
MIT LIBRARIES

3 9080 02237 361 4_

1 A.-^pri/lEtfTi

HD28
.M414

n3>

DEWEY

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

Slack-based Lower Bound and Heuristic

for Permutation Flowshop Models

Anantaram Balakrishnan,

Srimathy Gopalakrishnan,

and Atsushi Kurebayashi

Sloan WP# 3573-93 June, 1993

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

Slack-based Lower Bound and Heuristic

for Permutation Rowshop Models

Anantaram Balakrishnan,

Srimathy Gopalakrishnan,

and Atsushi Kurebayashi

Sloan WP# 3573-93 June, 1993

MASSACHUSETTS INSTITUTE
OF TFrHWQi OGY

NOV 1 4 2000

LIBRARIES

Slack-based Lower Bound and Heuristic

for Permutation Flowshop Models^

Anantaram Balakrishnan
Sloan SchcxDl of Management

M. I. T., Cambridge, MA 02139

Srimathy Gopalakrishnan
Operations Research Center

M. I. T.. Cambridge, MA 02139

Atsushi Kurebayashi
Nippondenso Co. Ltd.

Kariya-city, Japan

ABSTRACT

This paper addresses optimal job sequencing decisions for various classes of permutation

flowshops. We first describe a framework to classify flowshop scheduling problems based on

the level of intermediate storage, job transfer mechanism, and objective function. We discuss

the interrelationships between various flowshop models, develop a new slack-based lower

bound for the total processing time of each machine, and describe an assignment-patching

heuristic to generate effective job sequences. Our computational results show that, compared to

previous approaches, the slack-based lower bound is effective when job processing times are

random or have a trend, and the assignment-patching heuristic performs well for all models.

By locally improving the heuristic solution using a two-exchange procedure, we are able to

generate solutions that ai^e within 10% from optimal for most scenarios.

' Supported in part by a research grant from MITs Leaders for Manufacturing program

1. Introduction

Flowshop scheduling involves sequencing a given set of jobs (or products, items, batches)

that follow the same processing route through successive stages (or operations, machines). The

flowshop scheduling literature cites many manufacturing and service applications such as

sequencing programs on a computer system, managing operations at chemical and other

continuous processing plants, and assembhng consumer durable products on an assembly line.

Flowshops are inherently easier to manage compared to job shops; they offer advantages of

lower inventories, quick response, and rapid feedback for process control and improvement

Consequendy, companies with complex manufacturing operations seek to streamline their

product flows by creating "factories within the factory" (Skinner [1974]) using, say, group

technology methods; this rationalization exercise often transforms a huge job shop into a

network of embedded flowshop operations. The availability of flexible machines has

accentuated this trend. For instance, several electronics companies now operate mixed-model

assembly lines that can each assemble many different circuit boards in small lot sizes.

With more than two machines, the problem of minimizing the makespan for a given set of

jobs in a permutation flowshop is known to be NP-complete (Lawler, Lenstra, and Rinnoo\

Kan [1982]). Consequently, research has focussed on determining good lower bounds, and

developing exact (enumerative) and heuristic algorithms (see, for example, McMahon and

Burton [1967], Campbell, Dudek and Smith [1970], Reddi and Ramamoonhy [1972], Baker

[1975], Dannenbring [1977], Lageweg, Lenstra, and Rinnooy Kan [1978], King and Spachis

[1980], Szwarc [1983], Nawaz, Enscore, and Ham [1983], Park, Pegden and Enscore 1 19841.

Hundal and Rajagopal [1988], and Rajendran and Chaudhari [1990]). The vast majority of this

literature deals with the problem of miniming makespan for a permutation flowshop with

infinite intermediate storage capacity and unrestricted or free flow of jobs between machines

(hence, machines are never blocked). We refer to this model as the "standard" flowshop

model. Other models covered in the literature include the no-wait case in which each job must

be processed without waiting at intermediate operations (e.g., Reddi and Ramamoonhy
f 1972|,

Szwarc [1983]), and systems with limited or no intermediate storage between stages (e.g.,

Leisten [1990]). Some recent work has addressed optimization models for cyclic scheduling

environments (e.g., McCormick et al. [1989]).

This paper develops and tests lower bounds and heuristics for several different flowshop

scheduling models. We first describe (in Section 2) a scheme for classifying flowshop

problems based on the level of intermediate storage capacity, type of job transfer mechanism,

and optimization objective. We consider four different intermediate storage-job transfer

combinations, and two objective functions-makespan and cycle time. To clarify the distinction

between these eight models and explore their interrelationships, we examine their integer

programming formulations. Section 3 develops a new slack-based lower bounding method that

examines the slack or forced idle lime of each machine to compute a lower bound on the

minimum makespan or cycle time. Section 4 describes an assignment-patching heuristic

algorithm, motivated by principles underlying no-wait scheduling, that solves a traveling

salesman subproblem using estimates of the slack time between successive jobs. In Section 5.

we apply the lower bounding and heuristic method to different flowshop models, and compare

their performance with previous approaches (e.g., Lageweg et al.'s [1978] lower bounding

method for the standard nxxiel). When the job processing times are random or have an

increasing or decreasing trend, our slack-based lower bounding method performs well for all

models; the bound is not as effective for problem instances with correlated processing times

The assignment-patching heuristic compares favorably with Campbell, Dudek and Smith's

[1970] heuristic algorithm for all models and processing time distributions. Augmented with a

local improvement procedure, this heuristic appears to be a versatile and effective method to

generate near-optimal flowshop schedules for different contexts.

2. Permutation flowshop scheduling: Alternative models and

their interrelationships

Given n available jobs and m machines, the flowshop scheduling problem involves

sequencing the n jobs to optimize some criterion of interest. All jobs have the same processing

sequence but different processing times, machines can process only one job at a time, and jobs

cannot undergo simultaneous processing at multiple machines. In permutation flowshops.

every machine processes the jobs in the same order. Thus, after we release jobs into the system

in a certain sequence, they follow the FCFS discipline at all intermediate queues. We assume

that the schedule does not contain any "unforced" idleness, i.e., machines are not idle unless

they are "blocked" by downstream machines, or the upstream queue is empty (i.e.. machines

are "starved"), or timing constraints prevent commencing operations on the next job.

Depending on the application context, the scheduling problem might include certain constraints

on material storage and movement, and the optimization objective might vary. To distinguish

between the common flowshop scheduling models discussed in the literature, we flrsi descnbe

a classification scheme that is analagous to Graham et al.'s (1979) framework to classify

general machine scheduling problems based on the machine environment, job characteristics.

and optimality criterion. We illustrate the differences between the various flowshop models in

terms of their integer programming formulations, and relate their respective upper and lower

bounds based on these formulation differences. We also introduce a new objective function,

cycle time minimization, that applies to flowshops with cyclic scheduling policies.

2.1 Flowshop model classification

We classify flowshop scheduhng models based on three problem charactenstics: (1

)

intermediate storage capacity, (2) job transfer mechanism, and (3) optimization objective.

2.1.1 Intermediate storage capacity

Intermediate storage capacity refers to the maximum number of jobs that an intermediate

queue between two successive stages can accommodate. The standard flowshop scheduling

model (addressed by Johnson [1954] and others) ignores such queue limits, effectively

assuming that intermediate storage capacity is infinite (or > (n-1)). We denote problems with

unlimited intermediate storage capacity as IIS (infinite intermediate storage) problems. In some

applications, upstream operations can be blocked due to inadequate downstream storage

capacity, and so we must explicitly account for this capacity constraint in the scheduling model.

For instance, the length of the conveyor segment connecting adjacent of)erations in an

electronics assembly line limits the number of boards waiting to be processed at each station.

We refer to tightly coupled flowshops with limited (< (n-1)) intermediate storage capacity as

FIS (finite intermediate storage) systems. We distinguish the special case when all intermediate

storage capacities are zero as the NIS (no intermediate storage) case. For the flowshop models

that we consider in this paper, we can transform any FIS problem instance into an equivalent

NIS problem instance by introducing dummy intermediate operations with zero processing

times, one corresponding to each intermediate storage location. Therefore, in our subsequent

discussions, we consider only two options for intermediate storage: IIS and NIS.

2.1.2 Job transfer mechanism

The second flowshop characteristic, yo^ transfer mechanism, refers to the timing constraints

associated with nx)ving jobs to ot from each machine. We consider three types of job transfer

mechanisms: /ree/7ow (FR), no wait (NW), and synchronized (SYN). The FR case

corresponds to unrestricted transfer of jobs from machines except due to downstream storage

capacity constraints. When a machine finishes processing a job, we can immediately unload

this job if the downstream queue is not full (or, in the NIS case, if the downstream machine is

idle), and start processing the next available job in queue; otherwise, the job waits in the

machine until the downstream machine completes its processing. The FR discipline often

4-

applies to flowshops with asynchronous materials handling systems that use pallets to transfer

products between machines. The standard flowshop scheduling model assumes an IIS system

with FR job transfers.

The NW case represents the most restrictive job transfer mechanism. Under this scheme.

once a job is staned (i.e., released for the first processing step) it must be completed without

any intermediate waiting (at intermediate machines or in storage); hence, NW systems do not

have intermediate storage capacity. Hot roUing operations provide one example of NW'

scheduling. In this context, the flowshop is a series of hot rolling mills connected by

conveyors, and each incoming job or workpiece is a sohd, rectangular metal ingot. The

successive rolUng mills progressively reduce the thickness and elongate the workpiece: the

finished products are plates or sheets with varying thicknesses and lengths. The processing

time at each rolUng mill varies by job, depending on the starting and finished dimensions of the

workpiece. Each ingot is preheated before it is released for processing; since maintaining the

elevated temperature is critical for hot rolling, the workpiece must proceed from one rolling mill

to the next without any interruptions. Consequently, the release of ingots to the line must be

staggered ensure NW processing.

The third job transfer mechanism, synchronizedflow, is common in assembly systems that

use a single conveyor belt with equally pitched fixtures to transpon workpieces from one station

to the next. In the SYN system, the process start times (and job unloading times) are

coordinated across machines, i.e., all machines stan processing the next available job in queue

at the same instant of time. When a machine completes its operations on a job, it holds this job

until all other machines finish processing their current jobs; the conveyor then moves foi^vard to

unload the current job, and load the job (if available) in the next position on the conveyor.

Since having infinite storage capacity at any stage effectively decouples the line at that stage, we

consider only the NIS case (and hence the FIS case using our transformanon) with SYN tlov.

-5

2.1.3 Optimization objective

The standard flowshop scheduling model seeks the job sequence that minimizes makespan.

i.e., the completion time of the last job in the sequence on the last machine. Some researchers

have considered alternative performance measures such as minimizing the weighted sum of job

completion times, or reducing lateness or tardiness (with respect to given job due dates).

For periodic or cyclic scheduling environments that repeat the same schedule at regular

intervals, the interval time for each machine and the cycle time for each batch of n jobs are

important pjerformance metrics. We define the interval time of a machine as the elapsed time

between the start of the first job and the completion of the last job on that machine. Thus,

interval time is the sum of job processing times on the machine plus any forced idle time due to

machine starvation, blocking, or timing constraints. The cycle time for a group of n jobs is the

maximum interval time over all machines. To achieve regular (repeating) processing schedules.

the length of the scheduling cycle (i.e., the time between the release of successive batches) must

be greater than or equal to the cycle time. Another objective function of interest is the total

interval time of all machines. This objective is relevant when the cost of operating a machine is

proponional to the length of its interval time, for example, if operators can be reassigned to

other machines after a machine completes all its processing in a cycle. In our subsequent

discussions, we focus on the minimum makespan and cycle time objectives which we denote as

M and C, respectively. Our observations concerning cycle time also apply to the total interval

time objective.

We can use these three problem characteristics-intermediate storage capacity, job transfer

mechanism, and optimization objective-to distinguish between various flowshop scheduling

contexts. Thus, NIS/FR/M refers to the problem of minimizing makespan in a flowshop with

no intermediate storage but free flow job transfers. As we have indicated, not all combinations

of options are compatible or practical; for instance, IIS/NW/M is not meaningful since having

infinite intermediate storage is unnecessary when jobs are not permined to wail. Similarly, we

ingore the nS/SYN combination. We will consider four combinations of intermediate storage

and job transfer characterisiics-IIS/FR. NIS/FR, NIS/NW, and NTS/S YN-with each of the two

objective functions M and C. For the NIS/SYN/C nxxiel, we consider only a single scheduling

cycle, i.e., we ignore the synchronization requirements to dovetail adjacent cycles.

This classification scheme covers many of the flowshop scheduling models discussed in the

literarare, but is not necessarily exhaustive. For instance, we have not considered systems with

different batch sizes for processing and intermachine transfers, or batch processing stations

(e.g., heat treatment ovens) that can simultaneously process multiple jobs.

22. Formulations and bounds for different models

In this section, we first present a mixed integer formulation for the standard model, and

discuss enhancements needed to incorporate intermediate storage capacity limitations (i.e..

NIS), NW and SYN flow, and cycle time minimization. We are given n jobs, j = 1 . . n. that

require processing at machines k = 1 m in sequence. Job j requires a processing time of

Pjj^ at machine k, for all j = 1, ..., n, and k = 1, ...,m. The integer programming formulation

for the standard flowshop scheduling problem uses the following three sets of decision

variables:

X =1^ if we assign job j to the i'^ position in the sequence, and
'J |0 otherwise;

Tj^ = starting time of the i job in the sequence on machine k; and,

S^^ = processing time of the i'*^ job in the sequence on machine k.

2.2.1 Minimum makespan models

We first formulate the standard model, and then indicate how the other three minimum

makespan models differ from the standard formulation.

-7-

The Standard model: IIS/FR/M

minimize ^nm "* ^nm (2.1)

subject to:

Sequencing constraint:

1=1

n

Processing rime equations:

J=l

Job starting time constraints:

^i(k+l) ^ "^ik
"^ ^ik

Machine starting time constraints:

"^(i+Dk ^ ^ik "^
^ik

Non-negativity and integrality constraints:

Xij € {0,1}

for all j = 1, ..., n.

for all i = 1, n,

[2.2)

(2.3)

for all k = 1, ..., m, i = 1, n. (2.4)

for all k = 1, ..., m-1, i = 1 n. (2.5)

for all k = 1 m, i = 1 n -1, (2.6)

for all i, j = 1, ..., n, and (2.7a)

for all i = 1, ...,n, k = 1 m. (2.7h)

The objective function (2.1) minimizes the makespan, which is the completion time for the

n'*^ job in sequence on the last machine. The sequencing constraints (2.2) and (2.3) ensure that

every job is assigned to one position in the sequence, and each position contains only one job.

Equations (2.4) determine the appropriate processing time for each job in the chosen sequence.

If we assign job j to the i'^ position in the sequence, then X- = 1 and equation (2.4) sets S|^,

equal to the processing time of job j on machine k. Constraint (2.5) specifies that the

downstream machine (k+1) can start processing the i'*' job only after machine k completes this

job, while constraint (2.6) ensures that machine k stans processing the (i+1)^' job only after it

finishes the i'^ job.

-8

The NIS models:

With infinite intermediate storage and free flow, the i'^ job is unloaded from machine k as

soon as its op>erations at that machine are completed. Therefore, the (i+1)^' job can start on

machine k immediately after the i'*' job is completed; constraint (2.6) expresses this condition.

However, for the NIS case, since the system does not have storage capacity between machines.

the i'*' must wait in machine k until machine (k+1) completes the (i-1)^ job; machines (k+1)

and k can then start processing the i'*^ and (i+1)^' jobs. The following machine blocking

constraint imposes this requirement.

Blocking constraints:

Vl)k ^ T,(^^l) forallk=l m-1, i=l n-1. (2.8)

Adding this set of constraints to the nS/FR/M formulation gives the formulation for the

NIS/FR/M model. The NIS/NW/M and NIS/SYN/M models that we discuss next also

contain these constraints.

No-wait and Synchronized flow models with NIS:

In addition to the blocking constraints (2.8), the no-wait model NIS/NW/M requires the

starting time for the i"^ job on machine (k+1) to be equal to its completion rime on the previous

machine, i.e..

No-wait constraints:

%+!) = Ty^+^ik forallk=l m-1, i=l n-1 (2.9i

For the NIS/SYN/M model, the job staning times must satisfy both the blocking

constraints (2.8) and the following synchronization constraints:

Synchronization constraints:

Vl)k = %.l) forallk=l m-1, i = l n-1. (2.10)

-9-

Consffaints (2.10) require adjacent machines to start processing consecutive jobs (since the

system has no intermediate storage) at the same time.

To summarize, the standard IIS/FRAI model is the core formulation to which we add

various constraints on the job starting times in order to nxxlel the NIS/FR/M, NIS/NW/M. and

NIS/SYN/M flowshop scheduling problems. These latter three models all require the blocking

constraints (2.8). In addition, the NlS/NW/M model requires the no-wait constraints (2.9i.

while the NlS/SYN/M model contains the synchronization constraints (2.10). Note that the

minimum makespan models do not require an explicit constraint to enforce the "no unforced

idleness" condition since the problem always has an optimal solution satisfying this condition.

However, as we discuss later, certain minimum cycle time models require a separate constraint

for this purpose.

Lower bounds:

IIS/FR/M is a relaxation of the remaining three NIS models (all the NflS models contain the

additional blocking constraints (2.8)), and NlS/FR/M is a relaxation of NIS/NW/M and

NIS/SYN/M. Therefore, for a given set of problem parameters (number of machines and jobs.

processing time on each machine),

(a) the optimal value (makespan) of the IIS/FR/M model or any lower bound on this value

is a valid lower bound on the optimal values for all three NIS models; and.

(b) the optimal value of the NIS/FR/M model or its lower bound is a valid lower bound on

the optimal values of the NIS/NW/M and NIS/SYN/M models.

In Section 3, we describe a slack-based lower bound for the IIS/FR/M model which, b>

observation (a), also underestimates the optimal makespan for the NIS models. We

subsequently improve these latter lower bounds by accounting for the additional timing

constraints in the NIS models.

10

Upper bounds:

Given any job sequence O, we can choose appropriate job starting times that satisfy the

timing constraints for each of the four models. We say that a schedule of starting times is o-

optimal for nxxlel P if it processes jobs in the given sequence o, satisfies the model's timing

constraints, and minimizes the objective value (makespan), where P is one of IIS/FR'M.

NIS/FR/M, NIS/NW/M, or NIS/SYN/M. What is the relationship between the a-optimal

makespan values for the different models? We note that the a-optimal schedules for the \W

and SYN models can be adjusted to produce a feasible (but possibly not a-optimal) for the

NIS/FR model with equal or lower makespan; likewise, any a-optimal NIS/FR schedule is

feasible for the IIS/FR case. Therefore, the same relationship that we observed for the lower

bounds also applies to the upper bounds. In particular, if Mp denotes the a-optimal makespan

for model P, then:

^IS/FR/M - ^IS/FR/M " "^^ '^slIS/NW/M' ^NIS/SYN/M '
'-^''

For the special case of two-machine flowshops, we can show that the NIS/FR/M, NIS/NW/M.

and NlS/SYN/M models all have a common optimal schedule.

2.2.2 Minimum cycle time models

The integer programming formulations for the minimum cycle time models contain the

previous sequencing and timing constraints (2.2) to (2.7), and the special constraints (2.8) to

(2.10) for the NIS versions. In addition, the cycle time formulations require a new set of

decision variables and constraints to model the cycle time objective, and two of the four models

require special constraints to prevent unforced idleness.

To express cycle time in terms of the sequencing and timing decision variables, we define

interval time variables l^, for all k = 1, ..., m, and a variable C representing the cycle time of

the schedule. Since the interval time for machine k is the difference between the completion

- 11

time for the last (i.e., n'*') job and the start time of the first job on that machine, we introduce

the following defining equations:

Interval time equations:

k = T„,^S^-T„ forallk=l m. (2.12)

Since cycle time is the maximum interval time l^ over all the machines k, we add the cycle time

constraints:

C > I,^ for all k = 1, ..., m, (2.13)

and the optimization objective is

minimize C. (2 14)

For the NIS/SYN/C model, the synchronization constraints (2.10) ensure that machines do

not have unforced idleness. For instance, the first and second jobs start processing on

machines 2 and 1, respectively, at the same time. Similarly, in the no-wait case, machines are

idle only when the input queue is empty. However, the DS/FR/C and NIS/FR/C models

require additional constraints to prevent machines being ready but idle when jobs are waiting in

queue (otherwise, we can reduce the cycle time by postponing the first and subsequent jobs).

Note that any schedule that does not have unforced idleness must process the first job in the

sequence without intermediate waiting. Therefore, for the IIS/FR/C and NTS/FR/C models we

add the following set of constraints to enforce the no-wait requirement for the fu-st job.

No-wait processing forfirst job:

Tlk = "^Lk-l+Si^ forallk = 2 m. (2.15)

These constraints are sufficient to ensure feasibility of the schedule, i.e., given any schedule

that processes the first job without intermediate waiting, we can adjust the starting times for the

remaining jobs to satisfy the no unforced idleness condition without increasing the cycle time.

Adding constraints (2.12), (2.13) and (2.15) to formulation (2.2) to (2.7) of the standard

makespan tTKxlel IIS/FR/M, and replacing the objective function (2.1) with (2.14) gives the

12

integer programming formulation for the IIS/FR/C model. The NIS/FR/C model has the

additional blocking constraints (2.8); replacing constraints (2.15) with the no-wait constraints

(2.9) or the synchronization constraints (2.10) in the NIS/FR/C formulation gives the

NIS/NW/C or NIS/SYN/C formulations, respectively.

Lower bounds:

IIS/FR/C is a relaxation of the NIS/FR/C model, which in turn is a relaxation of MS/NW/C

(since constraints (2.15) are a subset of the no-wait constraints (2.9)). Therefore, the optimal

value or a lower bound for IIS/FR/C is a valid lower bound for NIS/FR/C and NIS/NW/C.

However, unlike the makespan models, NIS/SYN/C is "unrelated" to NIS/FR/C since these

two formulations have one set of constraints each (constraints (2.10) and (2.15)) that do not

belong to the other. A naive lower bound on the optimal cycle time of NlS/SYN/C is the

maximum value, over all machines k, of the total processing time TPj. on machine k (this value

also underestimates the minimum cycle times for the IIS/FR/C, NIS/FR/C, and NIS/NW/C

models). We can possibly improve this bound by adding a lower bound on the machine idle

times due to synchronization effects.

Upper bounds:

To relate the upper bounds for various models, we consider a specific job sequence a. and

compare the cycle time of the o-optimal schedule (with respect to the cycle time criterion) for

each model. For any given job sequence a, the job starting times for the NIS/N'W/C model's

O-optimal schedule is feasible for NIS/FR/C; likewise, the o-optimal schedule for NIS/FR/C is

feasible for nS/FR/C. Therefore, if C^ denotes the o-optimal cycle time for model P. then:

^IIS/FR/C - SlIS/FRyC - S(IS/NW/C- '" '^'

The o-oprimal schedule for NIS/SYN/C might entail some intermediate waiting time for the first

job (due to synchronization constraints) and, therefore, does not necessarily satisfy the no

unforced idleness assumption for the NIS/FR/C model. However, we could develop an upper

13-

bound for NIS/FR/C by adding to the NIS/SYN/C cycle time an estimate of the maximum time

that the first job must wait at any machine to ensure synchronous operation.

In summary, the different flowshop scheduling models are closely related, and the bounds

and solution principles for one model might apply to the other models as well. The next section

develops a new slack-based lower bound for the IIS/FTl model, and extends it to the NIS/NW

and the NIS/FR cases. Section 4 proposes a common heuristic method.

3. Slack-based lower bound for Makespan and Cycle Time

Since the minimum makespan problem for flowshops with more than 3 machines is NP-

complete, several authors have focussed on developing efficient procedures to estimate the

smallest possible makespan for a given problem instance. We can then use these lower bounds

in an enumeration procedure such as branch-and-bound (e.g., McMahon and Burton [1967]) to

eliminate suboptimal job sequences or stop the search when the incumbent solution is close to

optimal. Lageweg, Lenstra, and Rinnooy Kan [1978] describe an effective lower bounding

procedure for the standard flowshop model. This method, which we will denote as the LLR

method, solves several two-machine flowshop subproblems to generate the bound; it

generalizes and outperforms previous lower bounds on the minimum makespan for the

IIS/fWM model. This section proposes a new slack-based procedure that provides a lower

bound for both the makespan and cycle time minimization models.

3.1 Machine-based lower bounds for the IIS/FR/M model

The slack-based bound belongs to the class of machine-based bounds that focus on the total

processing time of a particular machine. Machine-based bounds (e.g., Ignall and Schrage

[1965], McMahon [1969]) underestimate the makespan by adding the following two terms to

the total processing time TPj^ on a machine k:

14

(i) pre-k processing time: the minimum time for the first job to complete processing on the

first (k-1) machines and reach machine k, and

(ii) post-k processing time: the minimum time required to complete processing the last job on

the remaining (m-k) machines after machine k.

The maximum value of this sum over ail machines k gives a valid lower bound on the minimum

makespan, i.e., we compute the machine-based lower boundM on the minimum makespan for

the IIS/FR/M model as foUows:

M = ^^'^^^^^ [M(k)], (3.1)

where M(k)= TPu + ,•"'"
{Qik + R,k} for all k = 1, ..., m, (3.2)

for all k = 1, ..., m, (3.3)

(3.4)

(3.5)

M(k) is the makespan lower bound obtained by using machine k as the reference machine. TP|,

is the total processing time on machine k, and Qm^ and Rj-j^ correspond respectively to the pre-k

processing time for job j and the post-k processing time for job j'. Jobs j and j' are candidate

first and last jobs in the sequence. The minimum value of [Q-^ + R..|^} over all job pairs j and j'

gives an underestimate of the total pre-k and post-k processing time in any feasible schedule

The LLR method generalizes this machine-based bound by considering a block of

intermediate machines, say, from machine kl to machine k2, instead of a single reference

machine k. Suppose we can evaluate a lower bound (or the optimal value) on the minimum

makespan to complete all jobs on machines kl to k2, assuming all jobs become simultaneously

available (at time 0) at machine kl. Then, adding this makespan or its lower bound to the

smallest possible pre-k
j
and post-k2 processing times over all job pairs j and j' gives a lower

15

i^k

bound on the minimum makespan for the original m-machine problem. If L(k:l ,k2) denotes the

lower bound (or optimal value) of the makespan for machines kl to k2, the LLR method

computes the overall lower bound for as follows:

M = maximum M.(kl,k2), (3.6)

kl,k2=I....m, k2>kl

where

M(kl,k2) = L(kl,k2) + .
..^j'"

^ (Qjkl+RjTcl) ^^^ ^'^ ^^^^^ = ^ ^^ ^'^ - ^1.(3.7)

Let us discuss how to compute the kl-to-k2 makespan lower bound L(kl,k2). Note that:

(i) if kl = k2 = k, then L(kl,k2) equals the total processing time TP,^ on machine k, and the

LLR bound is the same as the previous machine-based bound (3.2);

(ii) if k2 = (kl + 1), i.e., kl and k2 are adjacent machines, then Johnson's algorithm computes

the minimum makespan L(kl Jc2) for these two machines, and

(iii) if k2 > (kl+1), then the LLR method computes L(kl,k2) by treating all intermediate

machines except machines kl and k2 as non-bottleneck machines (i.e., these machines

effectively introduce a delay, equal to the total intermediate processing time on machines

(kl + 1) to (k2-l), to transfer each job firom machine kl to machine k2). By appropnately

modifying the job processing times, Johnson's algorithm determines the minimum makespan

sequence for this two-machine flowshop relaxation with intermediate job transfer delays.

The LLR bound remains valid even if we consider only a subset of machine pairs k 1 . k2 instead

of all m(m-l)/2 possible machine pairs. Since it considers a block of consecutive machines

instead of a single reference machine, this bound is superior to the machine-based bound (3. 1

)

but requires additional computational effon (O(m^) applications of Johnson's algorithm).

3.2 The slack-based bound for IIS/FR models

The LLR method has proven very effective in accelerating branch-and-bound solution

procedures for the IIS/FR/M models (Lageweg et al. [1978]). However, because it uses

Johnson's algorithm to solve the two-machine flowshop relaxation problems, the bound applies

- 16-

only to the HS/FR/M model. The slack-based bound that we describe next overcomes this

difficulty, but the single machine version that we discuss might produce infenor bounds for the

IIS/FR/M model.

The key observation that motivates the slack-based approach is that the machine-based

bound remains valid even if we replace the total processing time TPj^ in (3.2) with any valid

lower bound on the interval time of machine k. The interval time I,^ consists of two

components: (i) the actual processing time TPj^ for the n jobs on machine k, and (ii) the slack or

"forced" idle time on machine k due to starvation, blocking, or job transfer timing constraints.

If we can use the processing time information to determine a lower bound on the slack time.

then we can strengthen the machine-based bound (3.2). Next, we discuss how to compute a

lower bound for the slack time in an nS/FR system. Since nS/FR is the least restnctive

intermediate storage and job transfer system , and since we focus on the interval time for a

single machine, this lower bound appUes to both the makespan and cycle time versions of the

other model types as well (except the NIS/SYN/C model as we discussed in Section 2.2.2).

To gain insights about the relationship between machine slack time and job processing

times, let us examine the Gantt chart shown in Figure 1 for two adjacent machines, machine (k-

1) and machine k. Recall that S^ denotes the processing time of the i'*^ job in sequence on

machine k. Figure 1(a) shows the case when the h'^ job starts processing on machine k

immediately after it completes on machine (k-1); in Figure 1 (b), the h"^ job must wait since

machine k is busy with prior jobs when machine (k-1) completes this job. Notice that in the

IIS/FR system with no unforced idleness, the fu^t job does not wait at any intermediate stage.

We let 5^ denote the cumulative slack time between the first and h^ job on machine k. for all h

= 2, ..., n, and all k = 2, ..., m. As Figure 1 shows, this cumulative slack must satisfy the

following inequality:

- 17-

5jj
> max

= max

0,

0,

^^
k-1^

t^-'

1=2
-I s.k

i=l

^h

X ^i(k-l) ~ ^l(k-l)
* ^

k-l
A Ah

i=l 1=1

[o.Ai^s-]= max
I , A . +

for all h = 2 n,

and all k = 2 m

where A,

/ h h

Z^i(k-l)~Z ^ik -(^Kk-D'^hk)-
i=l i=l

(3.8)

(3.9)

(3.10)

The parameter Aj^ is the difference in total processing times for the last (h-I) jobs on machine

(k-l) and the first (h-1) jobs on machine k. Notice that for h = n, if choose two jobs. say.
j

and j' as the first and last jobs in the sequence, then (3.10) reduces to

aJoJ') = (TPk-i-TPk)-(Pj.k-l-Pjk), (3.11)

i.e., we only need to choose the fu^t and last jobs (and not the entire sequence of jobs) in order

to calculate the parameter A (j,j').

Inequality (3.9) provides a lower bound on machine k's slack time 5. in terms of the job

k—

1

processing times on machines (k-l) and k, and the slack time 5. on machine (k- 1). In turn.

k—

1

k—

2

we can express 5. in terms of the slack time 5. on machine (k-2) and the processing times

on machines (k-2) and (k-l), and so on. Making these substitutions in inequality (3.9) we get

6j > [o, A^ + max{o, A^j,'^ + max { .. + max { 0, aJ + 6|,} } }] (3 12

Thus, the calculation of slack time on the k'*' machine takes into account the smallest slack times

necessary for all previous machines.

Since the first machine does not have any slack time in an IIS/FR system. 5, = for all h =

2 n. And, for a given choice of the first and last jobs j and j' in the sequence, we can

18

1[

compute Aj^Od') using equation (3.1 1) for all machines k. Substituting these values in the

right-hand side of equation (3.12) gives a lower bound, say, a^(jj') on 5^(j,j'), the total slack

time on machine k if jobs j and j' are the first and last jobs in the sequence. The minimum value

of a^(j J') over all the job pairs j and j' gives a lower bound on total slack time on machine k in

any feasible nS/FR schedule. Adding this lower bound to the total processing time TP^ gives a

lower bound, say, Ij^ on machine k's interval time in any feasible schedule, i.e..

i*y

For the makespan minimizing model IIS/FR/M, we can funher add the pre-k and post-k

processing times as in (3.2) to get the slack-based lower bound on the optimal makespan. We

summarize this slack-based bounding procedure below.

Slack-based bounding method for IIS/FR/M

For every machine k = 1, m,

For every job pair j, j' = 1, ..., n, j * j',

compute A^(j,j') using equation (3.1 1);

k k c 1

compute otj^CJo') by substituting \ij,i') values and 5^^
= in RHS of (3.12):

Compute slack-based lower bound M^'^'^(k) on the minimum makespan using machine k

as the reference machine:

}^^Hk) = TP,+ jj,^;"„ {aJ(j,j') + Qjk + Rj.k}. (3.14)

j*j'

The slack-based bound on the optimal value of the IIS/FR/M model is:

(3.15)

Since the slack-based bounding method adds the non-negative term O-^ij.]) to TP,^. it

produces a lower bound that is at least as tight as the machine-based lower bound (3. 1).

Observe from (3.12) and the definition of aJ (equation (3.10)) that the slack-based lower

bound M^'^'Hk) depends on the differences in processing times at successive machines pnor to

19-

machine k. We, therefore, expect the slack-based bound to outperform the machine-based

bound when job processing times have a negative trend (i.e., processing times decrease

downstream). Our computational results, reported in Section 5, confirm this behavior.

Finally, as we indicated previously, the slack-based method provides bounds on the

minimum cycle time as well. Since {a„(jj') -•- TP,. } is an underestimate of the interval time on
n ^

machine k in any IIS/FR schedule that pnxesses job j first and job j' last, and since cycle time

is the maximum interval time over all machines, the following expression provides a slack-

based lower bound on the minimum cycle rime:

(-slack _ max ! min F^p
,
„k,. ..."I

^ - k=l m i,,=I n L^^k + ^n^'J^J (3.16)

3.3 Improved Slack-based lower bound for NIS models

Although the slack-based bounds of Section 3.2 also apply to NIS models, we can exploit

the special structure of the NIS system to further strengthen these bounds. Recall that for the

IIS/FR case we set the total slack time 5. for the first machine to for all h = 2 n. With no

intermediate storage, however, jobs must wait in the first machine (or we must delay their

release) until the second machine becomes available, and so 6. might be positive. If we can

determine a lower bound on this value then we can add it to the right-hand side of inequality

(3. 12), thus increasing a (jj') and the overall makespan or cycle time lower bound. We first

discuss a way to compute a lower bound on 5 for NIS/NW systems, and subsequently show

how to adapt this method to the NIS/FR tiKxlel.

Reddi and Ramamoorthy (1972) have shown that the NIS/NW/M problem is equivalent to

an asymmetric traveling salesman problem (TSP) defined over a network whose nodes

correspond to jobs. The distance from node i to node j in this network represents the necessary

20

delay Ljj in releasing job j (to ensure that it does not wait at intermediate stages) when it

immediately follows job i in the sequence. We compute L,. as follows:

I
_ max

ij ~ l<g<m-l X ^^i(k+l.i)-Pjk)'0
k=l

for all i,j = 1 n, i * j. (3.17)

To develop a lower bound on the first machine's total slack time for NIS/NVV without actually

sequencing the jobs, we use the following principle.

Consider a given choice of first and last jobs j and j'. For each job i ^ j. j', let X, be the

smallest delay that any successor job will experience, i.e.,

1 minimum , < n •
i •, /-, ,

o

\ =
/=i n. /^ij^i/ foralli=l n, i^j,j. (3.18a)

For the first job j, we defme

^ _ minimum ,

Then, if jobs j and j' are scheduled fu^t and last in the sequence, the first machine must have a

total slack of at least

n,i*j'

SiCJO") = IX, (3.19)

i=l

to ensure NW job transfers. Therefore, we substitute 5j^(J0') i" place of 5^ in the nght-hand

side of (3.12) to compute the lower bound cCj^OJ) o" ^^ slack time in machine k; using this

improved value of a (jj') in (3.14) and (3.16) gives tighter lower bounds on the optimal

values of the no-wait models NIS/NW/M and NIS/NW/C, respectively. Szwarc (1983) has

proposed an alternate lower bound for the NIS/NW/M problem based upon the optimal values

of a series of rwo-machine NIS/NW/M subproblems (solved using Gilmore-Gomory's [1964]

algorithm), analagous to the LLR bound for the IIS/FR/M model. In Section 5, we compare the

performance of the slack-based bound for NIS/NW/M with the Szwarc bound for our test

problems.

21

For the NIS/FR case, jobs will still experience a delay at the first machine due to blocking

by machine 2. However, because the job transfer mechanism is free flow rather than no-wait.

the effect of downstream machines on the release time delay is difficult to incorporate. We.

therefore, consider only the first two machines in defining the i-to-j delay parameters L,| in

equation (3.17), i.e., we set

L,j = max (0, P|2-Pj, }
for all i,j = 1 n, i^^j. (3.20)

Since the NIS system does not have any storage capacity between machines 1 and 2, job j must

wait at least Lj; time units if it follows job i. As in the NIS/NW case, we use these L,. values to

compute Xj (using equations (3.18)) and ^^(j,']') (using equation (3.19), thus improving the

interval time lower bound Ij^.

4. Assignment-Patching heuristic for flowshop scheduling

The slack-based lower bounds provide benchmarks to evaluate the quality of heuristic

solutions for various flowshop scheduling models. Instead of implementing different

specialized heuristics for IIS/FR, NlS/FR, NlS/NW and NIS/SYN, we apply a single

optimization-based method called the assignment-patching heuristic to generate a promising job

sequence o, and then evaluate the objective value for the a-optimal schedule corresponding to

the model of interest Subsequently, we improve this solution using a local interchange

procedure. The assignment-patching heuristic exploits the TSP strucmre of the NIS/NW/M and

NIS/NW/C models. It uses slighdy different arc length parameters for the makespan and cycle

time objectives; we describe the makespan version first.

4.1 Assignment-Patching heuristic for minimum makespan models

Reddi and Ramamoorthy [1972] transfonned the NIS/NW/M model into an equivalent

directed traveUng salesman problem defined over a network containing (n+1) nodes. Nodes 1

.

.... n correspond to the n original jobs, and node (n+1) is a dummy job representing the starting

22-

and completion of the schedule. The length of arc (i,j) for all i, j = 1 n, i ^^ j, is the delay

time Ljj, computed using (3.17). All the arcs (n+lj) for j = 1. ..., n, emanating from the

dummy node (n+1) have length zero. Arc (i,n+l), for all i = 1, ..., n, incident to node (n+1)

has length equal to the post-1 processing time for job i, i.e.,

^(n+l)j ~ 0' for all j = 1, n, and (4.1a)

m

H(n+1) = X ^'k for all i = 1, ..., n. (4.1b)

k=2

Any hamiltonian tour on this network corresponds to a feasible job sequence. If the tour

contains arcs (n+lj) and (j'.n+l) then jobs j and j' are the first and last jobs in the sequence.

and if it contains arc (p,q), for p,q < n, then job q follows job p. Since the makespan of an\

job sequence (for NIS/NW systems) is the interval time on machine 1 plus the processing time

for the last job on machines 2 through n, the length of the corresponding traveling salesman

tour plus the total processing time TPj for all jobs on machine I equals the makespan.

Minimizing the length of the traveling salesman tour, therefore, solves the NIS/NW/M model

optimally.

Instead of solving the equivalent TSP optimally, we apply the following assignment-

patching (AF) heuristic. We can formulate the TSP as an integer program using the binar\

sequencing variables Y^: for all i, j = 1, ..., n+1, i *]. Y- is 1 if job i precedes job j. and

otherwise. The formulation has assignment constraints (to assign each node to one position in

the sequence, and one node to each of the n positions) and subtour breaking constraints

(Dantzig, Fulkerson, and Johnson [1954]). If we ignore the subtour breaking constraints, ue

get the following assignment relaxation of the TSP:

Assignment Relaxation of TSP:
n+1 n+1

minimize
J^ X ^'^ '*'^^ *^~'

ij
'J

Pl pi

subject to

23-

n+1

2^ Y,j = 1 for all j = 1 n+1. (4.3)

i=l

n+1

y Y,j = 1 for alii =1 n+1. and (4.4)

Y.j€ {0,1) forallij = 1, ..., n+1, i ^j. (4.5)

If the assignment solution is a TSP tour, it provides an optimal NIS/NW/M sequence.

Otherwise, we must patch together the subtours in the optimal assignment in order to construct

a feasible job sequence. We use the following subtour patching method (adapted from Piante

and Lowe [1987]).

Subtour patching heuristic:

Step I : Pick two sub-tours Tj and T2 arbitrarily.

Step 2: For every pair of arcs (i,j) € Tj and (i',j') e T2, evaluate the incremental cost of

replacing these two arcs with the arcs (i,i') and (j,j'). Select the pair of arcs with the

minimum incremental cost, and perform the interchange.

Step 3: If the current solution has two or more subtours, repeat Step 1. Otherwise, stop.

The subtour patching heuristic requires at most 0(n) iterations, and terminates with a

feasible job sequence which we call the AP makespan solution. Since the assignment model

(4.2) to (4.5) is a relaxation of the TSP representing the NIS/NW/M model, its optimal value is

a valid lower bound on the optimal value of NIS/NW/M. In Section 5, we compare this

assignment lower bound with our slack-based lower bound for our test problems.

^2 AP heuristic for cycle time minimization models

For cycle time minimization, we examine sequences that reduce the interval time on each of

the m machines. To minimize the interval time on any machine k, we must modify the previous

TSP arc lengths to represent the delay between jobs i and j on machine k (instead of machine 1).

24-

and set Lj j^j equal to the total processing time TP|^ on machine k (instead of the post-

1

processing time for job i).

Let us first describe how to compute the delay times for a downstream machine k. We
k

defuie Ljj, for all i, j = 1, ..., n, as the necessary delay between jobs i and j on machine k to

ensure no- wait processing. Using this notation, the value L,., computed using equation (3. 17).

corresponds to L|-. Consider a sequence in which job j immediately follows job i, and suppose

job i leaves machine 1 at time L Then, in the no-wait system, machine k must complete

processing job i at { t + X ^ih) • Furthermore, job j is released into the line at { t + L) . and

1

^~^
k

reaches machine k at {t + L + X Pjh}- Therefore, the i-to-j slack time L , which is the time
'J

h=l
- ''

interval between the completion of job i and the arrival of job j at machine k, is:

k-l k

U 'J^i = ^r l^jh- l^.h- ^^6'

b=l h=2

Similarly, we define

Li,n.l = TP,. (4.7.

The TSP with L^ and L*' _^, , for all i, j = 1, ..., n, as arc lengths models the problem of

minimizing the interval time on machine k for the NIS/NW system. We solve this TSP

approximately using the AP heuristic, for every machine k = 1 m, and choose the best

sequence, i.e., the sequence with the smallest cycle time, among the m TSP solutions as the AP

cycle time solution .

4.3 Local improvement procedure

The AP makespan or cycle time solution provides an initial candidate sequence o for all the

makespan or cycle time models. For a given model, the initial upper bound is the objective

value of the corresponding o-optimal schedule satisfying the model's intermediate storage and

job transfer constraints. We then anempt to improve this upper bound by applying a local

25-

exchange heuristic. Consider, for instance, the NIS/SYN/M model. Starting with the AP

makespan sequence, for every pair of jobs i and j, we consider a new sequence a' obtained by

interchanging the positions of these two jobs in the current sequence, and compute the objective

function value (makespan) for the a'-optimal NIS/SYN schedule. If a' has a lower makespan

than the current sequence, then we perform this interchange and examine other job pairs. The

method stops when no further improvement is p>ossible; we refer to the final job sequence as the

Improved AP solution

.

5. Computational experience

5.1 Test problems

To test the lower bounds and heuristics, we generated random test problems in nine

different sizes ranging from 6 jobs and 3 machines to 50 jobs and 3 machines. Table 1 shows

the size (number of jobs and machines) for each problem class. We considered four different

processing time distributions-random, correlated, trend, and correlated with trend. By random

processing times we mean independent, identically distributed processing times P:|^ for all
i
= 1.

..., n, and k = 1 m. The processing times for a job are said to be correlated if they are

consistently smaller or greater than average on all machines. On the other hand, job processing

times exhibit a trend if they increase or decrease for all jobs as we progress down the line.

To generate problem instances corresponding to each of the four processing time

distributions, we follow the method used by Lageweg et al. [1978] for their computational

tests. Given the number of jobs and machines, our problem generator chooses an integer job

processing time Pjj^ for each job j on every machine k from an uniform distribution. The

parameters of this uniform distribution reflect the desired correlation and/or trend structure.

Problems with random processing times have P^ !L Unif (1,100) for all jobs j and machines k.

To introduce correlation in processing times, we generate n additional integers c., for all j
= 1

.

26-

.... n, from the Unif (1, 4) distribution. For problems with only correlation and no trend in

processing times, we randomly select Pj,^ from the Unif (20c.+l. 20c.+20) distribution.

Problems with trend (but no correlation) in the data are generated by selecting machine ks

processing times P^^ from the Unif (12.5(k-l)+l, 12.5(k-l)+100) distribution, for all k = 1.

..., m. This scheme increases the average processing dme per job at successive stages, i.e.. the

processing times have an increasing trend. Finally, we construct problem instances with hoih

correlation and trend hy sampling from the Unif (2.5(k-l)+20c., 2.5(k-l)+20c.+20)

distribution, for all j = 1, ..., n, and k = 1, ..., m.

For each problem size shown in Table 1, we generated four groups of three problem

instances each; the groups correspond to the four processing time distributions-random, with

correlation, with trend, and with correlation + trend. We also "inverted" each problem instance

by renumbering machine k as machine m+l-k for k = 1, ..., m; thus, original problems with

positive trend now have negative trend. To summarize, we generated 24 problem instances- 12

original problems consisting of 3 random instances each for four processing time distribution.s.

and 12 inverted problems-for each of the 9 problem sizes, and considered all 8 flowshop

models corresponding to each of these 216 problem instances.

5.2 Performance comparisons

Our computational tests seek to address three questions: (i) how good are the slack-based

bounds relative to previous lower bounding methods for makespan models; (ii) how does the

assignment heuristic perform compared to previous heuristic methods; and, (iii) what is the

quality of the heuristic solution obtained by locally improving the assignment-based job

sequence? We elaborate on each of these issues next.

27

5.2.1 Comparison of lower bounds:

Recall that we have three versions of the slack-based bound for the minimum makespan

problem: the basic version that provides a lower bound for the IIS/FR/M model, and enhanced

versions for the N1S/FRA1 and NIS/NW/M models. For the nS/FR/M model, the LLR bound

(described in Section 3.1) based on two-machine subproblem solutions has proven to be the

most effective. This bound is also valid for the NIS/FR/M model. We, therefore, compare the

slack-based (basic and enhanced) for the IIS/FR/M and NIS/FR/M model with the LLR bound.

Note that, using both the slack-based and LLR methods, the lower bound for the NIS/SYN/M

model is the same as the NIS/FTVM lower bound, and so we do not perform a separate

comparison of bounds for the NlS/SYN/M case. For the NIS/NW/M model, we compare both

the Szwarc [1983] lower bound and the optimal value of the assignment problem ((4 2) to

(4.5)) with the enhanced slack-based bound. The LLR and Szwarc bounds do not apply to

cycle time minimization problems, and so we evaluate the quality of the slack-based bounds

based solely on its closeness to the heuristic value (see Section 5.2.3).

5.2.2 Comparison of heuristics:

To evaluate the effectiveness of the AP heuristic, we compare the objective values of the AP

solution (before local improvement) and the solution produced by the CDS heuristic (Campbell.

Dudek and Smith [1970]) for all model types. The CDS heuristic, developed for the IIS/FR/M

model, solves p ^ (m-1) auxiliary two-machine flowshop subproblems using Johnson s

algorithm, and selects the best among the p job sequences. The total processing time on the

first k machines and last k machines in the original problem serve as the job processing times on

each of the two machines in the k'*^ auxiliary two-machine problem. For cycle time

minimization models, we augment this method by applying an improvement procedure after

sequencing the jobs using Johnson's algorithm.

-28

5.2.3 Gap between upper and lower bounds:

To assess the quality of the improved AP solution (after local improvement), we compute

the % gap between the objective value of this solution with the best lower bound (i.e.. the better

of the slack-based lower bound and the LLR or Szwarc lower bounds) for all 8 models. Small

values of this % gap imply that both the lower bounding method and the heuristic procedure are

effective.

5.3 Computational results

We implemented the problem generator and the lower bounding methods in FORTRAN on

an IBM 4381 computer, and the heuristic procedures in C on a Macintosh computer. Tables 2.

3 and 4 summarize our computational results for the minimum makespan models; Tables 5 and

6 f)ertain to cycle time minimization nxxlels.

Table 2 compares the slack-based bound with the LLR bound for the IIS/FR/M and

NIS/FR/M models, and the Szwarc and assignment lower bounds for the NIS/NW/M case

For the LLR bound, we followed Lageweg et al.'s [1978] strategy of solving (m-1) two-

machine flowshop subproblems, for k2 = m and kl = 1,, m-1 (see Section 3.1), and

selecting the best lower bound. Table 2 shows the average values of the ratio of lower bounds

(averaged over 54 problem instances) for each of the four processing time distributions. As

expected, the slack-based lower bound performs well for problems with trend in processing

times; it also appears to be as tight as the LLR and the Szwarc bounds for problems with

random processing times. However, when job processing times are correlated, the difference

in total processing times on adjacent machines is small, and hence the slack-based bound is not

as effective. We observed that, even for problems with correlated data, the slack-based bound

approaches the LLR bound when the number of jobs is very large. For the NIS/NW/M

problem, the assignment lower bound (i.e., the optimal value of the assignment subproblem)

outperforms the slack-based lower bound.

-29-

Tables 3 and 5 compare the performance of the AP heuristic (without local improvement

)

and the CDS heuristic for the minimum makespan and minimum cycle time models,

respectively. Although the AP heuristic is based upon the NIS/NW model, it produces good

solutions for all other models as well. For the IIS/FR/M model, the AP heuristic performs as

well as the CDS heuristic (which was developed for this model); the AP solution is supenor for

other models especially when the job processing times are random or have a trend. With

random processing times,the AP solution has, on average, 12%, 8%, and 67o lower makespan

than the CDS solution for the NIS/NW/M, NIS/FR/M, and NIS/SYN/M models, respectively.

Similar performance differentials hold for the cycle time minimization models.

Tables 4 and 6 compare the values of the improved AP solution with the best lower bounds

for the makespan and cycle time nxxlels, respectively. The average % gaps are 3% or less for

the IIS/FR/M, NlS/FR/M (except with random processing times), NIS/NW/M, and IIS/FR/C

models, indicating that the heuristic generates near-optimal solutions for these cases, and the

lower bounds are tight. The gaps are large for the NIS/FR/C and NIS/NW/C models w ith

correlated processing times; we suspect that the heuristics performance is quite good e\ en for

these cases, but the lower bound is weak.

6. Conclusions

This paper has presented a new slack-based lower bound and an assignment-patching

heuristic that apply to a variety of flowshop scheduling contexts. The slack-based bound

improves upon the machine-based bound, and applies to makespan, total interval time, and

cycle time optimization problems. The computational results show that the performance of the

lower bound is as good as the LLR bound for problems with random processing times or with

trend in processing times. The AP algorithm, together with heuristic local improvement.

30-

performs well for all scenarios, producing schedules that are within 10% of optimal in most

cases.

Scheduling flowshops with synchronized job transfers, and with cycle time and interval

time objectives are promising topics to investigate further. Although the slack-based method

provides lower bounds for these models as well, we might be able to improve performance by

exploiting the models' special structure. Similarly, instead of using a general sequencing

algorithm based on no-wait principles, we might consider alternative heuristic methods that are

specially adapted to cyclic and synchronous scheduling.

-31

Figure 1 : Slack time on adjacent machines

Machine k-1

Machine k

Table 1: Sizes of Test Problems

Problem Group «

Table 3: Performance of Assignment-Patching Heuristic

for Minimum Makespan Modelst

Model

Table 4: Gap between Upper and Lower Bounds

for Minimum Makespan Modelst

Model

Table 5: Performance of Assignment-Patching Heuristic

for Minimum Cycle Time Modelst

Model

Table 6: Gap between Upper and Lower Bounds
for Minimum Cycle Time Modelst

Model

REFERENCES

Baker, K. R., 1975, A Comparative Study of Flow-Shop Algorithms. Operations

Research, 23, 63-73.

Campbell, H. G., Dudek, R. A., and Smith, M. L., 1970, A Heuristic Algorithm for the n

Job, m Machine Sequencing Problem. Management Science, 16, B630-B637.

Dannenbring, D. G., 1977, An Evaluation of Row Shop Sequencing Heuristics.

Management Science, 23, 1 1 74- 1 1 82.

Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M., 1954, Solution of a Large-scale

Traveling Salesman Problem. Operations Research, 2, 393-410.

Gilmore, P. C, and Gomory, R. E., 1964, Sequencing a One State-Variable Machine: A
Solvable Case of the Traveling Salesman Problem. Operations Research, 12, 655-679.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G., 1979,

Optimization and Approxirriation in Deterministic Sequencing and Scheduling: A Survey.

Annals ofDiscrete Mathematics, 5, 287-326.

Hundal, T. S. and Rajagopal, J., 1988, An Extension of Palmer's Heuristic for the Flow

Shop Scheduling Problem. InternationalJournal of Production Research, 26, 1119-

1124.

Johnson, S. M., 1954, Optimal Two- and Three-Stage F*roduction Schedules with Setup

Times Included. Naval Research Logistics Quarterly, I, 61-68.

King, J. R., and Spachis, A. S., 1980, Heuristics for Flow-shop Scheduling. International

Journal of Production Research, 18, 345-357.

Lageweg, B. J., Lenstra, J. K., and Rinooy Kan, A. H. G., 1978, A General Bounding
Scheme for the Permutation Flow-Shop Problem. Operations Research, 26, 53-67

Lawler, E. L., Lenstra, J. K., Rinooy Kan, A. H. G., 1982, Recent Developments in

Deterministic Sequencing and Scheduling: A Survey. Deterministic Sequencing and
Scheduling , M. A. H. Ekmpster et al.{eds.), D. Reidel Co., Dordrecht, Holland. 35-74.

Leisten, R., 1990, Flowshop Sequencing Problems with Limited Buffer Storage.

IruernationaJ Journal ofProduction Research, 8, 2085-2100.

McCormick, S. T., Pinedo, M. L., Shenker, S., and Wolf, B., 1989, Sequencing in an

Assembly Line with Blocking to Minimize Cycle Time. Operations Research. 37. 925-

935.

McMahon, G. B. and Burton, P. G., 1967, Row-Shop Scheduling with the Branch-and-

Bound Method. Operations Research, 15, 473-481.

Nawaz, M. Enscore, E. E., and Ham, I., 1983, A Heuristic Algorithm for the m-Machine.
n-Job Flow-Shop Sequencing Problenx The International Journal ofManagement
Science, 11, 91-95.

Park, Y. B., Pegden, D., and Enscore E. E., 1984, A Survey and Evaluation of Static

Flowshop Scheduling Heuristics. International Journal of Production Research. 11. 127-

141.

Plante, R. D. and Lowe, T. J., 1987, The Product Matrix Traveling Salesman Problem: An
Application and Solution Heuristic. Operations Research, 35, 712-1S3.

Rajendran, C. and Chaudhuri, D., 1990, Heiuistic Algorithms for Continuous Flowshop
Problems. Naval Research Logistics , 37, 695-705.

Reddi, S. S., and Ramamoorthy, C. V., 1972, On the Flow-shop Sequencing Problem
with No Wait in Process. Operational Research Quarterly, 21, 544-549.

Skinner, W., 1974, The Focused Factory. Harvard Business Review, 1 13-122.

Szwarc, W., 1983, Solvable Cases of the Row-Shop Problem Without Interruptions in

Job Processing. Naval Research Logistics Quarterly, 30, 179-183.

MAR 2001'

Date Due

Lib-26-67

MIT LIBRARIES

3 9080 02237 3614

