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ABSTRACT

Most of the research in the field of integer programming has

been devoted to the case of integer linear prograiraning.When one

has to deal with non-lineraties, linearization techniques are used.

But these techniques are not general enough to be applied to

all the varieties of non-linearities. Besides, the techniques

add more variables to the original problem, making large-scale

problems very difficult to solve.

In this paper, a method is described to solve integer nonlinear

programming problems . In this "bounded Branch and Bound" method,

the arborescence has only N nodes, where N is the number of variables

of the problem. Therefore, we store in the main memory of the

computer only the informations relative to the N nodes. We can

therefore solve large-scale integer nonlinear programming problems.

When the objective function and the constraints are convex, a

procedure is given, which enables us to alleviate the arborescence.

For non-convex problems, a specific method is described. While

optimizing a problem of the arborescence, some "fortuitous integer

variables" may appear. A procedure is described to schedule these

variables. Our method is also specialized to the case of Boolean

variables.

Five different criteria which enable us to chose the "separation

variable" are described and ordered. Finally, a programming code

was written in Fortran IV. We report the results obtained using this

code. The CPU times necessary to solve the problems are very small.

We can therefore expect to solve large-scale integer nonlinear programming

problems in reasonable time.

I'^OH^isn
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INTRODUCTION

In this paper, we describe a method, called Bounded Branch

and Bound method, which enables us to solve mixed (or pure)

Integer Nonlinear Prograimning problems. The formulation of the

problem is:

Max <l>(x) XER

Subject to

h^(x) < 0- 1=1,2, ... ,m

(c-1)

a < x < b j eJ= 1,2, ... ,n
J
- J- J (c-2)

X integer j eEcj {c-3)
J

In (I-l) , we give a brief outline of the Bounded Branch and Bound

method

.

A procedure to construct an oriented graph associated with the

problems is described in (1-2). In (1-3), we develop a sepcific

graphical language for the arborescence, and in (1-4) we describe

6 different rules which are to be used in the arborescence.

Depending on the ruXe used, each node change from one state to

another one. The transformation table is given in (1-5)

.

A detailed procedure describing the passage from node s to node

t is given in (1-6). If the problem is convex (i.e. the objective

function and the constraints are convex) , two properties are

developed. The first one allows us to refuse a node of the arborescence

without investigation. The second one enables us to stop the

optimization process of a problem before the end. These techniques

are described in (1-7)

.





In (1-8) , we relax the assumption that the problem is convex.

Therefore, we develop a specific algorithm for the non-convex

case. Some modifications are indicated in (1-9) , in order to solve

the case where all the variables are boolean.

At each node of the arborescence, we will have to solve a con-

tinuous nonlinear programming problem. When solving this problem

some variables may become integer. Such variables are called

"fortuitous integer variables" (fiV) . A procedure to schedule these

variable is developed in (I-IO) . At each node, we will have to

choose a variable to become integer. Such variable is called the

"separation variable". Five different criteria are given, in order

to choose this variable (I-ll) . A proof of the convergence of the

algorithm is given in (1-12) and in (1-13) we indicate the number

of nodes to be stored in the main memory of the computer. In (1-14) we give a

complete example.

In chapter II, we describe the numerical computations. Ten

different problems have been solved using BBB and the five different

criteria developed precedently (II-l) . In (II-2) , we describe

three different methods which enable us to order the five criteria.

In (II-3), we present a flowchart of the computer code that has been

written. A very brief description of the most important modules

is given.
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In Appendix 1, we give the listings of the subroutines described in

(II-3).

The Problem

Let us consider the following problem:

Max (fi (x) xeR

Subject to:

(P) h (x) £0 £= 1,2, ...,m (c-1)

a <^ x £ b JeJ= l,,..,n (c-2)

J J J

X integers jeE<U (c-3)
V j

We assxjme that:

(i) 4" (x) and h (x) are nonlinear functions, continuously

differentiable.

(ii) Constraints (C-1) define a domain which may be convex or

non-convex

(iii) Constraints (C-2) define a parallelotope (II ).

(11) is assumed to be bounded.

(iv) Without loss of generality, we can assume that a and
j

b are integers.
j
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If E 7^ J, only some of the variables must be integer. The

problem to solve is said to be "mixed integer nonlinear programming"

problems. In the following pages, we propose a method to solve

problem ( P )

.

I. The Bounded Branch and Bound Method (BBB)

I. 1 Brief Outline of the Method

Let S= { xeR |x satisfies (c-l) and (c-2)}

a) First, we solve the following problem:

(P ) JMax (j)(x)

S.t.

X e S

Let x° be the optimal solution of (P ) (if it exists)

b) If x° is integer: END

c) Otherwise, Jj eE|x° is not integer. We proceed to the separation of S

into two subsets S, and S such that:

S = ^xeR |x satisfies (c-l) and (c-2) and

X e (a , [x° ] ))

^1 ^1 \

S„ = { xeR Ix satisfies (c-l) and (c-2) and x e([x° ] + 1, b )}

^1 \ ^1

( [x° ] means the integer value of x° ) . To S, , we associate the

^1

following problem.
Jl ^1

(P ) \ Max ()) (x)

s.t.

xe S,





To S , we associate problem ?_:

. Max
(J.

(X)

^2'
i s.t.
xeS^

Then, we solve one of the problems and put the other one in a list.

d) If all the (x.) . are integer, go to e . Otherwise go to c .

i i gE — —

e) If this solution is better than the first one, store it. Otherwise,

refuse the node.

If there is a problem in the list, solve it and go to d_. Otherwise: END

1.2 The Oriented Graph Associated with the Problem

Consider a set A such that A^^E. Let x, = x. \^zA and x, the integer
A j

'- A

components of x satisfying (c-2) . To S=(A,X ) we associate the
^ A

following problem:

Max (|)(x)

P(S) h. (x) < i£l
X —

a _< X _< b j eJ

J j j

V
X = X jeA
3 i

/>•

Let X and ()) be the optimal solution of P (S) .

S o

a) The couple S=(A,X ) represents a node of the graph G.

b) To each node S, we associate its "level" in the graph, called t^.

t is equal to the number of components of x which are integers.

c) If A=(}) (we have only (c-1) and (c-2)), we solve the continuous nonlinear

programming problem. The correspondant node S is called the "root"

of the arborescence.

d) When E(S) = E, (where E(S)= |jeE|x. (S) is integerV) constraint (c-3) is





therefore satisfied, We have found a solution to problem (P)

.

The corresponding node is called "terminal node",

e) If S is not a "terminal node", let's consider the variable

3eE-E(S) and let us define a successor T. The level of T is t^=t +1.

T is defined by the couple (b , x ) where:

B= E(S)^g

X =x V eE(S)

J J"" J

x„=[x„ (S) ] or [x„] + 1

f) In general, if S = (A, X ) is not a terminal node, we consider the

nodes T (with level t +1) defined by:

3eE-E(S)

T=te , x )

B=E(S)
^J

B

x = x V eE(S)
J J ' J

x =[x (S) + y)

i) If ^=-1,2,-3 , . . . , the nodes T are in the left wing of the graph. The

origin of the left wing is the node corresponding to y=-1

(ii) If Y=0,l,2,..., the nodes T are in the right wing. Its origin is

the node corresponding to y=0-

g) T is called the successor of S if ST is an arc of the arborescence.

T is called the descendant of S if an elementary path exists between S and T.
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1-3 Different States of the Nodes in the Arborescence

We use the following graphical language:

accepted node

X refused node

£i= Y So xs accepted but all its descendants

I

are

refused

So
hi.'- Node S^ is accepted,

!S

T is a descendant of S. It is accepted. it belongs to

^ the right wing originated from S. No nodes of the

opposite wing were investigated.
S

^°i= '^
I

Same as for 0A2 but for a left wing

RA^: X 1 The left wing is refused.

T f^£2: Q
1 X The right wing is refused.

0R3;
I

S

R03:

^ S is accepted, the right wing is refused, the

left wing not yet explored.

p<_J S is accepted, the left wing is refused, the right

wing not yet explored .

I
s

°^^'-
' - S IS accepted. All its descendents are refused. Left

wing not yet explored.

s
AR03:

t

Same as 0RA3 but the right wing is not yet explored.
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RRA3; S is accepted, its descendants are refused.

The left wing is also refused.

ARR3 : S Same as REIA3 but the right wing is refused.

RR4: X- S is accepted. Both wings originated from

S are refused. S, which has been previously

accepted, will now be refused because all its descendant;

are refused.





1.4 RULES RELATED TO THE GRAPH G

We shall use the following rules in order to use the graph G.

Rule : If t=0, examine the node S^ . Therefore, we solve problem

(P) without constraint (C-3) . In order to do so, we use the

GRG (4) algorithm since COLVILLE (11) found it faster than

the other codes of nonlinear programming. We let ())=+«'

Rule 1 : If the descendants of S are refused (this case is possible if

(j) > (})) , END of the exploration. Then two possibilities exist:

we have the solution to problem (P) or the constraints (C-1)

,

{C-2) and (C-3) are incompatibles.

Rule 2: If at the level t, a node S is accepted and if its

descendants are not refused, examine a successor at the level t+1.

In this case, two possibilities exist:

(
^

(i) accept T if \ (()^ = +<»

v' T is not a terminal node

,^< *

(ii) refuse T

In all cases, add 1 to the current level.

Rule 3 (i) If at a level t, we have one of the following possibilities,

examine the successor of T in its wing and accept or refuse it.

Possibilities

0RA3:

AR03:

1

L

r

T is accepted but all its descendants are

refused.

T is accepted but all its descendants are refused.





-11-

RRA3;

1

T is accepted but all its descendants

are refused and the left wing is also

refused.

ARR3:

r
T is accepted but all its descendants

are refused and the right wing is also

refused.

(ii)If at the level t, we have one of the following possibilities, examine

the origin of the opposite wing and accept or refuse it.

0R3:

R03:

Possibilities

A^

f T is accepted, the right wing originated

from T is refused, left wing not yet

explored

.

T is accepted, the left wing originated from

T is refused. The right wing not yet

explored.

Rule 4 When we move up in the arborescence (i.e. when t diminish) , if we

have AR03, 0RA3 (respectively ARR3, RRA3) and if S corresponds

to an upper bound (respectively to a lower bound) of (P) , refuse the

wing corresponding to S.

Rule 5 If we have the following possibility^
O

RR4 : y I y two wings refused.

Refuse all the successors originated from both wings subtract 1

from current level

.





-12-

Rule 6 If S is terminal (i.e. x- (S) is integer V^eE) then S is refused.

If (j)„ <
(J) , then x(S) becomes the best solution.

If (^ ^ <!'
f then the best solution is the current one.
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1.5 Transformation of the States of the Nodes by the Rules

Using the rules described in (1.4), we obtain the following trans-

formation table:

State
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1-6. PASSAGE FROM NODE S TO NODE T

Let S be an accepted node at the level t. The solution of

problem P(S) gave us x(S) and (L . Besides we have t = card [E(S)].

The node T, successor of S may be:

(i) at the same level t as S. In this case, it may be a successor

in the same wing or at the origin of the opposite wing of S.

(ii) at the level t+1. In this case, T is at the origin of a wing.

The other wing is still unexplored if we move down in the

arboresence ,or ,closed if we move up in the arborescence.

In order to solve P (T) , we can choose one of the following strategies:

(a) If the integer value to try is [Xq]
p_

We solve the following auxiliary problem:

Min x.
'
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(b) If the integer value to try is [Xq] + 1

In this case, we solve the following auxiliary problem:

r
Max X,

s.t.

V
h^(x) <

a. < X. < 1

.

X . = X .

^^ 1 t'^gJ + 1

i — 1, . . . , m

j e J = {1, 2,

V. e E(s)

, n}

Notes

x(S) is a feasible point to the problems P. and P .

1 s

We can solve P. and P using the same code (GRG) as the one

used to solve P(S).

Let X = ix , X , . . . , X 112 n
and X = {: 1' "2 / • • • f X } be

n

the optimal solutions to P. and P .

1 s

i c;

(a) if X > [x ] (respectively x < [x ] + 1) we can conclude

that a solution that has x„ = [x„] (respectively [Xp]+1)

will be infeasible for P (T) . Therefore, we don't have to

solve P (T) . We can refuse node T without solving P (T)

.

(b) if Xg = [Xg] (respectively Xg = [Xg]+1) the solution

X of P. (respectively x of P ) is infeasible for P (T)
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1-7. Case where (|) (x) and h. (x) are convex

Let's assume that the problem is convex and dif ferentiable. These

two properties will allow us:

(i) to refuse a node without solving its corresponding problem,

(ii) to interrupt the iterations in the process of optimization.

(A) Refusal of a node without investigation

Let T be an accepted node at the level t. Assume that T is in a

wing originated by a node S at the level t-1. Let's call U the successor

of T at this wing (Fig. 1).

t-1

T

-O-
U

Fig. 1

Let S = (A, X )

= (B, Xg) ^Bi Xg
j

where

:

B = A^ (B) with 6 e E-E{S)

v • -
X. =x.=x. V. EA

: 3 D ' D

^g = [Xg(S)]+l

^^6 = ^8^ ' with £ = {

+1 for a right wing
-1 for a left wing
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Let's write down Kuhn-Tucker conditions for problem P(T):

^ A . (T) , y, (T) such that

A. (T) > {4-a)
1 —

yj^(T) ^ if Xj^{T) = a^^ (4-b)

Vi^(T) 1 if x^CV) = h^ (4-c)

\l^(T) =0 if aj^ < x^(T) < h^ (4-d)

7^+ i ^(T)|-H') =y,(T),k J-B (4-e)
OX, >, 1 I ox, / k
k 1=1 > k/

x=x(T)

m
y A. (T) h. (x(T)) = {4-f)

i=l ^

m
}
1 i

()) = (}) +
J]

A.h. is convex. Therefore:
i=l

-^'-(f!)(t)[x{W)] > (t)[x(T)] + [x{U) ^ . ..^.— '^"/x = x (T)

m „ ^ m ^
^[xCU) + E A.{T) h.{x(T)) ;> <i>

[x(T)] + E A . (T) h. (x (T) )

1=1 1=1

+Z pi^^ + Z X.(T)--^^ [ ^
[x(U) - x(T)]

KeJ-B[ 3x^ i=l ^ 3x^ Jx=x(T)

i--^ + E A.(T) —^^
t 9x 1=1 K -'

"" \ -• x=x(T)
, {4-g)

Using (1-1) and (4-a), we have:

ilh A

E X. (T) h. (x{T))£
i=l ^

^

Using (4-f), we obtain:

m
E X. (T)h. (X(T))=0

i=l "
^
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Using {4-b) , (4-c) , (4-d) and (4-e) , we have:

E [
-?^- + ^ ^.(T)-.-^--] [x(U)-x {T)]>
dx . , 1 ax,, —

KeJ-B K 1=1 K T

M

-^r. (U)] > Hx (T) . e[-|i- . E A.(T) 1^ ]^^;^^^ ^^_^^
p 1-1 p

Let J^=* U (T) . ^[|^ +.^ ^i(T) ^^] .
(4_i)

3 1=1 B x = x{T)

and ((.y = (t.[x(U)] (4-j)

Therefore, we obtain:

\ 1 <Cu
(4-k)

Relationship (4-k) allows us to refuse node U without investigation

(i.e. without optimizing). Indeed, let ^ be the value of the

objective function corresponding to the best integer solution

found till the precedent iteration.

If * 1 4>^ =^ <)) 1 (t>y

Therefore, we can refuse node U.

B. Interruption of the Iterations while Optimizing

(i) When solving problem P(S), at each iteration, the

inequalities give us a lower bound of ^ .

Let ( X be the current variable at the iteration 1

,

) be the best integer solution found.

ij) be the lower bound associated with x

when l->«> ,<fi ->•<)).

If node S must be refused because
<J>

> <}> , we can stop the iterations

of P(S) when <})>(}). We can obtain the lower bound using A. and
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y defined in the precedent paragraph.

make(ii) When we solve problem P. (respectively P ) , we try to

X equal to [x. ] (respectively [x.] +1].
p p p

- in P. we minimixe x^. If x^ could not be reached, we will know
1 p p

it when the lower bound associated to x will be greater than
p

[ x J+1 . We therefore add the following rule to our algorithm:
p

Rule 3bis : In moving up in the arborescence , if we are in

0RA3 or RRA3 (respectively AR03 or ARR3) , then:

(i) if we have an evaluation ((> for T, the

successor of S in its wing and

% A
(ii) if (}) > (j)

Refuse the wing corresponding to S

.

If, while optimizing, we obtain for the problem P. (respectively P )

1 s

a solution close to x (i.e. x ie) , accept the node and stop the
6 p

iterations.
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1-8. Case where (})(x) and h.(x) are non-convex

In this paragraph, we don't assiame convexity for fxinctions (|) (x) and

h.(x). In this case, two cases of refusal of a node exist.

first case : Refuse any node which does not improve the objective

function (i.e. when <^ >(()). Therefore, refuse all
s

its descendants.

second case ; If a variable, already integer ,is at one of its

bounds, refuse the successor corresponding to its

wing.

Therefore, the rules to use are:

Rule ; If t=0, investigate node S , (i.e., solve the continuous

nonlinear programming) and let (() = + <».

Rule 1 ; If the descendants of S are refused, end of the exploration.

Rule 2 ; If at the level t, a node S is accepted and, if its descen-

dants are not refused, investigate a successor T at the

level t+1.

Rule 3: At the level t , examine in both wings, the successor U
m

which has the smallest |y|.

Using the "first case refusal" defined above, refuse or

accept the descendance of S with a higher level.

Using the "second case refusal", refuse the successor of s

in its wing.

If T is the successor of another node in the same wing,

refuse the latest node.
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Rule 4 ; Moving up in the arborescence, if we have AR03, 0RA3

(respectively ARR3, RRA3) and if S corresponds to an

upper bound (respectively to a lower bound) , refuse the

wing corresponding to S.

Rule 5 : If we have RR4, refuse all the successors originated

from both wings. Subtract 1 from the current level.

Rule 6 : If S is terminal, then it is refused.

If d) <
<J), then x(S) becomes the best solution

s
^ /\

If (j) > <j), then the best solution is the current one.

Globally, the main difference with the case where (j)(x) and h. (x) are

convex is Rule 3. Besides, note that every refusal is final and every

acceptance is temporary.
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1.9 Case where the Variables are Boolean

If all the variables are Boolean we have only the following
possibilities:

O T O^

>^ ^ -O P Use Rule 3 and
first case refusal

o-

Use Rule 3 and
second case refusal

U u

-O-

Q

Use Rule 3 and
second case refusal

We can see that the method is converging whatever <^ and h. are.

But it is clear that the algorithm is effective if we know how to solve P(S)

Except for this restriction, all the results proposed preceedingly can

be applied without any hypothesis on i^ and the domain defined by h. (x)

.

Assuming that (^ is twice continuously differentiable ABADIE (5) (7)

showed how to solve P(S).

Function
(J)

is made convex by letting

1
(|>(x)=<j)(x) + - a ^ X (x.-l)

^
-1 eJ i ^

where a is a constant.

Let H(x) and H{x) be the matrix of the second derivatives of (j) and ^.

We have:

H(x) = H(x) + al

If A and A are the smallest eigenvalue of the matrices H*x) and H(x)
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we obtain the following relationship:

A =X +a

We therefore will have X ^ for a big value of a. For this

value of a, the function (|) will be convex on the unit cube. By

applying the same process to h. (x) , we can obtain function h. (x)

convex

.

THEOREM

Using the precedent fact, for a problem P which is twice continuously

differentiable and totally bivalent, there exist a problem P such that

the sub-jacent continuous problem is convex.

The latest theorem is in fact a generalization of HAMMER-RUBIN 's (14)

method for the case where (}) is a function of the second degree and

constraints are linear.
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I .10 SCHEDULING OF THE FORTUITOUS INTEGER VARIABLES

By solving P(S), we obtain the optimal solution (x(S), (|) )

Let E(S) = {j^e|x (S) is integer}

We have AcE(S) = E.

If E(S)-A 7^
(f) , we can say that by solving P{S), we obtained one or

more "fortuitous integer variables".

By obtaining x (S) and <() we have x. =x. V. eA. If by solving P(S)

we have made appear j eE-A such that

:

X. = a,

^1 Di

or

X-: = b

The variable x. is called "fortuitous integer variable". Let
^1

E^ = J -. I j-)' • • , if ~ set of the index of E corresponding to fortuitous
s

integer variables in the solution x(S). We have:

E(S) c E

and

E(S) = E.,crA
ra

If, while investigating the node S, the level was t, it becomes

t+f after the analysis of x(S). The search for the fortuitous

integer variables is made on the variables which are not integer at

the le\el t. The order of discovering these variables is dependent

on the order in which will be ranked the variables which are not yet

integer. In order to eliminate many nodes from the arborescence, it

will be interesting to have at the highest levels, the fortuitous

integer variables which in its descendance there is a probability to
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find a good integer solution. Therefore, we will have to change

the scheduling of those fortuitous integer variables.

CRITERION USED TO MODIFY THE SCHEDULING OF THE FORTUITOUS INTEGER
VARIABLES (FIV )

We have indicated that the FIV are variables at their bounds. They

are therefore non-basic variables. In such a case, the components

corresponding to the reduced gradient are zero. Therefore, we

can use the following criterion:

"RANK THE FIV in the decreasing order of their reduced gradient

components". If the absolute value of a component of the reduced

gradient is small, a small augmentation of the value of the considered

point, will have no effect on the objective function. We can

expect that an integer solution found in the descendance of this

point will lead to a value of the objective function not too far

from the continuous optimal solution.
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I . 11 Choice of the Separation Variable

Let S be an accepted node at the level t. The solution of

P{S) gives us x{S) , (f)
and E (S) . When we want to investigate a

successor T at the level t+1, we have to choose:

(a) an index Be E-E(S)

(b) the wing originated from S and containing T.

We call E-E(S) or any subset of E-E{S), the "choice set".

In linear programming, we can compute for the variables included in

the choice set, penalties. Those penalties allow us to choice a

separation variable and a wing. In nonlinear programming, those

penalties are not applicable. Therefore, we propose other criteria.

Criterion 1 - choice of the closest variable to an integer

We first determine the variable x^ which is the closest to an

integer value, say e^ .

(i) if e =[x ] we solve problem R obtained by adding to P
-; -; K+1 K

the constraint x < e
J
~ J

(ii) . if e.= [x. ] + 1, we solve problem R obtained by
J II K+1

adding to P„ the constraint x. > e.

Xj 1 ej Xj^>ej

Criterion 2 - Choice of the Closest Variable to a Half-Integer

After solving P each variable x. is such that:
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e<x<e+l , e integer >

J J J j

We choose x. such that:
J

2e. + 1Xj= —^

(i) if e = [x ] , we solve problem R defined above
j j

^^1

(ii) if e =[x. ] + 1, we solve problem R' defined above,
3 K+1

Criterion 3 - Put in a List the Problem Corresponding
to the biggest psudo-cost

X =[x ] X =[x ]+l
j j j j

Let R^ be a node of the arborescence, and R^ and R its direct
>^ 1 m

successors obtained by adding respectively x < [x ] and x > [x. ]+l
j - j D-D

Define:

<|>^ = value of the objective function at node R
'^ K

|J>
= value of the objective function at node %

f = the decimal part of x,

j D

We define the lower pseudo-cost relative to x, , the quantity

(J) (J)

A (K) = ^K - ^1

and the upper pseudo-cost relative to x. , the quantity
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K - m
B K =

1-f .

A. (K) is the diminution of the objective function corresponding

to a decrease of one unit of x.

D

B.(K) is the diminution of the objective function corresponding to

an increase of one unit of X: .

The expression Max [Max (A, , B. ) ] gives us an index i and

: J ^ ^

one pseudo-cost (either A. or B )

.

1 i

(i) if the maximum is reached for A. , put in the list the
1

problem obtained by adding to R the constraint
K

X. < [ X.]

(ii) If the maximum is reached for B. , we put in the list the

problem obtained by adding to R , the constraint
K

X. > [x. ]

.

1—1
In both cases, we solve immediately the problem which was not put

in the list.

Criteria 4 - Put in the list the problem corresponding to the
Biggest Diminution of the Objective Function

This time, we use the expression

Max [Max (A. f
, , B. (l-f-;) ]id: ^

J J





LU-^^ I'.^^l -30-

1-13 CONVERGENCE OF THE ALGORITHM

The number of nodes in the graph G is finite. Besides, we

never meet twice the same node. Therefore, after a finite number

of steps, the algorithm gives us a solution to problem (P) . If

it is not the case, we can conclude that the constraints (C-1)

,

(C-2) and (C-3) are incompatibles.

1-14 NUMBER OF NODES STORED IN THE ^4AIN CORE OF THE COMPUTER

Most of the branch and bound methods have a big disadvantage:

The number of nodes to be stored is increasing very rapidly (about

2 ) . For large-scale mathematical programming problem, one has to

use secondary storage, in order to store all the informations

relative to each node. The disadvantage associated with the usage

of secondary storage is that the execution time increases very rapidly.

In order not to i.se secondary storage (and therefore in order

to reduce the execution time) , one has to limit the number of nodes

to be stored in the main memory. A careful look at the different

states of the arborescence using the BBB method, indicates that

we store at the most an accepted node at each level. Using the fact

that we store the root but not the terminal node, the number of

nodes stored is equal to N, where N is the number of integer variables

of the problem (P) . We can therefore expect to solve large-scale

integer nonlinear programming problem in a reasonable time.
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Note

Abadie/Akoka and Dayan (19) (20)have developed two other arborescent

methods (called The Bounded Method" and the" Modified Bounded Method".)

These methods were tested on the problems used in II-l. As expected,

the BBB method converged more rapidly . (The CPU times were

significantly lower for BBB). Besides, the number of nodes of the

arborescence for the "Bounded Method" and the "modified bounded method"

was significantly bigger than for BBB.
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1-14 Example

Let's apply BBB to the following problem.

(P) 'min
(f)

(X) = (5Xi - 13)^ + 15(130 X^-lOO X2-23)^ + 30(2OXi + IIX2-

-20X2 - )2

5 0< X.< 6, JEJ= {1,2,3} (1)

X. integer, JZE=J (2)

(j)(X) is convex and differentiable. The convex space is R . By solving

the continuous nonlinear programming problem (i.e. (1) without constraint

(2) ) , we obtain:

X(((>) = (2.6; 3.15; 3.75), 4)[X( (j) ) ] = 0. The solution of (P) is:

A A

X = (1;1;1) , (()(X)=829

In the following pages, we present the results.

Column 1: T=(B^X ) is the node examined in the arborescence. It
' X B

corresponds to the number of the iteration.

Column 2 : Set B. It is obtained by applying one of the five criteria

described in (I ). In this case, we urged criterion #2.

Column 3 , The values of X ,X ,X for the optimal solution of P(T). We

4,5
give only the integer values. The asterisk means that X.

has been fixed and is integer (i.e. j = B)

.
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Column 6 :
(J)

= the value of the objective function. The optimal

value is underlined. We give only the values that improve

the objective function.

Column 7 : The state of the arborescence.

Column 8 : Value of the level t which is equal to the number of integer

variables

.
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f5 J, ^

X(T)

J

J, ^ Ji

Ik.

^'

Xs ^
State of the Arborescence

i_£
I -c:>- -X

(>-

^
I 4

o- o
-^i

m

X

-K Z

Al /^ o 1 4
<3 C X A

M 4. i A A

^;3,J- A A A

3

O I -O- T -o o-

n^ I 1 3:
-O- 1 -o- -O-

-^
X

-^
3

Ao yf,^.'^ A J yl 3 Q
O

—

-O- i -O O-

-7^
a

^1 ^.^ O

^^ ^. I

O // ^?

X G- £ 1

O C^-

o 1 ^3
i -O o-

X- -O O- I -O^ Q,

SOLUTION T = 19

X

Dl-

A

The final graph for the problem is given below.

J

(s7) means that the node i is under investigation; variable x^ is being

7-^ fixed at the value k.
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II. Numerical Confutation

II. 1 Introduction

The BBB method and the criteria proposed in chapter I have been

programmed in FORTRAN IV. They have been tested on a CDC 6600 using

the SCOPE system. 10 problems of small size (between 3 and 10 variables)

have been used.

4 Problems are convex. 5 other are non-convex and there is one

problem with: Boolean variable?.

Even though the problems may seem easy, nevertheless, they allow

us to see all the difficulties related to the arborescence.

The CPU times necessary to solve the problems are very slow. Therefore,

we may be able to solve a large-scale problems in a reasonable time. In

the following page, we present the results for 9 problems. We use the

following notations:

((,
= optimal value of the objective function

CP = CPU time, in seconds

NTE = total number of evaluations

NTO = total number of optimizations

NSPA = number of nodes tenporary accepted

NRFT = number of refusal using q, (see f~7-B)
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II. 3 Rank of the Criteria

Let's describe two methods of ranking the criteria. The first

method, due to COLVILLE use the mean and the variance of the time

necessary to solve problem i by method j . The second method, due

to ABADIE, use the best time obtained for the problem.

II. 1.1 COLVILLE 'S METHOD

Let t . be the time necessary to solve problem i using

criterion j. Define t = mean of t

ij ij

<r
t. . = standard error of t •

•

For each criterion and for each problem, we confute

the following quantity:

-t. . + t
- J-3 ii

q.. . - ^^

^i:

If n is equal to the number of problems solved using criterion

j, the ranking of the criterion j is given by:

1 n

Q = ==^- ^ 1. .

j Vn i=l 13

II. 1.2 ABADIE 'S METHOD

Let t. . be the time necessary for criterion j to solve problem.
ID

Let min (t .) be the best time obtained for problem i.

j 13

We confute the following quantity:

i:
min (t )

i:
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If n represents the rnjmber of problems solved, we obtain a

a rank for the criterion j using the following forumula

n

H =i_ ' —^
1 n i=l min (t. ,

)
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If we apply both methods to Table 1 representing the CPU times

necessary to solve each problem using the five criteria, we obtain a ranking

for each criteria. The values for each criterion is given in Table 2.

PROBLEMS

II III IV V VI VII VIII

:riteria

0.345
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TABLE 2
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The ranking given by ABADIE AND COLVILLE'S methods is given in

Table 3

CRITERIA""
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As an indication, we give below another method to order the criteria.

Let X- • be the total number of optimizations needed by criteria j to solve

problem i. Let min(Xj^^) be the smallest nximber of optimizations for

problem i. The following quantity gives us an order for each criteria:

1 " ^'V
M^ = - ^ ig

n i=l min(Xj^.)

j

We feel that this quantity is useful when one has to do with linear

programming.
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II. 3 Presentation of the Computer Code

The flowchart of the code is

:

SUBROUTINE
FECON

SUBROUTINE
OPTIM

SUBROUTINE
CONTR

SUBROUTINE
GRAEF

> f ^

SUBROUTINE
BBB

SUBROUTINE
CHOIX

SUBROUTINE
GRG

SUBROUTINE
JAC0B2

SUBROUTINE
ARBITR
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Let us now detail each block of the flowchart.

A. The Main Program

In the main program, the user has to initialize the

problem. The user indicates the following parameters

number of variables

upper bound and lower bound for each variable

- number of equalities in the constreiints

- number of inequalities in the constraints

- characteristic of the problem (convex or non-convex)

B. Subroutine Fecon

In this subroutine, the user has to give the objective function.

C. Subroutine Contr

The user has to specify in this s\±iroutine, the set of

constraints

.

D. Subroutine Gradf

The user must indicate in this sxjbroutine, the gradient of the

objective function:

9*
Dfl (I) = ^1)

E. Subroutine Jacob2

The user must indicate the Jacobian of the constraints

8 VC(x)

C(I,J) =

3 X
D
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F. Subroutine BBB

This subroutine is described in details in Chapter 3. BBB

calls OPTIM which leads to the solution of the continuous

nonlinear programming problem. It calls also CHOIX and ARBITR

in order to use the five criteria defined in (II. 1) .

G. Subroutine Optim

Called by BBB, optim considers the variables not yet integer

and solve the continupus nonlinear programming problem using

GRG. It searches the fortuitous integer variables (see I. 10),

H. Subrouting Choix

This subroutine allows to choose the "separation variable",

(see 1,11) .

It uses the five criteria defined in (I-ll)

.

I. Subroutine Arbitr

It allows us to determine whether the optimization by GRG

leads to an optimal solution.

J. Subroutine GRG

It is the code used by ABADIE and ranked first by COLVILLE.

It allows to solve continuous nonlinear programming problems (4)
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