14)-(3.15).

Letting F*{i) = mm\<,k<h' Fk(i) and denoting the kth component of Z by Z;-, we

have

Urn Pr{F*{t)<x\/i + at)^ 1 - Pr( mm Z^ > x). (3.17)

Thus, the asymptotic performance of the multi-type policy can be analyzed by studying

the minimum of A' dependent normal random variables.

3.3. A Comparison of Policies. We begin this section by stating a generedization

of Slepian's lemma (see Slepian [6]) that is due to Kahane [3].

Proposition 4. Let X = (Xk) and Z = (Zk) be normal K— dimensional vectors

such that

E[X,Xk]<E[Z,Zk]i((j,k)eA,

E[XjX,] > E[ZjZk] if (j,A-) e B, (3.18)

E[XjXk] = E[ZjZk] if (j, k)^AW B.
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Let f{x )
= f{xi,...,Xk) be a function defined on R^ with second derivatives satisfying

df

dxjdxk

df

> if {j,k) e A,

<0 if (i,A-) 6 B. (3.19)
dxjdxk

ThenE[f{X)]<E[f{Z)].

With the aid of the Slepian inequahty, we will provide a multi-type poHcy that out-

performs the single-type policy.

Proposition 5. For j / k. Iljk > and is independent of the design Xsk-

Provf. Ti:i> itsi;!: Jollovvs fioiu Proposition l(b} and (3.15). B

Let us again consider the design

defined in (2.25).

Proposition 6. For the design Xsk defined in (3.20), the corresponding covariance

matrix satisfies ^^k < sj. for k — 1,...,A'.

Proof. From (3.3) and (3.14) we have

2 X{1 - q)[L{l - p)p + LHl - pf] f 1 1

--kk - s^ = ^^

+ Ml-,)Lil-p)(Y^C-i^) :\ ). (3.21)

The first term on the righthandside is non-positive since X^,=i(^j/a'j) ^ ^k/ftk- Under

design (3.20),

.2 „2
3 k

s=l \ ^k J /U-"itE;=l("j//^j'2/1 1
^ ' > < 0. (3.22)

and hence the second term on the righthand side of (3.21) is also non-positive
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Proposition 7. Under design (3.20),

,. E[F*{t)] ,. E[N*it)]
Hm -^—^^ > lim ^ !-^. 3.23)

Proof. This follows from central limit theorems (3.5) and (3.16), and Propositions

4-6, where, in Proposition 4, the set A corresponds to the diagonal elements and the set

B corresponds to the ofF-diagonal elements, and f{x\^...^Xf^) = min(xi, ..., a-;^-). |

Although design (3.20) outperforms the single-type policy, it is not necessarily a desir-

able multi-type design. By Prc-positions 4 and 5, it is clear that in order to find an effective

design, one wants to make the diagonal terms Tjkk of the covariance matrix of F{i) as small

as possible. In particular, since n'^ X^s=i -i^ sk^sk is a constant for all designs that solve

LP (2.2)-(2.4), it follows from (3.14) that the terms nl"^ Yfs=\ ^Ik^lk^^ = 1' •••. A' need to

be made as small as possible.

We now propose two mathematical programs (that differ only by their objective func-

tions) that should lead to effective, not optimal, designs. Both programs have the con-

straint set (2.4) and (2.23)-' 2.24), which has the same form as the constraints of a trans-

portation problem; this constraint set guarantees that a feasible solution will be an optimal

solution to LP (2.2)-(2.4). The two objectives are

--EE^^^ (3.24)

and

min max V^^iJ^. (3.25)

5=1 ^

Although objectives (3.24) and (3.25) may both lead to an effective design, objective

(3.25) will lead to a problem with non-linear constraints, which will be harder to solve

than the quadratic program generated by objective (3.24). It should be noted that under

the popular assumption that Y^k are Bernoulli random variables for all 6 = 1,...,S and
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k = 1,...,A' (and the yield is multiplicative), then a^^^ = /is/t(l — fisk) = Cg^ki^ — Csfk),

and

E^ = ^Ec.xL-4E^^-^.- (3-26)

If the variables x^jt were all integer, the first term on the righthand side of (3.26) would

be a constant by Proposition 1, but the second term would still depend on x^jt, and hence

the math programs are not trivial in this case.

3.4. Asymptotic Performance Analysis. By (3.7) and (3.17). it follows that an

asymptotic (i —> oo) analysis of A'*(f ) and F*{f), which are the cumulative number of sets

produced up to time t for the various policies, can be performed by studying the minimum

of A' (possibly dependent) normal random variables, hi particular, Clark [2] has developed

an iterative approximation (it is exact for A' = 2) technique to calculate the moments of

the minimum of A' normal random variables. Using his approximation, we can estimate

£'[min(A'] ^h')] and E[vmn{Zi Zj^)] and, for the sake of concreteness, let us denote

these estimates by c^ and c-, respectively. It follows by (3.5) that

r= => mm(Ai, ...,Xk) as r —> oc, (3.2 1
)

and thus for large f. we can estimate E[N*(t)] by

c^y/i + at. (3.28)

Similarly, E[F*{t)] can be estimated by

C:Vi + at. (3.29)

Notice that the quantity at appearing in (3.28) and (3.29) is the deterministic estimate

of E[N'{t)] and E[F'(i)] if there was no variability in the production system. Since

Cj- and c. will be negative (recall that A" and Z have mean zero), it follows that the

naive deterministic analysis overestimates the actual cumulative production of sets. The

20



difference in expected cumulative production between a multi-type policy and the single-

type policy grows in proportion to \/i, and is approximated by

{c^-c,)Vi. (3.30)

Thus, although the average production rates of the two policies both converge to o, the

difference in the cumulative production between the two pohcies diverges.

4. A Numerical Example

We now present a numerical example that is V)ased on disguised, but representative,

data from an actual facility. As mentioned in the Introduction, the problem currently

being addressed is to allocate rows of a wafer to various chip types. Our example has

A' = 4 chip types and ten rows, but to keep consistent with past notation and terminology,

we will refer to the rows as sites, and thus S = 10. Readers should interpret Xak as the

fraction of a particular row that is allocated to type k chips.

A set is made up one type 1 chip, one type 2 chip, three type 3 chips, and twenty type

4 chips, and so n^ = (1, 1.3,20) for k = 1, ...,4. It is not uncommon for the universal "80-

20" rule to hold here: 25% of the chip types account for 80% of the set. The multiplicative

yield assumption (2.5) holds and the related data is

c, = (.05 .05 .07 .09 .09 .11 .13 .13 .14 .14) (4.1)

and

/;i = (3G 72 48 CO). (4.2)

Recall that figk = Cgfj.^ can be greater than one since .s indexes an entire row of the wafer.

The lot size L = 20, the probability of a defective lot is ^ = .05, the probability of a

defective wafer in a non-defective lot is p = .12, and the arrival rate A of wafers, which

does not affect our analysis, equals one. Finally, the transpose of the matrix of variances
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a;^ is given by

2 40 45 4 40 12 4 24 3 38'
^

2 _
I

30 4 42 15 44 12 18 15 20 4
'^''^ ~ 10 18 30 2 44 4 18 20 20 4

(4.3)

14 14 4 20 40 40 4 4 6 20/

The calculation (2.1) of the fraction of starting lots fk of type k for the single-type

policy is given by

A- = (4/63 2/63 9/63 48/63). (4.4)

Five different policies were tested in our simulation experiment. The first policy is the

?ing!? 'ynp policy Menotec' by SINGLE m Table I), where type *; lots arc released in''':

the fab according to the product mix in (4.4). The other four policies are multi-type

policies. One is the proportional design (PROP) (2.25), where Xsk = fki for s = 1,...,10

and k = 1,...,4. Recall that this design was proven superior to the single-type design in

Proposition 6. The last three designs were derived by solving mathematical programs.

The design that solves the quadratic program (3.24), (2.4), (2.23)-(2.24) will be denoted

by MINSUM, and the design that solves the program (3.25), (2.4), (2.23)-(2.24) will be

denoted by MINMAX. The last design solves

A' S 2 2

maxVy^l^ (4.5)
z.k f-^ ^-^ ni

k=l s=l ^

subject to (2.4). (2.23)-(2.24). This design, which will be denoted by MAXSUM, was tested

because it should lead to an ineffective design, among the designs that solve, (2.4), (2.23)-

(2.24), thus enabling us to assess the range of performance among different mult i- type

wafer designs.

For all five policies tested, 100 independent runs were made, each consisting of 2000

time units. For each policy, the cumulative production at times t = 250, 500, 1000, 1500,

and 2000 were collected, along with 95% confidence intervals. The results are displayed in

Table I. In Table II, we present the percentage improvements in performance of the multi-

type policies over the single-type policy at time t = 2000. The cumulative production at
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time 2000 is also expressed in this table as a percentage of the ideal production rate that

would occur in a deterministic environment.

POLICY

t = 250

CUMULATIVE PRODUCTION AT TIME

f = 500 t = 1000 t = 1500 t = 2000

SINGLE 67S9(±356) 1565S(±467) 33146(±687) 49894f±969) 67792(±1150)

MAXSUM S58G(±214) 17897(±290) 3652G(±396) 55116(±529) 735S0(±C18)

PROP 9229(±126) 18671{±179j 37240(±259) 55S34(±303) 74325(±335)

MINMAX 947G(±13S) 18815(±193) 37425(±253) 56275(±300) 75251(±350)

MINSUM 9526(±133) 18871(±171) 37633(±225) 56375(±296) 75342(±354)

TABLE I. Cumulative Production of Sets

The results show that the two proposed multi-type policies offer an 11% improvement

in cumulative production at time t =2000. Notice that percentage improvements are much

higher for lower time values, and are as high as 40% at time f = 250. Although our two

proposed pohcies, MINMAX and MINSUM, both outperform MAXSUM, the percentage

difference in cimiulative production among the multi-type poHcies is relatively small. Thus,

it appears that any solution to the LP (2.2)-(2.4) in the non-multiplicative case will be

effective in increasing the production of sets. Therefore, among these policies, the designer

should probably allow other factors, such as ease of design, to dictate the wafer design

decision. In particular, the MINMAX and MINSUM solutions are interior points of the

constraint set, and so have mostly non-zero elements, whereas other less effective objectives,

such as MAXSUM (or MAXMIN) lead to more easily implemented extreme point solutions.
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POLICY

PERCENTAGE

IMPROVEMENT OVER

SINGLE-TYPE POLICY

PRODUCTION AS

A PERCENTAGE

OF UPPER BOUND

SINGLE

MAXSUM

PROP

MINMAX

MINSUM

8.5%

9.6%

11.0%

11.1%

88.7%

96.3%

97.2%

98.5%-

98.6%

TABLE II. Comparison of Cumulative Production of Sets at Time t=:2000.

However, the performance of the muUi-type policies seem even more impressive when

expressed as a function of the deterministic upper bound. The single-type pohcy achieves

production at only 71% of the deterministic rate at time t = 250 and only 88.7% of the

deterministic rate at time t = 2000, whereas the MINSUM policy produces at 98.6% of

the deterministic rate at t = 2000. In this light, the improvement from the worst to the

best multi-type pohcy (96.3%. to 98.6%) is quite significant.

Although our analysis has been restricted to the case of one multi-type wafer design, an

important consideration is the marginal improvement in performance that can be attained

if several distinct wafer designs were used to satisfy the demand for sets. If the dynamic

release decisions of the various multi-type wafers does not depend on any state-dependent

information such as the resulting yields, then the upper bound on the performance of such

a policy is still the deterministic production rate. Therefore, we conclude from Table II

that very little can be gained by using an additional wafer design, and thus it is unlikely

that the cost of a second mask set would be covered by the marginal improvement in

production. Moreover, recall that with electron beam technology, there are no mask sets,
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and a different multi-type design could be used for each lot of wafers entering the fab.

Table II suggests that very little production will be sacrificed if a single multi-type wafer

is used to satisfy demand with this technology, unless a more intelligent (dynamic, state-

dependent) release policy were implemented with several (or many) distinctly designed

wafers.

TIME

t = 2o0

t = 500

t = 1000

t = 1500

t = 2000

SIMULATED



TIME
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