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Abstract

The major tradeoff in designing a service network, where facility-based drivers

or servers travel to customer sites, is the cost of delivery versus the cost of

facilities. Where the constraining factor is the capacity of the delivery vehicles,

the costs are a straightforward computation. In many applications, however, the

available time of day drives the system in that excess travel time, due to a smaller

number of facilities, cuts down on the efficiency of delivery people, thereby

requiring more such people. This article develops a model based on this concept,

and presents some actual applications of the model.

'This work was supported by the United States Postal Service, Office of

Operations Research & Systems Requirements under Task Order 88-05-02.





1. Introduction

This article focuses on the problem of determining service territories in a

service business. A service territory consists of a central location, from which

some type of delivery or visits are made to individual customer sites. The

problem occurs in any type of repair organization such as the telephone repair

operations, or a business requiring direct customer delivery of merchandise. It

also occurs in point-to-point distribution problems such as in the delivery of mail

from postal facilities to individual mail stops.

Since each service territory has a facility that serves as a central base of

service, the problem of determining service territories requires determining the

number and location of facilities. As more facilities are added and the

organization becomes less centralized, the fixed-facilities costs go up. On the

other hand, the delivery operators are generally closer to their customers, and thus

labor efficiency goes up; this in turn allows for fewer operators and vehicles.

Bums et. al. [1985] treat a very similar problem when they examine the

optimum size of delivery regions when delivery is made from a central location

within a larger supplier region. The latter corresponds to what we call service

territories (What Bums et. al. refer to as the delivery regions, a term that we also

adopt, corresponds to the specific area a driver travels to). The service territory

is the entire area that a group of drivers service from a single service center or





service facility, (see Figure 1). However, Bums eL al. do not consider the

optimum size of supplier regions. Furthermore, the major constraint in their

approach, which is typical of vehicle routing approaches (see Bodin et. al, [1983])

is in the aggregate size of a delivery load (e.g. weight or volume). We have

observed that in many service delivery operations, the key constraints are work-

load of the delivery person (which we refer to as the driver). For example, in

delivering mail to customers, the major limitation on the number of stops a driver

can make is his allotted time rather than the amount of mail he can put into his

vehicle. While there superficially does not appear to be any difference between

these two types of constraints (size or time), the time constraint is based on the

time it takes the driver to drive to his delivery region while the size constraint is

not This type of time constraint yields an entirely different type of optimality

condition for the number of facilities.

The precise trade-off between the facilities and the delivery cost is a matter

of structure of the service offered. In many service operations, service

requirements are probabilistic and each service demand is satisfied through

dispatch from the nearest service center. The service representative travels from

the service center to the site of the request and then returns. In this type of

situation, response time and distance varies as the inverse square root of the

number of service facilities (e.g. in Kolesar and Blum [1973]).
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In other service organizations, at the beginning of each day, a set of demands

or customer locations are assigned to each operator along with approximate daily

vehicle routes (the sequences of stops) In this case the service representative

leaves the service location at the beginning of the day and returns at the end of

the day.

If one views, in this case, the delivery regions being preassigned, then the only

variables with respect to the number of service centers are the initial and final

travel time and the distance of the delivery vehicles (see Figure 2). Based on this

preassignment assumption, we can develop a straightforward model to determine

the economics of the number of service facilities. As centralization decreases and

the number of service facilities increases, initial and final travel distances

decrease. If the initial and final travel time is defined as unproductive time, and

all the time in between as productive time, then the total amount of work time

available per worker per day is some constant (such as eight hours) less the initial

and final travel time. If this initial and final travel time goes down, then the

productive time for a worker goes up, and the company will need fewer workers

to service the workload. This is traded off against the fixed-facilities cost (Of

course, if the number of service facilities is changed, then the actual routes and

regions will be changed. In this sense the delivery regions are not totally

preassigned, but this is considered in the analysis).
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This article presents the analytic relationships for the various costs involved

as the number of service facilities and territories are changed. These relationships

can be used as the basis for determining the best number of service facihties. In

relatively simple situations, the analytic relationships can be solved directly. In

more complex situations, there may be fairly complicated relationships between,

for example, fixed-facilities costs and the number of delivery workers that that

facility is serving. In this type of situation, one can use the analytic relationships

as a basis for computer simulations that include all the relevant costs.

The authors have applied the approach for three separate service situations.

For a major telephone company, one of the authors, by simulating travel times on

an actual network and by deducting travel times from daily productive labor,

helped restructure the network. In this case, the facilities covered different size

service territories and travel speeds varied, but the productive time within each

service territory was reduced by the actual travel time. For an industrial gas

distributor, by analyzing the trade-offs involved in traveling from the service center

to the customer sites, one of the authors helped to convert service centers that

were the origin of vehicle routes into simple sales operations.

In the most comprehensive application of the approach, all three of the

authors worked on a project with the U.S. Postal Service (USPS) to develop a

methodology to size postal service territories (called delivery units), those

territories whose mail carriers operate from a central facility (also called a





delivery unit) and deliver mail to individual mail stops. The result of this effort

was a computerized planning system that the USPS is implementing at the present

time.

This article consists of three additional sections. In the next section, we

present the analytic relationships for determining the optimum number of service

territories. In Section 3, we discuss the application to the sizing of delivery units

in the USPS. In the final section, we discuss a variation of the final model to

cover the case of a varying density of service requests.

2. Analytic Model

The basic assumptions of the model are as follows:

- Service centers or facilities are located in the center of each service

territory

- Stops are uniformly distributed

- Each driver travels at a constant speed

- The drivers have equal work days (that include traveltime as well as time

performing their service)

- Demand can be random or predetermined, but routes are pre-assigned

each day





Letting

A = Total area covered by all service territories

M = Total number of stops or customers

N = Number of service centers or facilities,

then

Area (i.e. size) of each service territory = Area serviced by each facility = A/N

The heart of the model is the relationship between the initial and final travel

time (Bums et. al. refer to this as linehaul and backhaul distances) and the size

of the service territory. As indicated in Figure 3, this travel time will be

proportional to the linear distance of the surface area for each facility or the

square root of the area. (See Kolesar and Blum [1973] for a complete discussion

of this topic. The topic is also treated in Adoni and Larson [1981]). The

mathematical relationship is based on the distance from the service facility to a

set of uniformly distributed points. For a set of delivery routes, this implies that

the starting and ending points of the routes are uniformly distributed. Simchi-

Levi [1985] shows this asymptotically. In practice, this implies that delivery

regions are layed out as in Figure 1, at varying distances fi-om the service facility

rather than like petals of a flower. Haimovich and Rinnooy Kan [1987], who

analyse delivery region structure, provide some evidence of this. Newell and

Daganzo [1986], and Langevin and Soumis [1989], for example, assume delivery





regions of the "ring-radial" form, in which case the regions are part of concentric

rings. The first and last stop on each route is located close to the inner ring of

each group of delivery regions. Furthermore, Langevin and Soumis indicate that

the width of the regions is of the form L = A - Br, where r is the distance of the

region from a centrally located service center. Hence, for a randomly located

demand point that is r from the center (assimied to be uniformly distributed) the

initial and final travel time corresponding to its route is proportional to r - L/2

= r(l + B/2) - A/2. Integrating this over rings of the size 2f7rdr from to the

radius R and dividing by the area R^, the average initial final and travel time is

of the form

KR-B

R of course is proportional to the square root of the area, indicating that the

initial and final travel time does not strictly follow the square root law. However,

in practice B will be relatively small and it asymptotically goes to zero.

Furthermore, the existence of B does not change the form of the equation (3) for

the total number of routes that follows. We will hence assume the square root

relationship.

The actual constant of proportionality in the square root relationship will vary

depending on the assumed shape of the service territory, e.g. circular versus

square, the location of the service center within the territory, and the nature of

travel to the delivery region, e.g. Manhattan metric versus direct distance (see

Adoni and Larson [1981]). However, under any of these assumptions, the square
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root relationship still holds. (In the application discussed in the following section,

the value of the constant becomes important and we will discuss the topic further.)

Note that distances to the different delivery regions will vary (see Figure 1).

The comparison is for different size service territories. While the distance within

the delivery region, i.e. the local travel, will also change, the effect is not as

significant as the effect on the initial and final travel time.

The total work time per day on each route can then be defined in terms of

the number of delivery regions (or routes) X in all of the service territories.

(Note that the actual number of drivers can exceed the number of routes, if

backup drivers are needed).

For a given service territory, then, the initial and final travel time, linehaul

and backhaul, averaged over the delivery regions in the service territory is

K, Ja/N (1)

where K^ is a constant

The time between stops can be based on the shortest Euclidean path

connecting the stops (see Bums et al. [1985], Bearwood et al. [1959], Eilon et

al. [1971], and Stein [1978]):





Kj J(Area of delivery region) (Number of stops per route)

(According to Bums et. al., Kj is approximately .6 divided by the travel

speed.)

We next compute the average of this time between stops. Suppose we denote

the areas and nimiber of stops for all delivery regions in all service territories as

A, and M, respectively, i = 1, . . ., X

Then

X
£ M, = M
i=l

X
£ A, = A
i=l

M = Average number of stops = M/X

A = Average area = A/X

R = Average of^,M,

i = l

Assuming further that stops are uniformly distributed then A, = CM, for some

C, and
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hence

X X

A = A/X = ^£_ '^i'x ^ CMi=CM/X = CM
i=l i=l

and R=l £>|vSi; = i £ v|o^ = 1 ^ =^ £ Mj vfc"

i=l i=l i=l i=l

= M >[€"= nImCM = >J MA = >Jma/X^

AM
X

Hence the average for all delivery regions of the time between stops is

KjR = (Kj/x) Jam"

Finally, the average processing time for the stops on a single route is

K3 M = 'K3 (M/X)

where K3 = processing time per stop

(Hausner [1975], in an empirical study, suggests that travel time between stops

includes a fixed charge. K3 could also reflect this). Thus, the total time for an

average route per day is

K, nTa/N +(K2/x)|aM + K3(m/x) (2)
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(Asymptotically, as the number of stops per route increases, the first term

dominates the other travel term, as shown by Simchi-Levi: [1985])

Since (2) must be equal to some constant D (e.g. 8 hours per day) we get the

following relationship for X.

Ki JA/N +(k2/x\IaM + KJM/Xy D

Solving for X,

KjJam + KjM (3)

X =

D-K, 4a7n

In examining (3), the numerator represents the total daily processing time for all

stops (actual processing time plus inter-stop time) once drivers reach their delivery

regions. The denominator represents the available daily work time once travel to

and from the deUvery region is deducted.

Expression (3) represents the worker and associated costs as a function of

N. As N increases, these costs decrease, but facility related costs (i.e. service

center costs) increase. In actual applications, the relationships can be complex

(e.g. nonlinear relationships between facility costs and number of routes serviced).

However, for a simple functional form for facility costs, one can develop a

relationship for the optimum number of facilities as follows:
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Let B = Fixed cost per facility

F = Cost per route

C = K2>IaM + KjM

(Note that variable costs of facilities are not affected by the number of facilities

and can be left out).

Then the total cost is

^ + BN (4)

d-k^^a/n

which is equivalent to

J^ ^ + BN (5)

DIN - K,^

To find the minimum of (3) we take its derivative and set it to zero (see

Figure 4).

.5CFN-^'2 CFN^'2(^Df4-i/2)

- + B =

DN-KiJa (DN'^2-K,A)2

which yields the following cubic equation forJN

BlV - 2K,BDA^^2 y2 + KfABy - .SCFD^A^^^ = (6)

where

y=|N

The next level of sophistication is a more general model of facilities costs. An
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example might be

Facility costs = B,N + B2>[n' + B, (7)

The square root term might represent spare parts inventories (see Magee et. al.

[1985], for example). This will also yield a cubic equation.

In practice, however, the relationship between various costs and the number

of routes is more complex, as exemplified by the case study from the USPS.

3. Optimizing Delivery Units for the U.S. Postal Service

The USPS operates service facilities called delivery units (DUs) from which

mail is delivered to delivery points as denoted in Figure 1. Mail to the delivery

units arrives from a mail processing facility, called a sectional center facility

(SCF), which is responsible for a large service area that encompass many delivery

units. Mail is delivered by carriers (i.e. drivers) who work part of their time in the

office to case and sequence the mail. After sequencing the mail they leave the

office and deliver the mail to customers in preassigned routes. The responsibility

of planning delivery units in a given service area lies with the management of the

processing facility.

To assist postal planners in developing the network of delivery imits in a

specific given area and to deal with problems of space deficiency, the authors

14





developed a spreadsheet based cost model, called Delivery Unit Planning Model,

or DUPM, based on the relationships described in the previous section. This

section reviews the DUPM.

Postal delivery unit costs include four components:

o Carriers and their vehicles

o Supervisor and support staff

o Facilities, including maintenance and utilities

o Transportation (to delivery units)

Figure 5 shows the trends in costs when there is a shift toward decentralization

(i.e., from a few large DUs to many small ones). Carrier costs decrease because

carriers spend less time traveling from the delivery unit to their routes. Facility

plus supervisor and support staff costs increase because some portion of these

costs are fixed, even for very small delivery units. Transportation costs increase

because of the increase in the number of locations that must be served.

As indicated in relationship (2), the available work time for a postal carrier

was computed by subtracting travel time. This available work time then became

the basis for many of the other calculations. To calculate the initial and final

travel time from (1), we used the general formula

15
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'(i^y^ATT = f—^^UlA/N W

where

K4 = parameter relating one-way distance to square root of area

ATT = average initial and final travel time

speed = average speed which is input by the user of DUPM

That is

K, = 2K^/speed (9)

K^ can be computed both theoretically and empirically. For example, consider a

delivery unit that is circular in shape. Assume that the facility is located in the

center and there is a uniform distribution of routes. It then follows that the

average distance to a randomly selected route is

R

1
r(2tl?dr) '

. = 2R/3

R2

Since the maximum radius R is related to area by

Area =TrR2:^:=^R =^Area/Tr

Then distance is

Distance = 2_ ^^ ^K^ = 2 = 33

3 'ir
^ 3TP

Of course, the area may not be circular, routes may not be distributed

imiformly, the facility may not be located at the center, and travel may not be

16





direct, Larson and Odoni [1981] present a series of models that examine

variations, including the "Manhattan metric" of right-angle travel. Values for K^

range from .38 to 0.75. Based on data from a USPS survey, the authors selected

a value of K^ of 0.6.

Given K^ according to (8) and (9), the number routes in DUPM is computed

by a variant of (3). The variant is due to the fact that each daily route consists

of route time plus what the post office refers to as internal time spent at the

facility sorting and performing other route-dependent tasks. This time depends

on the route time less travel time, and the effect, is that the time visiting stops in

the denominator of (3) is multiplied by a constant (J3 is the default in DUPM).

Based on the niunber of routes and the initial and final travel time ATT, the

model calculates the other costs as follows:

Carrier and Vehicle Costs - The number of vehicles is equal to the nimiber of

routes. The number of carriers exceeds the number of routes, because of backups

and weekends. Based on a survey conducted by the authors on number of carrier

and routes in post offices and regression analysis of the data in these surveys,

the number of carrier hours as a function of the number of routes can be

estimated to be

Carrier hours = 8.822 x routes + .0097 x Routes^ (10)
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Carrier costs are then computed based on the total number of hours and vehicle

requirements.

Facilities Cost

Facilities costs consist of space, utilities, and maintenance. Space requirements,

according to postal guidelines are

square feet = 2048 + 296 x routes (11)

The lower bound of 2048 results from the fact that each facility, no matter how

few routes it contains, must have a minimum amount of space for washrooms,

cafeteria, docks, heating and cooling, etc. The cost per square foot, which is rent

if the building is leased and amortized construction and land if owned, typically

varies by location and is generally user input Utility and maintenance costs are

based on a survey of postal facilities, consist of aimual fixed and variable (with

square footage) costs. DUFM uses default values reflecting the survey averages.

18





Supervisory and Support Staff

Supervisory and support staff, based on the same survey, increase with the

number of routes:

Supervisors = 1.274 + .0374 x routes + .00024 x routes^ (12)

Support staff hours = 4 + 03 x routes + .00112 routes^

DUPM has these relationships built in and multiplies the terms by appropriate

input cost factors.

Delivery of Mail to Delivery Units

Mail is delivered from the sectional center facility to each of the delivery imits.

Assuming that the cost to deliver mail to each set of two or three delivery units

is proportional to the distance to those units (each two or three delivery units

requires a separate trip) then it follows that the cost of delivery for all tmits is

proportional to the square root of the total area of all delivery units. DUPM

uses this proportionality and a constant of proportionality based on the same

survey data.

19





Applying the Model

Applying the model with default values on the cost parameters yields the types

of curves presented in Figure 6. The lowest curve, marked A A, represents

the cost of delivery of mail to delivery units. The next curve, marked V V

represents facility costs. This includes space plus maintenance and utility costs.

This curve increases as delivery imits are added due to the constant term in

equation (11). In addition, smaller buildings typically cost more per square foot

to construct than do larger buildings. (This is imbedded in a default cost per foot

functioiL) However, these two factors are offset by the fart that, as the nimiber

of delivery units increase, the total square footage of building space required in =

the application area deaeases since fewer total routes are required. Therefore,

facility costs increase at a decreasing rate as the nimiber of routes increase.

The third curve, marked D D, represents the cost of supervisors and

support staff. It initially decreases, reaches a minimum, and then increases in

proportion to the number of delivery units. There are two fartors that cause these

costs to behave this way. The first is that very large units have lower manpower

productivity than do medium or small sized units (equation 12). This causes costs

to increase more than proportionately as the number of units decrease. However,

as the number of units increases, and their size decreases, a minimum number of

supervisors and support staff hours are required in each delivery unit (equation

10), causing costs to increase in proportion to the number of delivery units.
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The fourth curve, marked + +, represents the cost of carriers and their

vehicles. It decreases as the number of delivery units increase. There are also

two factors affecting this cost. Like supervisors and support labor, carriers also

show reduced productivity in very large units (equation 10). The second factor is

that of travel time to and from the routes, which decreases with an increased

nimiber of delivery units. Both of these factors have less effect as more and more

delivery units are added, causing this curve to almost flatten out with very large

nimibers of delivery units.

The top-most curve is the stmi of the four individual cost factors. It generally

decreases, reaches a minimum and then increases as delivery imits are added to

the application area.

Application of the model to a variety of sectional center facilities in the country

led to the following conclusions:

o The dominant part of the operating costs are the labor costs for the carriers

themselves

Changes in facility cost, such as from rent modifications, have little impact

on the solution
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o There is a fairly wide range of values for the number of delivery units over

which costs are close to minimal.

o Very large or very small delivery imits are inefficient, both in terms of their

implications on the facility and their infrastructure (e.g. supervisors) and for

the case of large units, in terms of the effect on all labor costs.

*

The authors undertook a set of field studies with a number of postal service

sectional center facilities. In each one, the model was applied using the

parameters for each locale (average speed area, etc.). The model proved to be

an extremely useful approach to evaluating the current network and understanding

whether decentralization or consolidation would be advisable.

Sizing Service Areas with Varying Densities

The model of Section 2 and the DUPM both assumed a uniform distribution

of routes. If some parts of a set of service territories are denser than others,

should the service territories corresponding to them be larger or smaller? This

section addresses this issue.

Suppose we enumerate the individual service territories by the index i. Let the

area of each be A, the average route density be D,, and the travel velocity be V,.

We expect that velocity V, will decrease as density increases. (From a theoretical
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view, velocity decreases as vehicle density increases, which might increase with

route density. Huber (1982) present several alternative models, for the velocity

and vehicle density relationships.) Suppose we can model velocity as being

proportional to

We would not expect a strong relationship. For example, if a were between and

^, then we would expect no more than a 41% increase in velocity if the density

were cut in half.

Then it follows that:

Average distance to a route is

Constant • A,''^

Average time to a route is distance/velocity or

Constant • A/'^ • D,'

The objective to minimize is the total time, which is equivalently the weighted sum

of times:

Constant • N, • A,^'^ D,'

where N, is the number of routes in service territory. However,

N, = D, A,

Hence the objective is:

Constant • D/^*-> A,''^

This function is minimized when the separate terms are equalized. (See Zangwill

[1969]). Hence,
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D/^*" A, '^2 = K, = a constant

or

Furthermore, since the number of routes in area i is

D,A,

then

Routes, = D,A,^D,D,-^<'*'> or routes,^D/^-2 "^
(13)

If A varies between and J then the number of routes should vary between a

power of the route density between zero and one. From a practical point of view

the nimiber of routes is not very sensitive to density and in many applications,

service territories should have roughly the same number of routes. This general

guideline was suggested to the USPS in applying the DUPM model.

Final Comments

The concept of a fixed amount of daily worker travel time obviously has a

significant effect on network design and cost in a service network. This article will

hopefully lead to additional extensions providing for the insight on service network

design.
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