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SCHEDULING A TWO-STATION MULTICLASS

QUEUEING NETWORK IN HEAVY TRAFFIC

Lawrence M. Wein

Abstract

Motivated by a factory scheduling problem, we consider the problem of input control

(subject to a specified product mix) and sequencing in a two-station multiclass queueing

network with general service time distributions and a general routing structure. The ob-

jective is to minimize the long-run average expected number of customers in the system

subject to a constraint on the long-run average expected output rate. Under balanced

heavy loading conditions, this scheduling problem is approximated by a control problem

involving Brownian motion. A reformulation of this Brownian control problem was solved

exactly in Wein [17]. In the present paper, this solution is interpreted in terms of the queue-

ing network model in order to obtain an effective scheduling rule. The resulting sequencing

rule is a static priority ranking of the classes. The input policy is a "workload regulating"

input policy, where a customer is injected into the system whenever the expected total

amount of work in the system for the two stations falls within a prescribed region. An

example is presented that illustrates the procedure and demonstrates its effectiveness.
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SCHEDULING A TWO-STATION MULTICLASS

QUEUEING NETWORK IN HEAVY TRAFFIC

Lawrence M. Wein

This research is motivated by a particular scheduling problem that is encountered

in many factories. By viewing a factory as a network of queues, the scheduling problem

can be formulated as one of controlling the flow in a queueing network. The queueing

network under consideration consists of two single-server stations and K different customer

classes. Customers of class k = 1, ..., A' require service at a specific station s{k) and their

service times are independent and identically distributed random variables with finite mean

mjt and variance s\. Upon completion of service, a class k customer turns next into a

class j customer with probability Pkj and exits the system with probability 1 — XI 7=1 ^kj-

independent of all previous history. We assume that the A' x A' Markovian switching

matrix P = {Pkj) has spectral radius less than one, so that all customers will eventually

exit the system. Because the number of classes is allowed to be arbitrary, this routing

structure is almost perfectly general.

The scheduling problem incorporates input and sequencing decisions. We assume

there is an endless line of customers who are waiting to gain entry into the network.

Each customer in the line has an exogenously specified class designation. These class

designations are such that, over the long-run, the proportion of class k customers released

into the system is qk, where ^^=1 5* = 1- The vector q - {qk) will be referred to

as the entering class mix. The input decisions are to choose a non-decreasing process

A'' = {N{t),t > 0}, where N{t) is the cumulative number of customers injected into the

system up to time t. Thus the input decisions essentially allow full discretion over the

timing of the release of customers into the system, but do not allow for the choice of which
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class of customer to inject.

The sequencing decisions consist of choosing, at each point in time, which ciass of cus-

tomer to process at each server in the network. Preemptive resume scheduling is allowed,

so that service of a customer may be interrupted at a particular station when a higher

priority customer arrives at that station. Due to the rather crude nature of the Brownian

approximation that is employed here, the assumptions made regarding preemption do not

have an effect on the scheduling policy that emerges from the analysis.

It is assumed that a holding cost Ck is incurred for each unit of time that a class k

customer spends in the queueing network. Also, there is a specified lower bound A on the

long-run average expected throughput rate of the queueing network. The throughput rate

of a queueing system is the number of customer departures from the system per unit of

time. Our queueing network scheduling problem is to choose the input and sequencing

decisions so as to minimize the long-run average expected holding costs incurred per unit

of time, subject to a lower bound constraint on the long-run average expected throughput

rate. Notice that in the special case where Ck = c for all k = l,...,/v, the objective is to

minimize the long-run average number of customers in the system. Because the problem is

formulated in terms of long-run averages and because the constraint on throughput will in

general be tight. Little's formula [9] implies that this objective is equivalent to minimizing

the long-run average expected cycle time of customers in the system. The cycle time

of a customer is the amount of time a customer spends in the queueing network. In a

manufacturing setting, there are many good reasons to minimize both the work-in-process

inventory and the cycle time, and some of these will be discussed in the next section.

A good deal of literature exists on input control of queueing networks, but these models

consider the decision of whether to accept or reject Poisson arrivals; Stidham [15] provides

a thorough survey of work in this area. Such models are not applicable to the scheduling

problem considered here, since the relevant issue in our setting is when to release a customer

into the queueing network, not whether or not to accept the customer. Although useful
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results exist for sequencing single-station systems (see Klimov [8]), a satisfactory theory

for sequencing in a network setting has not been attained, and simulation (see Conway,

Maxwell and Miller [2] for a classic study on this topic) is still the primary tool of analysis.

In view of the difficulty in obtaining sequencing rules for conventional multiclass queueing

networks (it has been 14 years since Klimov's result), the best hope for further progress

appears to be in the analysis of cruder, more tractable models.

One such model is a Brownian network, a stochastic system model introduced by

Harrison [4]. Under conditions of balanced heavy loading, a Brownian network approxi-

mates a multiclass queueing network with dynamic scheduling capability. To state these

conditions more precisely, let the two-vector p = (p,) be the relative server utilizations, or

traffic intensities, for the two stations. The values of pi and p2 can be computed from the

switching matrix P, the vector m — {rrik) of expected processing times, the entering class

mix q = {qk) and the specified average throughput rate A, as will be shown in Section 2.

The balanced heavy loading conditions assume the existence of a large integer n such that

< >/n(l — Pi) < 1 for i = 1,2. As a canonical example, one may think of p\ = P2 = -9,

in which case n = 100 satisfies this condition.

Under such conditions, the scheduling problem described above can be approximated

by a dynamic control problem for a Brownian network. The state of the system in this

Brownian control problem is a 7v-dimensional vector queue length process (appropriately

scaled). Instead of analyzing the Brownian control problem directly, the problem is refor-

mulated in Wein [17] so that the state of the system is described by a two-dimensional

process that represents the scaled version of the total amount of work in the system for

each of the two stations. The reformulated problem is solved exactly in Wein [17], and in

the present paper, the solution is interpreted in terms of the queueing system in order to

obtain an effective scheduling rule for the original queueing network (and hence factory)

scheduling problem. This interpretation is based on intuition obtained from existing heavy

traffic limit theorems for some simpler queueing systems, and no attempt is made to rig-
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orously justify our interpretation via a weak convergence result. However, we conjecture

that the resulting scheduling rule is asymptotically optimal in the heavy traffic limit (i.e.,

as n — oo).

The scheduling rule derived here consists of a sequencing rule and an input policy. To

describe the rule, a few definitions are needed. Let Af,jt equal the expected total amount

of time that the server at station i (hereafter referred to as server i) must devote to a class

k customer before that customer eventually exits the network. Denote the ivT-dimensional

queue length process by Q, so that Qki't) is the number of class k customers in the system

at time t for k = 1 A'. Defining a two-dimensional workload process w = {wi) by

w{t) = MQ{t), where M — (A/,jt), we interpret w,{t) as the expected total amount of

work for server i embodied in those customers who are present anywhere in the network

at time t.

Recalling that Ck is the linear holding cost for a class k customer, the sequencing

rule ranks each customer class k by the index c'j^^ {p2^hk — P\M2k)- In the special case

where cjt = c for all k = 1,...,A', this rule is a static priority ranking that awards higher

priority at station 1 (respectively, station 2) to the smaller (respectively, larger) values of

this index. (The case where Ck ^ c for all k = 1,...,A' will be discussed in Section 5). It

is interesting to note that, as in Klimov's results for a single-station queueing system, the

solution to a dynamic scheduling problem is a static priority ranking of the classes, and

the solution depends on the general service time distributions only through their means.

This sequencing rule has the following interpretation. In the special case when Ck = c

for all k = I, ..., A' and pi = p2 (i.e., minimization of the cycle time in a perfectly balanced

system), the rule tends to retain jobs at each station (by giving them lower priority) that

have relatively more work to be done at that station, either now or later, dispatching more

quickly (by giving them higher priority) jobs that have relatively more work to be done at

the other station. When pi ^ P2, then pi and p2 show up as appropriate weighting factors.

Incidentally, it is known (Harrison and Wein [5]) that when cjt = c for all k = 1,...,A',
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this same sequencing rule maximizes the throughput rate in a two-station multiclass closed

queueing network in heavy traffic.

The input rule is called a workload regulating policy because it depends solely on the

two-dimensional workload process w. More specifically, the rule releases a new customer

into the system whenever the workload process enters a certain region in the nonnegative

orthant of R^. A description of this region is fairly involved and will be deferred until

Section 6, where the region is calculated explicitly. For a typical example, interested readers

may refer to Figure 2 of Section 7, where the region consists of the shaded area. The input

rule causes the network to behave as a "pull" system: when either server appears to be

threatened with idleness and there is not too much work already present in the system, a

new customer is released into the system.

Although neither the sequencing nor input rule derived here has ever appeared in the

literature, they are both intuitively appealing policies. Furthermore, in a manufacturing

setting, they would be very easy to implement. As will be seen in Section 7, these policies

outperform conventional scheduling rules in simulation studies.

The original system description of a two-station, heavily-loaded, well-balanced net-

work may seem quite restrictive at first glance. However, one important implication of

the balanced heavy loading assumption is that, in the heavy traffic limit represented by

the Brownian network model, any stations in the original system that are not among the

most heavily loaded will simply disappear. This has been proven in limit theorems by

Johnson [7] and Chen and Mandelbaum [1] in the single-type open queueing network set-

ting. Limit theorems of this type can justify the procedure of eliminating all stations that

are not heavily loaded when forming the approximating Brownian network, reducing the

original system to a subnetwork of bottleneck stations for purposes of subsequent analysis.

However, these bottleneck stations are precisely where the large queues form, where most

of the waiting is incurred, and thus where scheduling will have the biggest impact. In

fact, other approaches to job shop scheduling problems, such as the the OPT system (see
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Jacobs [6] for a critical evaluation of its main features) or the expert systems approach

taken by Morton and Smunt [10], also focus on the bottleneck stations. Thus, although the

Brownian network approximation is a rather crude model in comparison to a conventional

queueing network, its underlying assumptions are made-to-order for scheduling purposes.

One consequence of the previous paragraph is that the scheduling rule emerging from

our analysis can be applied to any queueing network with two bottleneck stations. In fact,

a simulation model has been built that is based on operating data from an actual semicon-

ductor wafer fabrication facility. Using this simulation model (see Wein [16] for details),

which contains 24 stations but only two bottleneck stations, rules similar to the ones de-

rived here were compared against conventional sequencing and input rules. The results

were quite impressive: the rules outperformed conventional rules and achieved a 47.2%

reduction in average customer queueing time versus the base case of Poisson inputs and

first-in first-out (FIFO) sequencing.

This paper is organized as follows. The factory scheduling problem that motivates our

study is discussed in Section 1. In Section 2 the Brownian approximation of the queueing

network scheduling problem is stated. The Brownian control problem is reformulated in

Section 3 and the solution to the reformulated problem, which was derived in Wein [17], is

stated in Section 4. This solution is interpreted in terms of the original queueing system

in Sections 5 and 6, in order to obtain a sequencing rule and an input policy, respectively.

An example is presented in Section 7 that illustrates the procedure and demonstrates its

effectiveness.

Some of the notational conventions and terminology used in this paper will now be

introduced. A stochastic process is said to be RCLL if its sample paths are right continuous

and have left limits with probability one. When we say that A' is a {^,a^) Brownian

motion, it is assumed there is a given (Q, F, Ft, AT, Pj:), where (n,F) is a measurable

space, ,Y = A''(a;) is a measurable mapping off! into C(R), which is the space of continuous

functions on the real line R, Ft = a(A'(5),5 < t) is the filtration generated by X, and Pi
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is a family of probability measures on fi such that the process {X{t),t > 0} is a Brownian

motion with drift /i, variance cr'^ and initial state x. Let E^ be the expectation operator

associated with P^. If Y = {Y'{t),t > 0} is a process that is Ft-measurable for all t > 0,

then we say that the process Y is non-cLnticipating with respect to the Brownian motion

X. More generally, we will say that one process Y is non-anticipating with respect to

another process X when Y is adapted to the coarsest filtration with respect to which X is

adapted.

1. The Factory Scheduling Problem

This section describes the relationship between the queueing network scheduling prob-

lem and the factory scheduling problem. Each server in the queueing network corresponds

to a machine or work center in the factory, and each customer corresponds to a particular

job. The routing structure described in the introduction can accomodate the case where

the factory produces a variety of products, each with its own arbitrary deterministic route

through the network of machines. In that case, a different customer class is defined for

each combination of product and stage of completion. More generally, our set-up allows

probabilistic routing to represent such events as rework or scrapping. In fact, a customer

class can include any observable information about a particular job that is relevant for

dynamic scheduling purposes.

The queueing network model can also accomodate machine breakdown and repair.

By assuming that the amount of machine busy time between consecutive breakdowns is

exponentially distributed, the breakdown and repair can be incorporated into the service

time distributions for each customer class; see Harrison [4] for details. The modified rrik

and si are interpreted as the mean and variance of the effective service time of a class ^-

customer, i.e., the actual processing time plus the total duration of all interruptions that

7





occur during that service.

In the manufacturing setting, the sequencing decisions consist of dynamically choosing

which job to process at each machine in the factory; this corresponds to the classic job

shop scheduling problem. The input decisions in our problem specify the timing of the

release of jobs onto the factory floor. However, it is assumed that the exact sequence of

entering product types is specified precisely. This sequence reflects the desired product

mix that the factory is required to maintain. For example, if a factory makes two products,

A and B, to be produced in equal quantities, then the specified sequence of entering jobs

would be ABABAB... There is a long-run average output rate (in jobs per unit time) that

the factory is required to maintain. When the holding costs Ck = c for all k = 1, .... A', the

objective is to minimize the long-run average expected work-in-process (WIP) inventory,

which is equivalent to minimizing the long-run average expected cycle time of jobs.

This scheduling problem is relevant for any factory that is obliged to maintain a

specified average output rate of a certain product mix, but can control the timing of its

inputs. In thinking about endogenously generated arrivals, it is easiest to imagine a make-

to-stock manufacturer, where orders are met from finished goods inventory. However, in

a make-to-order environment, input to the factory floor can also be regulated, but then

customer orders will sometimes queue outside the factory floor waiting to gain entrance.

The motivation for doing this is to reap the benefits that can be gained by a reduction

in both the WIP inventory on the factory floor and the cycle time of jobs on the factory

floor. By reducing the number of jobs on the factory floor, the benefits from Just-In-

Time manufacturing (see Schonberger [13] for a detailed description) can be realized. For

example, quality problems will be detected faster, and thus there will be less rework and

scrap of jobs. By reducing the cycle time of jobs, the factory can gain Rexibility: the system

will be more capable of very fast turnaround on individual orders, and the factory may

more readily adapt to a changed order, since the corresponding job may not have begun

its processing. A more specific example occurs in the semiconductor industry, where a
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decrease in the average cycle time of a lot of wafers in the wafer fab will result in an

increase in the yield of good wafers. This is because lots are so easily contaminated while

in the fab. Finally, in the case of standardized products that can be made to stock, shorter

cycle times allow production to be based on more accurate forecasts of market demand.

Since our definition of cycle time does not include the time that transpires between

receiving an individual order and releasing the corresponding job onto the factory floor,

readers may be concerned about the effect the rules derived here would have on due-date

performance. Our view is that, in the case of a busy factory with more than one bottleneck

machine, scheduling for due-dates has a detrimental effect on the utilization of bottleneck

machines, and hence ultimately does more harm than good. As an example, consider a

two-station well-balanced factory that has a very large backlog of jobs, each with a given

due date. Furthermore, suppose that either workload regulating input (see Section 6)

or closed loop input (the total number of jobs on the factory floor is held constant, see

Solberg [14]) is used. In these cases, the sequencing rule described here can substantially

increase server utilization compared to any sequencing rule that sequences according to

due-date information (see Harrison and Wein [5] or Wein [17]). This sequencing rule will

allow the factory to produce more jobs per unit time and thus would eventually provide

more timely customer service than a myopic sequencing rule that is based on due-dates.

(Notice that the above argument does not hold for a factory with only a single machine.

This is because, in a single-server queueing system, every work-conserving sequencing rule

achieves the same server utilization.

In summary, the research undertaken here attempts to realistically incorporate the

dynamic and stochastic elements that are inherent in all factory scheduling problems.

Furthermore, we believe that factories, by focusing on system performance measures (such

as WIP inventory and cycle time) rather than due-date performance measures, can take

advantage of some benefits of Just-In-Time manufacturing and can provide better customer

service over the long run.
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2. The Limiting Control Problem

We assume readers are familiar with the approximating Brownian network model put

forth in Harrison [4]; Most of that paper's notation will be retained for ease of reference. It

follows from Section 9 of Harrison [4] that under the balanced heavy loading assumptions,

the queueing network scheduling problem described in the introduction can be approxi-

mated by the following limiting control problem: choose a pair of RCLL processes Y and

6 (K-dimensional and one-dimensional, respectively) to

1 r^
^

minimize limsup — E'j.f / 2.^kZk{t)dt] (2-1)
T—oo T Jo f^^

subject to }' and are non — anticipating with respect to X, (2-2)

Zit) = X{t) + RY{t) - qe{t) for all t > 0, (2.3)

U{t) = AY{t) for all t > 0, (2.4)

U is non — decreasing with U{0) = 0, (2-5)

Z{t) > for all t > 0, and (2.6)

lim sup ^E[U,{T)] < 7. fori = 1,2. (2.7)

T—oo -^

The process Z represents the A'-dimensional scaled queue length process and describes

the state of the system. The A'-dimensional process Y represents the scaled centered

allocation process and the one-dimensional process represents the scaled centered input

process. These two control processes correspond to the sequencing and input decisions,

respectively. Interested readers are referred to Harrison [4] for an explicit definition of the

process Y, since the definition will not be needed here. As in Harrison [4], exactly the same

notation used for the scaled processes are used in defining the approximating Brownian

control problem. This is done in order to emphasize the queueing network interpretation
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of the Brownian network model. The scaled process B is defined by

\nt-Nint) ,^^^
e{t) = ^^-^, i>0, 2.8

where, as mentioned earlier, A is the specified average throughput rate, N{t) is the cumu-

lative number of customers released into the network in [0,t] and n is the large integer

specified in the balanced heavy loading condition.

The two-dimensional process U represents the scaled cumuiative idleness process for

the two stations. (For brevity's sake, processes such as Z, Y, Ua.nd 9 will often be referred

to without the adjective "scaled".) The A' x A' input-output matrix R — [Rkj) is defined

by

Rkj=rn-\8jk-P,k). (2.9)

where 6jk denotes the Dirac delta function, meaning that 8jk = I \i j = k and 8jk =

otherwise. The 2 x A' resource consumption matrix A = (A,fc) is defined by

fl, ifi = s(k); ,^ Q.

"^'^-lo, otherwise.
^''

'

The A'-dimensional process X is a [6, S) Brownian motion, but several definitions are

needed before stating the A'-dimensional drift vector 6 = {6k) and the A' x A' covariance

matrix E = (Ej/). Let A = (A;t) be defined by

A = gA, (2.11)

so that Ajt represents the average number of class k customers that must arrive to the

system per unit of time in order to satisfy the throughput rate constraint.

Since P was assumed to be transient, it follows that R is non-singular and there exists

a unique non-negative A'— vector l3 — {3k) satisfying the flow balance equations

A = RI3. (2.12)
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Letting C{i) be the set of all customer classes k such that s{k) = i, define the two-vector

of traffic intensities p — {p,) by

P. = ^ f3k. (2.13)

itGC(i)

Now define the iv-vector a = (q^) by

ak = — for all k E 0(1). (2.14)
P.

Then the drift 6 and covariance E of the Brownian motion X are

S= -fV"(A-i?Q) and (2.15)

K
S;( = ^[afcm;^Pfc,(<5,, - Pki) + akm-'slR,kRik]- (2.16)

k= l

Inequality (2.7), which expresses the throughput rate constraint in terms of the cu-

mulative server idleness process U, is the only relationship in the limiting control problem

that does not appear in the Brownian network formulation of [4]. The two- vector 7 = (ji)

in (2.7) is defined by

7. = y^(l-p.). (2.17)

To derive (2.7), let the 2 x A' matrix M = (M,jt) be defined by

M = AR-\ (2.18)

M is called the workload profile matrix, and M,fc is interpreted as the expected total

amount of time that server i must devote to a class k customer before that customer exits

the network. Define the two-dimensional vector v = (v,) by

v = Mq, (2.19)

so that V, is interpreted as the expected total amount of time over the long-run that server

i spends on each customer. From (2.11)-(2.13) and (2.18)-(2.19), it follows that

p, = v,X for f = 1,2. (2.20)
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Inequality (2.7) follows from (2.17) and (2.20), since the long-run average throughput rate

is greater than or equal to A if and only if the long-run average fraction of time that server

i is idle is less than or equal to 1 — p^.

3. The Workload Formulation

The state of the system in the limiting control problem is described by a A'—dimension-

al queue length process, by way of the basic system relationship (2.3). In this section the

limiting control problem is reformulated so that the state of the system is described by a

two-dimensional workload process. Recalling the definition (2.18) of the workload profile

matrix M, let us define the two-dimensional scaled workload process W — {W,) by

W{t) = MZ{t), t >0, (3.1)

where Wi{t) is interpreted as the expected total amount of work for server i embodied

in those customers who are present anywhere in the network at time t. Define the two-

dimensional Brownian motion B{t) = {B,{t)) by'

B{t) = MX{t), t > 0. (3.2)

The process B has drift M6 and covariance MUM'^ . By (2.10), (2.12)-(2.15) and (2.17)-

(2.18), one can show that the two-dimensional drift vector M8 = —7.

Define the workload formulation of the limiting control problem as choosing RCLL

processes Z,U and 6 (K-, two- and one-dimensional, respectively) so as to

mmimize limsupiE.i/ YckZk{t)dt\ (3.3)

subject to U and 6 are non — anticipating with respect to B, (3.4)

U is non - decreasing with U{Q) = 0, (3.5)
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Z{t) > for all t > 0, (3.6)

Vim sup -E[U,{T)] < 7. fori = 1,2, and (3.7)

MZ{t) = B{t) + U{t) - ve{t) for all t>0. (3.8)

Let us call a pair of RCLL processes {Y, 9) a feasible policy for the limiting control

problem if it satisfies equations (2.3)-(2.7) and call a triple of RCLL processes {Z,U,6)

a feasible policy for the workload formulation if it satisfies equations (3.5)-(3.8). The

following proposition, which was proved in Wein [17], allows us to analyze the workload

formulation of the limiting control problem, rather than studying problem (2.1)-(2.7) di-

rectly.

Proposition 2.1. Every feasible policy {Y,9) for the limiting control problem yields

a corresponding feasible policy {Z,U,0) for the workload formulation and every feasible

policy [Z, U,6) yields a corresponding feasible policy {¥,6).

It was shown in Wein [17] that if the control process Y is non-anticipating with respect

to the Brownian motion A' in the limiting control problem, then the control process U is

non-anticipating with respect to the Brownian motion B in the workload formulation. It

was also shown that the solution to the workload formulation remains unchanged whether

9 is non-anticipating with respect to X or with respect to B.

4. Solution to the Workload Formulation

The solution {U,Z,9) to the workload formulation (3.3)-(3.8) of the limiting control

problem was derived in Wein [17]. This is a self-contained section that summarizes the

solution. The parameters pi,Mtk and vi appearing in this section are all defined in terms

of the primitive problem data by definitions (2.13). (2.18) and (2.19), respectively. We also

need to define the parameters a^.h\,h2,i' and if, which can be calculated in terms of the
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primitive problem data. The parameter cr^ is defined by <r^ = g'^M'LM^ g, where

P2

-PiJ

Without loss of generality, assume that the classes k = 1,...,K are ordered so that

(4.1)

and

arg max c^^{p2Mik - P\M2k) = 1
k

argmin c,^\p2Mik - P\M2k) = 2.
k

(4.2)

(4.3)

Now define the positive coefficients h^ and /i2 by

and

Finally, let

and

h, =

ho =

C2

P1M22 - P2^h2

Cl

P2M11 - Pi A/21'

2sqrtn{pi - P2)

i = y/ripi{l - pi).

(4.4)

(4.5)

(4.6)

(4.7)

In the workload formulation, the controller observes a two-dimensional Brownian mo-

tion process B, from which can be observed the one-dimensional Brownian motion process

B defined by

Bit) = p2B,{t) - piB2it), t>0. (4.8)

If pi ^ p2, then define the interval endpoints a and b by

{hi + /l2)/?2(l - Pi)

and

a — V Mn

b = i/-Mn

hip2{l - Pi) + h2pi(l - p2

(hi + h2)pi{l - P2)

hip2{l - pi) + h2Pi{l - P2)

15

(4.9)

(4.10)





If Pi = P2i then let

and

a =

6 =

__h2_zL
hi + hi 2i

hi a2

/ii 4-/12 2^ .

For a particular realization of B, define the control functionals {R,L) by

R{t) = sup [a- B{s) + L{s)]+
0<a<t

and

L(t) = sup [Bis) + R{s)-b]
Q<s<t

+

The two-dimensional optimal control process U is given by

R{t)
Ui{t) =

P2

and

U2it)=

From the functionals {R,L) in (4.13)-(4.14), next define the process W by

W{t) = B{t) + R{t) - L(t) for all t > 0.

The K-dimensional optimal control process Z is given by

Zkit) = {

and

Zk{t) = {

,,"""\,
, if it = 1 and W{t) > 0;

0, if /t / 1 and W{t) > 0.

,,^'^'^
,, , if A: = 2 and W{t) < 0;

0, if A: 7^ 2 and W{t) < 0.

Finally, the optimal control process 6 is given by

R{t)
K

e{t) = v;'[Bi{t) + -^ -
Y, MikZk{t)l for all t > 0.

P2
Jt=l
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(4.17)
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Thus the solution {U,Z,6) to the workload formulation (3.3)-(3.8) is given by equations

(4.15)-(4.16) and(4.18)-(4.20). In the next two sections, this solution will be interpreted

in terms of the queueing network model.

5. The Sequencing Rule

In this section we describe the sequencing rule, which is based on the control process

Z. Consider again the workload formulation (3.3)-(3.8) of the limiting control problem.

According to definition (3.1), we must have W{t) = MZ{t). This means that at any time i,

the scaled queue length process Z can be any nonnegative vector that is consistent with the

present scaled workload process W. Thus, in the idealized Brownian approximation, queues

of different customer classes can be instantaneously swapped for one another, as long as

the expected work content remains unchanged. These swaps, which can be interpreted as

the reallocation of server time among the various classes, appear to occur instantaneously

because we are observing the system evolving in scaled time.

From the solution Z in (4.18)-(4.19), it is seen that only two of the A' components of

Z are ever positive. These two components correspond to the two customer classes that

are

&Tgmax c'^\p2Mik - PiM2k) (5-1)
k

and

argmin c-;;\p2Mik - PiMik), (5.2)
k

which were denoted by classes 1 and 2, respectively, by conventions (4.2)-(4.3). Further-

more, at each time t, only one customer class has a positive queue length. According to

formulas (4.18)-(4.19), class 1 customers have a positive queue length whenever the work-

load imbalance W{t) > 0, and class 2 customers have a positive queue length whenever

W{t) < 0. In the case where Ck = c for all k - \, ..., A' (i.e., the objective is to minimize
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the long-run average cycle time of customers), it is true that class 1 is served at station 1

and class 2 is served at station 2. This is interpreted to mean that whenever W{t) > 0,

customers of class 1 are only served when there are no other customers present at station

1. Similarly, whenever W{t) < 0, customers of class 2 are only served when there are no

other customers present at station 2.

Under heavy traffic conditions, it does not matter in what order classes 2,...,K are

served when W{t) > 0, or in what order classes 1,3, ..., K are served when W{t) < 0; it is

only required that the two servers be kept busy when there is work for them to do. There

are two reasons for this. The first reason, as will be seen in the next section, is that the

asymptotically optimal input rule prevents a large queue of customers from forming at

station 1 (respectively, station 2) when W{t) < (respectively, W{t) > 0). Consequently,

in the scaled space of the Brownian limit, all customers at station 1 (respectively, station

2) vanish when W{t) < (respectively, W{t) > 0). The second reason is because the

customer classes that are not given bottom priority will not see the queueing system in

a heavy traffic situation, and thus their scaled queue lengths will be negligible compared

to that of the bottom priority classes. This phenomenon of the normalized queue length

processes of high priority customers vanishing in the heavy traffic limit has been observed

in previous work. Whitt [18], Harrison [3], and Reiman [12] have obtained heavy traffic

limit theorems in a single station system, and Johnson [7] and Peterson [11] have obtained

similar results in a network setting. However, a formal limit theorem has yet to be proved

for our case of a general multiclass network with feedback.

To repeat, the interpretation of formulas (4.18)-(4.19) is to give class 1 customers

lowest priority at station 1 when W{t) > and give class 2 customers lowest priority at

station 2 when W{t) < 0. There seems to be some ambiguity that remains in specifying a

sequencing rule that emerges from the solution of the Brownian control problem. However,

from (4.1)-(4.2), when c^ = c for all k = l,...,/\, there is a natural ranking of the K

customer classes by the index p2M\k - PiM2k- We now propose two sequencing policies
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that give class 1 (respectively, class 2) customers lowest priority at station 1 (respectively,

station 2) when W{t) > (respectively, W{t) < 0). The first policy is a static priority

rule that awards higher priority at station 1 (respectively, station 2) to the classes with

the smaller (respectively, larger) values of the index p2M\k — p\M2k-

The second policy is obtained by computing dynamic reduced costs for each customer

class k = 1,...,A'. The reduced cost for a class k customer at time t can be interpreted as

the increase in the objective function of the linear program (originally stated as equations

(3.1)-(3.4) in Wein [17])

A'

min YckZkit) (5.3)
z(i),e{t) t^k=\

K
subject to Y^KhkZk{t) + v^6{t)^B^[t) + U^{t) (5.4)

k=\

K

Y, M2kZk{t) + V2e{t) = B2{t) + U2{t) (5.5)

k-1

Zk[t) > 0, for k= l,...,K (5.6)

per unit increase in the righthand side of the nonnegativity constraint Zk{t) > 0. It was

shown in Wein [17] that the partial solution Z{t) to this linear program yields the optimal

control process Z given in equations (4.18)-(4.19). It was also shown there that the dual

of (5.3)-(5.6) can be expressed as

max ^\{i} (5-')
Tl(«) P2

subject to c^\p2Mik - PiM2k)-^\{t) < p2 for i- = 1, ..., A'. (5.8)

The reduced costs at time t for the A' variables in the dual of (5.7)-(5.8) are

P2-c;'{P2Mik-PiM2k)7Tlit) for A^ = 1,...,A-, (5.9)

where TT*{t) is the solution to (5.7)-(5.8). The higher the value of the k-th reduced cost in

(5.9), the more expensive it is to hold class k customers in the queue. Furthermore, the
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reduced cost for a class k customer is zero when Zk{t) > in (4.18)-(4.19). Let us again

assume that Ck = c for k = 1,...,A' and consider the policy that gives highest priority

at each time t to the customer class with the largest reduced cost. Then one obtains a

dynamic scheduling rule that ranks all K classes by the index p2-^iit — Pi-^2* and, at each

station, serves the class with the smallest (respectively, largest) value of the index when

W{t) > (respectively, W{t) < 0).

Simulation results (see Section 7) on several systems have indicated that both the

static priority rule and the dynamic rule work well in conjunction with the workload

regulating input rule described in the next section. The static rule has the advantage that

it is easier to implement, since it does not depend on any global state information. The

dynamic rule has the advantage that it has a natural generalization to networks with more

than two bottleneck stations. "

Thus far in this section it has been assumed that Ck = c for all k = 1,...,A'. If we

relax this assumption, it does not necessarily follow that class 1 is served at station 1 and

class 2 is served at station 2. When this is indeed still the case, then the same two priority

rules described earlier, now based on the index c^^{p2Mik — P\M2k), are the proposed

sequencing policies. If this is not the case, the equations (4.18)-(4.19) still suggest giving

class 1 customers lowest priority when W{t) > and giving class 2 customers lowest

priority when Wit) < 0. However, additional simulation studies need to be performed

before making a more specific policy recommendation.

6. The Input Rule

In this section the input rule, which is based on the control processes U and 9, is

described. In the workload formulation of the limiting control problem, the controller

observes the two-dimensional Brownian motion process B, exerts the controls U and 6,
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and obtains the controlled process W, which is the scaled workload process. The basic

system state equations (3.8) that govern the controlled process can be expressed as

W,{t) = Bi{t) + U,{t) - Vi9{t) and (6.1)

W2{t) = B2{t) + U2{t)-V2e{t). (6.2)

Since these equations are linear and additive, the controls U and 6 act as "pushes" on

the Brownian motion B. Recall that the non-decreasing process U, represents the scaled

cumulative idleness process for station i. Also, is the scaled centered input process, and

the vector v is proportional to the server utilization levels p.

Since W = MZ, the solution Z in (4.18)-(4.19) implies that the workload process

W resides on the boundary of a cone in the nonnegative orthant of R^. From equations

(4.18)-(4.19), it can be seen that the control Ui (respectively, U2) is exerted only when the

scaled workload imbalance process W equals a (respectively, b). Exerting the control L/, is

interpreted as incurring server idleness at station i.

In terms of the two-dimensional workload process W, the interval endpoints a and

b correspond to reflecting barriers on the boundary of the cone, beyond which W may

not enter. This situation is depicted in Figure 1, where W must reside on the portion

of the cone boundary that is in boldface. In the optimal solution, the controls Ui and

U2 are only exerted when W2(t) = Cj and Wi{t) = Cj, respectively, where the scaled

threshold levels Cj and C2 can be calculated explicitly from the solution to the workload

formulation. Otherwise, only the input process 6 is used to keep the controlled process W
on the boundary of the cone. Thus, the policy that emerges from the Brownian control

problem attempts to manipulate input in lieu of idling servers and keeps the workload

process W on the boldface portion of the cone boundary in Figure 1. However, when the

process W reaches the barrier at c* or the barrier at Cj in Figure 1, then the controller

refuses to release any more customers into the system and is willing to incur server idleness.

In order to see exactly how the input is manipulated, recall that by equation (2.19)
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FIGURE 1

and the balanced loading conditions, Vi is approximately equal to V2 and so the scaled

centered input process 6 can move along a direction that is close to the 45 degree line. The

process 6 was defined in equation (2.8) by

~Xnt - N(nt)
(6.3)

where the process N is the cumulative number of customers released into the system up

to time t. Thus, when 6 moves in the negative 45 degree direction, input is being witheld

relative to the nominal input rate, and when 9 moves in the positive 45 degree direction,

input is being increased relative to the nominal input rate. This is depicted in Figure 2,

where input is witheld whenever the workload process is in the cone and input is increased
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INCREASE

INPUT

INCREASE

INPUT

FIGURE 2

whenever the workload process is in the shaded region.

Notice that in the actual queueing system, it may be possible for the workload process

to reside outside of the cone. This is because the state space of W is the cone {W =

MZ,Z > 0}, which contains the cone pictured in Figure 1. Its extremal rays are generated

by the two customer classes

23

(6.4)





and

argnun—

,

(6.5)

which may not coincide with the rays in Figure 1, which are generated by the two classes

defined in (5.1)-(5.2).

The main goal of this section is to develop an effective input policy for the actual

queueing system that operationalizes the optimal solution obtained from the limiting con-

trol problem. To this end, let us interpret the word "increase" in Figure 2 to simply mean

"release a customer into the system" and the word "withold" to simply mean "cesise input".

Then the naive rule that emerges from this interpretation is to release a customer into the

system when the workload process W enters the shaded region in Figure 2. However, this

naive rule ignores a major difference that exists between the actual queueing system and

the idealized heavy traffic limit. This difference can be understood by making the following

observation. In the idealized Brownian setting, when the scaled workload process W is on

the lower ray of the cone boundary and Wi{t) < c*, then there are zero scaled customers

at station 2 and yet station 2 is not idle. Similarly, when W is on the upper ray of the

cone and Woit) < C2, then there are zero customers at station 1 and station 1 is not idle.

This apparent paradox is due to the rescaling that occurs when passing to the heavy traffic

limit. In the actual queueing system, there are enough customers at the particular station

to avoid idleness, but when looked at in the scaled space of the heavy traffic limit, these

customers vanish.

In order to adapt the naive control rule stated above to the actual queueing system, it

is necessary to build in a boundary layer of thickness e on the inside of the cone boundary,

as shown in Figure 3. This boundary layer generates a new cone, which we call the e-cone,

that is strictly within the original cone. The input rule is still to release a customer into

the system whenever the workload process enters the shaded region, but now the shaded

region is enlarged by including the area between the two cones, as in Figure 3. This layer,

which is negligible in scaled space, prevents the process W from straying very far from the
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boldfaced portion of the original cone boundary, but allows the servers to be utilized the

requisite portion of the time. As e increases, the servers will incur less idleness but the

queue lengths may grow as a result. In an actual queueing system, the appropriate setting

of e will depend on the amount of variability in the queueing system and the amount of

time customers spend at non-bottleneck stations. In fact, one could use a layer of thickness

Ci on the lower ray of the cone boundary, and a layer of thickness (.2 on the upper ray of

the cone boundary.

FIGURE 3
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Thus the suggested input rule is to release a customer whenever the workload process

enters the shaded region of Figure 3. This region can be calculated explicitly in terms of

the problem data and the parameters ej and (.1. The cone in Figure 1 is generated by the

rays

W2 - ^W^i = • (6.6)
Mil

and

W, - ^^W2 = 0. (6.7)
M22

Therefore the regions outside of the e-cone are

and

T^^2 - ^^^1 < fi (6.8)
A/11

^^i-T7^^2<e2. (6.9)
A/22

From (2.37), (3.8) and (4.18)-(4.19), c* and c\ can be solved for explicitly. The solution is

P2 A/11 -pi A/21

and

A/2 2a
Co = (6.11)

P2A/12 - PiA/22'

where a and h are the optimal interval endpoints from the solution to the Brownian control

problem.

Notice that \\\ c\ and c\ are all in scaled terms, and in order to find an appropriate

policy for the original queueing system, some unsealing needs to be done. By definitions

(3.1) and the standard heavy traffic scaling described in Section 5 of Harrison [4], it can

be seen that

»•(.) = ^, (6.12)

where w is the unscaied workload process defined in the introduction by

w{t) = MQ{t), t > 0, (6.13)
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and Q is the actual queue length process. Define w* = \/nc* for i = 1, 2 to be the threshold

levels for the input policy. Then the suggested input rule is to release a customer into the

system at times t such that either

wi{t) < wl and (6-14)

y^2it) - ^w,{t) < e,, (6.15)

or

W2{t) < 1^2 and (6.16)

AI
^'iii) - TT-Mt) < ^2. (6.17)

Here, ei and €2 are parameters that can be set in order to achieve a desired output rate.

As will be seen in the next section, the setting of these parameters is quite simple, at least

when there are no non-bottleneck stations in the queueing system.

7. An Example

The scheduling rules stated in Sections 5 and 6 will be illustrated by means of an

example. The example will have two customer types, A and B, and there is a 50-50 product

mix that is specified, so that customers are released into the system in the order ABABAB...

As seen in Figure 4, customer type A has two stages on its route and customer type B has

four stages. The six customer classes are designated (and ordered from k = 1, ...,6) by Al,

A2, Bl, B2, B3 and B4, since each class corresponds to a type-stage pair.

The mean service times (in arbitrary time units) for each customer class are indicated

in Figure 4. For concreteness (since simulation results will be exhibited), all service times

are assumed to be exponential, although our results hold for any service time distributions

with finite mean and variance. Calculation of the 2x6 workload profile matrix M yields

,, /4 10 2 2 0\ ,_ .

^^=[1
1 13 13 7 ?;• ^^-^^
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such that either

wi{t)<l9 and (7.3)

W2{t) - ^Wi{t) < €u (7.4)

or

W2{t) < 62 and (7.5)

wiit) - ^W2{t) < €2. (7.6)

Using the example network, a simulation study was undertaken to compare the per-

formance of the suggested scheduling rule against conventional input and sequencing rules.

Three input rules were tested: the suggested input rule (abbreviated by WR{€i,€2) for

workload regulating input, where ej and €2 are the boundary layer thicknesses used); closed

loop input (abbreviated by CL{N), where N is the total number of customers in the net-

work); and deterministic input, where the interarrival times are constant. For all input

rules, customers entered the system in the order ABABAB... Five sequencing rules were

compared: first-in first-out (FIFO); shortest expected processing time (SPT); shortest

expected remaining processing time (SRPT); the asymptotically optimal sequencing rule

(abbreviated by ST(A/i — M2)); and the rule based on the dynamic reduced costs that

was described in Section 5 (abbreviated by DY(A/i — M2)). Another common rule in the

scheduling literature is the least work next queue (LWNQ) rule. This policy gives priority

to the customer who is going next to the queue that has the least expected amount of

work in it. The LWNQ rule is not relevant here, since all customers at station 1 go next

to station 2, and all customers at station 2 go next to station 1 or exit the system.

The results of the simulation study are summarized in Table 1. Each row gives statis-

tics for a particular scheduling policy, which is specified by a particular input control rule

paired with a specific sequencing rule. The first two columns of Table 1 state the schedul-

ing policy. For each policy tested, ten independent runs were made, each consisting of 2000
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customer completions. The third column gives the average throughput rate (in customers

per unit time) over the ten runs, along with a 95% confidence interval. The fourth column

of Table 1 contains the average cycle time of customers over the ten runs, along with a

95% confidence interval for this value. Rather than use the target average throughput rate

A = .1286 customers per unit time, it was more convenient to choose the parameters of the

closed input policies and workload regulating input policies so as to achieve a throughput

rate of .127 customers per unit time. This average throughput rate corresponds to an

average server utilization of 88.9%. To allow for easy comparisons of the average cycle

times for the various policies, all simulation runs achieved this target output rate.

Each simulation run had no initialization period, and all runs began with an empty

system. For closed loop input runs, the customers arrived according to deterministic input

(at the same rate as the corresponding open models) until the network had reached its

population limit, and then closed loop input was used.

Referring to the results in Table 1, it is seen that workload regulating input in com-

bination with either of the sequencing rules described in Section 5 easily outperformed all

other combinations of input and sequencing rules. The difference in performance between

the ST(Mi — M2) and DY(A/i — il/2) rules was not statistically significant. They both

achieved nearly a 30% reduction in average cycle time, compared to the next best schedul-

ing rule, which was the closed loop input in combination with the ST{Mi —M2) sequencing

rule. This sequencing rule, which was shown in Harrison and Wein [5] to maximize the

throughput rate of a two-station closed queueing network in heavy traffic, achieved a 30%

reduction in average cycle time compared to FIFO in the closed loop input case.

Since the workload regulating input rule was derived jointly with the

ST{Mi — M2) and DY{Mi — A/2) rules, the input rule was not tested in combination

with the other three sequencing rules. Similarly, the ST{Mi — M2) and DY{Mi — A/2)

rules were not tested in combination with input rules with which they were not derived.
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